forked from monero-project/mininero
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patholdMiniNero.py
708 lines (606 loc) · 24.8 KB
/
oldMiniNero.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
########################################################################
# MiniNero.py
#A miniature, commented
#port of CryptoNote and
#Monero:
# crypto.cpp / crypto-ops.cpp
#
#Using Bernstein's ed25519.py for the curve stuff.
#The main point is to have a model what's happening in CryptoNote
# -Shen.Noether
#
#Note: The ring image function seems
# to take a lot of memory to run
# it will throw strange errors if
# your computer doesn't have
# enough
#Note2:
# As of yet, slightly incompatible, although mathematically equivalent.
# The discrepancies are some differences in packing and hashing.
#
# To the extent possible under law, the implementer has waived all copyright
# and related or neighboring rights to the source code in this file.
# http://creativecommons.org/publicdomain/zero/1.0/
#
#The parts of code from Bernstein(?)'s library possibly has it's own license
# which you can dig up from http://cr.yp.to/djb.html
########################################################################
import hashlib
import struct
import base64
import binascii
import sys
from Crypto.Util import number
import Crypto.Random.random as rand
import Keccak
from collections import namedtuple
import copy
KEK=Keccak.Keccak(1600)
CURVE_P = (2**255 - 19)
b = 256
q = 2**255 - 19
l = 2**252 + 27742317777372353535851937790883648493
BASEPOINT = "0900000000000000000000000000000000000000000000000000000000000000"
#####################################
#Bernstein(?) Eddie Library in python
#####################################
def H(m):
return hashlib.sha512(m).digest()
def expmod(b,e,m):
if e == 0: return 1
t = expmod(b,e/2,m)**2 % m
if e & 1: t = (t*b) % m
return t
def inv(x):
return expmod(x,q-2,q)
d = -121665 * inv(121666)
I = expmod(2,(q-1)/4,q)
def xrecover(y):
xx = (y*y-1) * inv(d*y*y+1)
x = expmod(xx,(q+3)/8,q)
if (x*x - xx) % q != 0: x = (x*I) % q
if x % 2 != 0: x = q-x
return x
By = 4 * inv(5)
Bx = xrecover(By)
B = [Bx % q,By % q]
def edwards(P,Q):
x1 = P[0]
y1 = P[1]
x2 = Q[0]
y2 = Q[1]
x3 = (x1*y2+x2*y1) * inv(1+d*x1*x2*y1*y2)
y3 = (y1*y2+x1*x2) * inv(1-d*x1*x2*y1*y2)
return [x3 % q,y3 % q]
def scalarmult(P, e):
if e == 0: return [0,1]
Q = scalarmult(P,e/2)
Q = edwards(Q,Q)
if e & 1: Q = edwards(Q,P)
return Q
def encodeint(y):
bits = [(y >> i) & 1 for i in range(b)]
return ''.join([chr(sum([bits[i * 8 + j] << j for j in range(8)])) for i in range(b/8)])
def encodepoint(P):
x = P[0]
y = P[1]
bits = [(y >> i) & 1 for i in range(b - 1)] + [x & 1]
return ''.join([chr(sum([bits[i * 8 + j] << j for j in range(8)])) for i in range(b/8)])
def bit(h,i):
return (ord(h[i/8]) >> (i%8)) & 1
def public_key(sk):
A = scalarmult(B,sk)
return encodepoint(A)
def Hint(m):
h = H(m)
return sum(2**i * bit(h,i) for i in range(2*b))
def signature(m,sk,pk):
h = H(sk)
a = 2**(b-2) + sum(2**i * bit(h,i) for i in range(3,b-2))
r = Hint(''.join([h[i] for i in range(b/8,b/4)]) + m)
R = scalarmult(B,r)
S = (r + Hint(encodepoint(R) + pk + m) * a) % l
return encodepoint(R) + encodeint(S)
def isoncurve(P):
x = P[0]
y = P[1]
return (-x*x + y*y - 1 - d*x*x*y*y) % q == 0
def decodeint(s):
return sum(2**i * bit(s,i) for i in range(0,b))
def decodepoint(s):
y = sum(2**i * bit(s,i) for i in range(0,b-1))
