-
Notifications
You must be signed in to change notification settings - Fork 323
/
lora.hpp
680 lines (583 loc) · 34.6 KB
/
lora.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
#ifndef __LORA_HPP__
#define __LORA_HPP__
#include "ggml_extend.hpp"
#define LORA_GRAPH_SIZE 10240
struct LoraModel : public GGMLRunner {
enum lora_t {
REGULAR = 0,
DIFFUSERS = 1,
DIFFUSERS_2 = 2,
DIFFUSERS_3 = 3,
TRANSFORMERS = 4,
LORA_TYPE_COUNT
};
const std::string lora_ups[LORA_TYPE_COUNT] = {
".lora_up",
"_lora.up",
".lora_B",
".lora.up",
".lora_linear_layer.up",
};
const std::string lora_downs[LORA_TYPE_COUNT] = {
".lora_down",
"_lora.down",
".lora_A",
".lora.down",
".lora_linear_layer.down",
};
const std::string lora_pre[LORA_TYPE_COUNT] = {
"lora.",
"",
"",
"",
"",
};
const std::map<std::string, std::string> alt_names = {
// mmdit
{"final_layer.adaLN_modulation.1", "norm_out.linear"},
{"pos_embed", "pos_embed.proj"},
{"final_layer.linear", "proj_out"},
{"y_embedder.mlp.0", "time_text_embed.text_embedder.linear_1"},
{"y_embedder.mlp.2", "time_text_embed.text_embedder.linear_2"},
{"t_embedder.mlp.0", "time_text_embed.timestep_embedder.linear_1"},
{"t_embedder.mlp.2", "time_text_embed.timestep_embedder.linear_2"},
{"x_block.mlp.fc1", "ff.net.0.proj"},
{"x_block.mlp.fc2", "ff.net.2"},
{"context_block.mlp.fc1", "ff_context.net.0.proj"},
{"context_block.mlp.fc2", "ff_context.net.2"},
{"x_block.adaLN_modulation.1", "norm1.linear"},
{"context_block.adaLN_modulation.1", "norm1_context.linear"},
{"context_block.attn.proj", "attn.to_add_out"},
{"x_block.attn.proj", "attn.to_out.0"},
{"x_block.attn2.proj", "attn2.to_out.0"},
// flux
// singlestream
{"linear2", "proj_out"},
{"modulation.lin", "norm.linear"},
// doublestream
{"txt_attn.proj", "attn.to_add_out"},
{"img_attn.proj", "attn.to_out.0"},
{"txt_mlp.0", "ff_context.net.0.proj"},
{"txt_mlp.2", "ff_context.net.2"},
{"img_mlp.0", "ff.net.0.proj"},
{"img_mlp.2", "ff.net.2"},
{"txt_mod.lin", "norm1_context.linear"},
{"img_mod.lin", "norm1.linear"},
};
const std::map<std::string, std::string> qkv_prefixes = {
// mmdit
{"context_block.attn.qkv", "attn.add_"}, // suffix "_proj"
{"x_block.attn.qkv", "attn.to_"},
{"x_block.attn2.qkv", "attn2.to_"},
// flux
// doublestream
{"txt_attn.qkv", "attn.add_"}, // suffix "_proj"
{"img_attn.qkv", "attn.to_"},
};
const std::map<std::string, std::string> qkvm_prefixes = {
// flux
// singlestream
{"linear1", ""},
};
const std::string* type_fingerprints = lora_ups;
float multiplier = 1.0f;
std::map<std::string, struct ggml_tensor*> lora_tensors;
std::string file_path;
ModelLoader model_loader;
bool load_failed = false;
bool applied = false;
std::vector<int> zero_index_vec = {0};
ggml_tensor* zero_index = NULL;
enum lora_t type = REGULAR;
LoraModel(ggml_backend_t backend,
const std::string& file_path = "",
const std::string prefix = "")
: file_path(file_path), GGMLRunner(backend) {
if (!model_loader.init_from_file(file_path, prefix)) {
load_failed = true;
}
}
std::string get_desc() {
return "lora";
}
bool load_from_file(bool filter_tensor = false) {
LOG_INFO("loading LoRA from '%s'", file_path.c_str());
