-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathTrain_Active_Full_Im.py
492 lines (452 loc) · 29.6 KB
/
Train_Active_Full_Im.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
# -*- coding: utf-8 -*-
"""
Created on Wed Mar 7 16:42:15 2018
Full image based active learning on GlaS dataset
@author: s161488
"""
import tensorflow as tf
from data_utils.prepare_data import prepare_train_data, padding_training_data, aug_train_data, generate_batch
from models.inference import ResNet_V2_DMNN
from optimization.loss_region_specific import Loss, train_op_batchnorm
from select_images import selection
from sklearn.utils import shuffle
import numpy as np
import os
print("--------------------------------------------------------------")
print("---------------DEFINE YOUR TRAINING DATA PATH-----------------")
print("--------------------------------------------------------------")
training_data_path = "DATA/Data/glanddata.npy" # NOTE, NEED TO BE MANUALLY DEFINED
test_data_path = "DATA/Data/glanddata_testb.npy" # NOTE, NEED TO BE MANUALLY DEFINED
resnet_dir = "pretrain_model/"
exp_dir = "Exp_Stat/" # NOTE, NEED TO BE MANUALLY DEFINED
print("--------------------------------------------------------------")
print("---------------DEFINE YOUR TRAINING DATA PATH-----------------")
print("--------------------------------------------------------------")
def running_train_use_all_data(version_space):
"""Train an model with all the training data (85)
This is used to benchmark the full image acquisition and region acquisition strategy
"""
flag_arch_name = "resnet_v2_50"
resnet_ckpt = os.path.join(resnet_dir, flag_arch_name) + '.ckpt'
acq_method = "B"
epoch_size = 1300
batch_size = 5
num_im = 85
decay_steps = (600 * num_im) // batch_size
epsilon_opt = 0.001
using_full_training_data = True
for single_version in version_space:
model_dir = os.path.join(exp_dir, 'Version_%d' % single_version)
train_full(resnet_ckpt, acq_method, None, None, None, model_dir, epoch_size, decay_steps, epsilon_opt,
batch_size,
using_full_training_data)
def running_initial_model(version_space):
"""Train an model with the initial training set (num_training_image = 10),
This model doesn't influence the full image acquisition, but it's needed for the region acquisition
repeat several times and use the best one to find the initial acquired regions
"""
flag_arch_name = "resnet_v2_50"
resnet_ckpt = os.path.join(resnet_dir, flag_arch_name) + '.ckpt'
acq_method = "A"
epoch_size = 1300
batch_size = 5
num_im = 10
decay_steps = (600 * num_im) // batch_size
epsilon_opt = 0.001
using_full_training_data = False
for single_version in version_space:
model_dir = os.path.join(exp_dir, 'Version_%d' % single_version)
train_full(resnet_ckpt, acq_method, None, None, None, model_dir, epoch_size, decay_steps, epsilon_opt,
batch_size, using_full_training_data)
def running_loop_active_learning_full_image(stage, round_number=[0, 1, 2]):
"""Perform all the acquisition steps using a single uncertainty estimation methods
Args:
stage: int, 0 means random selection 1 means VarRatio, 2 means Entropy, 3 means BALD
round_number: int, defines how many times do we want to repeat the experiments.
