-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathprocessing.py
266 lines (210 loc) · 9.32 KB
/
processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import os
import warnings
from collections import Counter
import numpy as np
import pandas as pd
from selector import Selector
from utils import timer
warnings.filterwarnings(action='ignore')
BASE_PATH = os.path.join('data')
RAWDATA_PATH = os.path.join(BASE_PATH, 'RawData')
ETLDATA_PATH = os.path.join(BASE_PATH, 'EtlData')
class Processing(object):
def __init__(self, selector=False, ascending=False):
self.selector = selector
self.ascending = ascending
@staticmethod
def _get_columns_name():
columns_name = ['id', 'is_real_name', 'age', 'is_college_student', 'is_blacklist', 'is_illbeing_4g',
'surfing_time', 'last_pay_month', 'last_pay_acount', 'avg_pay_acount', 'this_month_acount',
'this_month_balance', 'is_arrearage', 'acount_sensitivity', 'this_month_call_num',
'is_shopping', 'avg_shopping_num', 'is_wanda', 'is_sam', 'is_movie', 'is_travel', 'is_sports',
'online_shopping_num', 'logistics_num', 'financing_num', 'video_num', 'airplant_num',
'train_num', 'travel_num', 'score']
return columns_name
def _get_data(self):
columns_name = self._get_columns_name()
train_data_name = os.path.join(RAWDATA_PATH, 'train_dataset.csv')
train_data = pd.read_csv(train_data_name, header=0)
train_data.columns = columns_name
test_data_name = os.path.join(RAWDATA_PATH, 'test_dataset.csv')
test_data = pd.read_csv(test_data_name, header=0)
test_data['score'] = -1
test_data.columns = columns_name
dataset = pd.concat([train_data, test_data], ignore_index=True)
return dataset
@staticmethod
def _get_boolean_columns(dataset):
dataset = dataset.copy()
boolean_columns = list()
for column in dataset.columns:
nunique = dataset[column].nunique()
if nunique == 2:
boolean_columns.append(column)
return boolean_columns
@staticmethod
def _get_missing_value(item):
if item == 0:
return 1
return 0
@staticmethod
def _get_abnormal_label(item):
if item == 0:
return 0
if item < 10:
return 1
if item < 100:
return 2
if item < 1000:
return 3
else:
return 4
@staticmethod
def _recombine_boolean_columns(dataset, boolean_columns):
# 通过2进制编码
dataset = dataset.copy()
bin_base = 1
dataset['boolean_bin'] = 0 # 初始化
for column in boolean_columns:
dataset['boolean_bin'] += dataset[column] * bin_base
bin_base = 2 * bin_base
# 有些组合出现次数过少,合并
counter = Counter(dataset['boolean_bin'])
counter_dict = dict()
for item, count in counter.items():
if count < 5:
counter_dict[item] = -1
else:
counter_dict[item] = count
dataset['boolean_bin'] = dataset['boolean_bin'].map(counter_dict)
# One-Hot
dataset = pd.get_dummies(dataset, columns=['boolean_bin'])
return dataset
@staticmethod
def _get_recharge_way(item):
# 是否能被10整除
if item == 0:
return -1
if item % 10 == 0:
return 1
else:
return 0
@staticmethod
def _shopping_encoder(item):
is_shopping = item['is_shopping']
avg_shopping_num = item['avg_shopping_num']
if is_shopping == 0:
if avg_shopping_num < 10:
return 0
elif avg_shopping_num < 20:
return 1
else:
return 2
else:
if avg_shopping_num < 20:
return 3
return 4
@staticmethod
def _get_app_rate(dataset):
dataset = dataset.copy()
app_num_columns = ['online_shopping_num', 'logistics_num', 'financing_num', 'video_num', 'airplant_num',
'train_num', 'travel_num']
dataset['helper_sum'] = dataset[app_num_columns].apply(lambda item: np.log1p(np.sum(item)), axis=1)
for column in app_num_columns:
column_name = f'{column}_rate'
dataset[column_name] = np.log1p(dataset[column]) / dataset['helper_sum']
# dataset = dataset.drop(columns=['helper_sum'])
return dataset
def _get_operation_features(self, dataset):
dataset = dataset.copy()
dataset['recharge_way'] = dataset['last_pay_acount'].apply(self._get_recharge_way)
