-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain_clip_vg.py
251 lines (225 loc) · 13.6 KB
/
train_clip_vg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import os
import time
import math
import json
import random
import argparse
import datetime
import numpy as np
from pathlib import Path
import torch
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader, DistributedSampler
import utils.misc as utils
from models import build_model
from datasets import build_dataset
from engine import train_one_epoch, validate
def get_args_parser():
parser = argparse.ArgumentParser('CLIP-VG Args', add_help=False)
parser.add_argument('--sup_type', default='un', type=str)
parser.add_argument('--lr', default=1e-4, type=float)
parser.add_argument('--lr_bert', default=1e-5, type=float)
parser.add_argument('--lr_visu_cnn', default=1e-5, type=float)
parser.add_argument('--lr_visu_tra', default=1e-5, type=float)
parser.add_argument('--batch_size', default=32, type=int)
parser.add_argument('--weight_decay', default=1e-4, type=float)
parser.add_argument('--epochs', default=90, type=int)
parser.add_argument('--lr_power', default=0.9, type=float, help='lr poly power')
parser.add_argument('--lr_exponential', default=0.9, type=float, help='lr exponential')
parser.add_argument('--clip_max_norm', default=0., type=float, help='gradient clipping max norm')
parser.add_argument('--eval', dest='eval', default=False, action='store_true', help='if evaluation only')
parser.add_argument('--optimizer', default='adamw', type=str)
parser.add_argument('--lr_scheduler', default='step', type=str)
parser.add_argument('--lr_drop', default=60, type=int)
# Augmentation options
parser.add_argument('--aug_blur', action='store_true', help="If true, use gaussian blur augmentation")
parser.add_argument('--aug_crop', action='store_true', help="If true, use random crop augmentation")
parser.add_argument('--aug_scale', action='store_true', help="If true, use multi-scale augmentation")
parser.add_argument('--aug_translate', action='store_true', help="If true, use random translate augmentation")
# only support ViT-B/16 and ViT-L/14
parser.add_argument('--model', type=str, default='ViT-B/16', help="Name of model to be exploited.")
parser.add_argument('--dim_feedforward', default=2048, type=int,
help="Intermediate size of the feedforward layers in the transformer blocks")
parser.add_argument('--dropout', default=0.1, type=float, help="Dropout applied in the transformer")
parser.add_argument('--nheads', default=8, type=int,
help="Number of attention heads inside the transformer's attentions")
parser.add_argument('--num_queries', default=100, type=int, help="Number of query slots")
parser.add_argument('--pre_norm', action='store_true')
parser.add_argument('--imsize', default=224, type=int, help='image size')
""" embedding size"""
parser.add_argument('--emb_size', default=512, type=int, help='fusion module embedding dimensions')
# Vision-Language Transformer
parser.add_argument('--vl_dropout', default=0.1, type=float,
help="Dropout applied in the vision-language transformer")
parser.add_argument('--vl_nheads', default=8, type=int,
help="Number of attention heads inside the vision-language transformer's attentions")
parser.add_argument('--vl_hidden_dim', default=512, type=int,
help='Size of the embeddings (dimension of the vision-language transformer)')
parser.add_argument('--vl_dim_feedforward', default=2048, type=int,
help="Intermediate size of the feedforward layers in the vision-language transformer blocks")
parser.add_argument('--vl_enc_layers', default=6, type=int,
help='Number of encoders in the vision-language transformer')
parser.add_argument('--vl_dec_layers', default=6, type=int,
help='Number of decoders in the vision-language transformer')
# Dataset parameters
parser.add_argument('--data_root', type=str, default='./data/image_data/', help='path to ReferIt splits data folder')
parser.add_argument('--split_root', type=str, default='./data/pseudo_samples/', help='location of pre-parsed dataset info')
parser.add_argument('--dataset', default='referit', type=str, help='referit/unc/unc+/gref/gref_umd')
parser.add_argument('--max_query_len', default=77, type=int, help='maximum time steps (lang length) per batch')
# Prompt Engineering: "{pseudo_query}" denote without using prompt
# "{pseudo_query}" or using "find the region that corresponds to the description {pseudo_query}"
parser.add_argument('--prompt', type=str, default='{pseudo_query}', help="Prompt template")
# dataset parameters
parser.add_argument('--output_dir', default='./outputs', help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda', help='device to use for training / testing')
parser.add_argument('--seed', default=13, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--retrain', default='', help='retrain from checkpoint')
parser.add_argument('--light', dest='light', default=False, action='store_true', help='if use smaller model')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N', help='start epoch')
parser.add_argument('--num_workers', default=4, type=int)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
return parser
def main(args):
""" distribution init """
utils.init_distributed_mode(args)
print("git:\n {}\n".format(utils.get_sha()))
if (args.model == "ViT-L/14" or args.model == "ViT-L/14@336px"):
args.vl_hidden_dim = 768
device = torch.device(args.device)
# # fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
print('### INFO ### torch.backends.cudnn.benchmark = {}'.format(torch.backends.cudnn.benchmark))
# build model
model = build_model(args)
