-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathpredict_task2.py
126 lines (99 loc) · 3.92 KB
/
predict_task2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import torch
from torch.autograd import Variable
from torch.utils.data import DataLoader
import json
import time
import numpy as np
import argparse
from models.fasttext import FastText
from models.textcnn import TextCNN
from models.textrcnn import TextRCNN
from models.hierarchical import HAN
from models.hierarchical import HAN
from config import Config, MultiConfig
from data.mingluedata import MingLueTestData
import preprocessor.builddataset as bd
import preprocessor.buildpretrainemb as bpe
from utils.multitrainhelper import get_multi_label_from_output
def load_multi_model(model_path, model_id, config):
if model_id == 0:
model = FastText(config)
elif model_id == 1:
model = TextCNN(config)
elif model_id == 2:
model = TextRCNN(config)
elif model_id == 3:
model = TextRNN(config)
elif model_id == 4:
model = HAN(config)
# print(model)
# time_stamp = '1510844987'
# final_model_path = config.model_path+"."+time_stamp+".multi."+config.model_names[model_id]
print("load model data:", model_path)
model.load_state_dict(torch.load(model_path))
if config.has_cuda:
model = model.cuda()
return model
def predict_multi_label(test_loader, multi_model, config):
predicted_multi_labels = []
for data in test_loader:
texts = data
if config.has_cuda:
texts = texts.cuda()
outputs = multi_model(Variable(texts))
predicted_multi_labels.extend(get_multi_label_from_output(outputs, config))
new_predict_multi_labels = []
for multi_label in predicted_multi_labels:
new_predict_multi_labels.append([label+1 for label in multi_label])
return new_predict_multi_labels
def generate_result_json(tests_id, predicted_multi_labels, result_path):
test_len = len(tests_id)
tmp_law = [1]
time_stamp = str(int(time.time()))
outf = open(result_path+"."+time_stamp, 'a')
for i in range(test_len):
result = {}
result["id"] = tests_id[i]
result["penalty"] = 1
result["laws"] = list(set(predicted_multi_labels[i]))
# result["laws"] = [-1]
# res.append(result)
json.dump(result, outf)
outf.write('\n')
def main(task2_model_id, task2_model_path):
multi_config = MultiConfig()
multi_config.is_training = False
multi_config.dropout_rate = 0.0
print("loading data...")
dict_word2index = bpe.load_pickle(multi_config.word2index_path)
tests_id, test_data = bd.load_test_data(multi_config.test_path)
if task2_model_id != 4:
test_X = bd.build_test_data(test_data, dict_word2index, multi_config.max_text_len)
else:
test_X = bd.build_test_data_HAN(test_data, dict_word2index, multi_config.num_sentences, multi_config.sequence_length)
testset = MingLueTestData(test_X)
test_loader = DataLoader(dataset=testset,
batch_size=multi_config.batch_size,
shuffle=False,
num_workers=multi_config.num_workers)
multi_config.vocab_size = len(dict_word2index)
print("loading model...")
model2 = load_multi_model(task2_model_path, task2_model_id, multi_config)
print("model loaded")
print("predicting...")
predicted_multi_labels = [[]]
predicted_multi_labels = predict_multi_label(test_loader, model2, multi_config)
generate_result_json(tests_id, predicted_multi_labels, multi_config.result_path)
def test():
config = Config()
tests_id = ["12", "432"]
predicted_labels = [5,7]
predicted_multi_labels = [[1,2],[4,3,6]]
generate_result_json(tests_id, predicted_labels, predicted_multi_labels, config.result_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--task2-model-id", type=int)
parser.add_argument("--task2-model-path", type=str)
args = parser.parse_args()
main(args.task2_model_id, args.task2_model_path)
# test()