dataset = pd.get_dummies(dataset, columns=['recharge_way'])
# 稳定性
# 当月话费 / (近6个月平均话费 + 5)
dataset['month_half_year_stable'] = dataset['this_month_acount'] / (dataset['avg_pay_acount'] + 5)
dataset['month_half_year_diff'] = dataset['this_month_acount'] - dataset['avg_pay_acount']
# 当月话费 / (当月账户余额 + 5)
dataset['use_left_stable'] = dataset['this_month_acount'] / (dataset['this_month_balance'] + 5)
dataset['use_left_diff'] = dataset['this_month_acount'] - dataset['this_month_balance']
# 商场行为编码
dataset['shopping_encoder'] = dataset[['is_shopping', 'avg_shopping_num']].apply(self._shopping_encoder, axis=1)
dataset = pd.get_dummies(dataset, columns=['shopping_encoder'])
# 上网时长
dataset['surfing_time_copy'] = dataset['surfing_time']
dataset['surfing_time_copy'] = pd.qcut(dataset['surfing_time_copy'], 5, labels=False)
dataset = pd.get_dummies(dataset, columns=['surfing_time_copy'])
# APP打开占比
dataset = self._get_app_rate(dataset)
return dataset
@staticmethod
def _data_encoder(dataset, num_columns):
dataset = dataset.copy()
# # LabelEncoder
# for column in num_columns:
# mapping_dict = dict(zip(dataset[column].unique(), range(0, dataset[column].nunique())))
# dataset[column] = dataset[column].map(mapping_dict)
# qcut
for column in num_columns:
dataset[column] = pd.qcut(dataset[column], 20, labels=False, duplicates='drop')
train_data = dataset[dataset['score'] > 0]
train_data['helper'] = pd.cut(train_data['score'], 5, labels=False)
train_data = pd.get_dummies(train_data, columns=['helper'])
helper_columns = ['helper_0', 'helper_1', 'helper_2', 'helper_3', 'helper_4']
for column in num_columns:
for helper_column in helper_columns:
column_name = f'{column}_{helper_column}_mean'
column_df = train_data.groupby(by=[column])[helper_column].agg('mean').reset_index(name='mean')
column_dict = column_df.set_index(column)['mean'].to_dict()
dataset[column_name] = dataset[column].map(column_dict)
return dataset
@timer(func_name='Processing.get_processing')
def get_processing(self):
dataset = self._get_data()
boolean_columns = self._get_boolean_columns(dataset)
remove_columns = ['id', 'score']
num_columns = list()
for column in dataset.columns:
if column in remove_columns:
continue
if column in boolean_columns:
continue
num_columns.append(column)
# 异常字段处理:手动分箱
abnormal_columns = ['online_shopping_num', 'logistics_num', 'financing_num', 'video_num', 'airplant_num',
'train_num', 'travel_num']
abnormal_encoder_columns = list()
for column in abnormal_columns:
encoder_column = f'{column}_encoder'
dataset[encoder_column] = dataset[column].apply(self._get_abnormal_label)
abnormal_encoder_columns.append(encoder_column)
dataset = pd.get_dummies(dataset, columns=abnormal_encoder_columns) # One-Hot
# 缺失值单独抽离特征:无效
for column in num_columns:
# abnormal已处理过,continue
if column in abnormal_columns:
continue
column_name = f'{column}_missing'
dataset[column_name] = dataset[column].apply(self._get_missing_value)
# 将bool类型重新组合
# dataset = self._recombine_boolean_columns(dataset, boolean_columns)
# embedding
# dataset = self._data_encoder(dataset, ['surfing_time', 'age'])
# 业务逻辑特征
dataset = self._get_operation_features(dataset)
if self.selector:
train_data = dataset[dataset['score'] > 0]
y_data = train_data['score']
x_data = train_data.drop(columns=['id', 'score'])
select_fectures = Selector(ascending=self.ascending).get_select_features(x_data, y_data)
select_fectures.extend(['id', 'score'])
dataset = dataset[select_fectures]
return dataset
def processing_main(selector=False, ascending=False):
processing = Processing(selector=selector, ascending=ascending)
dt = processing.get_processing()
features_name = os.path.join(ETLDATA_PATH, 'features.csv')
dt.to_csv(features_name, index=False, encoding='utf-8')
if __name__ == '__main__':
processing_main(selector=False, ascending=False)