diff --git a/.github/workflows/deploy.yml b/.github/workflows/deploy.yml index 3cb15a5..d67116e 100644 --- a/.github/workflows/deploy.yml +++ b/.github/workflows/deploy.yml @@ -45,7 +45,7 @@ jobs: # Build the book - name: Build the book run: | - jupyter-book build src + jupyter-book build --path-output . src # Upload the book's HTML as an artifact - name: Upload artifact diff --git a/src/_build/.doctrees/bibliography.doctree b/_build/.doctrees/bibliography.doctree similarity index 71% rename from src/_build/.doctrees/bibliography.doctree rename to _build/.doctrees/bibliography.doctree index 1b8a0f7..8124919 100644 Binary files a/src/_build/.doctrees/bibliography.doctree and b/_build/.doctrees/bibliography.doctree differ diff --git a/src/_build/.doctrees/book-intro.doctree b/_build/.doctrees/book-intro.doctree similarity index 95% rename from src/_build/.doctrees/book-intro.doctree rename to _build/.doctrees/book-intro.doctree index 5335ee5..58e46bf 100644 Binary files a/src/_build/.doctrees/book-intro.doctree and b/_build/.doctrees/book-intro.doctree differ diff --git a/_build/.doctrees/environment.pickle b/_build/.doctrees/environment.pickle new file mode 100644 index 0000000..e7636a8 Binary files /dev/null and b/_build/.doctrees/environment.pickle differ diff --git a/src/_build/.doctrees/sections/appendix/upload_Measures_data_to_bucket.doctree b/_build/.doctrees/sections/appendix/upload_Measures_data_to_bucket.doctree similarity index 99% rename from src/_build/.doctrees/sections/appendix/upload_Measures_data_to_bucket.doctree rename to _build/.doctrees/sections/appendix/upload_Measures_data_to_bucket.doctree index b0bf18c..dbf02d1 100644 Binary files a/src/_build/.doctrees/sections/appendix/upload_Measures_data_to_bucket.doctree and b/_build/.doctrees/sections/appendix/upload_Measures_data_to_bucket.doctree differ diff --git a/src/_build/.doctrees/sections/ice_flow/ablation_accumulation.doctree b/_build/.doctrees/sections/ice_flow/ablation_accumulation.doctree similarity index 95% rename from src/_build/.doctrees/sections/ice_flow/ablation_accumulation.doctree rename to _build/.doctrees/sections/ice_flow/ablation_accumulation.doctree index e77d52c..60d2dbd 100644 Binary files a/src/_build/.doctrees/sections/ice_flow/ablation_accumulation.doctree and b/_build/.doctrees/sections/ice_flow/ablation_accumulation.doctree differ diff --git a/src/_build/.doctrees/sections/ice_flow/antarctic-ice-flow.doctree b/_build/.doctrees/sections/ice_flow/antarctic-ice-flow.doctree similarity index 98% rename from src/_build/.doctrees/sections/ice_flow/antarctic-ice-flow.doctree rename to _build/.doctrees/sections/ice_flow/antarctic-ice-flow.doctree index ca3b2d7..9cbcbce 100644 Binary files a/src/_build/.doctrees/sections/ice_flow/antarctic-ice-flow.doctree and b/_build/.doctrees/sections/ice_flow/antarctic-ice-flow.doctree differ diff --git a/src/_build/.doctrees/sections/ice_flow/depth_integrated_mass_balance.doctree b/_build/.doctrees/sections/ice_flow/depth_integrated_mass_balance.doctree similarity index 97% rename from src/_build/.doctrees/sections/ice_flow/depth_integrated_mass_balance.doctree rename to _build/.doctrees/sections/ice_flow/depth_integrated_mass_balance.doctree index ae13d8a..413f2dc 100644 Binary files a/src/_build/.doctrees/sections/ice_flow/depth_integrated_mass_balance.doctree and b/_build/.doctrees/sections/ice_flow/depth_integrated_mass_balance.doctree differ diff --git a/src/_build/.doctrees/sections/ice_flow/deviatoric_stress.doctree b/_build/.doctrees/sections/ice_flow/deviatoric_stress.doctree similarity index 89% rename from src/_build/.doctrees/sections/ice_flow/deviatoric_stress.doctree rename to _build/.doctrees/sections/ice_flow/deviatoric_stress.doctree index 60749d4..f88c9f2 100644 Binary files a/src/_build/.doctrees/sections/ice_flow/deviatoric_stress.doctree and b/_build/.doctrees/sections/ice_flow/deviatoric_stress.doctree differ diff --git a/src/_build/.doctrees/sections/ice_flow/driving_stress.doctree b/_build/.doctrees/sections/ice_flow/driving_stress.doctree similarity index 94% rename from src/_build/.doctrees/sections/ice_flow/driving_stress.doctree rename to _build/.doctrees/sections/ice_flow/driving_stress.doctree index 4152205..b1330b8 100644 Binary files a/src/_build/.doctrees/sections/ice_flow/driving_stress.doctree and b/_build/.doctrees/sections/ice_flow/driving_stress.doctree differ diff --git a/src/_build/.doctrees/sections/ice_flow/gradient.doctree b/_build/.doctrees/sections/ice_flow/gradient.doctree similarity index 99% rename from src/_build/.doctrees/sections/ice_flow/gradient.doctree rename to _build/.doctrees/sections/ice_flow/gradient.doctree index 3427a3e..e688e2f 100644 Binary files