x = xrecover(y)
if x & 1 != bit(s,b-1): x = q-x
P = [x,y]
if not isoncurve(P): raise Exception("decoding point that is not on curve")
return P
def checkvalid(s,m,pk):
if len(s) != b/4: raise Exception("signature length is wrong")
if len(pk) != b/8: raise Exception("public-key length is wrong")
R = decodepoint(s[0:b/8])
A = decodepoint(pk)
S = decodeint(s[b/8:b/4])
h = Hint(encodepoint(R) + pk + m)
if scalarmult(B,S) != edwards(R,scalarmult(A,h)):
raise Exception("signature does not pass verification")
#################################
#curve stuff,
#mostly from https://github.com/monero-project/bitmonero/blob/1b8a68f6c1abcf481652c2cfd87300a128e3eb32/src/crypto/crypto-ops.c
#partial reference for fe things https://godoc.org/github.com/agl/ed25519/edwards25519
#note ge is the edwards version of the curve
#fe is the monty version of the curve
#################################
#NOT USED IN MININERO - Use ge_scalarmult_base
def ge_fromfe_frombytesvartime(s):
#inputs something s (I assume in bytes)
#inputs into montgomery form (fe)
#then, turns it into edwards form (ge)
#then r is the edwards curve point r->
#reference 1: http://crypto.stackexchange.com/questions/9536/converting-ed25519-public-key-to-a-curve25519-public-key?rq=1
#reference 2: https://github.com/orlp/ed25519/blob/master/src/key_exchange.c
#best reference https://www.imperialviolet.org/2013/12/25/elligator.html
#the point of this function is to return a ge_p2 from an int s
#whereas, the similar function ge_frombytes_vartime returns a gep3
return
def ge_double_scalarmult_base_vartime(aa, AA, bb):
#a very nice comment in the CN code for this one!
#r = a * A + b * B
#where a = a[0]+256*a[1]+...+256^31 a[31].
#and b = b[0]+256*b[1]+...+256^31 b[31].
#B is the Ed25519 base point (x,4/5) with x positive.
#cf also https://godoc.org/github.com/agl/ed25519/edwards25519
tmpa = ge_scalarmult(aa, AA)
tmpb = ge_scalarmult(bb, BASEPOINT)
return toHex(edwards(toPoint(tmpa), toPoint(tmpb)))
def ge_double_scalarmult_vartime(aa, AA, bb, BB):
#a very nice comment in the CN code for this one!
#r = a * A + b * B
#where a = a[0]+256*a[1]+...+256^31 a[31].
#and b = b[0]+256*b[1]+...+256^31 b[31].
#B is the Ed25519 base point (x,4/5) with x positive.
#cf also https://godoc.org/github.com/agl/ed25519/edwards25519
tmpa = ge_scalarmult(aa, AA)
tmpb = ge_scalarmult(bb, BB)
return toHex(edwards(toPoint(tmpa), toPoint(tmpb)))
def toPoint(pubkey):
#turns hex key into x, y field coords
return decodepoint(pubkey.decode("hex"))
def toHex(point):
#turns point into pubkey (reverse of toPoint)
return encodepoint(point).encode("hex")
def ge_scalarmult(a, A):
#so I guess given any point A, and an integer a, this computes aA
#so the seecond arguement is definitely an EC point
# from http://cr.yp.to/highspeed/naclcrypto-20090310.pdf
# "Alice's secret key a is a uniform random 32-byte string then
#clampC(a) is a uniform random Curve25519 secret key
#i.e. n, where n/8 is a uniform random integer between
#2^251 and 2^252-1
#Alice's public key is n/Q compressed to the x-coordinate
#so that means, ge_scalarmult is not actually doing scalar mult
#clamping makes the secret be between 2^251 and 2^252
#and should really be done
#print(toPoint(A))
return encodepoint(scalarmult(toPoint(A), a)).encode("hex") # now using the eddie function
def ge_scalarmult_base(a):
#in this function in the original code, they've assumed it's already clamped ...
