-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathBase58.cpp
495 lines (472 loc) · 13.7 KB
/
Base58.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
#include "Base58.h"
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#ifdef _MSC_VER // Disable the stupid ass absurd warning messages from Visual Studio telling you that using stdlib and stdio is 'not valid ANSI C'
#pragma warning(disable:4718)
#pragma warning(disable:4996)
#endif
//
// BigNumber.c
// cbitcoin
//
// Created by Matthew Mitchell on 28/04/2012.
// Copyright (c) 2012 Matthew Mitchell
//
// This file is part of cbitcoin.
//
// cbitcoin is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// cbitcoin is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with cbitcoin. If not, see <http://www.gnu.org/licenses/>.
//
//
#define MAX_BIG_NUMBER 256 // this code snippet only supports big nubmers up to 256 bytes in length
/**
@brief Contains byte data with the length of this data to represent a large integer. The byte data is in little-endian which stores the smallest byte first.
*/
class BigNumber
{
public:
BigNumber(const uint8_t *sourceData,uint32_t len)
{
assert(len<MAX_BIG_NUMBER);
memset(data,0,MAX_BIG_NUMBER);
if ( sourceData )
{
memcpy(data,sourceData,len);
}
length = len;
}
uint8_t data[MAX_BIG_NUMBER]; /**< The byte data. Should be little-endian */
uint32_t length; /**< The length of this data in bytes */
};
// Enums
enum BigNumberCompare
{
CB_COMPARE_MORE_THAN = 1,
CB_COMPARE_EQUAL = 0,
CB_COMPARE_LESS_THAN = -1,
};
/**
@brief Compares a BigNumber to an 8 bit integer. You can replicate "a op 58" as "BigNumberCompareToUInt8(a, 58) op 0" replacing "op" with a comparison operator.
@param a The first BigNumber
@returns The result of the comparison as a BigNumberCompare constant. Returns what a is in relation to b.
*/
BigNumberCompare BigNumberCompareTo58(BigNumber * a);
/**
@brief Compares two BigNumber. You can replicate "a op b" as "BigNumberCompare(a, b) op 0" replacing "op" with a comparison operator.
@param a The first BigNumber
@param b The second BigNumber
@returns The result of the comparison as a BigNumberCompare constant. Returns what a is in relation to b.
*/
BigNumberCompare BigNumberCompareToBigInt(BigNumber * a, BigNumber * b);
/**
@brief Calculates the result of an addition of a BigNumber structure by another BigNumber structure and the first BigNumber becomes this new figure. Like "a += b".
@param a A pointer to the BigNumber
@param b A pointer to the second BigNumber
@returns true on success, false on failure.
*/
bool BigNumberEqualsAdditionByBigInt(BigNumber * a, BigNumber * b);
/**
@brief Calculates the result of a division of a BigNumber structure by 58 and the BigNumber becomes this new figure. Like "a /= 58".
@param a A pointer to the BigNumber
@param ans A memory block the same size as the BigNumber data memory block to store temporary data in calculations. Should be set with zeros.
*/
void BigNumberEqualsDivisionBy58(BigNumber * a, uint8_t * ans);
/**
@brief Calculates the result of a multiplication of a BigNumber structure by an 8 bit integer and the BigNumber becomes this new figure. Like "a *= b".
@param a A pointer to the BigNumber
@param b An 8 bit integer
@returns true on success, false on failure
*/
bool BigNumberEqualsMultiplicationByUInt8(BigNumber * a, uint8_t b);
/**
@brief Calculates the result of a subtraction of a BigNumber structure with another BigNumber structure and the BigNumber becomes this new figure. Like "a -= b".
@param a A pointer to a BigNumber
@param b A pointer to a BigNumber
*/
void BigNumberEqualsSubtractionByBigInt(BigNumber * a, BigNumber * b);
/**
@brief Calculates the result of a subtraction of a BigNumber structure by an 8 bit integer and the BigNumber becomes this new figure. Like "a -= b".
@param a A pointer to the BigNumber
@param b An 8 bit integer
*/
void BigNumberEqualsSubtractionByUInt8(BigNumber * a, uint8_t b);
/**
@brief Assigns a BigNumber as the exponentiation of an unsigned 8 bit intger with another unsigned 8 bit integer. Like "a^b". Data must be freed.
@param bi The BigNumber. Preallocate this with at least one byte.
@param a The base
@param b The exponent.
@returns true on success, false on failure.
*/
bool BigNumberFromPowUInt8(BigNumber * bi, uint8_t a, uint8_t b);
/**
@brief Returns the result of a modulo of a BigNumber structure and 58. Like "a % 58".
@param a The BigNumber
@returns The result of the modulo operation as an 8 bit integer.
*/
uint8_t BigNumberModuloWith58(BigNumber * a);
/**
@brief Normalises a BigNumber so that there are no unnecessary trailing zeros.
