-
Notifications
You must be signed in to change notification settings - Fork 192
/
Copy pathLMSE.py
95 lines (84 loc) · 3.15 KB
/
LMSE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import numpy as np
import matplotlib.pyplot as plt
import pickle
def accuary(predict_y, y):
predicted_y = np.array(predict_y > 0.5, dtype=int).reshape(-1)
y = y.reshape(-1)
return np.sum(predicted_y == y) / y.shape[0]
def mse(predict_y, y):
sub = predict_y - y
return np.multiply(sub, sub).sum() / y.shape[0]
class LMSE():
def __init__(self, input_dim, lr=0.001, l2_rate=0.0, epoch_num=1):
self.lr = lr
self.l2_rate = l2_rate # L2 Regularization rate
self.epoch_num = epoch_num
self.input_dim = input_dim
self.weight = np.mat(np.random.randn(input_dim, 1))
self.bias = 0
def predict(self, X):
return X * self.weight + self.bias
def _update_param(self, X, predict_y, y):
m = y.shape[0]
sub = predict_y - y
self.bias = self.bias - self.lr * (sub.sum() / m)
self.weight = self.weight - self.lr * X.T * sub - (self.l2_rate / m) * self.weight
def fit(self, train_X, train_y, batch_size=None):
train_size = train_X.shape[0]
if batch_size is None:
batch_size = train_size
for epoch in range(self.epoch_num):
b = 0
epoch_loss = 0.0
epoch_acc = 0.0
count = 0
for e in range(batch_size, train_size+batch_size, batch_size):
x = np.mat(train_X[b:e].reshape(-1, self.input_dim))
y = train_y[b:e].reshape(-1, 1)
predicted_y = self.predict(x)
self._update_param(x, predicted_y, y)
loss = mse(predicted_y, y)
epoch_loss += loss
acc = accuary(predicted_y, y)
epoch_acc += acc
count += 1
b = e
if b >= train_size:
break
print("Epoch: %d, Loss: %.3f, Acc: %.3f" % (epoch, epoch_loss/count, epoch_acc/count))
def save_model(self, file_path):
params = {
'weight': self.weight,
'bias': self.bias
}
pickle.dump(params, open(file_path, "wb"))
def load_model(self, file_path):
params = pickle.load(open(file_path, "rb"))
self.weight = params['weight']
self.bias = params['bias']
def load_data():
train_X = np.array([[1, 1], [2, 2], [2, 0],
[0, 0], [1, 0], [0, 1]], dtype=np.float)
train_y = np.array([1, 1, 1, 0, 0, 0], dtype=np.int)
return train_X, train_y
if __name__ == "__main__":
epoch_num = 50
train_X, train_y = load_data()
train_size = train_X.shape[0]
feat_dim = train_X.shape[1]
clf = LMSE(input_dim=feat_dim, lr=0.1, l2_rate=0.0, epoch_num=10)
clf.fit(train_X, train_y, batch_size=2)
weight = clf.weight.reshape(-1)
weight = weight.tolist()[0]
bias = clf.bias-0.5
print(weight)
print(bias)
weight = [0.4469281, 0.185913]
bias = -0.6
for idx, cl in enumerate(np.unique(train_y)):
plt.scatter(x=train_X[train_y == cl, 0], y=train_X[train_y == cl, 1],
alpha=0.8, label=cl)
x = np.linspace(0, 2, 10)
y = (weight[0]*x + bias) / (-weight[1])
plt.plot(x, y, color="red")
plt.show()