#c.f. also https://godoc.org/github.com/agl/ed25519/edwards25519
#it will return h = a*B, where B is ed25519 bp (x,4/5)
#and a = a[0] + 256a[1] + ... + 256^31 a[31]
#it assumes that a[31 <= 127 already
return ge_scalarmult(8*a, BASEPOINT)
#NOT USED IN MININERO - use ge_scalarmult_base
def ge_frombytes_vartime(key):
#https://www.imperialviolet.org/2013/12/25/elligator.html
#basically it takes some bytes of data
#converts to a point on the edwards curve
#if the bytes aren't on the curve
#also does some checking on the numbers
#ex. your secret key has to be at least >=4294967277
#also it rejects certain curve points, i.e. "if x = 0, sign must be positive
return 0
#NOT USED IN MININERO - unecessary as all operations are from hex
def ge_p1p1_to_p2(p):
#there are two ways of representing the points
##http://code.metager.de/source/xref/lib/nacl/20110221/crypto_sign/edwards25519sha512batch/ref/ge25519.c
#http://www.hyperelliptic.org/EFD/g1p/auto-twisted-extended-1.html
return
#NOT USED IN MININERO -unnecessary as operations are from hex
def ge_p2_dbl():
#basically it doubles a point and doubles it
#c.f. Explicit Formulas for Doubling (towards bottom)
#Explicit formulas for doubling
#http://www.hyperelliptic.org/EFD/g1p/auto-twisted-extended-1.html
return
#NOT USED IN MININERO - unnecessary as operations are from hex
def ge_p3_to_p2():
#basically, it copies a point in 3 coordinates to another point
#c.f. Explicit Formulas for Doubling (towards bottom)
#Explicit formulas for doubling
#http://www.hyperelliptic.org/EFD/g1p/auto-twisted-extended-1.html
return
def ge_mul8(P):
#ok, the point of this is to double three times
#and the point is that the ge_p2_dbl returns a point in the p1p1 form
#so that's why have to convert it first and then double
return ge_scalarmult(8, P)
def sc_reduce(s):
#inputs a 64 byte int and outputs the lowest 32 bytes
#used by hash_to_scalar, which turns cn_fast_hash to number..
r = longToHex(s)
r = r[64::]
#print("before mod p", r)
return hexToLong(r) % CURVE_P
def sc_reduce32(data):
#ok, the code here is exactly the same as sc_reduce
#(which is default lib sodium)
#except it is assumed that your input
#s is alread in the form:
# s[0]+256*s[1]+...+256^31*s[31] = s
#and the rest is just reducing mod l
#so basically take a 32 byte input, and reduce modulo the prime
return data % CURVE_P
def sc_mulsub(a, b, c):
#takes in a, b, and c
#This is used by the regular sig
#i.e. in generate_signature
#returns c-ab mod l
a = number.bytes_to_long(a[::-1])
b = number.bytes_to_long(b[::-1])
c = number.bytes_to_long(c[::-1])
return (c - a * b) % CURVE_P
##########################################
#Hashing
#this is where keccak, H_p, and H_s come in..
######################################
def cn_fast_hash(key, size):
#see ReadMeKeccak.txt
return KEK.Keccak((size,key.encode("hex")),1088,512,256,False)
###################################################
#CryptoNote Things
#Mainly from https://github.com/monero-project/bitmonero/blob/1b8a68f6c1abcf481652c2cfd87300a128e3eb32/src/crypto/crypto.cpp
###################################################
def random_scalar():
tmp = rand.getrandbits(64 * 8) # 8 bits to a byte ...
