-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_end2end_fps.py
412 lines (381 loc) · 24.2 KB
/
test_end2end_fps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Oct 30 09:58:03 2019
This script is for testing the end2end experiment for the sum shortcut connection
@author: li
"""
import tensorflow as tf
import models.multi_branch_clean as mb
import time
from data import read_frame_temporal as rft
import shutil
import numpy as np
import os
import argparse
import evaluate as ev
import math
import const
from utils import read_test_index
def get_anomaly_score(args, version, opt="save_score_faster", tds_name="tds_fps/"):
if "avenue" in args.data_set:
data_set_temp = "avenue"
test_index_all, gt = read_test_index(data_set_temp)
if "save_score" in opt:
time_tot = []
for single_test_index in test_index_all:
print(single_test_index)
time_use = run_test(args, single_test_index, version, opt=opt)
time_tot.append(time_use)
print("FPS--------", 1/np.mean(time_tot))
# print("FPS2", 15324/np.sum(time_tot))
else:
auc_score = run_test(args, test_index_all, version, opt, gt=gt, tds_name=tds_name)
print("AUC------", np.round(auc_score*100, 2))
def run_test(args, test_index_use, version, opt, gt=None, tds_name="tds_fps"):
path_for_load_data = args.datadir
model_mom = args.expdir
tds_mom = model_mom
if "single_branch" in args.model_type or "build_baseline" in args.model_type:
args.shortcut_connection = False
else:
args.shortcut_connection = True
args.crop_im = False
args.aug_opt=None
args.manipulate_latent = "none"
model_base = model_mom + '%s_%s/' % (args.model_type, args.data_set)
tds_base = tds_mom + '%s_%s/' % (args.model_type, args.data_set)
use_str = ["fore_penalty" if "for_bg" in args.model_type else "motion_penalty"][0]
model_dir = model_base + 'gap_%d_%s_%.3f_numbg_%d_version_%d' % (args.single_interval, use_str,
args.motion_penalty, args.num_bg, version)
tds_dir = tds_base+tds_name
tds_dir = tds_dir + "/gap_%d_%s_%.3f_numbg_%d_version_%d" % (args.single_interval,
use_str, args.motion_penalty, args.num_bg,
version)
if "avenue" in args.data_set:
if "robust" in args.data_set:
tr_time = ["robust_on_rain" if "robust_on_rain" in data_set else "robust_on_bright_and_rain"][0]
else:
tr_time = None
data_set = "avenue"
else:
tr_time = None
tds_dir_for_auc = tds_dir + "/Rain_%s_Bright_%s/" % (args.rain_type, args.brightness)
args.data_set = data_set
if opt is "calc_auc":
auc_score = ev.get_auc_score_end2end_sum(tds_dir_for_auc,
test_index_use, gt)
else:
tmf = TestMainFunc(args, path_for_load_data, model_dir, tds_dir, test_index_use, opt, tr_time=tr_time)
if "single_branch" in args.model_type or "build_baseline" in args.model_type:
time_use = tmf.calc_fps()
else:
time_use = tmf.calc_fps_multi_branch()
if opt is "calc_auc":
return auc_score
else:
return time_use
class TestMainFunc(object):
def __init__(self, args, path_for_load_data, model_dir, tds_dir, test_index_use, opt, tr_time=None):
if not os.path.exists(tds_dir):
os.makedirs(tds_dir)
im_filename_stat = rft.read_data(args, path_for_load_data, tr_time=None,
test_index_use=test_index_use)
im_filenames, train_im_interval, imshape, targ_shape, in_shape, out_shape = im_filename_stat
batch_size = 2
args.batch_size = batch_size
print("The batch_size", args.batch_size)
args.output_dim = targ_shape[-1]
args.num_frame = args.time_step + 1
self.im_filenames = im_filenames
self.temp_shape = [in_shape, out_shape]
self.targ_shape = targ_shape
self.imshape = imshape
self.data_set = args.data_set
self.model_dir = model_dir
self.tds_dir = tds_dir
tds_dir_use = self.tds_dir + "/Rain_%s_Bright_%s/" % (args.rain_type, args.brightness)
if not os.path.exists(tds_dir_use):
os.makedirs(tds_dir_use)
self.tds_dir = tds_dir_use
self.test_index_use = test_index_use
self.path_for_load_data = path_for_load_data
self.test_im = train_im_interval
self.model_type = args.model_type
self.batch_size = args.batch_size
self.interval = args.single_interval
self.delta = args.delta
self.concat = args.concat_option
self.time_step = args.time_step
self.num_bg = args.num_bg
self.num_encoder_block = args.num_encoder_block
if args.model_type == "build_baseline":
args.learn_opt = "learn_fore"
elif args.model_type == "build_baseline_no_bg_subtraction":
args.learn_opt = "learn_full_no_bg_subtraction"
else:
args.learn_opt = "learn_full"
self.learn_opt = args.learn_opt
self.opt = opt
self.rain_type = args.rain_type
self.brightness = args.brightness
self.aug_opt = args.aug_opt
self.norm_input = args.norm
self.manipulate_latent = args.manipulate_latent
self.shortcut_connection = args.shortcut_connection
self.shortcut_opt = args.shortcut_opt
self.tr_time = tr_time
def read_tensor_npy_type(self):
"""This function reads the original frame and apply the augmentation on each of them instead of on each of
