-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathagent.h
334 lines (313 loc) · 10 KB
/
agent.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
/**
* Framework for NoGo and similar games (C++ 11)
* agent.h: Define the behavior of variants of the player
*
* Author: Theory of Computer Games
* Computer Games and Intelligence (CGI) Lab, NYCU, Taiwan
* https://cgilab.nctu.edu.tw/
*/
#pragma once
#include <string>
#include <random>
#include <sstream>
#include <map>
#include <type_traits>
#include <algorithm>
#include <fstream>
#include "board.h"
#include "action.h"
#include <omp.h>
#include <thread>
class agent {
public:
agent(const std::string& args = "") {
std::stringstream ss("name=unknown role=unknown " + args);
for (std::string pair; ss >> pair; ) {
std::string key = pair.substr(0, pair.find('='));
std::string value = pair.substr(pair.find('=') + 1);
meta[key] = { value };
}
}
virtual ~agent() {}
virtual void open_episode(const std::string& flag = "") {}
virtual void close_episode(const std::string& flag = "") {}
virtual action take_action(const board& b) { return action(); }
virtual bool check_for_win(const board& b) { return false; }
public:
virtual std::string property(const std::string& key) const { return meta.at(key); }
virtual void notify(const std::string& msg) { meta[msg.substr(0, msg.find('='))] = { msg.substr(msg.find('=') + 1) }; }
virtual std::string name() const { return property("name"); }
virtual std::string role() const { return property("role"); }
protected:
typedef std::string key;
struct value {
std::string value;
operator std::string() const { return value; }
template<typename numeric, typename = typename std::enable_if<std::is_arithmetic<numeric>::value, numeric>::type>
operator numeric() const { return numeric(std::stod(value)); }
};
std::map<key, value> meta;
};
class random_agent : public agent {
public:
random_agent(const std::string& args = "") : agent(args) {
if (meta.find("seed") != meta.end())
engine.seed(int(meta["seed"]));
}
virtual ~random_agent() {}
protected:
std::default_random_engine engine;
};
class node{
public:
board state;
board::piece_type who;
int win = 0;
int visit = 0;
action::place move;
node* parent = nullptr;
std::vector<node*> children;
~node(){};
};
class MCTS_player : public random_agent {
public:
std::vector<action::place> space, white_space, black_space;
MCTS_player(const std::string& args = "") : random_agent("name=random role=unknown " + args),
space(board::size_x * board::size_y),white_space(board::size_x * board::size_y),
black_space(board::size_x * board::size_y), who(board::empty) {
if (meta.find("search") != meta.end()) search = (std::string)meta["search"];
if (meta.find("simulation") != meta.end()) simulation_count = (int)meta["simulation"];
if (meta.find("thread") != meta.end()) thread_num = (int)meta["thread"];
if (role() == "black") who = board::black;
if (role() == "white") who = board::white;
for (size_t i = 0; i < space.size(); i++)
space[i] = action::place(i, who);
for (size_t i = 0; i < white_space.size(); ++i)
white_space[i] = action::place(i, board::white);
for (size_t i = 0; i < black_space.size(); ++i)
black_space[i] = action::place(i, board::black);
}
virtual action take_action(const board& state) {
if (search == "p-mcts"){
omp_set_num_threads(thread_num);
std::vector<node*> roots(thread_num);
#pragma omp parallel for
for(int i = 0; i < thread_num; i++) {
roots[i] = new node;
roots[i]->state = state;
roots[i]->who = (who == board::white ? board::black : board::white);
int total_node = 0;
Expansion(roots[i], total_node);
board::piece_type winner;
run_MCTS(roots[i], winner, total_node);
}
for (int idx = 1; idx < thread_num; idx++) {
for(size_t i = 0; i < roots[0]->children.size() ; i++) {
roots[0]->children[i]->visit += roots[idx]->children[i]->visit;
}
}
action best_action = get_action(roots[0]);
#pragma omp parallel for
for(int i = 0; i < thread_num; i++) {
delete_tree(roots[i]);
free(roots[i]);
}
return best_action;
}
else {
std::shuffle(space.begin(), space.end(), engine);
for (const action::place& move : space) {
board after = state;
if (move.apply(after) == board::legal)
return move;
}
return action();
}
}
node* Selection(node* n) {
node* cur = n;
while(!cur->children.empty()) {
double max_value = 0;
int select_idx = 0;
for(size_t i = 0; i < cur->children.size(); ++i) {
double ucb = get_ucb_value(cur->children[i]);
if(max_value < ucb) {
max_value = ucb;
select_idx = i;
}
}
cur = cur->children[select_idx];
}
return cur;
}
double get_ucb_value(node* cur) {
if(cur->visit == 0 || rave_map[cur->move].first == 0) return 1e8;
double constant = std::sqrt(2);
double beta = std::sqrt((double) simulation_count/(double)(3 * count + simulation_count));