Note:
In order to run this function, you will need to download the resnet_ckpt from tensorflow repo
wget http://download.tensorflow.org/models/resnet_v2_50_2017_04_14.tar.gz
tar -xvf resnet_v2_50_2017_04_14.tar.gz
rm resnet_v2_50_2017_04_14.tar.gz
rm train.graph
rm eval.graph
"""
agg_method = "Simple_Sum"
agg_quantile_cri = 0
if agg_method == "Simple_Sum":
acqu_index_all = np.zeros([3, 5])
acqu_index_all[0, :] = [36, 34, 32, 57, 20] # stage for B is 1, for D is 2, for F is 3
acqu_index_all[1, :] = [36, 33, 34, 32, 57]
acqu_index_all[2, :] = [45, 57, 33, 9, 30]
else:
print("This acquisition method is on its way :) ")
for single_round_number in round_number:
total_folder_info = []
acqu_index_init_total = acqu_index_all
print("The initial selected image index from starting point", acqu_index_init_total)
flag_arch_name = "resnet_v2_50"
resnet_ckpt = os.path.join(resnet_dir, flag_arch_name) + '.ckpt'
total_active_step = 10
num_selec_point_from_pool = 5
acq_index_old = np.zeros([total_active_step, num_selec_point_from_pool])
acq_method_total = ["A", "B", "C", "D"]
acq_selec_method = acq_method_total[stage]
if acq_selec_method == "A":
acq_index_update = np.random.choice(range(65), num_selec_point_from_pool, replace=False)
else:
acq_index_update = acqu_index_init_total[stage - 1, -num_selec_point_from_pool:]
logs_path = os.path.join(exp_dir, 'Method_%s_Stage_%d_Version_%d' % (acq_selec_method, stage,
single_round_number))
for acquire_single_step in range(total_active_step):
if acq_index_old is not None:
acq_index_old = np.array(acq_index_old).astype('int64')
if acq_index_update is not None:
acq_index_update = np.array(acq_index_update).astype('int64')
epsilon_opt = 0.001
batch_size_spec = 5
max_epoch_single = 1300
if acquire_single_step < 7:
decay_steps_single = 1800 + acquire_single_step * 600
else:
decay_steps_single = 1800 + acquire_single_step * 500
model_dir = os.path.join(logs_path, 'FE_step_%d_version_%d' % (acquire_single_step, single_round_number))
if acquire_single_step == 0:
acq_index_old_sele = None
else:
acq_index_old_sele = acq_index_old[:acquire_single_step, :]
print("The selected index", acq_index_old_sele)
print("===================================================================================")
num_repeat_per_exp = 3
tot_train_val_stat_for_diff_exp_same_step = np.zeros(
[num_repeat_per_exp, 4]) # fb loss, ed loss, fb f1 score, fb auc score
for repeat_time in range(num_repeat_per_exp):
print("==============Start Experiment No.%d============================================" % repeat_time)
model_dir_sub = os.path.join(model_dir, 'rep_%d' % repeat_time)
signal = False
while signal is False:
signal_for_bad_optimal = False
while signal_for_bad_optimal is False:
train_full(resnet_ckpt=resnet_ckpt,
acq_method=acq_selec_method,
acq_index_old=acq_index_old_sele,
acq_index_update=acq_index_update,
ckpt_dir=None,
model_dir=model_dir_sub,
epoch_size=20,
decay_steps=decay_steps_single,
epsilon_opt=epsilon_opt,
batch_size=batch_size_spec,
using_full_training_data=False,
flag_pretrain=False)
train_stat = np.load(os.path.join(model_dir_sub, 'trainstat.npy'))
val_stat = np.load(os.path.join(model_dir_sub, 'valstat.npy'))
sec_cri = [np.mean(train_stat[-10:, 1]), np.mean(val_stat[-1, 1])] # fb f1 score
thir_cri = [np.mean(train_stat[-10:, 2]), np.mean(val_stat[-1, 2])] # fb auc score
if np.mean(sec_cri) == 0.0 or np.mean(thir_cri) == 0.5:
signal_for_bad_optimal = False
all_the_files = os.listdir(model_dir_sub)
for single_file in all_the_files:
os.remove(os.path.join(model_dir_sub, single_file))
print("--------------------The model start from a really bad optimal----------------")
else:
signal_for_bad_optimal = True
train_full(resnet_ckpt=resnet_ckpt,
acq_method=acq_selec_method,
acq_index_old=acq_index_old_sele,
acq_index_update=acq_index_update,
ckpt_dir=model_dir_sub,
model_dir=model_dir_sub,
epoch_size=max_epoch_single,
decay_steps=decay_steps_single,
epsilon_opt=epsilon_opt,
batch_size=batch_size_spec,
using_full_training_data=False,
flag_pretrain=True)
train_stat = np.load(os.path.join(model_dir_sub, 'trainstat.npy'))
val_stat = np.load(os.path.join(model_dir_sub, 'valstat.npy'))
first_cri = [np.mean(train_stat[-20:, -1]), np.mean(val_stat[-10:, -1])] # ed loss
sec_cri = [np.mean(train_stat[-20:, 1]), np.mean(val_stat[-10:, 1])] # fb f1 score
thir_cri = [np.mean(train_stat[-20:, 2]), np.mean(val_stat[-10:, 2])] # fb auc score
fourth_cri = [np.mean(train_stat[-20:, 0]), np.mean(val_stat[-10:, 0])] # fb loss
if np.mean(first_cri) >= 0.50 or np.mean(sec_cri) <= 0.80 or np.mean(thir_cri) <= 0.80 or np.mean(
fourth_cri) > 0.50:
signal = False
else:
signal = True
if signal is False:
all_the_files = os.listdir(model_dir_sub)
for single_file in all_the_files:
os.remove(os.path.join(model_dir_sub, single_file))
print("mmm The trained model doesn't work, I need to retrain it...")