sequence
1. A placeholder for the original image filename
2. A different batch size than the model batch size, because I will need to read as much data as possible
per iterations
3. Same as before, I will have a placeholder for darker value, rain type.
4. Then after I read the data, I will apply the read_frame_interval function and read the frames in
sequence"""
imh, imw, ch = self.targ_shape
batch_size_orig = 200
self.batch_size_orig = batch_size_orig
im_stat_output = rft.read_tensor(args, self.path_for_load_data, self.data_set, self.targ_shape, self.imshape,
self.temp_shape, "test_for_score", tr_time=self.tr_time,
batch_size=batch_size_orig)
images_in, x_input, image_init, x_background, x_real_input, darker_value_tf = im_stat_output
self.x_input_per_frame = tf.squeeze(x_input, axis=1) # [batch_size, imh, imw, ch]
x_input_for_model = tf.placeholder(tf.float32, shape=[self.time_step+1, self.batch_size, imh, imw, ch])
if self.learn_opt is "learn_fore":
x_background = rft.calc_mean_std_data(self.path_for_load_data, self.data_set, self.tr_time,
targ_shape=self.targ_shape)
x_background = tf.reshape(x_background, shape=[1, 1, imh, imw, ch])
return images_in, x_input_for_model, image_init, x_background
def give_image_in_npy_mode(self, image_init, image_placeholder, orig_iter):
im_tot = []
imh, imw, ch = self.targ_shape
self.sess.run(image_init.initializer, feed_dict={image_placeholder: np.expand_dims(self.im_filenames, -1)})
for i in range(orig_iter):
im_tot.append(self.sess.run(fetches=self.x_input_per_frame))
im_tot = [v for j in im_tot for v in j]
im_tot = np.reshape(im_tot, [np.shape(self.im_filenames)[0], imh, imw, ch])
return im_tot
def build_graph(self):
image_placeholder, x_input, image_init, x_background_manually_calculate = self.read_tensor_npy_type()
mb_model = mb.MultiBranch(args)
if self.model_type == "single_branch" or "build_baseline" in self.model_type:
x_for_model_placeholder, z_from_enc, \
z_motion_place, z_gt_place, z_mse = mb_model.single_branch_fps(self.targ_shape)
elif self.model_type == "multi_branch_z":
x_for_model_placeholder, z_from_enc, \
z_motion_place, z_gt_place, z_mse = mb_model.multi_branch_z_fps(self.targ_shape)
z_mse = tf.stack(z_mse, axis=0)
placeholder_tot = [x_for_model_placeholder, z_motion_place, z_gt_place]
input_tot = [image_placeholder, image_init, x_input]
var = tf.trainable_variables()
saver = tf.train.Saver(var)
self.sess = tf.Session()
self.sess.run(tf.global_variables_initializer())
v_all = os.listdir(self.model_dir)
v_all = [v for v in v_all if '.meta' in v]
v_all = sorted(v_all, key=lambda s: int(s.strip().split('ckpt-')[1].strip().split('.meta')[0]))
v_all = v_all[-1]
model_index = int(v_all.strip().split('.meta')[0].strip().split("-")[-1])
saver.restore(self.sess, os.path.join(self.model_dir, 'model.ckpt-%d' % model_index))
return input_tot, placeholder_tot, z_from_enc, z_mse
def calc_fps(self):
tf.reset_default_graph()
imh, imw, ch = self.targ_shape
input_tot, placeholder_tot, z_from_enc, z_mse = self.build_graph()
image_placeholder, image_init, x_input = input_tot
# -----This is for giving the images in npy mode------------------------------#
orig_iter = int(np.ceil(np.shape(self.im_filenames)[0] / self.batch_size_orig))
im_tot = self.give_image_in_npy_mode(image_init, image_placeholder, orig_iter)
im_tot_sequence, _, _ = rft.read_frame_interval(im_tot, self.time_step, "conc_tr", [self.interval],
self.delta)
im_tot_sequence = np.array(im_tot_sequence)
