-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptimize_sldquant_param.py
97 lines (88 loc) · 3.18 KB
/
optimize_sldquant_param.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
from run_experiments import *
from dataset_elaboration.jeb_bush import load_dataset
def run_hypersearch(name, pool_size, x, y_c, policy, stoppings):
res = {"y_c": y_c}
random_pos = np.random.choice(np.where(y_c == 1)[0], size=1)
random = np.random.choice(np.where(y_c == 0)[0], replace=False, size=1)
conf = ActiveLearningConfig(
policy,
stoppings,
LinearStrategy(b=100),
x,
y_c,
np.concatenate((random_pos, random)),
stop_when_no_pos=True,
)
al = ActiveLearning(conf)
res["idxs"] = al.run(pool_size, pool_size)
res["stops"] = al.get_stops_as_dict()
return name, res
if __name__ == "__main__":
paper_name = ""
parser = argparse.ArgumentParser(f"Run param. optimization for SLD Quant")
parser.add_argument("-j", "--jobs", type=int, help="number of processes to spawn")
parser.add_argument("-lrj", "--lr-j", type=int, help="number of jobs for the LR")
# parser.add_argument('-b', '--batch', choices=[CormackBatch], default=CormackBatch,
# help='Batch strategy to use. Only Cormack\'s available atm.')
parser.add_argument(
"-t",
"--target-recall",
nargs="+",
type=float,
help="target recall TAR should stop at",
required=True,
)
parser.add_argument(
"-p",
"--pool-size",
type=int,
help="size of the pool to annotate",
default=10_000,
)
parser.add_argument("-n", "--name", help="tmt save name", required=True)
parser.add_argument("-s", "--seed", type=int, help="random seed")
parser.add_argument("-a", "--alpha", type=float, nargs="+", help="alpha values for SLD to test")
args = parser.parse_args()
np.random.seed(args.seed)
pool_size = args.pool_size
clf_kwargs = {"n_jobs": args.lr_j}
# baselines
clf = LogisticRegression
# clf = calibrated_svm
policy = RelevancePolicy(clf, clf_args=[], clf_kwargs=clf_kwargs)
stoppings = []
for t in args.target_recall:
for alpha in args.alpha:
stoppings.append(SLDQuantStopping(nstd=0.0, target_recall=t, dataset_length=pool_size, alpha=alpha))
print("Loading dataset...")
dataset = load_dataset()
recorder = tmt_recorder(args.name)(process_futures)
jobs = 30
print(f"Running with {jobs} jobs")
with ProcessPoolExecutor(max_workers=jobs) as p:
futures = []
for topic, x, y in dataset:
stoppings = []
for t in args.target_recall:
for alpha in args.alpha:
stoppings.append(
SLDQuantStopping(
nstd=0.0,
target_recall=t,
dataset_length=len(y),
alpha=alpha,
)
)
futures.append(
p.submit(
run_al,
topic,
len(y),
x,
y,
len(y),
copy.deepcopy(policy),
copy.deepcopy(stoppings),
)
)
recorder(futures, args.name)