if signal is True:
tot_train_val_stat_for_diff_exp_same_step[repeat_time, :] = [np.mean(fourth_cri),
np.mean(first_cri),
np.mean(sec_cri),
np.mean(thir_cri)]
print("=============Finish Experiment No.%d===================" % repeat_time)
# ------Below is for selecting the best experiment based on the training and validation statistics-----#
fb_loss_index = np.argmin(tot_train_val_stat_for_diff_exp_same_step[:, 0])
ed_loss_index = np.argmin(tot_train_val_stat_for_diff_exp_same_step[:, 1])
fb_f1_index = np.argmax(tot_train_val_stat_for_diff_exp_same_step[:, 2])
fb_auc_index = np.argmax(tot_train_val_stat_for_diff_exp_same_step[:, 3])
perf_comp = [fb_loss_index, ed_loss_index, fb_f1_index, fb_auc_index]
best_per_index = max(set(perf_comp), key=perf_comp.count)
model_dir_goes_into_act_stage = os.path.join(model_dir, 'rep_%d' % best_per_index)
print("The selected folder", model_dir_goes_into_act_stage)
total_folder_info.append(model_dir_goes_into_act_stage)
tds_select = os.path.join(model_dir_goes_into_act_stage, 'pool_data')
acq_index_old[acquire_single_step, :] = acq_index_update
acq_index_rm = np.array(acq_index_old[:acquire_single_step + 1, :]).astype('int64')
if acq_selec_method == "A":
selec_index = np.random.choice(range(65 - (acquire_single_step + 1) * num_selec_point_from_pool),
num_selec_point_from_pool, replace=False)
acq_index_update = selec_index
else:
selec_index = selection(tds_select, model_dir_goes_into_act_stage,
[acq_selec_method], acq_index_rm,
num_selec_point_from_pool, agg_method, agg_quantile_cri,
data_path=training_data_path)
acq_index_update = selec_index[:, 0]
print(acquire_single_step, acq_index_update, np.shape(acq_index_update))
# np.save(os.path.join(model_dir, 'acqu_index'), Acq_Index_Update)
np.save(os.path.join(logs_path, 'total_select_folder'), total_folder_info)
np.save(os.path.join(logs_path, 'total_acqu_index'), acq_index_old)
def train_full(resnet_ckpt, acq_method, acq_index_old, acq_index_update, ckpt_dir, model_dir, epoch_size, decay_steps,
epsilon_opt, batch_size, using_full_training_data=False, flag_pretrain=False):
# --------Here lots of parameters need to be set------Or maybe we could set it in the configuration file-----#
# batch_size = 5
if not os.path.exists(model_dir):
os.makedirs(model_dir)
image_w, image_h, image_c = [480, 480, 3]
image_shape = np.array([image_w, image_h, image_c])
targ_height_npy = 528 # this is for padding images
targ_width_npy = 784 # this is for padding images
flag_decay = True
if (acq_method == "F") and (acq_index_old is None):
learning_rate = 0.0009
else:
learning_rate = 0.001
decay_rate = 0.1
save_checkpoint_period = 200
# epsilon_opt = 0.001
flag_l2_regu = True
ckpt_dir = ckpt_dir
moving_average_decay = 0.999
auxi_weight_num = 1
auxi_decay_step = 300
val_step_size = 10
selec_training_index = np.zeros([2, 5])
selec_training_index[0, :] = [0, 1, 2, 3, 4] # this is the index for the initial benign images
selec_training_index[1, :] = [2, 4, 5, 6, 7] # this is the index for the initial malignant images
selec_training_index = selec_training_index.astype('int64')
checkpoint_path = os.path.join(model_dir, 'model.ckpt')
with tf.Graph().as_default():
# This three placeholder is for extracting the augmented training data##
image_aug_placeholder = tf.placeholder(tf.float32, [batch_size, targ_height_npy, targ_width_npy, 3])
label_aug_placeholder = tf.placeholder(tf.int64, [batch_size, targ_height_npy, targ_width_npy, 1])
edge_aug_placeholder = tf.placeholder(tf.int64, [batch_size, targ_height_npy, targ_width_npy, 1])