if (load_failed) {
LOG_ERROR("init lora model loader from file failed: '%s'", file_path.c_str());
return false;
}
bool dry_run = true;
auto on_new_tensor_cb = [&](const TensorStorage& tensor_storage, ggml_tensor** dst_tensor) -> bool {
const std::string& name = tensor_storage.name;
if (filter_tensor && !contains(name, "lora")) {
// LOG_INFO("skipping LoRA tesnor '%s'", name.c_str());
return true;
}
// LOG_INFO("%s", name.c_str());
for (int i = 0; i < LORA_TYPE_COUNT; i++) {
if (name.find(type_fingerprints[i]) != std::string::npos) {
type = (lora_t)i;
break;
}
}
if (dry_run) {
struct ggml_tensor* real = ggml_new_tensor(params_ctx,
tensor_storage.type,
tensor_storage.n_dims,
tensor_storage.ne);
lora_tensors[name] = real;
} else {
auto real = lora_tensors[name];
*dst_tensor = real;
}
return true;
};
model_loader.load_tensors(on_new_tensor_cb, backend);
alloc_params_buffer();
// exit(0);
dry_run = false;
model_loader.load_tensors(on_new_tensor_cb, backend);
LOG_DEBUG("lora type: \"%s\"/\"%s\"", lora_downs[type].c_str(), lora_ups[type].c_str());
LOG_DEBUG("finished loaded lora");
return true;
}
ggml_tensor* to_f32(ggml_context* ctx, ggml_tensor* a) {
auto out = ggml_reshape_1d(ctx, a, ggml_nelements(a));
out = ggml_get_rows(ctx, out, zero_index);
out = ggml_reshape(ctx, out, a);
return out;
}
std::vector<std::string> to_lora_keys(std::string blk_name, SDVersion version) {
std::vector<std::string> keys;
// if (!sd_version_is_sd3(version) || blk_name != "model.diffusion_model.pos_embed") {
size_t k_pos = blk_name.find(".weight");
if (k_pos == std::string::npos) {
return keys;
}
blk_name = blk_name.substr(0, k_pos);
// }
keys.push_back(blk_name);
keys.push_back("lora." + blk_name);
if (sd_version_is_dit(version)) {
if (blk_name.find("model.diffusion_model") != std::string::npos) {
blk_name.replace(blk_name.find("model.diffusion_model"), sizeof("model.diffusion_model") - 1, "transformer");
}
if (blk_name.find(".single_blocks") != std::string::npos) {
blk_name.replace(blk_name.find(".single_blocks"), sizeof(".single_blocks") - 1, ".single_transformer_blocks");
}
if (blk_name.find(".double_blocks") != std::string::npos) {
blk_name.replace(blk_name.find(".double_blocks"), sizeof(".double_blocks") - 1, ".transformer_blocks");
}
if (blk_name.find(".joint_blocks") != std::string::npos) {
blk_name.replace(blk_name.find(".joint_blocks"), sizeof(".joint_blocks") - 1, ".transformer_blocks");
}
for (const auto& item : alt_names) {
size_t match = blk_name.find(item.first);
if (match != std::string::npos) {
blk_name = blk_name.substr(0, match) + item.second;
}
}
for (const auto& prefix : qkv_prefixes) {
size_t match = blk_name.find(prefix.first);
if (match != std::string::npos) {
std::string split_blk = "SPLIT|" + blk_name.substr(0, match) + prefix.second;
keys.push_back(split_blk);
}
}
for (const auto& prefix : qkvm_prefixes) {
size_t match = blk_name.find(prefix.first);
if (match != std::string::npos) {
std::string split_blk = "SPLIT_L|" + blk_name.substr(0, match) + prefix.second;
keys.push_back(split_blk);
}
}
}
keys.push_back(blk_name);
