forked from tianzhi0549/FCOS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfcos_imprv_dcnv2_X_101_64x4d_FPN_2x.yaml
53 lines (53 loc) · 1.48 KB
/
fcos_imprv_dcnv2_X_101_64x4d_FPN_2x.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
MODEL:
META_ARCHITECTURE: "GeneralizedRCNN"
WEIGHT: "https://cloudstor.aarnet.edu.au/plus/s/k3ys35075jmU1RP/download#X-101-64x4d.pkl"
RPN_ONLY: True
FCOS_ON: True
BACKBONE:
CONV_BODY: "R-101-FPN-RETINANET"
RESNETS:
STRIDE_IN_1X1: False
BACKBONE_OUT_CHANNELS: 256
NUM_GROUPS: 64
WIDTH_PER_GROUP: 4
STAGE_WITH_DCN: (False, False, True, True)
WITH_MODULATED_DCN: True
DEFORMABLE_GROUPS: 1
RETINANET:
USE_C5: False # FCOS uses P5 instead of C5
FCOS:
# normalizing the regression targets with FPN strides
NORM_REG_TARGETS: True
# positioning centerness on the regress branch.
# Please refer to https://github.com/tianzhi0549/FCOS/issues/89#issuecomment-516877042
CENTERNESS_ON_REG: True
# using center sampling and GIoU.
# Please refer to https://github.com/yqyao/FCOS_PLUS
CENTER_SAMPLING_RADIUS: 1.5
IOU_LOSS_TYPE: "giou"
# we only use dcn in the last layer of towers
USE_DCN_IN_TOWER: True
DATASETS:
TRAIN: ("coco_2014_train", "coco_2014_valminusminival")
TEST: ("coco_2014_minival",)
INPUT:
MIN_SIZE_RANGE_TRAIN: (640, 800)
MAX_SIZE_TRAIN: 1333
MIN_SIZE_TEST: 800
MAX_SIZE_TEST: 1333
DATALOADER:
SIZE_DIVISIBILITY: 32
SOLVER:
BASE_LR: 0.01
WEIGHT_DECAY: 0.0001
STEPS: (120000, 160000)
MAX_ITER: 180000
IMS_PER_BATCH: 16
WARMUP_METHOD: "constant"
TEST:
BBOX_AUG:
ENABLED: False
H_FLIP: True
SCALES: (400, 500, 600, 700, 900, 1000, 1100, 1200)
MAX_SIZE: 2000
SCALE_H_FLIP: True