a/src/_build/.doctrees/sections/ice_flow/gradient.doctree and b/_build/.doctrees/sections/ice_flow/gradient.doctree differ diff --git a/src/_build/.doctrees/sections/ice_flow/ice-flow-intro.doctree b/_build/.doctrees/sections/ice_flow/ice-flow-intro.doctree similarity index 88% rename from src/_build/.doctrees/sections/ice_flow/ice-flow-intro.doctree rename to _build/.doctrees/sections/ice_flow/ice-flow-intro.doctree index 1c6d8bf..e7860a7 100644 Binary files a/src/_build/.doctrees/sections/ice_flow/ice-flow-intro.doctree and b/_build/.doctrees/sections/ice_flow/ice-flow-intro.doctree differ diff --git a/src/_build/.doctrees/sections/ice_flow/other-ice-flow-models.doctree b/_build/.doctrees/sections/ice_flow/other-ice-flow-models.doctree similarity index 98% rename from src/_build/.doctrees/sections/ice_flow/other-ice-flow-models.doctree rename to _build/.doctrees/sections/ice_flow/other-ice-flow-models.doctree index 70355b3..bcc88a6 100644 Binary files a/src/_build/.doctrees/sections/ice_flow/other-ice-flow-models.doctree and b/_build/.doctrees/sections/ice_flow/other-ice-flow-models.doctree differ diff --git a/src/_build/.doctrees/sections/ice_flow/rheology.doctree b/_build/.doctrees/sections/ice_flow/rheology.doctree similarity index 86% rename from src/_build/.doctrees/sections/ice_flow/rheology.doctree rename to _build/.doctrees/sections/ice_flow/rheology.doctree index 3f96111..04ded72 100644 Binary files a/src/_build/.doctrees/sections/ice_flow/rheology.doctree and b/_build/.doctrees/sections/ice_flow/rheology.doctree differ diff --git a/src/_build/.doctrees/sections/ice_flow/sia_derivation.doctree b/_build/.doctrees/sections/ice_flow/sia_derivation.doctree similarity index 97% rename from src/_build/.doctrees/sections/ice_flow/sia_derivation.doctree rename to _build/.doctrees/sections/ice_flow/sia_derivation.doctree index a0d1e2e..c48a4d1 100644 Binary files a/src/_build/.doctrees/sections/ice_flow/sia_derivation.doctree and b/_build/.doctrees/sections/ice_flow/sia_derivation.doctree differ diff --git a/src/_build/.doctrees/sections/ice_flow/strain_velocity.doctree b/_build/.doctrees/sections/ice_flow/strain_velocity.doctree similarity index 94% rename from src/_build/.doctrees/sections/ice_flow/strain_velocity.doctree rename to _build/.doctrees/sections/ice_flow/strain_velocity.doctree index 722e295..e9cd914 100644 Binary files a/src/_build/.doctrees/sections/ice_flow/strain_velocity.doctree and b/_build/.doctrees/sections/ice_flow/strain_velocity.doctree differ diff --git a/src/_build/.doctrees/sections/ice_flow/stress_balance_eqns.doctree b/_build/.doctrees/sections/ice_flow/stress_balance_eqns.doctree similarity index 95% rename from src/_build/.doctrees/sections/ice_flow/stress_balance_eqns.doctree rename to _build/.doctrees/sections/ice_flow/stress_balance_eqns.doctree index b28d9cc..7abc9a5 100644 Binary files a/src/_build/.doctrees/sections/ice_flow/stress_balance_eqns.doctree and b/_build/.doctrees/sections/ice_flow/stress_balance_eqns.doctree differ diff --git a/src/_build/.doctrees/sections/ice_flow/stress_strain_tensors.doctree b/_build/.doctrees/sections/ice_flow/stress_strain_tensors.doctree similarity index 73% rename from src/_build/.doctrees/sections/ice_flow/stress_strain_tensors.doctree rename to _build/.doctrees/sections/ice_flow/stress_strain_tensors.doctree index ede978e..38fbb53 100644 Binary files a/src/_build/.doctrees/sections/ice_flow/stress_strain_tensors.doctree and b/_build/.doctrees/sections/ice_flow/stress_strain_tensors.doctree differ diff --git a/src/_build/.doctrees/sections/ice_flow/u_bar_and_lliboutry.doctree b/_build/.doctrees/sections/ice_flow/u_bar_and_lliboutry.doctree similarity index 97% rename from src/_build/.doctrees/sections/ice_flow/u_bar_and_lliboutry.doctree rename to _build/.doctrees/sections/ice_flow/u_bar_and_lliboutry.doctree index 67d07e1..4c78b79 100644 Binary files a/src/_build/.doctrees/sections/ice_flow/u_bar_and_lliboutry.doctree and b/_build/.doctrees/sections/ice_flow/u_bar_and_lliboutry.doctree differ diff --git a/src/_build/.doctrees/sections/ice_flow/vec_calc.doctree b/_build/.doctrees/sections/ice_flow/vec_calc.doctree similarity index 96% rename from src/_build/.doctrees/sections/ice_flow/vec_calc.doctree rename to _build/.doctrees/sections/ice_flow/vec_calc.doctree index f6f2c7d..c72329d 100644 Binary files a/src/_build/.doctrees/sections/ice_flow/vec_calc.doctree and b/_build/.doctrees/sections/ice_flow/vec_calc.doctree differ diff --git a/src/_build/.doctrees/sections/radar/apres/apres-intro.doctree b/_build/.doctrees/sections/radar/apres/apres-intro.doctree similarity index 84% rename from src/_build/.doctrees/sections/radar/apres/apres-intro.doctree rename to _build/.doctrees/sections/radar/apres/apres-intro.doctree index 746de38..8a16616 100644 Binary files a/src/_build/.doctrees/sections/radar/apres/apres-intro.doctree and b/_build/.doctrees/sections/radar/apres/apres-intro.doctree differ diff --git a/src/_build/.doctrees/sections/radar/apres/apres_data_1.doctree b/_build/.doctrees/sections/radar/apres/apres_data_1.doctree similarity index 95% rename from src/_build/.doctrees/sections/radar/apres/apres_data_1.doctree rename to _build/.doctrees/sections/radar/apres/apres_data_1.doctree index 82bf8b2..564aa87 100644 Binary files a/src/_build/.doctrees/sections/radar/apres/apres_data_1.doctree and b/_build/.doctrees/sections/radar/apres/apres_data_1.doctree differ diff --git a/src/_build/.doctrees/sections/radar/apres/beat-frequency.doctree b/_build/.doctrees/sections/radar/apres/beat-frequency.doctree similarity index 69% rename from src/_build/.doctrees/sections/radar/apres/beat-frequency.doctree rename to _build/.doctrees/sections/radar/apres/beat-frequency.doctree index c093ac1..6843980 100644 Binary files a/src/_build/.doctrees/sections/radar/apres/beat-frequency.doctree and b/_build/.doctrees/sections/radar/apres/beat-frequency.doctree differ diff --git a/_build/.doctrees/sections/radar/apres/theory_1.doctree b/_build/.doctrees/sections/radar/apres/theory_1.doctree new file mode 100644 index 0000000..f9c83b9 Binary files /dev/null and b/_build/.doctrees/sections/radar/apres/theory_1.doctree differ diff --git a/src/_build/.doctrees/sections/radar/impulse/impulse-radar.doctree b/_build/.doctrees/sections/radar/impulse/impulse-radar.doctree similarity index 73% rename from src/_build/.doctrees/sections/radar/impulse/impulse-radar.doctree rename to _build/.doctrees/sections/radar/impulse/impulse-radar.doctree index c739184..f1cfd0f 100644 Binary files a/src/_build/.doctrees/sections/radar/impulse/impulse-radar.doctree and b/_build/.doctrees/sections/radar/impulse/impulse-radar.doctree differ diff --git a/src/_build/.doctrees/sections/temperature/analytical_solution.doctree b/_build/.doctrees/sections/temperature/analytical_solution.doctree similarity index 83% rename from src/_build/.doctrees/sections/temperature/analytical_solution.doctree rename to _build/.doctrees/sections/temperature/analytical_solution.doctree index 6fda9a6..e1ba151 100644 Binary files a/src/_build/.doctrees/sections/temperature/analytical_solution.doctree and b/_build/.doctrees/sections/temperature/analytical_solution.doctree differ diff --git a/src/_build/.doctrees/sections/temperature/heat_equation.doctree b/_build/.doctrees/sections/temperature/heat_equation.doctree similarity index 95% rename from src/_build/.doctrees/sections/temperature/heat_equation.doctree rename to _build/.doctrees/sections/temperature/heat_equation.doctree index 2531b87..c312fb6 100644 Binary files a/src/_build/.doctrees/sections/temperature/heat_equation.doctree and b/_build/.doctrees/sections/temperature/heat_equation.doctree differ diff --git a/src/_build/.doctrees/sections/temperature/heat_intro.doctree b/_build/.doctrees/sections/temperature/heat_intro.doctree similarity index 80% rename from src/_build/.doctrees/sections/temperature/heat_intro.doctree rename to _build/.doctrees/sections/temperature/heat_intro.doctree index 839273d..b0f6327 100644 Binary files a/src/_build/.doctrees/sections/temperature/heat_intro.doctree and b/_build/.doctrees/sections/temperature/heat_intro.doctree differ diff --git a/src/_build/.doctrees/sections/temperature/numerical_solutions.doctree b/_build/.doctrees/sections/temperature/numerical_solutions.doctree similarity index 74% rename from src/_build/.doctrees/sections/temperature/numerical_solutions.doctree rename to _build/.doctrees/sections/temperature/numerical_solutions.doctree index 739a3eb..4366849 100644 Binary files a/src/_build/.doctrees/sections/temperature/numerical_solutions.doctree and b/_build/.doctrees/sections/temperature/numerical_solutions.doctree differ diff --git a/src/_build/html/.buildinfo b/_build/html/.buildinfo similarity index 100% rename from src/_build/html/.buildinfo rename to _build/html/.buildinfo diff --git a/src/_build/html/_images/048841bcbd22f7cbd7181a19e668481eae62e578ffcdecad87ce6e54c4ffa79e.png b/_build/html/_images/048841bcbd22f7cbd7181a19e668481eae62e578ffcdecad87ce6e54c4ffa79e.png similarity index 100% rename from src/_build/html/_images/048841bcbd22f7cbd7181a19e668481eae62e578ffcdecad87ce6e54c4ffa79e.png rename to _build/html/_images/048841bcbd22f7cbd7181a19e668481eae62e578ffcdecad87ce6e54c4ffa79e.png diff --git a/src/_build/html/_images/0a80616dbdf54486dfaf66baad92ae348ba9f8005c6f761232268643530127dc.png b/_build/html/_images/0a80616dbdf54486dfaf66baad92ae348ba9f8005c6f761232268643530127dc.png