im_tot_sequence = np.transpose(im_tot_sequence, (1, 0, 2, 3, 4)) # [num_frame, num_sequence, imh, imw, ch]
im_output_sequence = im_tot_sequence[-1:] # [1, num_sequence, imh, imw, ch]
# ----Finish loading the images----------------------------------------------#
mse_value = np.zeros(np.shape(im_tot_sequence)[1])
time_tot = []
iter_visualize = np.shape(im_tot_sequence)[1] // self.delta
print("There are supposed to be -----", iter_visualize * (self.delta // self.interval))
x_for_model_placeholder, z_motion_placeholder, z_gt_placeholder = placeholder_tot
fh, fw, f_ch = z_gt_placeholder.get_shape().as_list()[-3:]
latent_space_for_saving = np.zeros([self.delta, fh, fw, f_ch])
# x_for_model_placeholder: [time_step+1, batch_size, imh, imw, ch]
# z_motion_placeholder: [num_frame, batch_size, fh, fw, ch]
# z_gt_placeholder: [batch_size, fh, fw, ch]
# z_from_enc: [1, (time_step+1) * batch_size, fh, fw, ch]
data_iter = 0
for single_iter in range(iter_visualize):
if single_iter == 0:
x_input_npy = im_tot_sequence[:, data_iter*self.batch_size:(data_iter+1)*self.batch_size]
x_input_npy = np.reshape(x_input_npy, [1, self.batch_size*(self.time_step+1), imh, imw, ch])
data_iter += 1
latent_space_value = self.sess.run(fetches=z_from_enc, feed_dict={x_for_model_placeholder: x_input_npy})
latent_space_update = latent_space_value[0]
print(np.shape(latent_space_update))
latent_space_to_motion = latent_space_update[:-self.batch_size]
latent_space_gt_npy = latent_space_update[-self.batch_size:]
latent_space_for_saving[0:self.batch_size] = latent_space_gt_npy
latent_space_to_motion_reshape = np.reshape(latent_space_to_motion, [self.time_step, self.batch_size,
fh, fw, f_ch])
_mse_npy = self.sess.run(fetches=z_mse, feed_dict={z_motion_placeholder: latent_space_to_motion_reshape,
z_gt_placeholder: latent_space_gt_npy})
mse_value[0:self.batch_size] = _mse_npy
for j in range(self.delta // self.batch_size - 1):
x_input_npy_new = im_tot_sequence[-2:, data_iter*self.batch_size:(data_iter+1)*self.batch_size]
x_input_npy_new = np.reshape(x_input_npy_new, [1, self.batch_size*2, imh, imw, ch])
data_iter += 1
latent_space_for_new_data = self.sess.run(fetches=z_from_enc[0],
feed_dict={x_for_model_placeholder: x_input_npy_new})
latent_space_gt_npy = latent_space_for_new_data[-self.batch_size:]
latent_space_to_motion = np.concatenate([latent_space_to_motion[self.batch_size:],
latent_space_for_new_data[:self.batch_size]], axis=0)
latent_space_to_motion_reshape = np.reshape(latent_space_to_motion, [self.time_step,
self.batch_size, fh, fw, f_ch])
_mse_npy = self.sess.run(fetches=z_mse,
feed_dict={z_motion_placeholder: latent_space_to_motion_reshape,
z_gt_placeholder: latent_space_gt_npy})
mse_value[single_iter*self.delta + (j + 1) * self.batch_size:
single_iter*self.delta + (j + 2) * self.batch_size] = _mse_npy
latent_space_for_saving[(j + 1) * self.batch_size:(j + 2) * self.batch_size] = latent_space_gt_npy
latent_space_to_motion_old = latent_space_to_motion
else:
time_init = time.time()
for j in range(self.delta // self.interval):
x_output_npy = im_output_sequence[:, data_iter*self.batch_size:(data_iter+1)*self.batch_size]
data_iter += 1
latent_space_update_gt = self.sess.run(fetches=z_from_enc,
feed_dict={x_for_model_placeholder: x_output_npy})
latent_space_to_motion = np.concatenate([latent_space_to_motion_old[self.batch_size:],
latent_space_for_saving[:self.batch_size]], axis=0)
latent_space_for_saving = np.concatenate([latent_space_for_saving[self.batch_size:],
