-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathexport_mask.py
196 lines (163 loc) · 8.06 KB
/
export_mask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import argparse
import sys
import time
sys.path.append('./') # to run '$ python *.py' files in subdirectories
import tensorrt as trt
import pycuda.autoinit
import pycuda.driver as cuda
import numpy as np
import argparse
import time
import numpy as np
import argparse
import onnxruntime as ort
import os
import torch
import torch.backends.cudnn as cudnn
import cv2
import onnx
import yaml
from torchvision import transforms
import tqdm
from utils.datasets import letterbox
from utils.general import non_max_suppression_mask_conf
from detectron2.modeling.poolers import ROIPooler
from detectron2.structures import Boxes
from detectron2.utils.memory import retry_if_cuda_oom
from detectron2.layers import paste_masks_in_image
from utils.general import set_logging
from models.experimental import attempt_load
def PostProcess(img, hyp, model, inf_out, attn, bases, sem_output):
bases = torch.cat([bases, sem_output], dim=1)
nb, _, height, width = img.shape
names = model.names
pooler_scale = model.pooler_scale
pooler = ROIPooler(output_size=hyp['mask_resolution'], scales=(pooler_scale,), sampling_ratio=1, pooler_type='ROIAlignV2', canonical_level=2)
output, output_mask = non_max_suppression_mask_conf(inf_out, attn, bases, pooler, hyp, conf_thres=0.25, iou_thres=0.65, merge=False, mask_iou=None)
pred, pred_masks = output[0], output_mask[0]
base = bases[0]
bboxes = Boxes(pred[:, :4])
original_pred_masks = pred_masks.view(-1, hyp['mask_resolution'], hyp['mask_resolution'])
pred_masks = retry_if_cuda_oom(paste_masks_in_image)( original_pred_masks, bboxes, (height, width), threshold=0.5)
pred_masks_np = pred_masks.detach().cpu().numpy()
pred_cls = pred[:, 5].detach().cpu().numpy()
pred_conf = pred[:, 4].detach().cpu().numpy()
nimg = img[0].permute(1, 2, 0) * 255
nimg = nimg.cpu().numpy().astype(np.uint8)
nimg = cv2.cvtColor(nimg, cv2.COLOR_RGB2BGR)
nbboxes = bboxes.tensor.detach().cpu().numpy().astype(np.int)
pnimg = nimg.copy()
for one_mask, bbox, cls, conf in zip(pred_masks_np, nbboxes, pred_cls, pred_conf):
if conf < 0.25:
continue
color = [np.random.randint(255), np.random.randint(255), np.random.randint(255)]
print(color)
pnimg[one_mask] = pnimg[one_mask] * 0.5 + np.array(color, dtype=np.uint8) * 0.5
pnimg = cv2.rectangle(pnimg, (bbox[0], bbox[1]), (bbox[2], bbox[3]), color, 2)
return pnimg
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='./yolor-csp-c.pt', help='weights path')
parser.add_argument('--onnx_name', type=str, default='./yolov7_mask.onnx', help='onnx filename')
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
parser.add_argument('--dynamic', action='store_true', help='dynamic ONNX axes')
parser.add_argument('--dynamic-batch', action='store_true', help='dynamic batch onnx for tensorrt and onnx-runtime')
parser.add_argument('--grid', action='store_true', help='export Detect() layer grid')
parser.add_argument('--end2end', action='store_true', help='export end2end onnx')
parser.add_argument('--max-wh', type=int, default=None, help='None for tensorrt nms, int value for onnx-runtime nms')
parser.add_argument('--topk-all', type=int, default=100, help='topk objects for every images')
parser.add_argument('--iou-thres', type=float, default=0.45, help='iou threshold for NMS')
parser.add_argument('--conf-thres', type=float, default=0.25, help='conf threshold for NMS')
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--simplify', action='store_true', help='simplify onnx model')
parser.add_argument('--include-nms', action='store_true', help='export end2end onnx')