std::vector<std::string> ret;
for (std::string& key : keys) {
ret.push_back(key);
replace_all_chars(key, '.', '_');
ret.push_back(key);
}
return ret;
}
struct ggml_cgraph* build_lora_graph(std::map<std::string, struct ggml_tensor*> model_tensors, SDVersion version) {
struct ggml_cgraph* gf = ggml_new_graph_custom(compute_ctx, LORA_GRAPH_SIZE, false);
zero_index = ggml_new_tensor_1d(compute_ctx, GGML_TYPE_I32, 1);
set_backend_tensor_data(zero_index, zero_index_vec.data());
ggml_build_forward_expand(gf, zero_index);
std::set<std::string> applied_lora_tensors;
for (auto it : model_tensors) {
std::string k_tensor = it.first;
struct ggml_tensor* weight = model_tensors[it.first];
std::vector<std::string> keys = to_lora_keys(k_tensor, version);
if (keys.size() == 0)
continue;
ggml_tensor* lora_up = NULL;
ggml_tensor* lora_down = NULL;
for (auto& key : keys) {
std::string alpha_name = "";
std::string scale_name = "";
std::string split_q_scale_name = "";
std::string lora_down_name = "";
std::string lora_up_name = "";
if (starts_with(key, "SPLIT|")) {
key = key.substr(sizeof("SPLIT|") - 1);
// TODO: Handle alphas
std::string suffix = "";
auto split_q_d_name = lora_pre[type] + key + "q" + suffix + lora_downs[type] + ".weight";
if (lora_tensors.find(split_q_d_name) == lora_tensors.end()) {
suffix = "_proj";
split_q_d_name = lora_pre[type] + key + "q" + suffix + lora_downs[type] + ".weight";
}
if (lora_tensors.find(split_q_d_name) != lora_tensors.end()) {
// print_ggml_tensor(it.second, true); //[3072, 21504, 1, 1]
// find qkv and mlp up parts in LoRA model
auto split_k_d_name = lora_pre[type] + key + "k" + suffix + lora_downs[type] + ".weight";
auto split_v_d_name = lora_pre[type] + key + "v" + suffix + lora_downs[type] + ".weight";
auto split_q_u_name = lora_pre[type] + key + "q" + suffix + lora_ups[type] + ".weight";
auto split_k_u_name = lora_pre[type] + key + "k" + suffix + lora_ups[type] + ".weight";
auto split_v_u_name = lora_pre[type] + key + "v" + suffix + lora_ups[type] + ".weight";
auto split_q_scale_name = lora_pre[type] + key + "q" + suffix + ".scale";
auto split_k_scale_name = lora_pre[type] + key + "k" + suffix + ".scale";
auto split_v_scale_name = lora_pre[type] + key + "v" + suffix + ".scale";
auto split_q_alpha_name = lora_pre[type] + key + "q" + suffix + ".alpha";
auto split_k_alpha_name = lora_pre[type] + key + "k" + suffix + ".alpha";
auto split_v_alpha_name = lora_pre[type] + key + "v" + suffix + ".alpha";
ggml_tensor* lora_q_down = NULL;
ggml_tensor* lora_q_up = NULL;
ggml_tensor* lora_k_down = NULL;
ggml_tensor* lora_k_up = NULL;
ggml_tensor* lora_v_down = NULL;
ggml_tensor* lora_v_up = NULL;
lora_q_down = to_f32(compute_ctx, lora_tensors[split_q_d_name]);
if (lora_tensors.find(split_q_u_name) != lora_tensors.end()) {
lora_q_up = to_f32(compute_ctx, lora_tensors[split_q_u_name]);
}
if (lora_tensors.find(split_k_d_name) != lora_tensors.end()) {
lora_k_down = to_f32(compute_ctx, lora_tensors[split_k_d_name]);
}
if (lora_tensors.find(split_k_u_name) != lora_tensors.end()) {
lora_k_up = to_f32(compute_ctx, lora_tensors[split_k_u_name]);