# The placeholder below is for extracting the input for the network #####
images_train = tf.placeholder(tf.float32, [batch_size, image_w, image_h, image_c])
instance_labels_train = tf.placeholder(tf.int64, [batch_size, image_w, image_h, 1])
edges_labels_train = tf.placeholder(tf.int64, [batch_size, image_w, image_h, 1])
phase_train = tf.placeholder(tf.bool, shape=None, name="training_state")
dropout_phase = tf.placeholder(tf.bool, shape=None, name="dropout_state")
auxi_weight = tf.placeholder(tf.float32, shape=None, name="auxiliary_weight")
global_step = tf.train.get_or_create_global_step()
# -----------------Here is for preparing the dataset for training, pooling and validation---------#
data_train, data_pool, data_val = prepare_train_data(training_data_path, selec_training_index[0, :],
selec_training_index[1, :])
x_image_tr, y_label_tr, y_edge_tr, y_imindex_tr, y_clsindex_tr = data_train
x_image_pl, y_label_pl, y_edge_pl, y_imindex_pl, y_clsindex_pl = data_pool
x_image_val, y_label_val, y_edge_val, y_imindex_val, y_clsindex_val = data_val
y_imindex_pl = np.array(y_imindex_pl)
y_clsindex_pl = np.array(y_clsindex_pl)
im_group = [[x_image_tr, y_label_tr, y_edge_tr],
[x_image_pl, y_label_pl, y_edge_pl],
[x_image_val, y_label_val, y_edge_val]]
for iterr, single_im_group in enumerate(im_group):
single_group_new = padding_training_data(single_im_group[0], single_im_group[1], single_im_group[2],
targ_height_npy, targ_width_npy)
im_group[iterr] = single_group_new
x_tr_group = [im_group[0][0], im_group[0][1], im_group[0][2], y_imindex_tr, y_clsindex_tr]
x_pl_group = [im_group[1][0], im_group[1][1], im_group[1][2], y_imindex_pl, y_clsindex_pl]
x_image_val, y_label_val, y_edge_val = im_group[2][0], im_group[2][1], im_group[2][2]
print("-----Before updating, the shape for the training data and pool data-----")
[print(np.shape(v), np.shape(q)) for v, q in zip(x_tr_group, x_pl_group)]
if acq_index_old is not None:
for remove_data in range(np.shape(acq_index_old)[0]):
num_images_in_pool = range(np.shape(x_pl_group[0])[0])
images_index_left = np.delete(num_images_in_pool, acq_index_old[remove_data, :])
image_index_add_to_tr = acq_index_old[remove_data, :]
print("At step %d" % remove_data, "the index that needs remove", image_index_add_to_tr,
"the images that are left in the pool set", images_index_left)
for i in range(5):
x_tr_group[i] = np.concatenate([x_tr_group[i], x_pl_group[i][image_index_add_to_tr]],
axis=0)
x_pl_group[i] = x_pl_group[i][images_index_left]
print("the removed images' index", acq_index_old[remove_data, :])
print("there are %d training images and %d pool images after %d step" % (np.shape(x_tr_group[0])[0],
np.shape(x_pl_group[0])[0],
remove_data + 1))
if acq_index_update is not None:
for i in range(5):
x_tr_group[i] = np.concatenate([x_tr_group[i], x_pl_group[i][acq_index_update]],
axis=0)
print("there are %d training images " % np.shape(x_tr_group[0])[0])
print([np.shape(v) for v in x_tr_group])
if using_full_training_data is True:
for i in range(5):
x_tr_group[i] = np.concatenate([x_tr_group[i], x_pl_group[i]], axis=0)
print("---After updating, the shape for the training data and pool data-------")
[print(np.shape(v), np.shape(q)) for v, q in zip(x_tr_group, x_pl_group)]
x_image_tr, y_label_tr, y_edge_tr, y_imindex_tr, y_clsindex_tr = x_tr_group
iteration = np.shape(x_image_tr)[0] // batch_size
bi_mask_tr = tf.constant(0, shape=[batch_size, targ_height_npy, targ_width_npy, 1],
dtype=tf.int64)
bi_mask_val = tf.constant(0, shape=[batch_size, targ_height_npy, targ_width_npy, 1],
dtype=tf.int64)
