forked from TencentYoutuResearch/CrowdCounting-SASNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
105 lines (88 loc) · 3.53 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# Copyright 2021 Tencent
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================
import os
import numpy as np
import torch
import argparse
from model import SASNet
import warnings
import random
from datasets.loading_data import loading_data
warnings.filterwarnings('ignore')
# define the GPU id to be used
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
def get_args_parser():
# define the argparse for the script
parser = argparse.ArgumentParser('Inference setting', add_help=False)
parser.add_argument('--model_path', type=str, help='path of pre-trained model')
parser.add_argument('--data_path', type=str, help='root path of the dataset')
parser.add_argument('--batch_size', type=int, default=4, help='batch size in training')
parser.add_argument('--log_para', type=int, default=1000, help='magnify the target density map')
parser.add_argument('--block_size', type=int, default=32, help='patch size for feature level selection')
return parser
# get the dataset
def prepare_dataset(args):
return loading_data(args)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.cur_val = 0
self.avg = 0
self.sum = 0
self.count = 0
# update the moving average
def update(self, cur_val):
self.cur_val = cur_val
self.sum += cur_val
self.count += 1
self.avg = self.sum / self.count
def main(args):
"""the main process of inference"""
test_loader = prepare_dataset(args)
model = SASNet(args=args).cuda()
# load the trained model
model.load_state_dict(torch.load(args.model_path))
print('successfully load model from', args.model_path)
with torch.no_grad():
model.eval()
maes = AverageMeter()
mses = AverageMeter()
# iterate over the dataset
for vi, data in enumerate(test_loader, 0):
img, gt_map = data
img = img.cuda()
gt_map = gt_map.type(torch.FloatTensor).unsqueeze(0).cuda()
# get the predicted density map
pred_map = model(img)
pred_map = pred_map.data.cpu().numpy()
gt_map = gt_map.data.cpu().numpy()
# evaluation over the batch
for i_img in range(pred_map.shape[0]):
pred_cnt = np.sum(pred_map[i_img]) / args.log_para
gt_count = np.sum(gt_map[i_img])
maes.update(abs(gt_count - pred_cnt))
mses.update((gt_count - pred_cnt) * (gt_count - pred_cnt))
# calculation mae and mre
mae = maes.avg
mse = np.sqrt(mses.avg)
# print the results
print('=' * 50)
print(' ' + '-' * 20)
print(' [mae %.3f mse %.3f]' % (mae, mse))
print(' ' + '-' * 20)
print('=' * 50)
if __name__ == '__main__':
parser = argparse.ArgumentParser('SASNet inference', parents=[get_args_parser()])
args = parser.parse_args()
main(args)