}
if (lora_tensors.find(split_v_d_name) != lora_tensors.end()) {
lora_v_down = to_f32(compute_ctx, lora_tensors[split_v_d_name]);
}
if (lora_tensors.find(split_v_u_name) != lora_tensors.end()) {
lora_v_up = to_f32(compute_ctx, lora_tensors[split_v_u_name]);
}
float q_rank = lora_q_up->ne[0];
float k_rank = lora_k_up->ne[0];
float v_rank = lora_v_up->ne[0];
float lora_q_scale = 1;
float lora_k_scale = 1;
float lora_v_scale = 1;
if (lora_tensors.find(split_q_scale_name) != lora_tensors.end()) {
lora_q_scale = ggml_backend_tensor_get_f32(lora_tensors[split_q_scale_name]);
applied_lora_tensors.insert(split_q_scale_name);
}
if (lora_tensors.find(split_k_scale_name) != lora_tensors.end()) {
lora_k_scale = ggml_backend_tensor_get_f32(lora_tensors[split_k_scale_name]);
applied_lora_tensors.insert(split_k_scale_name);
}
if (lora_tensors.find(split_v_scale_name) != lora_tensors.end()) {
lora_v_scale = ggml_backend_tensor_get_f32(lora_tensors[split_v_scale_name]);
applied_lora_tensors.insert(split_v_scale_name);
}
if (lora_tensors.find(split_q_alpha_name) != lora_tensors.end()) {
float lora_q_alpha = ggml_backend_tensor_get_f32(lora_tensors[split_q_alpha_name]);
applied_lora_tensors.insert(split_q_alpha_name);
lora_q_scale = lora_q_alpha / q_rank;
}
if (lora_tensors.find(split_k_alpha_name) != lora_tensors.end()) {
float lora_k_alpha = ggml_backend_tensor_get_f32(lora_tensors[split_k_alpha_name]);
applied_lora_tensors.insert(split_k_alpha_name);
lora_k_scale = lora_k_alpha / k_rank;
}
if (lora_tensors.find(split_v_alpha_name) != lora_tensors.end()) {
float lora_v_alpha = ggml_backend_tensor_get_f32(lora_tensors[split_v_alpha_name]);
applied_lora_tensors.insert(split_v_alpha_name);
lora_v_scale = lora_v_alpha / v_rank;
}
ggml_scale_inplace(compute_ctx, lora_q_down, lora_q_scale);
ggml_scale_inplace(compute_ctx, lora_k_down, lora_k_scale);
ggml_scale_inplace(compute_ctx, lora_v_down, lora_v_scale);
// print_ggml_tensor(lora_q_down, true); //[3072, R, 1, 1]
// print_ggml_tensor(lora_k_down, true); //[3072, R, 1, 1]
// print_ggml_tensor(lora_v_down, true); //[3072, R, 1, 1]
// print_ggml_tensor(lora_q_up, true); //[R, 3072, 1, 1]
// print_ggml_tensor(lora_k_up, true); //[R, 3072, 1, 1]
// print_ggml_tensor(lora_v_up, true); //[R, 3072, 1, 1]
// these need to be stitched together this way:
// |q_up,0 ,0 |
// |0 ,k_up,0 |
// |0 ,0 ,v_up|
// (q_down,k_down,v_down) . (q ,k ,v)
// up_concat will be [9216, R*3, 1, 1]
// down_concat will be [R*3, 3072, 1, 1]
ggml_tensor* lora_down_concat = ggml_concat(compute_ctx, ggml_concat(compute_ctx, lora_q_down, lora_k_down, 1), lora_v_down, 1);
ggml_tensor* z = ggml_dup_tensor(compute_ctx, lora_q_up);
ggml_scale(compute_ctx, z, 0);
ggml_tensor* zz = ggml_concat(compute_ctx, z, z, 1);
ggml_tensor* q_up = ggml_concat(compute_ctx, lora_q_up, zz, 1);
ggml_tensor* k_up = ggml_concat(compute_ctx, ggml_concat(compute_ctx, z, lora_k_up, 1), z, 1);
ggml_tensor* v_up = ggml_concat(compute_ctx, zz, lora_v_up, 1);
// print_ggml_tensor(q_up, true); //[R, 9216, 1, 1]
// print_ggml_tensor(k_up, true); //[R, 9216, 1, 1]