parser.add_argument('--fp16', action='store_true', help='CoreML FP16 half-precision export')
parser.add_argument('--int8', action='store_true', help='CoreML INT8 quantization')
parser.add_argument("--input", nargs="+", help="A file or directory of your input data ")
parser.add_argument('--imgsz', type=int, default=320, help='image size') # height, width
parser.add_argument('--no_infer', action='store_true', help='CoreML FP16 half-precision export')
opt = parser.parse_args()
opt.dynamic = opt.dynamic and not opt.end2end
opt.dynamic = False if opt.dynamic_batch else opt.dynamic
set_logging()
t = time.time()
device = torch.device( "cpu")
with open('data/hyp.scratch.mask.yaml') as f:
hyp = yaml.load(f, Loader=yaml.FullLoader)
device = torch.device( "cpu")
weights = opt.weights
model = attempt_load(weights, map_location=device)
_ = model.eval()
import time
time1 = time.time()
loop = 1
for i in range(loop):
image = cv2.imread(opt.input[0]) # 504x378 image
image = letterbox(image, (opt.imgsz,opt.imgsz), stride=64, auto=True)[0]
image_ = image.copy()
image = transforms.ToTensor()(image)
image = torch.tensor(np.array([image.numpy()]))
image = image.to(device)
img = image
y = model(image)
try:
import onnx
print('\nStarting ONNX export with onnx %s...' % onnx.__version__)
f ="./onnx/"+opt.onnx_name
model.eval()
output_names = ['output']
dynamic_axes = None
if opt.grid :
model.model[-1].concat = True
torch.onnx.export(model, image, f, verbose=True, opset_version=13, input_names=['images'],
output_names=output_names,
dynamic_axes=dynamic_axes)
# Checks
onnx_model = onnx.load(f) # load onnx model
onnx.checker.check_model(onnx_model) # check onnx model
onnx.save(onnx_model,f)
print('ONNX export success, saved as %s' % f)
except Exception as e:
print('ONNX export failure: %s' % e)
# Finish
print('\nExport complete (%.2fs). Visualize with https://github.com/lutzroeder/netron.' % (time.time() - t))
if not(opt.no_infer):
f ="./onnx/"+opt.onnx_name
image_path = opt.input
iteration = 0
start_time_all = time.time()
w = f
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if cuda else ['CPUExecutionProvider']
session = ort.InferenceSession(w, providers=providers)
model_onnx = onnx.load(w)
input_shapes = [[d.dim_value for d in _input.type.tensor_type.shape.dim] for _input in model_onnx.graph.input]
output_shapes = [[d.dim_value for d in _output.type.tensor_type.shape.dim] for _output in model_onnx.graph.output]
outname = [i.name for i in session.get_outputs()]
inname = [i.name for i in session.get_inputs()]
time_use_trt_only = 0
time_use_trt_ = 0
for img_path in tqdm.tqdm(image_path):
start_time = time.time()
image = cv2.imread(img_path)
image = letterbox(image, (opt.imgsz, opt.imgsz), stride=64, auto=True)[0]
image_letter = image.copy()
image_ = image.copy()
image = transforms.ToTensor()(image)
image = torch.tensor(np.array([image.numpy()])) ##tensor or numpy??
img = np.array(image)
img = np.ascontiguousarray(img, dtype=np.float32)
inp = {inname[0]:img}
output = session.run(outname, inp)[0]
output1 = session.run(outname, inp)[1]
output2 = session.run(outname, inp)[2]
output3 = session.run(outname, inp)[3]
output4 = session.run(outname, inp)[4]
output5 = session.run(outname, inp)[5]
output6 = session.run(outname, inp)[6]
inf_out, train_out = torch.tensor(output), [torch.tensor(output2),torch.tensor(output3),torch.tensor(output4)]
attn, mask_iou, bases, sem_output = torch.tensor(output1), None, torch.tensor(output5), torch.tensor(output6)
img = torch.tensor(img)
pnimg = PostProcess(img, hyp, model, inf_out, attn, bases, sem_output)
save_path = "./result_onnx"
cv2.imwrite(save_path+str(int(opt.imgsz))+".jpg", pnimg)
iteration+=1