-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathresults_viewer.py
445 lines (383 loc) · 14.9 KB
/
results_viewer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
# %% Change working directory from the workspace root to the ipynb file
# location. Turn this addition off with the DataScience.changeDirOnImportExport
# setting
# ms-python.python added
from __future__ import print_function
# make sure the setup is correct everywhere
import os
import copy
import sys
import glob
import numpy as np
# change working directory to src
from IPython import get_ipython
import experiment
from experiment.util.file import get_parameters
# make sure it's using only GPU here...
os.environ["CUDA_VISIBLE_DEVICES"] = "0" # noqa
# switch to root folder for data
folder = os.path.abspath("")
if "paper/alds/script" in folder:
src_folder = os.path.join(folder, "../../..")
os.chdir(src_folder)
# %% Some parameters to retrieve results
# parameters for running the test
FOLDER = "paper/alds/param/cifar/retrain"
LEGEND_ON = False
INLINE_PLOT = False
if "prune" in FOLDER:
TABLE_DELTA_LEVELS = [0.01, 0.05, 0.10, 0.20, 0.30]
else:
TABLE_DELTA_LEVELS = [0.00, 0.005, 0.01, 0.02, 0.03]
TABLE_BOLD_THRESHOLD = 0.005
# auto-discover files from folder without "common.yaml"
FILES = glob.glob(os.path.join(FOLDER, "*[!common]*.yaml"))
def key_files(item):
order = [
"resnet20",
"resnet56",
"resnet110",
"vgg16",
"densenet22",
"wrn16_8",
"resnet18",
"resnet101",
"wide_resnet50_2",
"mobilenet_v2",
"deeplabv3_resnet50",
]
for i, net in enumerate(order):
if net in item:
return i
return len(order)
# sort them manually according to order
FILES.sort(key=key_files)
print(FILES)
# FILES = FILES[:1]
# folder for param/acc plot...
SPECIAL_TAG = "_".join(FOLDER.split("/")[-2:])
PLOT_FOLDER_SPECIAL = os.path.abspath(
os.path.join("data/results/alds_plots", SPECIAL_TAG)
)
# %% Some helpful functions
def get_results(file, logger, legend_on):
"""Grab all the results according to the hyperparameter file."""
results = []
params = []
labels = []
graphers_all = []
# Loop through all experiments
for param in get_parameters(file, 1, 0):
# initialize logger and setup parameters
logger.initialize_from_param(param)
# run the experiment (only if necessary)
try:
state = logger.get_global_state()
except ValueError:
experiment.Evaluator(logger).run()
state = logger.get_global_state()
# extract the results
results.append(copy.deepcopy(state))
params.append(copy.deepcopy(param))
# extract the legend (based on heuristic)
label = param["generated"]["datasetTest"].split("_")
if len(label) > 2:
label = label[2:]
labels.append("_".join(label))
# extract the plots
graphers = logger.generate_plots(store_figs=False)
# modify label of x-axis
graphers[0]._figure.gca().set_xlabel("Compression Ratio (Parameters)")
if "cifar/retraininit" in file:
for i, grapher in enumerate(graphers[:6]):
percentage_y = bool((i + 1) % 3)
grapher.graph(
percentage_x=True,
percentage_y=percentage_y,
store=False,
show_ref=False,
show_delta=False,
remove_outlier=False,
)
if percentage_y:
grapher._figure.gca().set_ylim([86, 98])
elif "cifar/prune" in file and "_plus" in file:
graphers[0]._figure.gca().set_xlim([20, 65])
graphers[0]._figure.gca().set_ylim([-61, 2])
elif "cifar/prune" in file:
graphers[0]._figure.gca().set_ylim([-87, 5])
elif "imagenet/prune" in file and "_plus" in file:
graphers[0]._figure.gca().set_xlim([39, 81])
graphers[0]._figure.gca().set_ylim([-61, 2])
elif "imagenet/prune" in file:
graphers[0]._figure.gca().set_xlim([0, 87])
graphers[0]._figure.gca().set_ylim([-87, 5])
elif "imagenet/retrain/mobilenet_v2" in file:
graphers[0]._figure.gca().set_ylim([-5, 0.5])
elif "imagenet/retrain/" in file:
graphers[0]._figure.gca().set_ylim([-3.5, 1.5])
elif "imagenet/retraincascade" in file:
# graphers[0]._figure.gca().set_xlim([-11, 2])
graphers[0]._figure.gca().set_ylim([-2.5, 1])
elif "imagenet/retrain" in file:
graphers[0]._figure.gca().set_ylim([-11, 2])
elif "cifar/retrainablation/" in file:
graphers[0]._figure.gca().set_ylim([-3.2, 1.2])
elif "cifar/retrain/densenet" in file:
graphers[0]._figure.gca().set_xlim([14, 78])
graphers[0]._figure.gca().set_ylim([-3.5, 1.5])
elif "cifar/retrain/vgg" in file:
graphers[0]._figure.gca().set_xlim([70, 97.5])
graphers[0]._figure.gca().set_ylim([-3.5, 1.5])
elif "cifar/retrain/wrn" in file:
graphers[0]._figure.gca().set_xlim([85, 97.5])
graphers[0]._figure.gca().set_ylim([-2.5, 0.0])
elif "cifar/retrain/" in file:
# graphers[0]._figure.gca().set_ylim([-11, 3])
graphers[0]._figure.gca().set_ylim([-3.5, 1.5])
elif "cifar/retrainlittle/" in file:
graphers[0]._figure.gca().set_ylim([-3.5, 1.5])
elif "cifar/retrain" in file:
graphers[0]._figure.gca().set_ylim([-11, 2])
elif "voc/prune" in file:
graphers[0]._figure.gca().set_xlim([0, 90])
graphers[0]._figure.gca().set_ylim([-87, 5])
elif "voc/retrain" in file:
graphers[0]._figure.gca().set_ylim([-3, 2])
for grapher in graphers:
legend = grapher._figure.gca().get_legend()
if legend is not None:
grapher._figure.gca().get_legend().remove()
legend.set_bbox_to_anchor((1.1, 0.7))
if legend_on:
graphers[0].graph(
percentage_x=True,
percentage_y=True,
store=False,
kwargs_legend={
"loc": "upper left",
"ncol": 1,
"bbox_to_anchor": (1.1, 0.9),
},
)
graphers_all.append(graphers)
return results, params, labels, graphers_all
def get_and_store_results(file, logger, legend_on, folder_special):
print(f"PARAM FILE: {file}")
# get the results specified in the file (and hopefully pre-computed)
results, params, _, graphers_all = get_results(file, logger, legend_on)
# reset stdout after our logger modifies it ...
sys.stdout = sys.stdout._stdout_original
if len(graphers_all) > 1:
raise ValueError("Not expecting multiple results per file")
else:
graphers = graphers_all[0]
param = params[0]
stats = results[0]
for grapher in graphers:
grapher.store_plot()
print(f"PLOT FOLDER: {param['generated']['plotDir']}\n")
# store the param/acc plots separately as well
graphers[0]._folder = folder_special
graphers[0].store_plot()
return stats, param
def compute_prune_potential(stats, delta_levels):
"""Compute prune potential based on average."""