tmp = sc_reduce(tmp) #-> turns 64 to 32 (note sure why don't just gt 32 in first place ... )
return tmp
def hash_to_scalar(data, length):
#this one is H_s(P)
#relies on cn_fast_hash and sc_reduce32 (which makes an int smaller)
#the input here is not necessarily a 64 byte thing, and that's why sc_reduce32
res = hexToLong(cn_fast_hash(data, length))
return sc_reduce32(res)
def generate_keys():
#should return a secret key and public key pair
#once you have the secret key,
#then the public key be gotten from 25519 function
#so just need to generate random
#first generate random 32-byte(256 bit) integer, copy to result
#ok, just sc_reduce, what that does is takes 64 byte int, turns into 32 byte int...
#so sc_reduce is legit and comes from another library http://hackage.haskell.org/package/ed25519-0.0.2.0/src/src/cbits/sc_reduce.c
#as far as I can tell, sc
#basically this gets you an int which is sufficiently large
#import Crypto.Random.random as rand
rng = random_scalar()
#sec = hex(rng).rstrip("L").lstrip("0x") or "0"
sec = sc_reduce32(rng)
pub = public_key(sec).encode("hex")
#pub = ge_scalarmult_base(sec)
#print(rng.decode("hex"))
#sec = curve25519_mult(rng, basepoint)
#the point of ge_p3_tobytes here is just store as bytes...
#and p3 is a way to store points on the ge curve
return sec, pub
def check_key(key):
#inputs a public key, and outputs if point is on the curve
return isoncurve(toPoint(key))
def secret_key_to_public_key(secret_key):
#the actual function returns as bytes since they mult the fast way.
if sc_check(secret_key) != 0:
print "error in sc_check"
quit()
return public_key(secret_key)
def hash_to_ec(key):
#takes a hash and turns into a point on the curve
#In MININERO, I'm not using the byte representation
#So this function is superfluous
h = hash_to_scalar(key, len(key))
point = ge_scalarmult_base(h)
return ge_mul8(point)
def generate_key_image(public_key, secret_key):
#should return a key image as defined in whitepaper
if sc_check(secret_key) != 0:
print"sc check error in key image"
point = hash_to_ec(public_key)
point2 = ge_scalarmult(secret_key, point)
return point2
def generate_ring_signature(prefix, image, pubs, pubs_count, sec, sec_index):
#returns a ring signature
if sec_index >= pubs_count:
print "bad index of secret key!"
quit()
if ge_frombytes_vartime(image) != 0:
print"bad image!"
quit()
summ = 0
aba = [0 for xx in range(pubs_count)]
abb = [0 for xx in range(pubs_count)]
sigc = [0 for xx in range(pubs_count)] #these are the c[i]'s from the whitepaper
sigr =[0 for xx in range(pubs_count)] #these are the r[i]'s from the whitepaper
for ii in range(0, pubs_count):
if (ii == sec_index):
kk = random_scalar()
tmp3 = ge_scalarmult_base(kk) #L[i] for i = s
aba[ii] = tmp3
tmp3 = hash_to_ec(pubs[ii]) #R[i] for i = s
abb[ii] = ge_scalarmult(kk, tmp3)
else:
k1 = random_scalar() #note this generates a random scalar in the correct range...
k2 = random_scalar()
if ge_frombytes_vartime(pubs[ii]) != 0:
print "error in ring sig!!!"
