forked from talbotmd/doodle
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_dataset.py
169 lines (140 loc) · 8.36 KB
/
create_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import argparse
import h5py
import imageio
import numpy as np
import glob
import os
import matplotlib.pyplot as plt
import random
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--object_type", required=False, type=str, default="*",
help="The name of the object to be created (cat, dog, etc).")
# parser.add_argument("--only_invalid_pose", required=False, type=bool, default=False,
# help="Will create a set of the invalid pose type images")
# parser.add_argument("--include_ambiguous", required=False, type=bool,
# help="Will include the ambiguous images in the dataset")
# parser.add_argument("--include_context", required=False, type=bool,
# help="Will includethe images with extra environmental context (water ripples, etc)")
# parser.add_argument("--use_non_uniform_scaling", required=False, type=bool, default=False,
# help="Use the non-uniform scaled images instead of the bounding box scaled images")
# parser.add_argument("--add_augmentation", required=False, type=bool, default=False,
# help="Add data augmentation")
parser.add_argument("--flipping_augment", required=False, type=bool, default=False,
help="Add flipping across y axis to all images for augmentation")
parser.add_argument("--num_pairs", required=True, type=int,
help="How many image/sketch pairs do you want in the dataset?")
parser.add_argument("--input_location", required=False, type=str,default='./' ,
help="relative path to the Sketchy Dataset 256x256 folder")
parser.add_argument("--output_file", required=False, type=str, default="output",
help="The name of the output folder")
parser.add_argument("--create_test_set", required=False, type=bool, default=False,
help="Creates a test set")
args = parser.parse_args()
if args.output_file[-5:] == '.hdf5':
args.output_file = args.output_file[:-5]
if os.path.exists(args.output_file + ".hdf5") and os.path.isfile(args.output_file + ".hdf5"):
user_input = input("Output file: \'" + args.output_file + ".hdf5\' already exists, would you like to overwrite it? (y/n)")
if user_input != 'y' and user_input.lower() != 'yes':
print("Ok, exiting now")
return
os.remove(args.output_file + ".hdf5")
images_data, sketches_data = read_images_and_sketches(args)
# images_data, sketches_data = perform_augmentation(args, images_data, sketches_data)
def read_images_and_sketches(args):
count = 0
output_images = np.zeros((min(1000,args.num_pairs),256,256,3),dtype='i8')
output_sketches = np.zeros((min(1000,args.num_pairs),256,256,3),dtype='i8')
folder_prefix = args.input_location + "/256x256/"
invalid_ambiguous = set(line.strip() for line in open("./data/sketchy/info/invalid-ambiguous.txt"))
invalid_context = set(line.strip() for line in open("./data/sketchy/info/invalid-context.txt"))
invalid_error = set(line.strip() for line in open("./data/sketchy/info/invalid-error.txt"))
invalid_pose = set(line.strip() for line in open("./data/sketchy/info/invalid-pose.txt"))
sketch_index_start = 1
file_list = glob.glob(folder_prefix + "/photo/tx_000100000000/" + args.object_type + "/*.jpg")
output = h5py.File(args.output_file + ".hdf5", "a")
image_dataset = output.create_dataset("image_dataset", (1,256,256,3),dtype='i8',compression='gzip', maxshape=(None,None,None,None,))
sketch_dataset = output.create_dataset("sketch_dataset", (1,256,256,3), dtype='i8',compression='gzip', maxshape=(None,None,None,None,))
# Get 1000 images at a time
temp_storage_counter = 0
index=0
end=min(1000, args.num_pairs)
#So we pick from all object types
random.shuffle(file_list)
while count < args.num_pairs:
for file_name_and_loc in file_list:
output_images[temp_storage_counter] = np.array(imageio.imread(file_name_and_loc),dtype='i8')
file_name = file_name_and_loc.split('/')[-1][:-4] #This isolates the file name, and drops the file type
object_type = file_name_and_loc.split('/')[-2]
sketch_index = sketch_index_start
sketch_name = file_name + "-" + str(sketch_index)
#make sure we dont use an invalid sketch
while sketch_name in invalid_ambiguous or sketch_name in invalid_context or \
sketch_name in invalid_error or sketch_name in invalid_pose:
sketch_index += 1
sketch_name = file_name + "-" + str(sketch_index)
output_sketches[temp_storage_counter] = np.array(imageio.imread(folder_prefix + "sketch/tx_000100000000/" +
object_type + "/" + sketch_name + ".png"),dtype='i8')
count += 1
temp_storage_counter += 1
# Saves 1000 images in the file, so we don't have an array that is too long
if temp_storage_counter == 1000 or count == args.num_pairs:
# end = min(index + 1000, args.num_pairs)
image_dataset.resize(end,axis=0)
image_dataset[index:end] = output_images
sketch_dataset.resize(end,axis=0)
sketch_dataset[index:end] = output_sketches
if args.flipping_augment:
diff = end - index
index = end
end += diff
output_images = np.flip(output_images,axis=2)
output_sketches = np.flip(output_sketches,axis=2)
image_dataset.resize(end,axis=0)
image_dataset[index:end] = output_images
sketch_dataset.resize(end,axis=0)
sketch_dataset[index:end] = output_sketches
index = end
end += min(1000, args.num_pairs - count)
print("image data shape: ", image_dataset.shape)
print("sketch data shape: ", sketch_dataset.shape)
temp_storage_counter = 0
output_images = np.zeros((min(1000,args.num_pairs-count),256,256,3),dtype='i8')
output_sketches = np.zeros((min(1000,args.num_pairs-count),256, 256, 3),dtype='i8')
if count >= args.num_pairs:
break
if count % 100 == 0:
print('Read ' + str(count) + ' images')
sketch_index_start += 1
# Creates 1000 test images
if args.create_test_set:
output_images = np.zeros((min(1000,args.num_pairs),256,256,3),dtype='i8')
output_sketches = np.zeros((min(1000,args.num_pairs),256,256,3),dtype='i8')
test_images = output.create_dataset("test_images", (1000,256,256,3),dtype='i8',compression='gzip', maxshape=(None,None,None,None,))
test_sketches = output.create_dataset("test_sketches", (1000,256,256,3), dtype='i8',compression='gzip', maxshape=(None,None,None,None,))
for i in range(1000):
image_index = i + count % len(file_list)
file_name_and_loc = file_list[image_index]
output_images[i] = np.array(imageio.imread(file_name_and_loc),dtype='i8')
file_name = file_name_and_loc.split('/')[-1][:-4] #This isolates the file name, and drops the file type
object_type = file_name_and_loc.split('/')[-2]
sketch_index = sketch_index_start
sketch_name = file_name + "-" + str(sketch_index)
#make sure we dont use an invalid sketch
while sketch_name in invalid_ambiguous or sketch_name in invalid_context or \
sketch_name in invalid_error or sketch_name in invalid_pose:
sketch_index += 1
sketch_name = file_name + "-" + str(sketch_index)
output_sketches[i] = np.array(imageio.imread(folder_prefix + "sketch/tx_000100000000/" +
object_type + "/" + sketch_name + ".png"),dtype='i8')
# Write to the test set
test_images[0:1000] = output_images
test_sketches[0:1000] = output_sketches
return image_dataset, sketch_dataset
def perform_augmentation(args, images_data, sketches_data):
if args.flipping_augment:
images_copy = np.append(images_copy,np.flip(images_copy,axis=2),axis=0)
sketches_copy = np.append(sketches_copy, np.flip(sketches_copy,axis=2),axis=0)
return images_copy, sketches_copy
if __name__ == "__main__":
main()