# retrieve error and prune potential
i_ref = stats["names"].index("ReferenceNet")
e_delta = stats["error"] - stats["error"][:, :, :, i_ref : i_ref + 1]
e5_delta = stats["error5"] - stats["error5"][:, :, :, i_ref : i_ref + 1]
pp_param = 1.0 - stats["sizes"]
pp_flops = 1.0 - stats["flops"]
# average
# shape (num_algorithms, num_intervals)
e_delta = np.mean(e_delta, axis=(0, 2)).T
e5_delta = np.mean(e5_delta, axis=(0, 2)).T
pp_param = np.mean(pp_param, axis=(0, 2)).T
pp_flops = np.mean(pp_flops, axis=(0, 2)).T
# shape (num_algorithms, delta)
e_best = np.zeros((e_delta.shape[0], len(delta_levels)))
e5_best = np.zeros_like(e_best)
pp_p_best = np.zeros_like(e_best)
pp_f_best = np.zeros_like(e_best)
for idx_m in range(e_delta.shape[0]):
for idx_d in range(len(delta_levels)):
e_valid = e_delta[idx_m] <= delta_levels[idx_d]
if np.any(e_valid):
i_biggest = np.argmax(pp_param[idx_m][e_valid])
e_best[idx_m, idx_d] = e_delta[idx_m][e_valid][i_biggest]
e5_best[idx_m, idx_d] = e5_delta[idx_m][e_valid][i_biggest]
pp_p_best[idx_m, idx_d] = pp_param[idx_m][e_valid][i_biggest]
pp_f_best[idx_m, idx_d] = pp_flops[idx_m][e_valid][i_biggest]
return e_best, e5_best, pp_p_best, pp_f_best
def generate_table_entries(
stats_all, param_all, delta_levels, thres_bold, math_sym=False
):
"""Generate all the table entries."""
dataset = param_all[0]["network"]["dataset"]
# check for top5
top5 = True
top1_str = "Top1"
top5_str = "Top5"
if "imagenet" in dataset.lower():
top_str = "Top1/5"
elif "voc" in dataset.lower():
top_str = "IoU/Top1"
top1_str = "IoU"
top5_str = "Top1"
else:
top_str = "Top1"
top5 = False
# check number of methods in total across all params
num_methods_all = sum(len(stats["names"]) - 1 for stats in stats_all)
# start the table
columns = "|c|c|c||" + "|".join(["ccc"] * len(delta_levels)) + "|"
cline = f"\\cline{{2-{3+3*len(delta_levels)}}}"
delta_titles = [
f"& \\multicolumn{{3}}{{c|}}{{$\\delta={delta*100:.1f}\\%$}}"
for delta in delta_levels
]
delta_titles = "\n".join(delta_titles)
pp_titles = "\n".join(
[f"& {top_str} Acc. & CR-P & CR-F"] * len(delta_levels)
)
table = f"""\\begin{{tabular}}{{{columns}}}
\\hline
\\multirow{{{num_methods_all+2}}}{{*}}{{\\rotatebox{{90}}{{{dataset}}}}}
& \\multirow{{2}}{{*}}{{Model}}
& \\multirow{{2}}{{*}}{{\\shortstack{{Prune \\\\ Method}}}}
{delta_titles} \\\\
& &
{pp_titles} \\\\ {cline}
"""
# fill the table segments now
table_segments = []
for stats, param in zip(stats_all, param_all):
network = param["network"]["name"]
num_methods = len(stats["names"]) - 1
idx_ref = stats["names"].index("ReferenceNet")
# retrieve prune potential
e_delta, e5_delta, pp_p, pp_f = compute_prune_potential(
stats, delta_levels
)
# retrieve reference accuracy
acc_ref = 1.0 - np.mean(stats["error"][:, 0, :, idx_ref])
acc5_ref = 1.0 - np.mean(stats["error5"][:, 0, :, idx_ref])