quit()
tmp2 = ge_double_scalarmult_base_vartime(k1, pubs[ii], k2) #this is L[i] for i != s
aba[ii] = tmp2
tmp3 = hash_to_ec(pubs[ii])
abb[ii] = ge_double_scalarmult_vartime(k2, tmp3, k1, image) #R[i] for i != s
sigc[ii] = k1 #the random c[i] for i != s
sigr[ii] = k2 #the random r[i] for i != s
summ = sc_add(summ, sigc[ii]) #summing the c[i] to get the c[s] via page 9 whitepaper
buf = struct.pack('64s', prefix)
for ii in range(0, pubs_count):
buf += struct.pack('64s', aba[ii])
buf += struct.pack('64s', abb[ii])
hh = hash_to_scalar(buf,len(buf))
sigc[sec_index] = sc_sub(hh, summ) # c[s] = hash - sum c[i] mod l
sigr[sec_index] = sc_mulsub(sigc[sec_index], sec, kk) # r[s] = q[s] - sec * c[index]
return image, sigc, sigr
def check_ring_signature(prefix, key_image, pubs, pubs_count, sigr, sigc):
#from https://github.com/monero-project/bitmonero/blob/6a70de32bf872d97f9eebc7564f1ee41ff149c36/src/crypto/crypto.cpp
#this is the "ver" algorithm
aba = [0 for xx in range(pubs_count)]
abb = [0 for xx in range(pubs_count)]
if ge_frombytes_vartime(key_image) != 0:
print "ring image error in checking sigs"
quit()
summ = 0
buf = struct.pack('64s', prefix)
for ii in range(0, pubs_count):
if ((sc_check(sigc[ii]) != 0) or (sc_check(sigr[ii]) != 0)):
print "failed sc_check in check ring sigs"
quit()
if ge_frombytes_vartime(pubs[ii]) != 0:
print "public key is a bad point in ring sigs"
quit()
tmp2 = ge_double_scalarmult_base_vartime(sigc[ii], pubs[ii], sigr[ii])
aba[ii] = tmp2
tmp3 = hash_to_ec(pubs[ii])
tmp2 = ge_double_scalarmult_vartime(sigr[ii], tmp3, sigc[ii], key_image)
abb[ii] = tmp2
summ = sc_add(summ, sigc[ii])
for ii in range(0, pubs_count):
buf += struct.pack('64s', aba[ii])
buf += struct.pack('64s', abb[ii])
hh = hash_to_scalar(buf,len(buf))
hh = sc_sub(hh, summ)
return sc_isnonzero(hh) == 0
def generate_key_derivation(key1, key2):
#key1 is public key of receiver Bob (see page 7)
#key2 is Alice's private
#this is a helper function for the key-derivation
#which is the generating one-time key's thingy
if sc_check(key2) != 0:
#checks that the secret key is uniform enough...
print"error in sc_check in keyder"
quit()
if ge_frombytes_vartime(key1) != 0:
print "didn't pass curve checks in keyder"
quit()
point = key1 ## this ones the public
point2 = ge_scalarmult( key2, point)
#print("p2", encodepoint(point2).encode("hex"))
point3 = ge_mul8(point2) #This has to do with n==0 mod 8 by dedfinition, c.f. the top paragraph of page 5 of http://cr.yp.to/ecdh/curve25519-20060209.pdf
#and also c.f. middle of page 8 in same document (Bernstein)
return point3
def derivation_to_scalar(derivation, output_index):
#this function specifically hashes your
#output index (for the one time keys )
#in order to get an int, so we can do ge_mult_scalar
#buf = s_comm(d = derivation, o = output_index)
buf2 = struct.pack('64sl', derivation, output_index)
#print(buf2)
return hash_to_scalar(buf2, len(buf2))
def derive_public_key(derivation, output_index, base ):
if ge_frombytes_vartime(base) != 0: #check some conditions on the point
print"derive pub key bad point"
quit()
point1 = base
scalar = derivation_to_scalar(derivation, output_index)
point2 = ge_scalarmult_base(scalar)
point3 = point2 #I think the cached is just for the sake of adding
#because the CN code adds using the monty curve
point4 = edwards(toPoint(point1), toPoint(point3))
return point4
def sc_add(aa, bb):
return (aa + bb ) %CURVE_P
def sc_sub(aa, bb):
return (aa - bb ) %CURVE_P
def sc_isnonzero(c):
return (c %CURVE_P != 0 )
def sc_mulsub(aa, bb, cc):
return (cc - aa * bb ) %CURVE_P
def derive_secret_key(derivation, output_index, base):
#outputs a derived key...
