-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
executable file
·166 lines (133 loc) · 5.75 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import numpy as np
import os
import random
import shutil
import time
import warnings
from collections import defaultdict
from functools import reduce
import json
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models
from model import Detector
from data_reader.dataset_v1 import SpoofDatsetSystemID
from local import datafiles, optimizer
from local import trainer as trainer
from local import validate as validate
from sync_batchnorm import convert_model
import argparse
def main(run_id, pretrained, data_files, model_params, training_params, device):
best_acc1 = 0
batch_size = training_params['batch_size']
test_batch_size = training_params['test_batch_size']
epochs = training_params['epochs']
start_epoch = training_params['start_epoch']
n_warmup_steps = training_params['n_warmup_steps']
log_interval = training_params['log_interval']
# model is trained for binary classification (for datalaoder)
if model_params['NUM_SPOOF_CLASS'] == 2:
binary_class = True
else: binary_class = False
kwargs = {'num_workers': 2, 'pin_memory': True} if device == torch.device('cuda') else {}
# create model
model = Detector(**model_params).to(device)
num_model_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('===> Model total parameter: {}'.format(num_model_params))
# Wrap model for multi-GPUs, if necessary
if device == torch.device('cuda') and torch.cuda.device_count() > 1:
print('multi-gpu')
model = nn.DataParallel(model).cuda()
# print('*****', torch.distributed.get_backend())
# define loss function (criterion) and optimizer
optim = optimizer.ScheduledOptim(
torch.optim.Adam(
filter(lambda p: p.requires_grad, model.parameters()),
betas=(0.9, 0.98), eps=1e-09, weight_decay=1e-4, lr=3e-4, amsgrad=True),
training_params['n_warmup_steps'])
# optionally resume from a checkpoint
if pretrained:
if os.path.isfile(pretrained):
print("===> loading checkpoint '{}'".format(pretrained))
checkpoint = torch.load(pretrained)
start_epoch = checkpoint['epoch']
best_acc1 = checkpoint['best_acc1']
model.load_state_dict(checkpoint['state_dict'])
optim.load_state_dict(checkpoint['optimizer'])
print("===> loaded checkpoint '{}' (epoch {})".format(pretrained, checkpoint['epoch']))
else:
print("===> no checkpoint found at '{}'".format(pretrained))
# Data loading code
train_data = SpoofDatsetSystemID(data_files['train_scp'], data_files['train_utt2index'], binary_class, data_files['isstft'])
val_data = SpoofDatsetSystemID(data_files['dev_scp'], data_files['dev_utt2index'], binary_class, data_files['isstft'])
train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=True, **kwargs)
val_loader = torch.utils.data.DataLoader(val_data, batch_size=test_batch_size, shuffle=True, **kwargs)
best_epoch = 0
early_stopping, max_patience = 0, 100 # for early stopping
os.makedirs("model_snapshots/" + run_id, exist_ok=True)
for epoch in range(start_epoch, epochs+1):
trainer.train(train_loader, model, optim, epoch, device, log_interval)
acc1 = validate.validate(val_loader, data_files['dev_utt2systemID'], model, device, log_interval)
is_best = acc1 > best_acc1
best_acc1 = max(acc1, best_acc1)
# adjust learning rate + early stopping
if is_best:
early_stopping = 0
best_epoch = epoch + 1
else:
early_stopping += 1
if epoch - best_epoch > 2:
optim.increase_delta()
best_epoch = epoch + 1
if early_stopping == max_patience:
break
# save model
optimizer.save_checkpoint({
'epoch': epoch,
'state_dict': model.state_dict(),
'best_acc1': best_acc1,
'optimizer' : optim.state_dict(),
}, is_best, "model_snapshots/" + str(run_id), str(epoch) + ('_%.3f'%acc1) + ".pth.tar")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--run-id', action='store', type=str, default='0')
parser.add_argument('--data-feats', action='store', type=str, default='pa_spec')
parser.add_argument('--pretrained', action='store', type=str, default=None)
parser.add_argument('--configfile', action='store', type=str)
parser.add_argument('--random-seed', action='store', type=int, default=0)
args = parser.parse_args()
run_id = args.run_id
pretrained = args.pretrained
random_seed = args.random_seed
with open(args.configfile) as json_file:
config = json.load(json_file)
print(config)
data_files = datafiles.data_prepare[args.data_feats]
model_params = config['model_params']
training_params = config['training_params']
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
torch.manual_seed(random_seed)
torch.cuda.manual_seed_all(random_seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(random_seed)
random.seed(random_seed)
'''
print(run_id)
print(pretrained)
print(data_files)
print(model_params)
print(training_params)
print(device)
exit(0)
'''
main(run_id, pretrained, data_files, model_params, training_params, device)