similarity index 100% rename from src/_build/html/_images/0a80616dbdf54486dfaf66baad92ae348ba9f8005c6f761232268643530127dc.png rename to _build/html/_images/0a80616dbdf54486dfaf66baad92ae348ba9f8005c6f761232268643530127dc.png diff --git a/src/_build/html/_images/0aefaa8f2bc32da2801396cd98bbcc9a586a8f8d03a4dc9343c5fad6cbc2db28.png b/_build/html/_images/0aefaa8f2bc32da2801396cd98bbcc9a586a8f8d03a4dc9343c5fad6cbc2db28.png similarity index 100% rename from src/_build/html/_images/0aefaa8f2bc32da2801396cd98bbcc9a586a8f8d03a4dc9343c5fad6cbc2db28.png rename to _build/html/_images/0aefaa8f2bc32da2801396cd98bbcc9a586a8f8d03a4dc9343c5fad6cbc2db28.png diff --git a/src/_build/html/_images/0b72a055cb3688d1d3d28ae9a68ba7da666268414043da760acd1af99bb42670.png b/_build/html/_images/0b72a055cb3688d1d3d28ae9a68ba7da666268414043da760acd1af99bb42670.png similarity index 100% rename from src/_build/html/_images/0b72a055cb3688d1d3d28ae9a68ba7da666268414043da760acd1af99bb42670.png rename to _build/html/_images/0b72a055cb3688d1d3d28ae9a68ba7da666268414043da760acd1af99bb42670.png diff --git a/src/_build/html/_images/169f939fd5f38a4a0ebf8cdcc753153db046dd1919c2324c274207a4a080cd45.png b/_build/html/_images/169f939fd5f38a4a0ebf8cdcc753153db046dd1919c2324c274207a4a080cd45.png similarity index 100% rename from src/_build/html/_images/169f939fd5f38a4a0ebf8cdcc753153db046dd1919c2324c274207a4a080cd45.png rename to _build/html/_images/169f939fd5f38a4a0ebf8cdcc753153db046dd1919c2324c274207a4a080cd45.png diff --git a/src/_build/html/_images/18edcfc566af01753b3ea38521e0f875631294ab9bfe7406e1ec177689fa03dd.png b/_build/html/_images/18edcfc566af01753b3ea38521e0f875631294ab9bfe7406e1ec177689fa03dd.png similarity index 100% rename from src/_build/html/_images/18edcfc566af01753b3ea38521e0f875631294ab9bfe7406e1ec177689fa03dd.png rename to _build/html/_images/18edcfc566af01753b3ea38521e0f875631294ab9bfe7406e1ec177689fa03dd.png diff --git a/src/_build/html/_images/1c779085bd705b655abcdd573d0d39ac71e717ce61645789aae32a32ed4ec077.png b/_build/html/_images/1c779085bd705b655abcdd573d0d39ac71e717ce61645789aae32a32ed4ec077.png similarity index 100% rename from src/_build/html/_images/1c779085bd705b655abcdd573d0d39ac71e717ce61645789aae32a32ed4ec077.png rename to _build/html/_images/1c779085bd705b655abcdd573d0d39ac71e717ce61645789aae32a32ed4ec077.png diff --git a/src/_build/html/_images/2522ccd0c9e80239916abdf330299d1734bb8d26b9d2510ad5b32385dc11f745.png b/_build/html/_images/2522ccd0c9e80239916abdf330299d1734bb8d26b9d2510ad5b32385dc11f745.png similarity index 100% rename from src/_build/html/_images/2522ccd0c9e80239916abdf330299d1734bb8d26b9d2510ad5b32385dc11f745.png rename to _build/html/_images/2522ccd0c9e80239916abdf330299d1734bb8d26b9d2510ad5b32385dc11f745.png diff --git a/src/_build/html/_images/309b13c0d1072ce4db783d3381b7da82240d4f914da6b8f5857758d3254462ef.png b/_build/html/_images/309b13c0d1072ce4db783d3381b7da82240d4f914da6b8f5857758d3254462ef.png similarity index 100% rename from src/_build/html/_images/309b13c0d1072ce4db783d3381b7da82240d4f914da6b8f5857758d3254462ef.png rename to _build/html/_images/309b13c0d1072ce4db783d3381b7da82240d4f914da6b8f5857758d3254462ef.png diff --git a/src/_build/html/_images/33a48945d2267b8c2372b8919ed2678a20f0a2537b07d9abc7e12bce14709e23.png b/_build/html/_images/33a48945d2267b8c2372b8919ed2678a20f0a2537b07d9abc7e12bce14709e23.png similarity index 100% rename from src/_build/html/_images/33a48945d2267b8c2372b8919ed2678a20f0a2537b07d9abc7e12bce14709e23.png rename to _build/html/_images/33a48945d2267b8c2372b8919ed2678a20f0a2537b07d9abc7e12bce14709e23.png diff --git a/src/_build/html/_images/437c7bd7bbbd92b229f3f4f9793fedec336fce1996fb3674aa2f05e4a4d1567f.png b/_build/html/_images/437c7bd7bbbd92b229f3f4f9793fedec336fce1996fb3674aa2f05e4a4d1567f.png similarity index 100% rename from src/_build/html/_images/437c7bd7bbbd92b229f3f4f9793fedec336fce1996fb3674aa2f05e4a4d1567f.png rename to _build/html/_images/437c7bd7bbbd92b229f3f4f9793fedec336fce1996fb3674aa2f05e4a4d1567f.png diff --git a/src/_build/html/_images/488b331df71bc07dc534d0f99de94b4fa2a3c32a13d9e1210c8404405ff20c1e.png b/_build/html/_images/488b331df71bc07dc534d0f99de94b4fa2a3c32a13d9e1210c8404405ff20c1e.png similarity index 100% rename from src/_build/html/_images/488b331df71bc07dc534d0f99de94b4fa2a3c32a13d9e1210c8404405ff20c1e.png rename to _build/html/_images/488b331df71bc07dc534d0f99de94b4fa2a3c32a13d9e1210c8404405ff20c1e.png diff --git a/src/_build/html/_images/4eae32bfb2e16d25cd8b0baf76721f81c7ff1f86ed98c97533278b764e5cf3c4.png b/_build/html/_images/4eae32bfb2e16d25cd8b0baf76721f81c7ff1f86ed98c97533278b764e5cf3c4.png similarity index 100% rename from