# ----------Perform data augmentation only on training data-----------------------------------------#
x_image_aug, y_label_aug, y_edge_aug, _ = aug_train_data(image_aug_placeholder, label_aug_placeholder,
edge_aug_placeholder, bi_mask_tr,
batch_size, True, image_shape)
x_image_aug_val, y_label_aug_val, y_edge_aug_val, _ = aug_train_data(image_aug_placeholder,
label_aug_placeholder,
edge_aug_placeholder, bi_mask_val,
batch_size, True,
image_shape)
# ------------------------------Here is for build up the network----------------------------------#
fb_logits, ed_logits = ResNet_V2_DMNN(images=images_train, training_state=phase_train,
dropout_state=dropout_phase, Num_Classes=2)
edge_loss, ed_accu, ed_auc_score = Loss(logits=ed_logits, labels=edges_labels_train,
binary_mask=tf.ones([batch_size, image_h, image_w,
1], dtype=tf.float32),
auxi_weight=auxi_weight, loss_name="ed")
fb_loss, fb_accu, fb_auc_score = Loss(logits=fb_logits, labels=instance_labels_train,
binary_mask=tf.ones([batch_size, image_h, image_w,
1], dtype=tf.float32),
auxi_weight=auxi_weight, loss_name="fg")
var_train = tf.trainable_variables()
total_loss = edge_loss + fb_loss
if flag_l2_regu is True:
var_l2 = [v for v in var_train if (('kernel' in v.name) or ('weights' in v.name))]
total_loss = tf.add_n(
[total_loss, tf.add_n([tf.nn.l2_loss(v) for v in var_l2 if 'logits' not in v.name]) * 0.001],
name="Total_Loss")
# var_opt = [v for v in var_train if ('resnet' not in v.name)]
train = train_op_batchnorm(total_loss=total_loss, global_step=global_step, initial_learning_rate=learning_rate,
lr_decay_rate=decay_rate, decay_steps=decay_steps,
epsilon_opt=epsilon_opt, var_opt=tf.trainable_variables(),
MOVING_AVERAGE_DECAY=moving_average_decay)
# summary_op = tf.summary.merge_all()
if flag_pretrain is False:
set_resnet_var = [v for v in var_train if (v.name.startswith('resnet_v2') & ('logits' not in v.name))]
saver_set_resnet = tf.train.Saver(set_resnet_var, max_to_keep=3)
saver_set_all = tf.train.Saver(tf.global_variables(), max_to_keep=1)
else:
saver_set_all = tf.train.Saver(max_to_keep=1)
print("\n =====================================================")
print("The shape of new training data", np.shape(x_image_tr)[0])
print("The final validation data size %d" % np.shape(x_image_val)[0])
print("There are %d iteratioins in each epoch" % iteration)
print("ckpt files are saved to: ", model_dir)
print("Epsilon used in Adam optimizer: ", epsilon_opt)
print("Initial learning rate", learning_rate)
print("Use the Learning rate weight decay", flag_decay)
print("The learning is decayed every %d steps by %.3f " % (decay_steps, decay_rate))
print("The moving average parameter is ", moving_average_decay)
print("Batch Size:", batch_size)
print("Max epochs: ", epoch_size)
print("Use pretrained model:", flag_pretrain)
print("The checkpoing file is saved every %d steps" % save_checkpoint_period)
print("The L2 regularization is turned on:", flag_l2_regu)
print(" =====================================================")
with tf.Session() as sess:
if flag_pretrain is False:
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
saver_set_resnet.restore(sess, resnet_ckpt)
else:
ckpt = tf.train.get_checkpoint_state(ckpt_dir)
if ckpt and ckpt.model_checkpoint_path:
saver_set_all.restore(sess, ckpt.model_checkpoint_path)
print("restore parameter from ", ckpt.model_checkpoint_path)
all_files = os.listdir(model_dir)
for v in all_files:
os.remove(os.path.join(model_dir, v))
print("----------removing initial trained files-------------------", v)
# train_writer = tf.summary.FileWriter(model_dir, sess.graph)
train_tot_stat = np.zeros([epoch_size, 4])
