-
Notifications
You must be signed in to change notification settings - Fork 80
/
Copy pathdata.py
146 lines (127 loc) · 5.7 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
"""Pytorch Dataset and Dataloader for 3D PCG"""
import numpy as np
import scipy
import torch
from torch.utils.data import DataLoader, Dataset
class PointCloud2dDataset(Dataset):
"""2D dataset rendered from ShapeNet for Point Cloud Generation
Get all views of 1 model
Return: dict()
image_in (np.ndarray): [views, heights, width, channels]
depth (np.ndarray): [angles, height, width]
mask (np.ndarray): [angles, height, width]
"""
def __init__(self, cfg, loadNovel=False, loadFixedOut=True,
loadTest=False):
self.cfg = cfg
self.loadNovel = loadNovel
self.loadFixedOut = loadFixedOut
self.load = "test" if loadTest else "train"
list_file = f"{cfg.path}/{cfg.category}_{self.load}.list"
self.CADs = []
with open(list_file) as file:
for line in file:
id = line.strip().split("/")[1]
self.CADs.append(id)
self.CADs.sort()
def __len__(self):
return len(self.CADs)
def __getitem__(self, idx):
CAD = self.CADs[idx]
image_in = np.load(
f"{self.cfg.path}/{self.cfg.category}_inputRGB/{CAD}.npy")
image_in = image_in / 255.0
if self.loadNovel:
raw_data = scipy.io.loadmat(
f"{self.cfg.path}/{self.cfg.category}_depth/{CAD}.mat")
depth = raw_data["Z"]
trans = raw_data["trans"]
mask = depth != 0
depth[~mask] = self.cfg.renderDepth
return {"image_in": image_in, "depth": depth,
"mask": mask, "trans": trans}
if self.loadFixedOut:
raw_data = scipy.io.loadmat(
f"{self.cfg.path}/{self.cfg.category}_depth_fixed{self.cfg.outViewN}/{CAD}.mat")
depth = raw_data["Z"]
mask = depth != 0
depth[~mask] = self.cfg.renderDepth
return {"image_in": image_in, "depth": depth, "mask": mask}
def collate_fn(self, batch):
"""Convert a list of models with many views to
a batch of random views of different models
Args:
batch: (list) [chunkSize, ]
each element of list batch has shape
[viewN, height, width, channels]
Return: Tensor
inputImage: [batchSize, channels, height, width]
targetTrans: [batchSize, novelN, 4]
depthGT: [batchSize, novelN, 1, height, width]
maskGT: [batchSize, novelN, 1, height, width]
"""
# Shape: [chunkSize, viewN, height, width, channels]
batch_n = {key: np.array([d[key] for d in batch]) for key in batch[0]}
# Shape: [batchSize,]
modelIdx = np.random.permutation(self.cfg.chunkSize)[:self.cfg.batchSize]
# Shape: [batchSize, novelN]
modelIdxTile = np.tile(modelIdx, [self.cfg.novelN, 1]).T
# Shape: [batchSize,]
angleIdx = np.random.randint(self.cfg.inputViewN, size=[self.cfg.batchSize])
# Shape: [batchSize, novelN]
sampleIdx = np.random.randint(
self.cfg.sampleN, size=[self.cfg.batchSize, self.cfg.novelN])
images = batch_n["image_in"][modelIdx, angleIdx]
targetTrans = batch_n["trans"][modelIdxTile, sampleIdx]
depthGT = np.expand_dims(
batch_n["depth"][modelIdxTile, sampleIdx], axis=-1)
maskGT = np.expand_dims(
batch_n["mask"][modelIdxTile, sampleIdx], axis=-1).astype(np.int)
# To tensor
images = torch.from_numpy(images).permute((0,3,1,2))
targetTrans = torch.from_numpy(targetTrans)
depthGT = torch.from_numpy(depthGT).permute((0,1,4,2,3))
maskGT = torch.from_numpy(maskGT).permute((0,1,4,2,3))
return {"inputImage": images,
"targetTrans": targetTrans,
"depthGT": depthGT,
"maskGT": maskGT }
def collate_fn_fixed(self, batch):
"""Convert a list of models with many views to
a batch of some fixed views of different models
Args:
batch: (list) [chunkSize, ]
each element of list batch has shape
[viewN, height, width, channels]
Return: {}
inputImage: [batchSize, channels, height, width]
depth_fixedOut: [batchSize, 8, height, width]
mask_fixedOut: [batchSize, 8, height, width]
"""
# Shape: [chunkSize, viewN, height, width, channels]
batch_n = {key: np.array([d[key] for d in batch]) for key in batch[0]}
modelIdx = np.random.permutation(self.cfg.chunkSize)[:self.cfg.batchSize]
# 24 is the number of rendered images for a single CAD models
angleIdx = np.random.randint(24, size=[self.cfg.batchSize])
images = batch_n["image_in"][modelIdx, angleIdx]
depthGT = np.transpose(batch_n["depth"][modelIdx], axes=[0, 2, 3, 1])
maskGT = np.transpose(batch_n["mask"][modelIdx], axes=[0, 2, 3, 1])\
.astype(np.int)
# Convert to Tensor
images = torch.from_numpy(images).permute((0,3,1,2))
depthGT = torch.from_numpy(depthGT).permute((0,3,1,2))
maskGT = torch.from_numpy(maskGT).permute((0,3,1,2))
return {
"inputImage": images,
"depthGT": depthGT,
"maskGT": maskGT,
}
if __name__ == "__main__":
import options
CFG = options.get_arguments()
ds_fixed = PointCloud2dDataset(CFG)
dl_fixed = DataLoader(ds_fixed, batch_size=CFG.chunkSize,
shuffle=False, collate_fn=ds_fixed.collate_fn_fixed)
ds_novel = PointCloud2dDataset(CFG, loadNovel=True)
dl_novel = DataLoader(ds_novel, batch_size=CFG.chunkSize,
shuffle=False, collate_fn=ds_novel.collate_fn)