src/_build/html/_images/4eae32bfb2e16d25cd8b0baf76721f81c7ff1f86ed98c97533278b764e5cf3c4.png rename to _build/html/_images/4eae32bfb2e16d25cd8b0baf76721f81c7ff1f86ed98c97533278b764e5cf3c4.png diff --git a/src/_build/html/_images/511187e5394ab20906d1a5c45eaca64ca6f775ee00794baedb813f4b349749af.png b/_build/html/_images/511187e5394ab20906d1a5c45eaca64ca6f775ee00794baedb813f4b349749af.png similarity index 100% rename from src/_build/html/_images/511187e5394ab20906d1a5c45eaca64ca6f775ee00794baedb813f4b349749af.png rename to _build/html/_images/511187e5394ab20906d1a5c45eaca64ca6f775ee00794baedb813f4b349749af.png diff --git a/src/_build/html/_images/5a9f935be935e4b9b65e227a994838769feece705015af6ebeb09c5a01045ba2.png b/_build/html/_images/5a9f935be935e4b9b65e227a994838769feece705015af6ebeb09c5a01045ba2.png similarity index 100% rename from src/_build/html/_images/5a9f935be935e4b9b65e227a994838769feece705015af6ebeb09c5a01045ba2.png rename to _build/html/_images/5a9f935be935e4b9b65e227a994838769feece705015af6ebeb09c5a01045ba2.png diff --git a/src/_build/html/_images/5c060ba8860d4535b4d74b945c122fbe432b242c75f93d532531a0345d6ee83b.png b/_build/html/_images/5c060ba8860d4535b4d74b945c122fbe432b242c75f93d532531a0345d6ee83b.png similarity index 100% rename from src/_build/html/_images/5c060ba8860d4535b4d74b945c122fbe432b242c75f93d532531a0345d6ee83b.png rename to _build/html/_images/5c060ba8860d4535b4d74b945c122fbe432b242c75f93d532531a0345d6ee83b.png diff --git a/src/_build/html/_images/5f96cbd9a0960cacebadc9142bf5e22e7491e48d4fa8ac4e71990584be179702.png b/_build/html/_images/5f96cbd9a0960cacebadc9142bf5e22e7491e48d4fa8ac4e71990584be179702.png similarity index 100% rename from src/_build/html/_images/5f96cbd9a0960cacebadc9142bf5e22e7491e48d4fa8ac4e71990584be179702.png rename to _build/html/_images/5f96cbd9a0960cacebadc9142bf5e22e7491e48d4fa8ac4e71990584be179702.png diff --git a/src/_build/html/_images/6218d2cb9292ea7d053b1dd7683bfa56d769a4f99229575a5a287db558aa290c.png b/_build/html/_images/6218d2cb9292ea7d053b1dd7683bfa56d769a4f99229575a5a287db558aa290c.png similarity index 100% rename from src/_build/html/_images/6218d2cb9292ea7d053b1dd7683bfa56d769a4f99229575a5a287db558aa290c.png rename to _build/html/_images/6218d2cb9292ea7d053b1dd7683bfa56d769a4f99229575a5a287db558aa290c.png diff --git a/src/_build/html/_images/665ecdaf2859d4d3425ad406336282a6fcaba70ca14f013f995b7039c4fec890.png b/_build/html/_images/665ecdaf2859d4d3425ad406336282a6fcaba70ca14f013f995b7039c4fec890.png similarity index 100% rename from src/_build/html/_images/665ecdaf2859d4d3425ad406336282a6fcaba70ca14f013f995b7039c4fec890.png rename to _build/html/_images/665ecdaf2859d4d3425ad406336282a6fcaba70ca14f013f995b7039c4fec890.png diff --git a/src/_build/html/_images/75594a167a71503ff6545c9961edfdf089e09e06f7cf5da6c6e812b3002adbcd.png b/_build/html/_images/75594a167a71503ff6545c9961edfdf089e09e06f7cf5da6c6e812b3002adbcd.png similarity index 100% rename from src/_build/html/_images/75594a167a71503ff6545c9961edfdf089e09e06f7cf5da6c6e812b3002adbcd.png rename to _build/html/_images/75594a167a71503ff6545c9961edfdf089e09e06f7cf5da6c6e812b3002adbcd.png diff --git a/src/_build/html/_images/7fcd9fde4bd4ed69bc9d1948a8dc03de4c3787faff893b3f33eca971cbf62bf3.png b/_build/html/_images/7fcd9fde4bd4ed69bc9d1948a8dc03de4c3787faff893b3f33eca971cbf62bf3.png similarity index 100% rename from src/_build/html/_images/7fcd9fde4bd4ed69bc9d1948a8dc03de4c3787faff893b3f33eca971cbf62bf3.png rename to _build/html/_images/7fcd9fde4bd4ed69bc9d1948a8dc03de4c3787faff893b3f33eca971cbf62bf3.png diff --git a/src/_build/html/_images/9c1226f05c631f6637e25984c9a3f12b7bee1227b5793fb4ee67c632b95d2328.png b/_build/html/_images/9c1226f05c631f6637e25984c9a3f12b7bee1227b5793fb4ee67c632b95d2328.png similarity index 100% rename from src/_build/html/_images/9c1226f05c631f6637e25984c9a3f12b7bee1227b5793fb4ee67c632b95d2328.png rename to _build/html/_images/9c1226f05c631f6637e25984c9a3f12b7bee1227b5793fb4ee67c632b95d2328.png diff --git a/src/_build/html/_images/9f82996e6bf7b2cb00eb1b9721356367b1edcdc02476f5b2bc500c78cb0d806e.png b/_build/html/_images/9f82996e6bf7b2cb00eb1b9721356367b1edcdc02476f5b2bc500c78cb0d806e.png similarity index 100% rename from src/_build/html/_images/9f82996e6bf7b2cb00eb1b9721356367b1edcdc02476f5b2bc500c78cb0d806e.png rename to _build/html/_images/9f82996e6bf7b2cb00eb1b9721356367b1edcdc02476f5b2bc500c78cb0d806e.png diff --git a/src/_build/html/_images/HeatEquationBox.jpg b/_build/html/_images/HeatEquationBox.jpg similarity index 100% rename from src/_build/html/_images/HeatEquationBox.jpg rename to _build/html/_images/HeatEquationBox.jpg diff --git a/src/_build/html/_images/T_minimum.jpg b/_build/html/_images/T_minimum.jpg similarity index 100% rename from