model.to(device)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
model_without_ddp = model.module
n_parameters_grad = sum(p.numel() for p in model.parameters() if p.requires_grad)
n_parameters = sum(p.numel() for p in model.parameters())
print('number of requires_grad params: ', n_parameters_grad)
print('number of all params: ', n_parameters)
visu_cnn_param = [p for n, p in model_without_ddp.named_parameters() if (("visumodel" in n) and ("backbone" in n) and p.requires_grad)]
visu_tra_param = [p for n, p in model_without_ddp.named_parameters() if (("visumodel" in n) and ("backbone" not in n) and p.requires_grad)]
text_tra_param = [p for n, p in model_without_ddp.named_parameters() if (("textmodel" in n) and p.requires_grad)]
rest_param = [p for n, p in model_without_ddp.named_parameters() if (("visumodel" not in n) and ("textmodel" not in n) and p.requires_grad)]
param_list = [{"params": rest_param, "lr": args.lr},
{"params": visu_cnn_param, "lr": args.lr_visu_cnn},
{"params": visu_tra_param, "lr": args.lr_visu_tra},
{"params": text_tra_param, "lr": args.lr_bert}]
# using RMSProp or AdamW
if args.optimizer == 'rmsprop':
optimizer = torch.optim.RMSprop(param_list, lr=args.lr, weight_decay=args.weight_decay)
elif args.optimizer == 'adamw':
optimizer = torch.optim.AdamW(param_list, lr=args.lr, weight_decay=args.weight_decay)
elif args.optimizer == 'adam':
optimizer = torch.optim.Adam(param_list, lr=args.lr, weight_decay=args.weight_decay)
elif args.optimizer == 'sgd':
optimizer = torch.optim.SGD(param_list, lr=args.lr, weight_decay=args.weight_decay, momentum=0.9)
else:
raise ValueError('Lr scheduler type not supportted ')
# using polynomial lr scheduler or half decay every 10 epochs or step
if args.lr_scheduler == 'poly':
lr_func = lambda epoch: (1 - epoch / args.epochs) ** args.lr_power
lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_func)
elif args.lr_scheduler == 'halfdecay':
lr_func = lambda epoch: 0.5 ** (epoch // (args.epochs // 10))
lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_func)
elif args.lr_scheduler == 'cosine':
lr_func = lambda epoch: 0.5 * (1. + math.cos(math.pi * epoch / args.epochs))
lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_func)
elif args.lr_scheduler == 'step':
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop)
elif args.lr_scheduler == 'exponential':
lr_func = lambda epoch: args.lr_exponential ** epoch
lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_func)
else:
raise ValueError('Lr scheduler type not supportted ')
# build dataset
print('build dataset...')
if (args.sup_type == 'full'):
print("perform fullly supervised setting.")
dataset_train = build_dataset('train', args)
else: # un
print("perform unsupervised setting.")
dataset_train = build_dataset('train_pseudo', args)
# note certain dataset does not have 'test' set: eg. 'unc': {'train', 'val', 'trainval', 'testA', 'testB'}
dataset_val = build_dataset('val', args)
if args.distributed:
sampler_train = DistributedSampler(dataset_train, shuffle=True)
sampler_val = DistributedSampler(dataset_val, shuffle=False)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
batch_sampler_train = torch.utils.data.BatchSampler(sampler_train, args.batch_size, drop_last=True)
data_loader_train = DataLoader(dataset_train, batch_sampler=batch_sampler_train,
collate_fn=utils.collate_fn, num_workers=args.num_workers)
data_loader_val = DataLoader(dataset_val, args.batch_size, sampler=sampler_val,
drop_last=False, collate_fn=utils.collate_fn, num_workers=args.num_workers)
best_accu = 0
if args.resume:
checkpoint = torch.load(args.resume, map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model'])
if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
args.start_epoch = checkpoint['epoch'] + 1
val_stats = validate(args, model, data_loader_val, device)
best_accu = val_stats['accu']
print("best_accu: {}".format(best_accu))
if args.retrain: # --retrain used for testing "retrain the model", results shows no gains for pretrained model.
# according to paper: SiRi:A Simple Selective Retraining Mechanism for Transformer-based VG, ECCV 2022
model_cache = build_model(args)
model_cache.to(device)
checkpoint = torch.load(args.retrain, map_location='cpu')
model_cache.load_state_dict(checkpoint['model'])
model_without_ddp.vl_transformer = model_cache.vl_transformer # 这种写法可以,训练 1 个 ep acc 为 76
if args.output_dir and utils.is_main_process():
with open(os.path.join(args.output_dir, "log.txt"), "a") as f:
f.write(str(args) + "\n")
print("Start training...")
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
sampler_train.set_epoch(epoch)
train_stats = train_one_epoch(args, model, data_loader_train, optimizer, device, epoch, args.clip_max_norm)
lr_scheduler.step()
val_stats = validate(args, model, data_loader_val, device)
log_stats = {'epoch': epoch,
**{f'train_{k}': v for k, v in train_stats.items()},
**{f'validation_{k}': v for k, v in val_stats.items()},
'n_parameters': n_parameters}
print(log_stats)
if args.output_dir and utils.is_main_process():
with open(os.path.join(args.output_dir, "log.txt"), "a") as f:
f.write(json.dumps(log_stats) + "\n")
if args.output_dir:
checkpoint_paths = [os.path.join(args.output_dir, 'checkpoint.pth')]
if val_stats['accu'] > best_accu:
checkpoint_paths.append(os.path.join(args.output_dir, 'best_checkpoint.pth'))
best_accu = val_stats['accu']
for checkpoint_path in checkpoint_paths:
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args,
'val_accu': val_stats['accu']
}, checkpoint_path)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser('CLIP-VG training script', parents=[get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)