-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_vit_v1.py
138 lines (110 loc) · 3.85 KB
/
train_vit_v1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
#coding=utf-8
import torch
import glob
import os
import numpy as np
import jittor as jt
import jittor.transform as transforms
from jittor.dataset import Dataset
from jittor import nn,optim
from tqdm import tqdm
from PIL import Image
from sklearn.model_selection import train_test_split
from models.vit_v1 import ViT
import random
# settings
batch_size = 64
epochs = 20
lr = 3e-5
gamma = 0.7
seed = 42
num_workers = 4
def seed_everything(seed):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
jt.set_seed(seed)
seed_everything(seed)
# use cuda
jt.flags.use_cuda = 1
## Load Data
train_dir = '/mnt/disk/lxl/dataset/kaggle/dogs_vs_cats/train'
test_dir = '/mnt/disk/lxl/dataset/kaggle/dogs_vs_cats/test'
train_list = glob.glob(os.path.join(train_dir,'*.jpg'))
test_list = glob.glob(os.path.join(test_dir, '*.jpg'))
print(f"Train Data: {len(train_list)}")
print(f"Test Data: {len(test_list)}")
labels = [path.split('/')[-1].split('.')[0] for path in train_list]
## Split
train_list, valid_list = train_test_split(train_list,
test_size=0.2,
stratify=labels,
random_state=42)
print(f"Train Data: {len(train_list)}")
print(f"Validation Data: {len(valid_list)}")
print(f"Test Data: {len(test_list)}")
## Image Augumentation
transform = transforms.Compose(
[
transforms.Resize((224, 224)),
transforms.RandomCropAndResize(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
]
)
## Load Datasets
class CatsDogsDataset(Dataset):
def __init__(self, file_list, transform=None,batch_size=1,shuffle=False,num_workers=0):
super(CatsDogsDataset,self).__init__(batch_size=batch_size,shuffle=shuffle,num_workers=num_workers)
self.file_list = file_list
self.transform = transform
self.total_len=len(self.file_list)
def __getitem__(self, idx):
img_path = self.file_list[idx]
img = Image.open(img_path)
img_transformed = self.transform(img)
label = img_path.split("/")[-1].split(".")[0]
label = 1 if label == "dog" else 0
return img_transformed, label
train_data = CatsDogsDataset(train_list, transform=transform,batch_size=batch_size, shuffle=False, num_workers=num_workers)
valid_data = CatsDogsDataset(valid_list, transform=transform,batch_size=batch_size, shuffle=False, num_workers=num_workers)
test_data = CatsDogsDataset(test_list, transform=transform,batch_size=batch_size, shuffle=False, num_workers=num_workers)
print(len(train_data))
print(len(valid_data))
model = ViT(
dim=128,
image_size=224,
patch_size=32,
num_classes=2,
depth=12,
heads=8,
mlp_dim=128
)
### Training
# loss function
criterion = nn.CrossEntropyLoss()
# optimizer
optimizer = optim.Adam(model.parameters(), lr=lr)
for epoch in range(epochs):
epoch_loss = 0
epoch_accuracy = 0
for data, label in tqdm(train_data):
output = model(data)
loss = criterion(output, label)
optimizer.step(loss)
acc = (output.argmax(dim=1)[0] == label).float().mean()
epoch_accuracy += acc / len(train_data)
epoch_loss += loss / len(train_data)
with jt.no_grad():
epoch_val_accuracy = 0
epoch_val_loss = 0
for data, label in tqdm(valid_data):
val_output = model(data)
val_loss = criterion(val_output, label)
acc = (val_output.argmax(dim=1)[0] == label).float().mean()
epoch_val_accuracy += acc / len(valid_data)
epoch_val_loss += val_loss / len(valid_data)
jt.sync_all(True)
print(
f"Epoch : {epoch+1} - loss : {epoch_loss.item():.4f} - acc: {epoch_accuracy.item():.4f} - val_loss : {epoch_val_loss.item():.4f} - val_acc: {epoch_val_accuracy.item():.4f}\n"
)