src/_build/html/_images/T_minimum.jpg rename to _build/html/_images/T_minimum.jpg diff --git a/src/_build/html/_images/active-filter-ApRES.png b/_build/html/_images/active-filter-ApRES.png similarity index 100% rename from src/_build/html/_images/active-filter-ApRES.png rename to _build/html/_images/active-filter-ApRES.png diff --git a/src/_build/html/_images/b42eb100c1d5442d87549998d1fd8ca42c1a0b6b07190d9a3f4fed388c160d0f.png b/_build/html/_images/b42eb100c1d5442d87549998d1fd8ca42c1a0b6b07190d9a3f4fed388c160d0f.png similarity index 100% rename from src/_build/html/_images/b42eb100c1d5442d87549998d1fd8ca42c1a0b6b07190d9a3f4fed388c160d0f.png rename to _build/html/_images/b42eb100c1d5442d87549998d1fd8ca42c1a0b6b07190d9a3f4fed388c160d0f.png diff --git a/src/_build/html/_images/c0a49c4c7bd3dbf5831cf99e1c89fb95d849dd1f9c924baaa4a87fd7b9f380b6.png b/_build/html/_images/c0a49c4c7bd3dbf5831cf99e1c89fb95d849dd1f9c924baaa4a87fd7b9f380b6.png similarity index 100% rename from src/_build/html/_images/c0a49c4c7bd3dbf5831cf99e1c89fb95d849dd1f9c924baaa4a87fd7b9f380b6.png rename to _build/html/_images/c0a49c4c7bd3dbf5831cf99e1c89fb95d849dd1f9c924baaa4a87fd7b9f380b6.png diff --git a/src/_build/html/_images/c0dc880fc268d2724596601e04131e52ceb1c375c3166db3493b77c8e6893a4d.png b/_build/html/_images/c0dc880fc268d2724596601e04131e52ceb1c375c3166db3493b77c8e6893a4d.png similarity index 100% rename from src/_build/html/_images/c0dc880fc268d2724596601e04131e52ceb1c375c3166db3493b77c8e6893a4d.png rename to _build/html/_images/c0dc880fc268d2724596601e04131e52ceb1c375c3166db3493b77c8e6893a4d.png diff --git a/src/_build/html/_images/cf1bc2b2716f3d34cee07a4cc2cf15915eefbe94077ec292ced63ef75f3e823b.png b/_build/html/_images/cf1bc2b2716f3d34cee07a4cc2cf15915eefbe94077ec292ced63ef75f3e823b.png similarity index 100% rename from src/_build/html/_images/cf1bc2b2716f3d34cee07a4cc2cf15915eefbe94077ec292ced63ef75f3e823b.png rename to _build/html/_images/cf1bc2b2716f3d34cee07a4cc2cf15915eefbe94077ec292ced63ef75f3e823b.png diff --git a/src/_build/html/_images/e3b95699ffe53e40cd8e4d133eeb5f1ace0a7cb87191548bb6e40a360256533f.png b/_build/html/_images/e3b95699ffe53e40cd8e4d133eeb5f1ace0a7cb87191548bb6e40a360256533f.png similarity index 100% rename from src/_build/html/_images/e3b95699ffe53e40cd8e4d133eeb5f1ace0a7cb87191548bb6e40a360256533f.png rename to _build/html/_images/e3b95699ffe53e40cd8e4d133eeb5f1ace0a7cb87191548bb6e40a360256533f.png diff --git a/src/_build/html/_images/e5119be5e762fe1efbc6a4e24a1403a244f441d0c9498b290b6f42787971f55c.png b/_build/html/_images/e5119be5e762fe1efbc6a4e24a1403a244f441d0c9498b290b6f42787971f55c.png similarity index 100% rename from src/_build/html/_images/e5119be5e762fe1efbc6a4e24a1403a244f441d0c9498b290b6f42787971f55c.png rename to _build/html/_images/e5119be5e762fe1efbc6a4e24a1403a244f441d0c9498b290b6f42787971f55c.png diff --git a/src/_build/html/_images/f73a32431eab53dfdae185157510062b590930a385f12f4297b107bda74d6b4c.png b/_build/html/_images/f73a32431eab53dfdae185157510062b590930a385f12f4297b107bda74d6b4c.png similarity index 100% rename from src/_build/html/_images/f73a32431eab53dfdae185157510062b590930a385f12f4297b107bda74d6b4c.png rename to _build/html/_images/f73a32431eab53dfdae185157510062b590930a385f12f4297b107bda74d6b4c.png diff --git a/src/_build/html/_images/fb689714bf817d671940047be490f3c3cc6c8805f5badc35e80a17e810613986.png b/_build/html/_images/fb689714bf817d671940047be490f3c3cc6c8805f5badc35e80a17e810613986.png similarity index 100% rename from src/_build/html/_images/fb689714bf817d671940047be490f3c3cc6c8805f5badc35e80a17e810613986.png rename to _build/html/_images/fb689714bf817d671940047be490f3c3cc6c8805f5badc35e80a17e810613986.png diff --git a/src/_build/html/_images/fd42449fb031217f646a54b6e9d0161ea6bcddb03608037cc343465572a89767.png b/_build/html/_images/fd42449fb031217f646a54b6e9d0161ea6bcddb03608037cc343465572a89767.png similarity index 100% rename from src/_build/html/_images/fd42449fb031217f646a54b6e9d0161ea6bcddb03608037cc343465572a89767.png rename to _build/html/_images/fd42449fb031217f646a54b6e9d0161ea6bcddb03608037cc343465572a89767.png diff --git a/src/_build/html/_images/fd9905e6e1ee2fd392a49487bf8254aff08c790867ef3eba32c99d511d6f8a9a.png b/_build/html/_images/fd9905e6e1ee2fd392a49487bf8254aff08c790867ef3eba32c99d511d6f8a9a.png similarity index 100% rename from src/_build/html/_images/fd9905e6e1ee2fd392a49487bf8254aff08c790867ef3eba32c99d511d6f8a9a.png rename to _build/html/_images/fd9905e6e1ee2fd392a49487bf8254aff08c790867ef3eba32c99d511d6f8a9a.png diff --git a/src/_build/html/_images/gps_measurement.png b/_build/html/_images/gps_measurement.png similarity index 100% rename from src/_build/html/_images/gps_measurement.png