-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
104 lines (79 loc) · 3.37 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import os
import sys
import json
import logging
from tqdm import tqdm
import torch
def train_one_epoch(model, device, data_loader, optimizer, lr_scheduler, epoch):
model.train()
sum_loss = torch.zeros(1).to(device) # cumulative loss
optimizer.zero_grad()
data_loader = tqdm(data_loader, file=sys.stdout)
for step, data in enumerate(data_loader):
input_ids = data['input_ids'].to(device) # torch.Size([batch_size, max_seq_len(input_ids)])
attention_mask = data['attention_mask'].to(device) # torch.Size([batch_size, max_seq_len(input_ids)])
labels = data['labels'].to(device) # torch.Size([batch_size, max_seq_len(labels)])
outputs = model(input_ids=input_ids, attention_mask=attention_mask, labels=labels)
loss = outputs.loss
loss.backward()
sum_loss += loss.detach()
avg_loss = sum_loss / (step + 1) # tensor([???], device='cuda:0')
perplexity = torch.exp(avg_loss) # tensor([???], device='cuda:0')
data_loader.desc = "[train epoch {}] lr: {:.5f}, loss: {:.3f}, ppl: {:.3f}".format(
epoch,
optimizer.param_groups[0]["lr"],
avg_loss.item(),
perplexity.item()
)
if not torch.isfinite(loss):
print('WARNING: non-finite loss, ending training ', loss)
sys.exit(1)
optimizer.step()
optimizer.zero_grad()
# update lr
lr_scheduler.step()
return {
'loss': avg_loss.item(),
'perplexity': perplexity.item()
}
@torch.no_grad()
def validate(model, device, data_loader, epoch):
model.eval()
sum_loss = torch.zeros(1).to(device) # cumulative loss
data_loader = tqdm(data_loader, file=sys.stdout)
for step, data in enumerate(data_loader):
input_ids = data['input_ids'].to(device) # torch.Size([batch_size, max_seq_len(input_ids)])
attention_mask = data['attention_mask'].to(device) # torch.Size([batch_size, max_seq_len(input_ids)])
labels = data['labels'].to(device) # torch.Size([batch_size, max_seq_len(labels)])
outputs = model(input_ids=input_ids, attention_mask=attention_mask, labels=labels)
loss = outputs.loss
# loss: float (not tensor)
sum_loss += loss # tensor([???], device='cuda:0')
avg_loss = sum_loss / (step + 1) # tensor([???], device='cuda:0')
perplexity = torch.exp(avg_loss) # tensor([???], device='cuda:0')
data_loader.desc = "[valid epoch {}] loss: {:.3f}, ppl: {:.3f}".format(
epoch,
avg_loss.item(),
perplexity.item()
)
return {
'loss': avg_loss.item(),
'perplexity': perplexity.item()
}
def read_json(data_file):
with open(data_file, 'r', encoding='utf-8') as f:
data = json.load(f)
return data
def init_logger(args, current_time):
# 用于记录训练过程中的信息
os.makedirs(os.path.join(sys.path[0], "logs"), exist_ok=True)
log_path = os.path.join(sys.path[0], "logs", "{}_{}.txt".format(args.pretrained_model_name_or_path, current_time))
logger = logging.getLogger(__name__)
logger.setLevel(level=logging.INFO)
handler = logging.FileHandler(log_path)
handler.setLevel(logging.INFO)
logger.addHandler(handler)
# write args information
for key, value in args.__dict__.items():
logger.info(f'{key}: {value}')
return logger