latent_space_update_gt[0]], axis=0)
latent_space_to_motion_reshape = np.reshape(latent_space_to_motion,
[self.time_step, self.batch_size, fh, fw, f_ch])
_mse_npy = self.sess.run(fetches=z_mse,
feed_dict={z_motion_placeholder: latent_space_to_motion_reshape,
z_gt_placeholder: latent_space_update_gt[0]})
mse_value[single_iter * self.delta + j * self.batch_size:
single_iter * self.delta + (j+1)*self.batch_size] = _mse_npy
latent_space_to_motion_old = latent_space_to_motion
time_end = time.time()
time_tot.append(time_end - time_init)
row = np.where(mse_value != 0)[0]
mse_value = mse_value[row]
mse_value = np.reshape(mse_value, [-1, 1])
np.save(os.path.join(self.tds_dir, 'pred_score_%s' % (self.test_index_use)), mse_value)
return np.mean(time_tot) / self.delta
# return np.sum(time_tot)
def op_for_multi_branch(self, z_mse, z_motion_placeholder, z_gt_placeholder, latent_space_to_motion_reshape_group,
latent_space_gt_npy_group):
if self.num_bg == 2:
_mse_ = self.sess.run(fetches=z_mse,
feed_dict={z_motion_placeholder[0]: latent_space_to_motion_reshape_group[0],
z_motion_placeholder[1]: latent_space_to_motion_reshape_group[1],
z_gt_placeholder[0]: latent_space_gt_npy_group[0],
z_gt_placeholder[1]: latent_space_gt_npy_group[1]})
return _mse_
def calc_fps_multi_branch(self):
tf.reset_default_graph()
imh, imw, ch = self.targ_shape
input_tot, placeholder_tot, z_from_enc, z_mse = self.build_graph()
image_placeholder, image_init, x_input = input_tot
# -----This is for giving the images in npy mode------------------------------#
orig_iter = int(np.ceil(np.shape(self.im_filenames)[0] / self.batch_size_orig))
im_tot = self.give_image_in_npy_mode(image_init, image_placeholder, orig_iter)
im_tot_sequence, _, _ = rft.read_frame_interval(im_tot, self.time_step, "conc_tr", [self.interval],
self.delta)
im_tot_sequence = np.array(im_tot_sequence)
im_tot_sequence = np.transpose(im_tot_sequence, (1, 0, 2, 3, 4)) # [num_frame, num_sequence, imh, imw, ch]
im_output_sequence = im_tot_sequence[-1:] # [1, num_sequence, imh, imw, ch]
# ----Finish loading the images----------------------------------------------#
mse_value = np.zeros([3, np.shape(im_tot_sequence)[1]])
time_tot = []
iter_visualize = np.shape(im_tot_sequence)[1] // self.delta
print("There are supposed to be -----", iter_visualize * (self.delta // self.interval))
x_for_model_placeholder, z_motion_placeholder, z_gt_placeholder = placeholder_tot
fh, fw, f_ch = z_gt_placeholder[0].get_shape().as_list()[-3:]
latent_space_for_saving = [np.zeros([self.delta, fh, fw, f_ch]) for i in range(self.num_bg)]
data_iter = 0
for single_iter in range(iter_visualize):
if single_iter == 0:
x_input_npy = im_tot_sequence[:, data_iter*self.batch_size:(data_iter+1)*self.batch_size]
x_input_npy = np.reshape(x_input_npy, [1, self.batch_size*(self.time_step+1), imh, imw, ch])
data_iter += 1
latent_space_value_group = self.sess.run(fetches=z_from_enc,
feed_dict={x_for_model_placeholder: x_input_npy})
latent_space_update = [v[0] for v in latent_space_value_group] # [num_bg, num_frame*batch_size]
latent_space_to_motion_group = [v[:-self.batch_size] for v in latent_space_update]
latent_space_gt_npy_group = [v[-self.batch_size:] for v in latent_space_update]
for bg_iter in range(self.num_bg):
latent_space_for_saving[bg_iter][0:self.batch_size] = latent_space_gt_npy_group[bg_iter]
latent_space_to_motion_reshape_group = [np.reshape(v, [self.time_step, self.batch_size,
fh, fw, f_ch]) for v in
latent_space_to_motion_group]