val_tot_stat = np.zeros([epoch_size // val_step_size, 4])
print(
"Epoch, foreground-background loss, "
"foreground-background accu, contour loss, contour accuracy, total loss")
for single_epoch in range(epoch_size):
if auxi_weight_num > 0.001:
auxi_weight_num = np.power(0.1, np.floor(single_epoch / auxi_decay_step))
else:
auxi_weight_num = 0
x_image_sh, y_label_sh, y_edge_sh, y_imindex_sh, y_clsindex_sh = shuffle(x_image_tr, y_label_tr,
y_edge_tr, y_imindex_tr,
y_clsindex_tr)
batch_index = 0
train_stat_per_epoch = np.zeros([iteration, 4])
for single_batch in range(iteration):
x_image_batch, y_label_batch, y_edge_batch, \
_, batch_index = generate_batch(x_image_sh, y_label_sh, y_edge_sh,
np.ones([len(x_image_tr), targ_height_npy,
targ_width_npy, 1]), batch_index, batch_size)
feed_dict_aug = {image_aug_placeholder: x_image_batch, label_aug_placeholder: y_label_batch,
edge_aug_placeholder: y_edge_batch}
x_image_npy, y_label_npy, y_edge_npy = sess.run([x_image_aug, y_label_aug, y_edge_aug],
feed_dict=feed_dict_aug)
feed_dict_op = {images_train: x_image_npy,
instance_labels_train: y_label_npy,
edges_labels_train: y_edge_npy,
auxi_weight: auxi_weight_num,
phase_train: True,
dropout_phase: True}
fetches_train = [train, fb_loss, fb_accu, fb_auc_score, edge_loss]
_, _fb_loss, _fb_f1, _fb_auc, _ed_loss = sess.run(fetches=fetches_train, feed_dict=feed_dict_op)
train_stat_per_epoch[single_batch, 0] = _fb_loss
train_stat_per_epoch[single_batch, 1] = _fb_f1
train_stat_per_epoch[single_batch, 2] = _fb_auc
train_stat_per_epoch[single_batch, 3] = _ed_loss
train_tot_stat[single_epoch, :] = np.mean(train_stat_per_epoch, axis=0)
print(single_epoch, train_tot_stat[single_epoch, :])
if single_epoch % val_step_size == 0:
val_iteration = np.shape(x_image_val)[0] // batch_size
print("start validating .......with %d images and %d iterations" % (np.shape(x_image_val)[0],
val_iteration))
val_batch_index = 0
val_stat_per_epoch = np.zeros([val_iteration, 4])
for single_batch_val in range(val_iteration):
x_image_batch_val, y_label_batch_val, y_edge_batch_val, _, val_batch_index = generate_batch(
x_image_val, y_label_val, y_edge_val,
np.ones([len(x_image_val), targ_height_npy, targ_width_npy, 1]),
val_batch_index, batch_size)
feed_dict_aug_val = {image_aug_placeholder: x_image_batch_val,
label_aug_placeholder: y_label_batch_val,
edge_aug_placeholder: y_edge_batch_val}
x_image_npy_val, y_label_npy_val, y_edge_npy_val = sess.run(
[x_image_aug_val, y_label_aug_val, y_edge_aug_val], feed_dict=feed_dict_aug_val)
fetches_valid = [fb_loss, fb_accu, fb_auc_score, edge_loss]
feed_dict_valid = {images_train: x_image_npy_val,
instance_labels_train: y_label_npy_val,
edges_labels_train: y_edge_npy_val,
auxi_weight: 0,
phase_train: False,
dropout_phase: False}
_fbloss_val, _fb_f1_val, _fb_auc_val, _edloss_val = sess.run(fetches=fetches_valid,
feed_dict=feed_dict_valid)
val_stat_per_epoch[single_batch_val, 0] = _fbloss_val
val_stat_per_epoch[single_batch_val, 1] = _fb_f1_val
val_stat_per_epoch[single_batch_val, 2] = _fb_auc_val
val_stat_per_epoch[single_batch_val, 3] = _edloss_val
val_tot_stat[single_epoch // val_step_size, :] = np.mean(val_stat_per_epoch, axis=0)
print("validation", single_epoch, val_tot_stat[single_epoch // val_step_size, :])
if single_epoch % save_checkpoint_period == 0 or single_epoch == (epoch_size - 1):
saver_set_all.save(sess, checkpoint_path, global_step=single_epoch)
if single_epoch == (epoch_size - 1):
print("Acq Index Update", acq_index_update)
np.save(os.path.join(model_dir, 'trainstat'), train_tot_stat)
np.save(os.path.join(model_dir, 'valstat'), val_tot_stat)