if sc_check(base) !=0:
print"cs_check in derive_secret_key"
scalar = derivation_to_scalar(derivation, output_index)
return base + scalar
class s_comm:
def __init__(self, **kwds):
self.__dict__.update(kwds)
def generate_signature(prefix_hash, pub, sec):
#gets the "usual" signature (not ring sig)
#buf = s_comm(h=prefix_hash, key=pub, comm=0) #see the pack below
k = random_scalar()
tmp3 = ge_scalarmult_base(k)
buf2 = struct.pack('64s64s64s', prefix_hash, pub, tmp3)
sigc = hash_to_scalar(buf2, len(buf2))
return sc_mulsub(sigc, sec, k), sigc
def check_signature(prefix_hash, pub, sigr, sigc):
#checking the normal sigs, not the ring sigs...
if ge_frombytes_vartime(pub) !=0:
print "bad point, check sig!"
quit()
if (sc_check(sigc) != 0) or (sc_check(sigr) != 0):
print"sc checksig error!"
quit()
tmp2 = ge_double_scalarmult_base_vartime(sigc, pub, sigr)
buf2 = struct.pack('64s64s64s', prefix_hash, pub, tmp2)
c = hash_to_scalar(buf2, len(buf2))
c = sc_sub(c, sigc)
return sc_isnonzero(c) == 0
def hexToLong(a):
return number.bytes_to_long(a.decode("hex"))
def longToHex(a):
return number.long_to_bytes(a).encode("hex")
def hexToBits(a):
return a.decode("hex")
def bitsToHex(a):
return a.encode("hex")
def sc_check(key):
#in other words, keys which are too small are rejected
return 0
#s0, s1, s2, s3, s4, s5, s6, s7 = load_4(longToHex(key))
#return (signum_(1559614444 - s0) + (signum_(1477600026 - s1) << 1) + (signum_(2734136534 - s2) << 2) + (signum_(350157278 - s3) << 3) + (signum_(-s4) << 4) + (signum_(-s5) << 5) + (signum_(-s6) << 6) + (signum_(268435456 - s7) << 7)) >> 8
if __name__ == "__main__":
if sys.argv[1] == "rs":
#test random_scalar
print(longToHex(random_scalar()))
if sys.argv[1] == "keys":
#test generating keys
x,P = generate_keys()
print"generating keys:"
print("secret:")
print( x)
print("public:")
print( P)
print("the point P")
print(decodepoint(P.decode("hex")))
if sys.argv[1] == "fasthash":
mysecret = "99b66345829d8c05041eea1ba1ed5b2984c3e5ec7a756ef053473c7f22b49f14"
output_index = 2
buf2 = struct.pack('64sl', mysecret, output_index)
#buf2 = pickle(buf)
#print(buf2)
print(buf2)
print(cn_fast_hash(mysecret, len(mysecret)))
print(cn_fast_hash(buf2, len(buf2)))
if sys.argv[1] == "hashscalar":
data = "ILOVECATS"
print(cn_fast_hash(data, len(data)))
print(hash_to_scalar(data, len(data)))
if sys.argv[1] == "hashcurve":
data = "ILOVECATS"
print(cn_fast_hash(data, len(data)))
print(hash_to_ec(data))
if sys.argv[1] == "checkkey":
x, P = generate_keys()
print(check_key(P))
if sys.argv[1] == "secpub":
#testing for secret_key_to_public_key
#these test vecs were for the monty implementation
mysecret = "99b66345829d8c05041eea1ba1ed5b2984c3e5ec7a756ef053473c7f22b49f14"
mypublic = "b1c652786697a5feef36a56f36fde524a21193f4e563627977ab515f600fdb3a"
mysecret, P = generate_keys()
pub2 = secret_key_to_public_key(mysecret)
print(pub2.encode("hex"))
if sys.argv[1] == "keyder":
#testing for generate_key_derivation
x,P = generate_keys()
print(x, P)
print(generate_key_derivation(P, x))