# have a version of pp without ref ...
pp_p_noref = np.delete(pp_p, idx_ref, axis=0)
pp_f_noref = np.delete(pp_f, idx_ref, axis=0)
# write nice network name
nice_net_names = {
"resnet20": "ResNet20",
"resnet56": "ResNet56",
"resnet110": "ResNet110",
"vgg16_bn": "VGG16",
"densenet22": "DenseNet22",
"wrn16_8": "WRN16-8",
"resnet18": "ResNet18",
"resnet101": "ResNet101",
"wide_resnet50_2": "WRN50-2",
"mobilenet_v2": "MobileNetV2",
"deeplabv3_resnet50": "DeeplabV3-ResNet50",
}
if network in nice_net_names:
network = nice_net_names[network]
# network string with top1/top5 error
network = f"{network} \\\\ \\\\ {top1_str}: {acc_ref*100.0:.2f}"
if top5:
network += f" \\\\ {top5_str}: {acc5_ref*100.0:.2f}"
network = f"\\shortstack{{{network}}}"
# write multi-row network name
t_segment = f"& \\multirow{{{num_methods}}}{{*}}{{{network}}}\n"
# now go through all methods
first_method_added = False
for idx_m, method in enumerate(stats["names"]):
if "ReferenceNet" in method:
continue
if first_method_added:
t_segment += "& "
else:
first_method_added = True
# add method name now
if method == "PP":
t_segment += "& PP (Ours)"
else:
t_segment += f"& {method}"
# go through all levels of delta now and fill in the data
for idx_d, delta in enumerate(delta_levels):
acc_delta = [-e_delta[idx_m, idx_d]]
if top5:
acc_delta.append(-e5_delta[idx_m, idx_d])
pp_param = pp_p[idx_m, idx_d]
pp_flops = pp_f[idx_m, idx_d]
def _check_best(pp_this, pp_no_ref):
if (
np.abs(pp_this - pp_no_ref[:, idx_d].max())
< thres_bold
and pp_this > 0.0
):
return True
return False
# check if that's either the best pp_param or pp_flops
is_pp_p_best = _check_best(pp_param, pp_p_noref)
is_pp_f_best = _check_best(pp_flops, pp_f_noref)
if pp_param != 0.0:
acc_delta = [f"{delta*100.0:+.2f}" for delta in acc_delta]
acc_delta = "/".join(acc_delta)
pp_param = f"{pp_param*100.0:.2f}"
bold = "mathbf" if math_sym else "textbf"
if is_pp_p_best:
pp_param = f"\\{bold}{{{pp_param}}}"
pp_flops = f"{pp_flops*100.0:.2f}"
if is_pp_f_best:
pp_flops = f"\\{bold}{{{pp_flops}}}"
if math_sym:
acc_delta = f"${acc_delta}$"
pp_param = f"${pp_param}$"
pp_flops = f"${pp_flops}$"
else:
acc_delta = " "
pp_param = " "
pp_flops = " "
# add new stats to table
t_segment += f"\n& {acc_delta} & {pp_param} & {pp_flops}"
# at the end of the method we need to finish the line
t_segment += " \\\\\n"
# add t_segment now to list
table_segments.append(t_segment)
# add segments to table with cline joiner
table += f"{cline}\n".join(table_segments)
# finish the table
table += """\\hline
\\end{tabular}
"""
return table
# %% Run through plots
# make sure matplotlib works correctly
IN_JUPYTER = True
try:
if INLINE_PLOT:
get_ipython().run_line_magic("matplotlib", "inline")
else:
get_ipython().run_line_magic("matplotlib", "agg")
except AttributeError:
IN_JUPYTER = False
# get a logger
LOGGER = experiment.Logger()
STATS_ALL = []
PARAM_ALL = []
for file in FILES:
stats, param = get_and_store_results(
file, LOGGER, LEGEND_ON, PLOT_FOLDER_SPECIAL
)
STATS_ALL.append(stats)
PARAM_ALL.append(param)
print(f"SPECIAL FOLDER: {PLOT_FOLDER_SPECIAL}")
# %% generate and write table
TABLE = generate_table_entries(
STATS_ALL, PARAM_ALL, TABLE_DELTA_LEVELS, TABLE_BOLD_THRESHOLD
)
with open(
os.path.join(PLOT_FOLDER_SPECIAL, f"{SPECIAL_TAG}_table.tex"), "w"
) as t_file:
t_file.write(TABLE)