-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathload_results.py
195 lines (155 loc) · 6.92 KB
/
load_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import os
import pickle
import numpy as np
# Load and save experiment status and summary stats
# Assumes set of experiments and flag settings used in run_expers.sh
def main():
exper_dirs = get_experiment_dirs('results')
num_running_done, all_stats = get_status_results(exper_dirs)
with open('exper_status.dict', 'wb') as f:
pickle.dump(num_running_done, f)
with open('results_summary.dict', 'wb') as f:
pickle.dump(all_stats, f)
# Get directory names for each experiment
# Returns dict of dirnames indexed by exper_name
def get_experiment_dirs(path_prefix):
exper_dirs = {}
eq = 50
for ineq in [10, 30, 50, 70, 90]:
exper_dirs['simple_ineq{}_eq{}'.format(ineq, eq)] = 'SimpleProblem-100-{}-{}-10000'.format(ineq, eq)
ineq = 50
for eq in [10, 30, 70, 90]:
exper_dirs['simple_ineq{}_eq{}'.format(ineq, eq)] = 'SimpleProblem-100-{}-{}-10000'.format(ineq, eq)
exper_dirs['nonconvex'] = 'NonconvexProblem-100-50-50-10000'
exper_dirs['acopf'] = 'ACOPF-57-0-0.5-0.7-0.0833-0.0833'
for key in exper_dirs.keys():
exper_dirs[key] = os.path.join(path_prefix, exper_dirs[key])
return exper_dirs
# Get dictionaries with experiment status and summary stats
def get_status_results(exper_dirs):
num_running_done = {}
all_stats = {}
opt_methods = dict([
('simple', ['osqp', 'qpth']), ('nonconvex', ['ipopt']), ('acopf', ['pypower'])
])
nn_baseline_dirs = [('baseline_nn', 'baselineNN'), ('baseline_eq_nn', 'baselineEqNN')]
for exper, exper_dir in exper_dirs.items():
print(exper)
exper_status_dict = {}
stats_dict = {}
if os.path.exists(exper_dir):
## Get mapping of subdirs to methods
# DC3
method_path = os.path.join(exper_dir, 'method')
dir_method_map = get_dc3_path_mapping(method_path)
# baselines
all_methods_dirs = nn_baseline_dirs + \
[('baseline_opt_{}'.format(x), 'baselineOpt-{}'.format(x)) for x in \
opt_methods[exper.split('_')[0]]]
for (method, dirname) in all_methods_dirs:
path = os.path.join(exper_dir, dirname)
if os.path.exists(path):
path = os.path.join(path, os.listdir(path)[0])
dir_method_map[method] = path
## Get stats
for method, path in dir_method_map.items():
print(method)
aggregate_for_method(method, path, exper_status_dict, stats_dict)
num_running_done[exper] = exper_status_dict
all_stats[exper] = stats_dict
return num_running_done, all_stats
# Get mapping from DC3 method/ablation name to subdirectory
def get_dc3_path_mapping(method_path):
dir_method_map = {}
if os.path.exists(method_path):
for args_dir in os.listdir(method_path):
replicate_dirs = os.listdir(os.path.join(method_path, args_dir))
path = os.path.join(method_path, args_dir, replicate_dirs[0])
if os.path.exists(os.path.join(path, 'args.dict')):
with open(os.path.join(path, 'args.dict'), 'rb') as f:
args = pickle.load(f)
if not args['useCompl']:
chosen_method = 'method_no_compl'
elif not args['useTrainCorr']:
chosen_method = 'method_no_corr'
elif args['softWeight'] == 0:
chosen_method = 'method_no_soft'
else:
chosen_method = 'method'
dir_method_map[chosen_method] = os.path.join(method_path, args_dir)
return dir_method_map
# Fill in passed in exper_status and stats dicts with status/summary stats info
def aggregate_for_method(method_name, method_path, exper_status_dict, stats_dict):
method_stats = []
sub_dirs = os.listdir(method_path)
exper_status_dict[method_name] = (0,0)
# get status and stats
for d2 in sub_dirs:
is_done, stats = check_running_done(
os.path.join(method_path, d2), 'opt' in method_name) # TODO check out this function
(running, done) = exper_status_dict[method_name]
if is_done:
exper_status_dict[method_name] = (running, done + 1)
method_stats.append(stats)
else:
print(os.path.join(method_path, d2))
exper_status_dict[method_name] = (running + 1, done)
# aggregate metrics (TODO accommodate both data saving cases)
if len(method_stats) == 0:
continue
else:
metrics = method_stats[0].keys()
d = {}
if 'opt' not in method_name:
for metric in metrics:
d[metric] = get_mean_std_nets(method_stats, metric)
else:
for metric in metrics:
d[metric] = get_mean_std_opts(method_stats, metric)
stats_dict[method_name] = d
# Check if experiment is running or done, and return stats if done
# Note: Assumes experiments run for 1000 epochs, and that stats are saved for each epoch
# for NN methods (i.e., saveAllStats flag is True for each run)
def check_running_done(path, is_opt=False):
is_done = False
stats = None
if is_opt:
if os.path.exists(os.path.join(path, 'results.dict')):
with open(os.path.join(path, 'results.dict'), 'rb') as f:
stats = pickle.load(f)
is_done = True
else:
try:
if os.path.exists(os.path.join(path, 'stats.dict')):
with open(os.path.join(path, 'stats.dict'), 'rb') as f:
stats = pickle.load(f)
is_done = (len(stats['valid_time']) == 1000)
if not is_done:
print(len(stats['valid_time']))
except Exception as e:
print(str(e))
is_done = False
stats = None
return is_done, stats
# Compute summary stats for neural network methods (DC3 and baselines)
# Note: Assumes stats are saved for each epoch (i.e., saveAllStats flag is True for each run)
def get_mean_std_nets(stats_dicts, metric):
if 'train_time' in metric:
results = [d[metric].sum() for d in stats_dicts]
elif 'time' in metric:
# test and valid time: use time for latest epoch
results = [d[metric][-1] for d in stats_dicts]
else:
# use mean across samples for latest epoch
results = [d[metric][-1].mean() for d in stats_dicts]
# return mean and stddev across replicates
return np.mean(results), np.std(results)
# Compute summary stats for baseline optimizers
def get_mean_std_opts(stats_dicts, metric):
if 'time' in metric:
results = [d[metric] for d in stats_dicts]
else:
results = [d[metric].mean() for d in stats_dicts]
return np.mean(results), np.std(results)
if __name__ == '__main__':
main()