double win_rate = (double) cur->win / (double) cur->visit;
if (cur->who == who) win_rate = 1 - win_rate;
double rave_win_rate = (double) rave_map[cur->move].second / (double) rave_map[cur->move].first;
double exploitation = (1 - beta) * win_rate + beta * rave_win_rate;
double exploration = sqrt(log((double)cur->parent->visit)/cur->visit);
return exploitation + constant * exploration;
}
void Expansion(node* parent_node, int& total_node) {
action::place child_move;
if (parent_node->who == board::black) {
for(const action::place& child_move : white_space) {
board after = parent_node->state;
if (child_move.apply(after) == board::legal) {
node* child_node = new node;
child_node->state = after;
child_node->parent = parent_node;
child_node->move = child_move;
child_node->who = board::white;
parent_node->children.emplace_back(child_node);
if (rave_map.find(child_node->move) == rave_map.end())
rave_map.insert(std::make_pair(child_node->move, std::make_pair(0, 0)));
}
}
}
else if (parent_node->who == board::white) {
for(const action::place& child_move : black_space) {
board after = parent_node->state;
if (child_move.apply(after) == board::legal) {
node* child_node = new node;
child_node->state = after;
child_node->parent = parent_node;
child_node->move = child_move;
child_node->who = board::black;
parent_node->children.emplace_back(child_node);
if (rave_map.find(child_node->move) == rave_map.end())
rave_map.insert(std::make_pair(child_node->move, std::make_pair(0, 0)));
}
}
}
total_node += parent_node->children.size();
}
board::piece_type Simulation(node* root) {
bool terminal = false;
board state = root->state;
board::piece_type who = root->who;
std::vector<board::point> emptyPoint;
for (int i = 0; i < board::size_x * board::size_y; i++) {
board::point move(i);
if (state[move.x][move.y] == board::empty)
emptyPoint.push_back(move);
}
int size = emptyPoint.size();
while(terminal == false) {
terminal = true;
who = (who == board::white ? board::black : board::white);
if (who == board::black) {
int i = 0;
board after = state;
while(i < size){
std::uniform_int_distribution<int> uniform(i, size-1);
int randomIndex = uniform(engine);
if(after.place(emptyPoint[randomIndex]) == board::legal){
state.place(emptyPoint[randomIndex]);
std::swap(emptyPoint[randomIndex], emptyPoint[size-1]);
size--;
terminal = false;
break;
}
else{
std::swap(emptyPoint[randomIndex], emptyPoint[i]);
i++;
}
}
}
else if (who == board::white) {
int i = 0;
board after = state;
while(i < size){
std::uniform_int_distribution<int> uniform(i, size-1);
int randomIndex = uniform(engine);
if(after.place(emptyPoint[randomIndex]) == board::legal){
state.place(emptyPoint[randomIndex]);
std::swap(emptyPoint[randomIndex], emptyPoint[size-1]);
size--;
terminal = false;
break;
}
else{
std::swap(emptyPoint[randomIndex], emptyPoint[i]);
i++;
}
}
}
}
return (who == board::white ? board::black : board::white);
}
void BackPropagation(node* root, node* cur, board::piece_type winner) {
while(cur != root) {
cur->visit += 1;
rave_map[cur->move].first += 1;
if(winner != root->who){
cur->win += 1;
rave_map[cur->move].second += 1;
}
cur = cur->parent;
}
root->visit += 1;
rave_map[root->move].first += 1;
if(winner != root->who) {
root->win += 1;
rave_map[root->move].first += 1;
}
}
void run_MCTS(node* root, board::piece_type winner, int total_node){
for (int i = 0; i < simulation_count; i++) {
node* best_node = Selection(root);
Expansion(best_node, total_node);
if(best_node->children.size() != 0){
std::shuffle(best_node->children.begin(), best_node->children.end(), engine);
winner = Simulation(best_node->children[0]);
BackPropagation(root, best_node->children[0], winner);
}
else{
winner = Simulation(best_node);
BackPropagation(root, best_node, winner);
}
count += 1;
}
}
action get_action(node* root) {
int child_idx = -1;
int max_visit = 0;
for(size_t i = 0; i < root->children.size(); ++i) {
if(root->children[i]->visit > max_visit) {
max_visit = root->children[i]->visit;
child_idx = i;
}
}
if(child_idx != -1) return root->children[child_idx]->move;
return action();
}
void delete_tree(node* node) {
if(node->children.empty() == false) {
for(size_t i = 0; i < node->children.size(); ++i) {
delete_tree(node->children[i]);
if(node->children[i] != NULL)
free(node->children[i]);
}
node->children.clear();
}
return;
}
private:
std::string search;
int simulation_count = 0;
int count = 0;
int thread_num = 4;
board::piece_type who;
std::map<action::place, std::pair<int, int> > rave_map;
double time_management[36] = { 5.0, 5.0, 5.0, 5.0, 5.0, 5.0,
6.0, 5.0, 5.0, 5.0, 5.0, 5.0,
9.0, 9.0, 9.0, 9.0, 9.0, 9.0,
10.0, 10.0, 10.0, 10.0, 10.0, 10.0,
10.0, 10.0, 10.0, 10.0, 10.0, 10.0,
10.0, 10.0, 10.0, 10.0, 10.0, 1.0
};
};