if sys.argv[1] == "dersca":
#testing for derivation_to_scalar
#this is getting a scalar for one-time-keys rH_s(P)
aa, AA = generate_keys()
bb, BB = generate_keys()
for i in range(0,3):
rr, ZZ = generate_keys()
derivation = generate_key_derivation(BB, aa)
s = derivation_to_scalar(derivation, i)
print(s)
if sys.argv[1] == "derpub":
x, P = generate_keys()
output_index = 5
keyder = generate_key_derivation(P, x)
print("keyder", keyder)
print(derive_public_key(keyder, output_index, P))
if sys.argv[1] == "dersec":
x, P = generate_keys()
output_index = 5
keyder = generate_key_derivation(P, x)
print("keyder", keyder)
print(derive_secret_key(keyder, output_index, x))
if sys.argv[1] == "testcomm":
a = "99b66345829d8c05041eea1ba1ed5b2984c3e5ec7a756ef053473c7f22b49f14"
co2 = struct.pack('hhl', 1, 2, 3)
print(co2.encode("hex")) #sometimes doesn't print if your terminal doesn't have unicode
if sys.argv[1] == "gensig":
#testing generate_signature
print""
prefix = "destination"
sec, pub = generate_keys() # just to have some data to use ..
print(generate_signature(prefix, pub, sec))
if sys.argv[1] == "checksig":
prefix = "destination"
sec, pub = generate_keys() # just to have some data to use ..
sir, sic = generate_signature(prefix, pub, sec)
print(sir, sic)
print(check_signature(prefix, pub, sir, sic))
if sys.argv[1] == "keyimage":
x, P = generate_keys()
xb = 14662008266461539177776197088974240017016792645044069572180060425138978088469
Pb = "1d0ecd1758a685d88b39567f491bc93129f59c7dae7182bddc4e6f5ad38ba462"
I = generate_key_image(Pb, xb)
print(I)
if sys.argv[1] == "ringsig":
#these are fixed since my computer runs out of memory
xa = 54592381732429499113512315392038591381134951436395595620076310715410049314218
Pa = "3c853b5a82912313b179e40d655003c5e3112c041fcf755c3f09d2a8c64d9062"
xb = 14662008266461539177776197088974240017016792645044069572180060425138978088469
Pb = "1d0ecd1758a685d88b39567f491bc93129f59c7dae7182bddc4e6f5ad38ba462"
ima = "0620b888780351a3029dfbf1a5c45a89816f118aa63fa807d51b959cb3c5efc9"
ima, sic, sir = generate_ring_signature("dest", ima, [Pa, Pb],2, xb, 1)
print("ima",ima)
print("sic", sir)
print("sir", sic)
print(check_ring_signature("dest", ima, [Pa, Pb], 2, sir, sic))
if sys.argv[1] == "conv":
#testing reduction
a = "99b66345829d8c05041eea1ba1ed5b2984c3e5ec7a756ef053473c7f22b49f14"
print(a)
r = hexToLong(a)
print(r)
a = longToHex(r)
print(a)
if sys.argv[1] == "red":
a = "99b66345829d8c05041eea1ba1ed5b2984c3e5ec7a756ef053473c7f22b49f14"
tmp = rand.getrandbits(64 * 8)
tmp2 = longToHex(tmp)
print(tmp2)
tmp3 = longToHex(sc_reduce(tmp))
print(tmp3)
tmp4 = sc_reduce32(CURVE_P + 1)
print(tmp4)
tmp5 = sc_reduce(CURVE_P + 1)
print(tmp5)
if sys.argv[1] == "gedb":
x, P = generate_keys()
print(ge_double_scalarmult_base_vartime(x, P, x))
if sys.argv[1] == "sck":
#testing sc_check
x, P = generate_keys()
print(sc_check(x))
print("nonreduced", longToHex(x))
print("reduced", sc_reduce32_2(x))
print("check reduced", sc_check(hexToLong(sc_reduce32_2(x))))