_mse_ = self.op_for_multi_branch(z_mse, z_motion_placeholder, z_gt_placeholder,
latent_space_to_motion_reshape_group,
latent_space_gt_npy_group)
mse_value[:, 0:self.batch_size] = _mse_
for j in range(self.delta // self.batch_size - 1):
x_input_npy_new = im_tot_sequence[-2:, data_iter*self.batch_size:(data_iter+1)*self.batch_size]
x_input_npy_new = np.reshape(x_input_npy_new, [1, self.batch_size*2, imh, imw, ch])
data_iter += 1
latent_space_for_new_data = self.sess.run(fetches=z_from_enc,
feed_dict={x_for_model_placeholder: x_input_npy_new})
latent_space_for_new_data = [v[0] for v in latent_space_for_new_data]
latent_space_gt_npy_group = [v[-self.batch_size:] for v in latent_space_for_new_data]
latent_space_to_motion_group = [np.concatenate([latent_space_to_motion_group[bgi][self.batch_size:],
latent_space_for_new_data[bgi][:self.batch_size]],
axis=0) for bgi in range(self.num_bg)]
latent_space_to_motion_reshape_group = [np.reshape(v, [self.time_step, self.batch_size,
fh, fw, f_ch])
for v in latent_space_to_motion_group]
_mse_ = self.op_for_multi_branch(z_mse, z_motion_placeholder, z_gt_placeholder,
latent_space_to_motion_reshape_group,
latent_space_gt_npy_group)
mse_value[:, single_iter*self.delta + (j + 1) * self.batch_size:
single_iter*self.delta + (j + 2) * self.batch_size] = _mse_
for bg_iter in range(self.num_bg):
latent_space_for_saving[bg_iter][(j+1)*self.batch_size:
(j+2)*self.batch_size] = latent_space_gt_npy_group[bg_iter]
latent_space_to_motion_old = latent_space_to_motion_group
else:
time_init = time.time()
for j in range(self.delta // self.interval):
x_output_npy = im_output_sequence[:, data_iter*self.batch_size:(data_iter+1)*self.batch_size]
data_iter += 1
latent_space_update_gt = self.sess.run(fetches=z_from_enc,
feed_dict={x_for_model_placeholder: x_output_npy})
for bg_iter in range(self.num_bg):
latent_space_to_motion_group[bg_iter] = np.concatenate([latent_space_to_motion_old[bg_iter][self.batch_size:],
latent_space_for_saving[bg_iter][:self.batch_size]],
axis=0)
latent_space_for_saving[bg_iter] = np.concatenate([latent_space_for_saving[bg_iter][self.batch_size:],
latent_space_update_gt[bg_iter][0]], axis=0)
latent_space_to_motion_reshape_group[bg_iter] = np.reshape(latent_space_to_motion_group[bg_iter],
[self.time_step, self.batch_size,
fh, fw, f_ch])
_mse_ = self.op_for_multi_branch(z_mse, z_motion_placeholder, z_gt_placeholder,
latent_space_to_motion_reshape_group,
[v[0] for v in latent_space_update_gt])
mse_value[:, single_iter * self.delta + j * self.batch_size:
single_iter * self.delta + (j+1)*self.batch_size] = _mse_
latent_space_to_motion_old = latent_space_to_motion_group
time_end = time.time()
time_tot.append(time_end - time_init)
mse_value = np.transpose(mse_value, (1, 0)) # [num_value, 4]
row = np.where(mse_value[:, 0] != 0)[0]
mse_value = mse_value[row]
np.save(os.path.join(self.tds_dir, 'pred_score_%s' % (self.test_index_use)), mse_value)
return np.mean(time_tot) / self.delta
if __name__ == '__main__':
args = const.get_args()
args = const.give_motion_foreground_penalty(args)
print("-------------------------------------------------------------------")
print("------------------argument for current experiment------------------")
print("-------------------------------------------------------------------")
for arg in vars(args):
print(arg, getattr(args, arg))
get_anomaly_score(args, args.version, opt=args.test_opt)
get_anomaly_score(args, args.version, opt="calc_auc")