-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
194 lines (168 loc) · 7.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Oct 10 11:14:51 2019
This is the utils script, to put the functions that have been used in
multiple scripts
@author: li
"""
import numpy as np
import os
import cv2
import matplotlib.pyplot as plt
def save_im(path_group, stat_group, single_epoch):
for iterr, single_ca in enumerate(stat_group):
single_ca_path = path_group[iterr]
for j in range(np.shape(single_ca)[0]):
im_use = single_ca[j, :]
print(single_ca_path, np.max(im_use), np.min(im_use))
shape_use = np.array(np.shape(im_use)[1:])
canvas = plot_canvas(im_use, shape_use)
cv2.imwrite(os.path.join(single_ca_path, 'epoch_%d_frame_%d.png' % (single_epoch, j)),
canvas.astype('uint8')[:, :, ::-1])
def save_im_for_test(tds_dir, stat_group, name):
"""this function is for saving the image, recons/pred for test time
Args:
stat_group = [im, recons, diff] or [im, pred, diff, bg], float32
"""
nx = len(stat_group)
ny = 5
num_im = np.shape(stat_group[0])[0]
ch = np.shape(stat_group[0])[-1]
num_ca = num_im // ny
for single_ca in range(num_ca):
stat_use = [v[single_ca * ny:(single_ca + 1) * ny] * 255.0 for v in stat_group]
if ch == 1:
stat_use = [np.repeat(v, 3, -1) for v in stat_group]
ca = create_canvas(stat_use, [nx, ny])
ca = ca.astype('uint8')[:, :, ::-1]
cv2.imwrite(tds_dir + '/%s_ca_%d.jpg' % (name, single_ca), ca)
def plot_canvas(image, imshape, ny=8):
if np.shape(image)[0] < ny:
ny = np.shape(image)[0]
nx = np.shape(image)[0] // ny
x_values = np.linspace(-3, 3, nx)
y_values = np.linspace(-3, 3, ny)
targ_height, targ_width = imshape[0], imshape[1]
if np.shape(image)[-1] == 1:
image = np.repeat(image, 3, -1)
imshape[-1] = 3
canvas = np.empty((targ_height * nx, targ_width * ny, 3))
for i, yi in enumerate(x_values):
for j, xi in enumerate(y_values):
canvas[(nx - i - 1) * targ_height:(nx - i) * targ_height, j * targ_width:(j + 1) * targ_width,
:] = np.reshape(image[i * ny + j], imshape)
return (canvas * 255.0).astype('uint8')
def give_legend(model_type_group):
title_group = []
for single_model in model_type_group:
if "build_baseline" in single_model and "bg" not in single_model:
title_group.append("baseline(-FixBG)")
elif "no_bg_subtraction" in single_model:
title_group.append("single-branch (full im)")
elif "single_branch" in single_model:
title_group.append("multi-background")
elif "multi_branch_z" in single_model:
title_group.append("multi-branch")
elif "multi_branch_p" in single_model:
title_group.append("multiple-branch-P (- L_BG)")
return title_group
def create_canvas(image, nx_ny):
"""This function is used to create the canvas for the images
image: [Num_im, imh, imw, 3]
nx_ny: the number of row and columns in the canvas
"""
nx, ny = nx_ny
x_values = np.linspace(-3, 3, nx)
y_values = np.linspace(-3, 3, ny)
targ_height, targ_width, num_ch = np.shape(image[0])[1:]
canvas = np.empty((targ_height * nx, targ_width * ny, num_ch))
for i, yi in enumerate(x_values):
im_use_init = image[i]
for j, xi in enumerate(y_values):
im_use_end = im_use_init[j]
im_use_end[:, 0, :] = [204, 255, 229]
im_use_end[:, -1, :] = [204, 255, 229]
im_use_end[0, :, :] = [204, 255, 229]
im_use_end[-1, :, :] = [204, 255, 229]
canvas[(nx - i - 1) * targ_height:(nx - i) * targ_height, j * targ_width:(j + 1) * targ_width,
:] = im_use_end