rename to _build/html/_images/gps_measurement.png diff --git a/src/_build/html/_sources/bibliography.md b/_build/html/_sources/bibliography.md similarity index 100% rename from src/_build/html/_sources/bibliography.md rename to _build/html/_sources/bibliography.md diff --git a/src/_build/html/_sources/book-intro.md b/_build/html/_sources/book-intro.md similarity index 100% rename from src/_build/html/_sources/book-intro.md rename to _build/html/_sources/book-intro.md diff --git a/src/_build/html/_sources/sections/appendix/upload_Measures_data_to_bucket.ipynb b/_build/html/_sources/sections/appendix/upload_Measures_data_to_bucket.ipynb similarity index 100% rename from src/_build/html/_sources/sections/appendix/upload_Measures_data_to_bucket.ipynb rename to _build/html/_sources/sections/appendix/upload_Measures_data_to_bucket.ipynb diff --git a/src/_build/html/_sources/sections/ice_flow/ablation_accumulation.md b/_build/html/_sources/sections/ice_flow/ablation_accumulation.md similarity index 100% rename from src/_build/html/_sources/sections/ice_flow/ablation_accumulation.md rename to _build/html/_sources/sections/ice_flow/ablation_accumulation.md diff --git a/src/_build/html/_sources/sections/ice_flow/antarctic-ice-flow.ipynb b/_build/html/_sources/sections/ice_flow/antarctic-ice-flow.ipynb similarity index 100% rename from src/_build/html/_sources/sections/ice_flow/antarctic-ice-flow.ipynb rename to _build/html/_sources/sections/ice_flow/antarctic-ice-flow.ipynb diff --git a/src/_build/html/_sources/sections/ice_flow/depth_integrated_mass_balance.md b/_build/html/_sources/sections/ice_flow/depth_integrated_mass_balance.md similarity index 100% rename from src/_build/html/_sources/sections/ice_flow/depth_integrated_mass_balance.md rename to _build/html/_sources/sections/ice_flow/depth_integrated_mass_balance.md diff --git a/src/_build/html/_sources/sections/ice_flow/deviatoric_stress.md b/_build/html/_sources/sections/ice_flow/deviatoric_stress.md similarity index 100% rename from src/_build/html/_sources/sections/ice_flow/deviatoric_stress.md rename to _build/html/_sources/sections/ice_flow/deviatoric_stress.md diff --git a/src/_build/html/_sources/sections/ice_flow/driving_stress.md b/_build/html/_sources/sections/ice_flow/driving_stress.md similarity index 100% rename from src/_build/html/_sources/sections/ice_flow/driving_stress.md rename to _build/html/_sources/sections/ice_flow/driving_stress.md diff --git a/src/_build/html/_sources/sections/ice_flow/gradient.ipynb b/_build/html/_sources/sections/ice_flow/gradient.ipynb similarity index 100% rename from src/_build/html/_sources/sections/ice_flow/gradient.ipynb rename to _build/html/_sources/sections/ice_flow/gradient.ipynb diff --git a/src/_build/html/_sources/sections/ice_flow/ice-flow-intro.md b/_build/html/_sources/sections/ice_flow/ice-flow-intro.md similarity index 100% rename from src/_build/html/_sources/sections/ice_flow/ice-flow-intro.md rename to _build/html/_sources/sections/ice_flow/ice-flow-intro.md diff --git a/src/_build/html/_sources/sections/ice_flow/other-ice-flow-models.md b/_build/html/_sources/sections/ice_flow/other-ice-flow-models.md similarity index 100% rename from src/_build/html/_sources/sections/ice_flow/other-ice-flow-models.md rename to _build/html/_sources/sections/ice_flow/other-ice-flow-models.md diff --git a/src/_build/html/_sources/sections/ice_flow/rheology.md b/_build/html/_sources/sections/ice_flow/rheology.md similarity index 100% rename from src/_build/html/_sources/sections/ice_flow/rheology.md rename to _build/html/_sources/sections/ice_flow/rheology.md diff --git a/src/_build/html/_sources/sections/ice_flow/sia_derivation.md b/_build/html/_sources/sections/ice_flow/sia_derivation.md similarity index 100% rename from src/_build/html/_sources/sections/ice_flow/sia_derivation.md rename to _build/html/_sources/sections/ice_flow/sia_derivation.md diff --git a/src/_build/html/_sources/sections/ice_flow/strain_velocity.md b/_build/html/_sources/sections/ice_flow/strain_velocity.md similarity index 100% rename from src/_build/html/_sources/sections/ice_flow/strain_velocity.md rename to _build/html/_sources/sections/ice_flow/strain_velocity.md diff --git a/src/_build/html/_sources/sections/ice_flow/stress_balance_eqns.md b/_build/html/_sources/sections/ice_flow/stress_balance_eqns.md similarity index 100% rename from src/_build/html/_sources/sections/ice_flow/stress_balance_eqns.md rename to _build/html/_sources/sections/ice_flow/stress_balance_eqns.md diff --git a/src/_build/html/_sources/sections/ice_flow/stress_strain_tensors.md b/_build/html/_sources/sections/ice_flow/stress_strain_tensors.md similarity index 100% rename from