// print_ggml_tensor(v_up, true); //[R, 9216, 1, 1]
ggml_tensor* lora_up_concat = ggml_concat(compute_ctx, ggml_concat(compute_ctx, q_up, k_up, 0), v_up, 0);
// print_ggml_tensor(lora_up_concat, true); //[R*3, 9216, 1, 1]
lora_down = ggml_cont(compute_ctx, lora_down_concat);
lora_up = ggml_cont(compute_ctx, lora_up_concat);
applied_lora_tensors.insert(split_q_u_name);
applied_lora_tensors.insert(split_k_u_name);
applied_lora_tensors.insert(split_v_u_name);
applied_lora_tensors.insert(split_q_d_name);
applied_lora_tensors.insert(split_k_d_name);
applied_lora_tensors.insert(split_v_d_name);
}
}
if (starts_with(key, "SPLIT_L|")) {
key = key.substr(sizeof("SPLIT_L|") - 1);
auto split_q_d_name = lora_pre[type] + key + "attn.to_q" + lora_downs[type] + ".weight";
if (lora_tensors.find(split_q_d_name) != lora_tensors.end()) {
// print_ggml_tensor(it.second, true); //[3072, 21504, 1, 1]
// find qkv and mlp up parts in LoRA model
auto split_k_d_name = lora_pre[type] + key + "attn.to_k" + lora_downs[type] + ".weight";
auto split_v_d_name = lora_pre[type] + key + "attn.to_v" + lora_downs[type] + ".weight";
auto split_q_u_name = lora_pre[type] + key + "attn.to_q" + lora_ups[type] + ".weight";
auto split_k_u_name = lora_pre[type] + key + "attn.to_k" + lora_ups[type] + ".weight";
auto split_v_u_name = lora_pre[type] + key + "attn.to_v" + lora_ups[type] + ".weight";
auto split_m_d_name = lora_pre[type] + key + "proj_mlp" + lora_downs[type] + ".weight";
auto split_m_u_name = lora_pre[type] + key + "proj_mlp" + lora_ups[type] + ".weight";
auto split_q_scale_name = lora_pre[type] + key + "attn.to_q" + ".scale";
auto split_k_scale_name = lora_pre[type] + key + "attn.to_k" + ".scale";
auto split_v_scale_name = lora_pre[type] + key + "attn.to_v" + ".scale";
auto split_m_scale_name = lora_pre[type] + key + "proj_mlp" + ".scale";
auto split_q_alpha_name = lora_pre[type] + key + "attn.to_q" + ".alpha";
auto split_k_alpha_name = lora_pre[type] + key + "attn.to_k" + ".alpha";
auto split_v_alpha_name = lora_pre[type] + key + "attn.to_v" + ".alpha";
auto split_m_alpha_name = lora_pre[type] + key + "proj_mlp" + ".alpha";
ggml_tensor* lora_q_down = NULL;
ggml_tensor* lora_q_up = NULL;
ggml_tensor* lora_k_down = NULL;
ggml_tensor* lora_k_up = NULL;
ggml_tensor* lora_v_down = NULL;
ggml_tensor* lora_v_up = NULL;
ggml_tensor* lora_m_down = NULL;
ggml_tensor* lora_m_up = NULL;
lora_q_up = to_f32(compute_ctx, lora_tensors[split_q_u_name]);
if (lora_tensors.find(split_q_d_name) != lora_tensors.end()) {
lora_q_down = to_f32(compute_ctx, lora_tensors[split_q_d_name]);
}
if (lora_tensors.find(split_q_u_name) != lora_tensors.end()) {
lora_q_up = to_f32(compute_ctx, lora_tensors[split_q_u_name]);
}
if (lora_tensors.find(split_k_d_name) != lora_tensors.end()) {
lora_k_down = to_f32(compute_ctx, lora_tensors[split_k_d_name]);
}
if (lora_tensors.find(split_k_u_name) != lora_tensors.end()) {
lora_k_up = to_f32(compute_ctx, lora_tensors[split_k_u_name]);
}
if (lora_tensors.find(split_v_d_name) != lora_tensors.end()) {
lora_v_down = to_f32(compute_ctx, lora_tensors[split_v_d_name]);
}