@param a A pointer to the BigNumber
*/
void BigNumberNormalise(BigNumber * a);
BigNumberCompare BigNumberCompareTo58(BigNumber * a)
{
if(a->length > 1)
return CB_COMPARE_MORE_THAN;
if (a->data[0] > 58)
return CB_COMPARE_MORE_THAN;
else if (a->data[0] < 58)
return CB_COMPARE_LESS_THAN;
return CB_COMPARE_EQUAL;
}
BigNumberCompare BigNumberCompareToBigInt(BigNumber * a, BigNumber * b)
{
if (a->length > b->length)
return CB_COMPARE_MORE_THAN;
else if (a->length < b->length)
return CB_COMPARE_LESS_THAN;
for (uint32_t x = a->length; x--;)
{
if (a->data[x] < b->data[x])
return CB_COMPARE_LESS_THAN;
else if (a->data[x] > b->data[x])
return CB_COMPARE_MORE_THAN;
}
return CB_COMPARE_EQUAL;
}
bool BigNumberEqualsAdditionByBigInt(BigNumber * a, BigNumber * b)
{
if (a->length < b->length)
{
// Make certain expansion of data is empty
memset(a->data + a->length, 0, b->length - a->length);
a->length = b->length;
}
// a->length >= b->length
bool overflow = 0;
uint8_t x = 0;
for (; x < b->length; x++)
{
a->data[x] += b->data[x] + overflow;
// a->data[x] now equals the result of the addition.
// The overflow will never go beyond 1. Imagine a->data[x] == 0xff, b->data[x] == 0xff and the overflow is 1, the new overflow is still 1 and a->data[x] is 0xff. Therefore it does work.
overflow = (a->data[x] < (b->data[x] + overflow))? 1 : 0;
}
// Propagate overflow up the whole length of a if necessary
while (overflow && x < a->length)
overflow = ! ++a->data[x++]; // Index at x, increment x, increment data, test new value for overflow.
if (overflow)
{ // Add extra byte
a->length++;
assert( a->length < MAX_BIG_NUMBER );
a->data[a->length - 1] = 1;
}
return true;
}
void BigNumberEqualsDivisionBy58(BigNumber * a, uint8_t * ans)
{
if (a->length == 1 && ! a->data[0]) // "a" is zero
return;
// base-256 long division.
uint16_t temp = 0;
for (uint32_t x = a->length; x--;)
{
temp <<= 8;
temp |= a->data[x];
ans[x] = (uint8_t)(temp / 58);
temp -= ans[x] * 58;
}
if (! ans[a->length-1]) // If last byte is zero, adjust length.
a->length--;
memmove(a->data, ans, a->length); // Done calculation. Move ans to "a".
}
bool BigNumberEqualsMultiplicationByUInt8(BigNumber * a, uint8_t b)
{
if (! b)
{
// Mutliplication by zero. "a" becomes zero
a->length = 1;
a->data[0] = 0;
return true;
}
if (a->length == 1 && ! a->data[0]) // "a" is zero
return true;
// Multiply b by each byte and then add to answer
uint16_t carry = 0;
uint8_t x = 0;
for (; x < a->length; x++)
{
carry = carry + a->data[x] * b; // Allow for overflow onto next byte.
a->data[x] = (uint8_t)carry;
carry >>= 8;
}
if (carry)
{ // If last byte is not zero, adjust length.
a->length++;
assert( a->length < MAX_BIG_NUMBER );
a->data[x] = (uint8_t)carry;
}
return true;
}
void BigNumberEqualsSubtractionByBigInt(BigNumber * a, BigNumber * b)
{
uint8_t x;
bool carry = 0;
// This can be made much nicer when using signed arithmetic,
// carry and tmp could be merged to be 0 or -1 between rounds.
for (x = 0; x < b->length; x++) {
uint16_t tmp = carry + b->data[x];
carry = a->data[x] < tmp;
a->data[x] -= (uint8_t)tmp;
}
if (carry)
a->data[x]--;
BigNumberNormalise(a);
}
void BigNumberEqualsSubtractionByUInt8(BigNumber * a, uint8_t b)
{
uint8_t carry = b;
uint8_t x = 0;
for (; a->data[x] < carry; x++){
a->data[x] = 255 - carry + a->data[x] + 1;
carry = 1;
}
a->data[x] -= carry;
BigNumberNormalise(a);
}
bool BigNumberFromPowUInt8(BigNumber * bi, uint8_t a, uint8_t b)
{
bi->length = 1;
bi->data[0] = 1;
for (uint8_t x = 0; x < b; x++) {
if (! BigNumberEqualsMultiplicationByUInt8(bi, a))
// ERROR
return false;
}
return true;
}
uint8_t BigNumberModuloWith58(BigNumber * a)
{
// Use method presented here: http://stackoverflow.com/a/10441333/238411
uint16_t result = 0; // Prevent overflow in calculations
for(uint32_t x = a->length - 1;; x--){
result *= (256 % 58);
result %= 58;
result += a->data[x] % 58;
result %= 58;
if (! x)
break;
}
return (uint8_t)result;
}
void BigNumberNormalise(BigNumber * a)
{
while (a->length > 1 && ! a->data[a->length-1])
a->length--;
}
// 1 2 3 4 5
// 01234567890123456789012345678901234567890123456789012345678
static const char base58Characters[59] = "123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz";
/**
@brief Decodes base 58 string into byte data as a BigNumber.
