-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathxml2csv_entities.py
145 lines (116 loc) · 5.09 KB
/
xml2csv_entities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import argparse
import csv
import os
from pathlib import Path
from supermat.supermat_tei_parser import process_file_to_json
from supermat.utils import get_in_paths_from_directory
paragraph_id = 'paragraph_id'
def write_output(output_path, data, header, format="csv"):
delimiter = '\t' if format == 'tsv' else ','
fw = csv.writer(open(output_path, encoding='utf-8', mode='w'), delimiter=delimiter, quotechar='"')
fw.writerow(header)
fw.writerows(data)
def get_entity_data(data_sorted, ent_type, remove_dups=False):
entities = []
record_id = 0
for passage in data_sorted['passages']:
text = passage['text']
spans = [span['text'] for span in filter(lambda s: s['type'] == ent_type, passage['spans'])]
if remove_dups:
ents = list(set(spans))
else:
ents = list(spans)
for ent in ents:
entities.append(
[
record_id,
data_sorted['doc_key'],
passage['id'],
ent
]
)
record_id += 1
# entities.append(
# {
# "text": text,
# "entities": ents
# }
# )
return entities
def get_texts(data_sorted):
text_data = [[idx, data_sorted['doc_key'], data_sorted['passages'][idx]['id'], data_sorted['passages'][idx]['text']]
for idx in
range(0, len(data_sorted['passages']))]
return text_data
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description="Converter XML (Supermat) to CSV for entity extraction (no relation information are used)")
parser.add_argument("--input",
help="Input file or directory",
required=True)
parser.add_argument("--output",
help="Output directory",
required=True)
parser.add_argument("--recursive",
action="store_true",
default=False,
help="Process input directory recursively. If input is a file, this parameter is ignored.")
parser.add_argument("--entity-type",
default="material",
required=False,
help="Select which entity type to extract.")
parser.add_argument("--use-paragraphs",
default=False,
action="store_true",
help="Uses paragraphs instead of sentences. "
"By default this script assumes that the XML is at sentence level.")
args = parser.parse_args()
input = args.input
output = args.output
recursive = args.recursive
ent_type = args.entity_type
use_paragraphs = args.use_paragraphs
if os.path.isdir(input):
path_list = get_in_paths_from_directory(input, ".xml", recursive=recursive)
entities_data = []
texts_data = []
ent_type = "material"
for path in path_list:
print("Processing: ", path)
file_data = process_file_to_json(path, use_paragraphs=use_paragraphs)
# data = sorted(file_data, key=lambda k: k[paragraph_id])
entity_data = get_entity_data(file_data, ent_type)
entities_data.extend(entity_data)
text_data = get_texts(file_data)
texts_data.extend(text_data)
if os.path.isdir(str(output)):
output_path_text = os.path.join(output, "output-text") + ".csv"
output_path_expected = os.path.join(output, "output-" + ent_type) + ".csv"
else:
parent_dir = Path(output).parent
output_path_text = os.path.join(parent_dir, "output-text" + ".csv")
output_path_expected = os.path.join(parent_dir, "output-" + ent_type + ".csv")
header = ["id", "filename", "pid", ent_type]
for idx, data in enumerate(entities_data):
data[0] = idx
write_output(output_path_expected, entities_data, header)
header = ["id", "filename", "pid", "text"]
for idx, data in enumerate(texts_data):
data[0] = idx
write_output(output_path_text, texts_data, header)
elif os.path.isfile(input):
input_path = Path(input)
file_data = process_file_to_json(input_path, use_paragraphs=use_paragraphs)
output_filename = input_path.stem
output_path_text = os.path.join(output, str(output_filename) + "-text" + ".csv")
texts_data = get_texts(file_data)
for idx, data in enumerate(texts_data):
data[0] = idx
header = ["id", "filename", "pid", "text"]
write_output(output_path_text, texts_data, header)
output_path_expected = os.path.join(output, str(output_filename) + "-" + ent_type + ".csv")
ent_data_no_duplicates = get_entity_data(file_data, ent_type)
for idx, data in enumerate(ent_data_no_duplicates):
data[0] = idx
header = ["id", "filename", "pid", ent_type]
write_output(output_path_expected, ent_data_no_duplicates, header)