if (lora_tensors.find(split_v_u_name) != lora_tensors.end()) {
lora_v_up = to_f32(compute_ctx, lora_tensors[split_v_u_name]);
}
if (lora_tensors.find(split_m_d_name) != lora_tensors.end()) {
lora_m_down = to_f32(compute_ctx, lora_tensors[split_m_d_name]);
}
if (lora_tensors.find(split_m_u_name) != lora_tensors.end()) {
lora_m_up = to_f32(compute_ctx, lora_tensors[split_m_u_name]);
}
float q_rank = lora_q_up->ne[0];
float k_rank = lora_k_up->ne[0];
float v_rank = lora_v_up->ne[0];
float m_rank = lora_v_up->ne[0];
float lora_q_scale = 1;
float lora_k_scale = 1;
float lora_v_scale = 1;
float lora_m_scale = 1;
if (lora_tensors.find(split_q_scale_name) != lora_tensors.end()) {
lora_q_scale = ggml_backend_tensor_get_f32(lora_tensors[split_q_scale_name]);
applied_lora_tensors.insert(split_q_scale_name);
}
if (lora_tensors.find(split_k_scale_name) != lora_tensors.end()) {
lora_k_scale = ggml_backend_tensor_get_f32(lora_tensors[split_k_scale_name]);
applied_lora_tensors.insert(split_k_scale_name);
}
if (lora_tensors.find(split_v_scale_name) != lora_tensors.end()) {
lora_v_scale = ggml_backend_tensor_get_f32(lora_tensors[split_v_scale_name]);
applied_lora_tensors.insert(split_v_scale_name);
}
if (lora_tensors.find(split_m_scale_name) != lora_tensors.end()) {
lora_m_scale = ggml_backend_tensor_get_f32(lora_tensors[split_m_scale_name]);
applied_lora_tensors.insert(split_m_scale_name);
}
if (lora_tensors.find(split_q_alpha_name) != lora_tensors.end()) {
float lora_q_alpha = ggml_backend_tensor_get_f32(lora_tensors[split_q_alpha_name]);
applied_lora_tensors.insert(split_q_alpha_name);
lora_q_scale = lora_q_alpha / q_rank;
}
if (lora_tensors.find(split_k_alpha_name) != lora_tensors.end()) {
float lora_k_alpha = ggml_backend_tensor_get_f32(lora_tensors[split_k_alpha_name]);
applied_lora_tensors.insert(split_k_alpha_name);
lora_k_scale = lora_k_alpha / k_rank;
}
if (lora_tensors.find(split_v_alpha_name) != lora_tensors.end()) {
float lora_v_alpha = ggml_backend_tensor_get_f32(lora_tensors[split_v_alpha_name]);
applied_lora_tensors.insert(split_v_alpha_name);
lora_v_scale = lora_v_alpha / v_rank;
}
if (lora_tensors.find(split_m_alpha_name) != lora_tensors.end()) {
float lora_m_alpha = ggml_backend_tensor_get_f32(lora_tensors[split_m_alpha_name]);
applied_lora_tensors.insert(split_m_alpha_name);
lora_m_scale = lora_m_alpha / m_rank;
}
ggml_scale_inplace(compute_ctx, lora_q_down, lora_q_scale);
ggml_scale_inplace(compute_ctx, lora_k_down, lora_k_scale);
ggml_scale_inplace(compute_ctx, lora_v_down, lora_v_scale);
ggml_scale_inplace(compute_ctx, lora_m_down, lora_m_scale);
// print_ggml_tensor(lora_q_down, true); //[3072, R, 1, 1]
// print_ggml_tensor(lora_k_down, true); //[3072, R, 1, 1]
// print_ggml_tensor(lora_v_down, true); //[3072, R, 1, 1]
// print_ggml_tensor(lora_m_down, true); //[3072, R, 1, 1]
// print_ggml_tensor(lora_q_up, true); //[R, 3072, 1, 1]
// print_ggml_tensor(lora_k_up, true); //[R, 3072, 1, 1]
// print_ggml_tensor(lora_v_up, true); //[R, 3072, 1, 1]
// print_ggml_tensor(lora_m_up, true); //[R, 12288, 1, 1]
// these need to be stitched together this way:
// |q_up,0 ,0 ,0 |
// |0 ,k_up,0 ,0 |
// |0 ,0 ,v_up,0 |
// |0 ,0 ,0 ,m_up|
// (q_down,k_down,v_down,m_down) . (q ,k ,v ,m)
// up_concat will be [21504, R*4, 1, 1]
// down_concat will be [R*4, 3072, 1, 1]
ggml_tensor* lora_down_concat = ggml_concat(compute_ctx, ggml_concat(compute_ctx, lora_q_down, lora_k_down, 1), ggml_concat(compute_ctx, lora_v_down, lora_m_down, 1), 1);
// print_ggml_tensor(lora_down_concat, true); //[3072, R*4, 1, 1]
// this also means that if rank is bigger than 672, it is less memory efficient to do it this way (should be fine)
// print_ggml_tensor(lora_q_up, true); //[3072, R, 1, 1]
ggml_tensor* z = ggml_dup_tensor(compute_ctx, lora_q_up);
ggml_tensor* mlp_z = ggml_dup_tensor(compute_ctx, lora_m_up);
ggml_scale(compute_ctx, z, 0);
ggml_scale(compute_ctx, mlp_z, 0);
ggml_tensor* zz = ggml_concat(compute_ctx, z, z, 1);
ggml_tensor* q_up = ggml_concat(compute_ctx, ggml_concat(compute_ctx, lora_q_up, zz, 1), mlp_z, 1);
ggml_tensor* k_up = ggml_concat(compute_ctx, ggml_concat(compute_ctx, z, lora_k_up, 1), ggml_concat(compute_ctx, z, mlp_z, 1), 1);
ggml_tensor* v_up = ggml_concat(compute_ctx, ggml_concat(compute_ctx, zz, lora_v_up, 1), mlp_z, 1);
ggml_tensor* m_up = ggml_concat(compute_ctx, ggml_concat(compute_ctx, zz, z, 1), lora_m_up, 1);
// print_ggml_tensor(q_up, true); //[R, 21504, 1, 1]
// print_ggml_tensor(k_up, true); //[R, 21504, 1, 1]
// print_ggml_tensor(v_up, true); //[R, 21504, 1, 1]
// print_ggml_tensor(m_up, true); //[R, 21504, 1, 1]
ggml_tensor* lora_up_concat = ggml_concat(compute_ctx, ggml_concat(compute_ctx, q_up, k_up, 0), ggml_concat(compute_ctx, v_up, m_up, 0), 0);
// print_ggml_tensor(lora_up_concat, true); //[R*4, 21504, 1, 1]
lora_down = ggml_cont(compute_ctx, lora_down_concat);
lora_up = ggml_cont(compute_ctx, lora_up_concat);
applied_lora_tensors.insert(split_q_u_name);
applied_lora_tensors.insert(split_k_u_name);
applied_lora_tensors.insert(split_v_u_name);
applied_lora_tensors.insert(split_m_u_name);
applied_lora_tensors.insert(split_q_d_name);
applied_lora_tensors.insert(split_k_d_name);
applied_lora_tensors.insert(split_v_d_name);
applied_lora_tensors.insert(split_m_d_name);
}
}
if (lora_up == NULL || lora_down == NULL) {
lora_up_name = lora_pre[type] + key + lora_ups[type] + ".weight";
if (lora_tensors.find(lora_up_name) == lora_tensors.end()) {
if (key == "model_diffusion_model_output_blocks_2_2_conv") {
// fix for some sdxl lora, like lcm-lora-xl
key = "model_diffusion_model_output_blocks_2_1_conv";
lora_up_name = lora_pre[type] + key + lora_ups[type] + ".weight";
}
}
lora_down_name = lora_pre[type] + key + lora_downs[type] + ".weight";
alpha_name = lora_pre[type] + key + ".alpha";
scale_name = lora_pre[type] + key + ".scale";
if (lora_tensors.find(lora_up_name) != lora_tensors.end()) {
lora_up = lora_tensors[lora_up_name];
}
if (lora_tensors.find(lora_down_name) != lora_tensors.end()) {
lora_down = lora_tensors[lora_down_name];
}
applied_lora_tensors.insert(lora_up_name);
applied_lora_tensors.insert(lora_down_name);
applied_lora_tensors.insert(alpha_name);
applied_lora_tensors.insert(scale_name);