return canvas
def crit_multi_reconstruction_pixel(im, delta):
"""this function is for reconstruction
im: [iterr, num_frame, batch_size, imh, imw, ch] float32 in range(0,1)
delta: [gap_between_input_and_output, gap_between_output, num_output]
delta command is as same as the function below
return: stat_update, num_act_frame"""
im = np.transpose(im, (1, 0, 2, 3, 4, 5))
num_frame, iterr, batch_size, imh, imw, ch = np.shape(im)
im = np.reshape(im, [num_frame, batch_size * iterr, imh * imw * ch])
stat_update = crit_multi_prediction(im, delta)
stat_update = np.reshape(stat_update, [-1, imh, imw, ch])
return stat_update, np.shape(stat_update)[0]
def crit_multi_prediction_pixel(im):
"""this function is for transforming the prediction im
im: [num_iter, 1, batch_size, imh, imw, ch]
"""
im = np.squeeze(im, axis=1)
num_iter, batch_size, imh, imw, ch = np.shape(im)
im = np.reshape(im, [num_iter * batch_size, imh, imw, ch])
return im
def crit_multi_prediction(use_stat, delta):
"""this function is for aggregating the score for multiple predictions
use_stat: [num_prediction, num_im, num_crit_score]
delta: [gap_between_input_and_out, gap_between_output, num_output]
Output:
[actual_num_im, num_crit_score]
so the input can be actual score, the num_crit_score will be 7
or the input can be actual image, the num_crit_score: imh*imw*ch
or the input can be latent space, the num_crit_score: fh*fw*ch
I need to remember to reshape the actual image and latent space
if I pass them into this function
"""
num_prediction, num_im, num_crit = np.shape(use_stat)
actual_tot_num = (delta[2] - 1) * delta[1] + num_im
stat_new_tot = []
for single_pred in range(num_prediction):
stat_sub = use_stat[single_pred]
before = single_pred * delta[1]
end = actual_tot_num - before - num_im
if before != 0:
before_mat = np.zeros([before, num_crit])
stat_sub = np.concatenate([before_mat, stat_sub], axis=0)
if end != 0:
end_mat = np.zeros([end, num_crit])
stat_sub = np.concatenate([stat_sub, end_mat], axis=0)
stat_new_tot.append(stat_sub)
stat_new_tot = np.array(stat_new_tot)
stat_update = np.zeros([actual_tot_num, num_crit])
for single_im in range(actual_tot_num):
multi_stat_for_one_im = stat_new_tot[:, single_im, :]
not_equal_zero = np.mean(multi_stat_for_one_im, axis=-1) != 0
left = np.mean(multi_stat_for_one_im[not_equal_zero, :], axis=0)
stat_update[single_im, :] = left
return stat_update
def read_test_index(data_set):
if "avenue" in data_set:
test_index_use = ["testing_video_%d_" % i for i in range(22)[1:]]
gt_path = "gt/Avenue_gt.npy"
gt = np.load(gt_path, allow_pickle=True)
elif "brugge" in data_set:
test_index_use = ["Nov_14/Train_0001", "Nov_14/Train_0003"]
[test_index_use.append("Nov_18/Train_000%d" % v) if v < 10 else test_index_use.append("Nov_18/Train_00%d" % v)
for v in [2, 3, 7, 8, 9, 10, 13]]
gt = []
return test_index_use, gt
def make_dir(new_dir):
if not os.path.exists(new_dir):
os.makedirs(new_dir)
def ax_global_get(fig):
ax_global = fig.add_subplot(111)
ax_global.spines['top'].set_color('none')
ax_global.spines['bottom'].set_color('none')
ax_global.spines['left'].set_color('none')
ax_global.spines['right'].set_color('none')
ax_global.tick_params(labelcolor='w', top='off', bottom='off', left='off', right='off')
ax_global.tick_params(axis='y', pad=0.6)
ax_global.tick_params(axis='x', pad=1.0)
return ax_global