@param bi The BigNumber which should be preallocated with at least one byte.
@param str Base 58 string to decode.
@returns true on success, false on failure.
*/
bool CBDecodeBase58(BigNumber * bi,const char * str)
{
// ??? Quite likely these functions can be improved
BigNumber bi2(NULL,1);
uint32_t slen = (uint32_t)strlen(str);
for (uint32_t x = slen - 1;; x--)
{ // Working backwards
// Get index in alphabet array
uint8_t alphaIndex = str[x];
if (alphaIndex != 49)
{ // If not 1
if (str[x] < 58)
{ // Numbers
alphaIndex -= 49;
}
else if (str[x] < 73)
{ // A-H
alphaIndex -= 56;
}
else if (str[x] < 79)
{ // J-N
alphaIndex -= 57;
}
else if (str[x] < 91)
{ // P-Z
alphaIndex -= 58;
}
else if (str[x] < 108)
{ // a-k
alphaIndex -= 64;
}
else
{ // m-z
alphaIndex -= 65;
}
if (! BigNumberFromPowUInt8(&bi2, 58, (uint8_t)(slen - 1 - x)))
{
// Error occured.
return false;
}
if (! BigNumberEqualsMultiplicationByUInt8(&bi2, alphaIndex))
{
// Error occured.
return false;
}
if (! BigNumberEqualsAdditionByBigInt(bi, &bi2))
{
// Error occured.
return false;
}
}
if (!x)
break;
}
// Got BigNumber from base-58 string. Add zeros on end.
uint8_t zeros = 0;
for (uint8_t x = 0; x < slen; x++)
{
if (str[x] == '1')
{
zeros++;
}
else
{
break;
}
}
if (zeros)
{
bi->length += zeros;
assert( bi->length < MAX_BIG_NUMBER );
memset(bi->data + bi->length - zeros, 0, zeros);
}
return true;
}
bool CBEncodeBase58(BigNumber * bi,char *str,uint32_t maxStrLen)
{
if ( maxStrLen < bi->length ) // must be at least twice the size of the binary
{
return false;
}
uint32_t x = 0;
// Zeros
for (uint32_t y = bi->length - 1;; y--)
{
if (! bi->data[y])
{
str[x] = '1';
x++;
if (! y)
break;
}
else
{
break;
}
}
uint32_t zeros = x;
// Make temporary data store
uint8_t temp[MAX_BIG_NUMBER];
// Encode
uint8_t mod;
size_t size = bi->length;
for (;BigNumberCompareTo58(bi) >= 0;x++)
{
mod = BigNumberModuloWith58(bi);
if (bi->length < x + 3)
{
size = x + 3;
if (size > bi->length)
{
if ( size > maxStrLen )
{
return false;
}
}
}
str[x] = base58Characters[mod];
BigNumberEqualsSubtractionByUInt8(bi, mod);
memset(temp, 0, bi->length);
BigNumberEqualsDivisionBy58(bi, temp);
}
str[x] = base58Characters[bi->data[bi->length-1]];
x++;
// Reversal
for (uint8_t y = 0; y < (x-zeros) / 2; y++)
{
char temp = str[y+zeros];
str[y+zeros] = str[x-y-1];
str[x-y-1] = temp;
}
str[x] = '\0';
return true;
}
bool encodeBase58(const uint8_t *bigNumber, // The block of memory corresponding to the 'big number'
uint32_t length, // The number of bytes in the 'big-number'; this will be 25 for a bitcoin address
bool isBigEndian, // True if the input number is in little-endian format (this will be true for a bitcoin address)
char *output, // The address to store the output string.
uint32_t maxStrLen) // the maximum length of the output string
{
// Before passing the hash into the base58 encoder; we need to reverse the byte order.
uint8_t hash[25];
if ( isBigEndian )
{
uint32_t index = length-1;
for (uint32_t i=0; i<25; i++)
{
hash[i] = bigNumber[index];
index--;
}
}
else
{
memcpy(hash,bigNumber,length);
}
// We now have the 25 byte public key address in binary; we just need to convert it to ASCII
// This involves using large integer math to compute the base58 encoding (with check)
BigNumber bytes(hash,length);;
return CBEncodeBase58(&bytes,output,maxStrLen);
}
uint32_t decodeBase58(const char *string, // The base58 encoded string
uint8_t *output, // The output binary buffer
uint32_t maxOutputLength, // The maximum output length of the binary buffer.
bool isBigEndian) // If the output needs to be in little endian format
{
uint32_t ret = 0;
BigNumber bn(NULL,0);
if ( CBDecodeBase58(&bn,string) && bn.length <= maxOutputLength )
{
ret = bn.length;
if ( isBigEndian ) // if the caller wants the number returned in little endian format; then we byte reverse the output
{
uint32_t index = bn.length-1;
for (uint32_t i=0; i<bn.length; i++)
{
output[i] = bn.data[index];
index--;
}
}
else
{
memcpy(output,bn.data,bn.length);
}
}
return ret;
}