}
if (lora_up == NULL || lora_down == NULL) {
continue;
}
// calc_scale
int64_t dim = lora_down->ne[ggml_n_dims(lora_down) - 1];
float scale_value = 1.0f;
if (lora_tensors.find(scale_name) != lora_tensors.end()) {
scale_value = ggml_backend_tensor_get_f32(lora_tensors[scale_name]);
} else if (lora_tensors.find(alpha_name) != lora_tensors.end()) {
float alpha = ggml_backend_tensor_get_f32(lora_tensors[alpha_name]);
scale_value = alpha / dim;
}
scale_value *= multiplier;
// flat lora tensors to multiply it
int64_t lora_up_rows = lora_up->ne[ggml_n_dims(lora_up) - 1];
lora_up = ggml_reshape_2d(compute_ctx, lora_up, ggml_nelements(lora_up) / lora_up_rows, lora_up_rows);
int64_t lora_down_rows = lora_down->ne[ggml_n_dims(lora_down) - 1];
lora_down = ggml_reshape_2d(compute_ctx, lora_down, ggml_nelements(lora_down) / lora_down_rows, lora_down_rows);
// ggml_mul_mat requires tensor b transposed
lora_down = ggml_cont(compute_ctx, ggml_transpose(compute_ctx, lora_down));
struct ggml_tensor* updown = ggml_mul_mat(compute_ctx, lora_up, lora_down);
updown = ggml_cont(compute_ctx, ggml_transpose(compute_ctx, updown));
updown = ggml_reshape(compute_ctx, updown, weight);
GGML_ASSERT(ggml_nelements(updown) == ggml_nelements(weight));
updown = ggml_scale_inplace(compute_ctx, updown, scale_value);
ggml_tensor* final_weight;
if (weight->type != GGML_TYPE_F32 && weight->type != GGML_TYPE_F16) {
// final_weight = ggml_new_tensor(compute_ctx, GGML_TYPE_F32, ggml_n_dims(weight), weight->ne);
// final_weight = ggml_cpy(compute_ctx, weight, final_weight);
final_weight = to_f32(compute_ctx, weight);
final_weight = ggml_add_inplace(compute_ctx, final_weight, updown);
final_weight = ggml_cpy(compute_ctx, final_weight, weight);
} else {
final_weight = ggml_add_inplace(compute_ctx, weight, updown);
}
// final_weight = ggml_add_inplace(compute_ctx, weight, updown); // apply directly
ggml_build_forward_expand(gf, final_weight);
break;
}
}
size_t total_lora_tensors_count = 0;
size_t applied_lora_tensors_count = 0;
for (auto& kv : lora_tensors) {
total_lora_tensors_count++;
if (applied_lora_tensors.find(kv.first) == applied_lora_tensors.end()) {
LOG_WARN("unused lora tensor |%s|", kv.first.c_str());
print_ggml_tensor(kv.second, true);
// exit(0);
} else {
applied_lora_tensors_count++;
}
}
/* Don't worry if this message shows up twice in the logs per LoRA,
* this function is called once to calculate the required buffer size
* and then again to actually generate a graph to be used */
if (applied_lora_tensors_count != total_lora_tensors_count) {
LOG_WARN("Only (%lu / %lu) LoRA tensors have been applied",
applied_lora_tensors_count, total_lora_tensors_count);
} else {
LOG_DEBUG("(%lu / %lu) LoRA tensors applied successfully",
applied_lora_tensors_count, total_lora_tensors_count);
}
return gf;
}
void apply(std::map<std::string, struct ggml_tensor*> model_tensors, SDVersion version, int n_threads) {
auto get_graph = [&]() -> struct ggml_cgraph* {
return build_lora_graph(model_tensors, version);
};
GGMLRunner::compute(get_graph, n_threads, true);
}
};
#endif // __LORA_HPP__