src/_build/html/_sources/sections/ice_flow/stress_strain_tensors.md rename to _build/html/_sources/sections/ice_flow/stress_strain_tensors.md diff --git a/src/_build/html/_sources/sections/ice_flow/u_bar_and_lliboutry.md b/_build/html/_sources/sections/ice_flow/u_bar_and_lliboutry.md similarity index 100% rename from src/_build/html/_sources/sections/ice_flow/u_bar_and_lliboutry.md rename to _build/html/_sources/sections/ice_flow/u_bar_and_lliboutry.md diff --git a/src/_build/html/_sources/sections/ice_flow/vec_calc.md b/_build/html/_sources/sections/ice_flow/vec_calc.md similarity index 100% rename from src/_build/html/_sources/sections/ice_flow/vec_calc.md rename to _build/html/_sources/sections/ice_flow/vec_calc.md diff --git a/src/_build/html/_sources/sections/radar/apres/apres-intro.md b/_build/html/_sources/sections/radar/apres/apres-intro.md similarity index 100% rename from src/_build/html/_sources/sections/radar/apres/apres-intro.md rename to _build/html/_sources/sections/radar/apres/apres-intro.md diff --git a/src/_build/html/_sources/sections/radar/apres/apres_data_1.ipynb b/_build/html/_sources/sections/radar/apres/apres_data_1.ipynb similarity index 100% rename from src/_build/html/_sources/sections/radar/apres/apres_data_1.ipynb rename to _build/html/_sources/sections/radar/apres/apres_data_1.ipynb diff --git a/src/_build/html/_sources/sections/radar/apres/beat-frequency.ipynb b/_build/html/_sources/sections/radar/apres/beat-frequency.ipynb similarity index 51% rename from src/_build/html/_sources/sections/radar/apres/beat-frequency.ipynb rename to _build/html/_sources/sections/radar/apres/beat-frequency.ipynb index 73c7468..cbae2ea 100644 --- a/src/_build/html/_sources/sections/radar/apres/beat-frequency.ipynb +++ b/_build/html/_sources/sections/radar/apres/beat-frequency.ipynb @@ -125,7 +125,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 9, "id": "e0ecb2e5-1e05-4785-8ba2-b6570b240758", "metadata": {}, "outputs": [], @@ -134,9 +134,9 @@ "A1 = 1\n", "s1 = wave(A1,omega1)\n", "\n", - "omega1 = 1.8\n", + "omega2 = 1.8\n", "A2 = 1\n", - "s2 = wave(A1,omega1)" + "s2 = wave(A1,omega2)" ] }, { @@ -149,7 +149,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 10, "id": "2d447aa1-bc53-4f4a-86e3-6d30d528caf2", "metadata": {}, "outputs": [ @@ -185,7 +185,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 11, "id": "8d6665be-03ba-441f-b9fd-5ca9886c30fd", "metadata": {}, "outputs": [ @@ -295,26 +295,25 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 12, "id": "573d365e-faa6-42d6-938e-cddf44789e7b", "metadata": {}, "outputs": [ { - "ename": "NameError", - "evalue": "name 'omega_1' is not defined", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[7], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;66;03m# we will use our function 'wave' again when we can\u001b[39;00m\n\u001b[0;32m----> 2\u001b[0m g1 \u001b[38;5;241m=\u001b[39m wave(A1,(\u001b[43momega_1\u001b[49m \u001b[38;5;241m+\u001b[39m omega_2)\u001b[38;5;241m/\u001b[39m\u001b[38;5;241m2\u001b[39m)\n\u001b[1;32m 3\u001b[0m g2 \u001b[38;5;241m=\u001b[39m A2\u001b[38;5;241m*\u001b[39mnp\u001b[38;5;241m.\u001b[39mcos((omega_1 \u001b[38;5;241m-\u001b[39m omega_2)\u001b[38;5;241m*\u001b[39mt\u001b[38;5;241m/\u001b[39m\u001b[38;5;241m2\u001b[39m)\n\u001b[1;32m 5\u001b[0m plt\u001b[38;5;241m.\u001b[39mfigure(figsize\u001b[38;5;241m=\u001b[39m(\u001b[38;5;241m18\u001b[39m, \u001b[38;5;241m5\u001b[39m))\n", - "\u001b[0;31mNameError\u001b[0m: name 'omega_1' is not defined" - ] + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdIAAAHCCAYAAADrbzsvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5gkZdX2f9Vx8mxO7LIsOaclwwoILJKVqEhSUJEPRdAXRV9z4EURFgVRSYuC5CAgOee8gOS07C6b0+SZjvX9UV3V1TMdqqr7CUCd69qL2Znu4WxX1XnOuc997mOYpmkSWmihhRZaaKGFFlpooYUWWmihhRZaaKGFFlpooZW1iGoHQgsttNBCCy200EILLbTQQgsttNBCCy200EILTWcLgfTQQgsttNBCCy200EILLbTQQgsttNBCCy200EKrYiGQHlpooYUWWmihhRZaaKGFFlpooYUWWmihhRZaaFUsBNJDCy200EILLbTQQgsttNBCCy200EILLbTQQgutioVAemihhRZaaKGFFlpooYUWWmihhRZaaKGFFlpooVWxEEgPLbTQQgsttNBCCy200EILLbTQQgsttNBCCy20KhYC6aGFFlpooYUWWmihhRZaaKGFFlpooYUWWmihhVbFYqod+DRaPp9nyZIltLe3YxiGandCCy200EILLbTQQgsttNBCCy200EILLbTQQitjpmnS29vLlClTiEQq885DIF2ALVmyhGnTpql2I7TQQgsttNBCCy200EILLbTQQgsttNBCCy00D7Zo0SKmTp1a8echkC7A2tvbAevD7+joUOxNaKGFFlpooYUWWmihhRZaaKGFFlpooYUWWmjlrKenh2nTpjmYbiULgXQBZsu5dHR0hEB6aKGFFlpooYUWWmihhRZaaKGFFlpooYUWmuZWS6I7XDYaWmihhRZaaKGFFlpooYUWWmihhRZaaKGFFlpoVSwE0kMLLbTQQgsttNBCCy200EILLbTQQgsttNBCC62KhUB6aKGFFlpooYUWWmihhRZaaKGFFlpooYUWWmihVbEQSA8ttNBCCy200EILLbTQQgsttNBCCy200EILLbQqFgLpoYUWWmihhRZaaKGFFlpooYUWWmihhRZaaKGFVsVCID200EILLbTQQgsttNBCCy200EILLbTQQgsttNCqWAikhxZaaKGFFlpooYUWWmihhRZaaKGFFlpooYUWWhULgfTQQgsttNBCCy200EILLbTQQgsttNBCCy200EKrYiGQHlpooYUWWmihhRZaaKGFFlpooYUWWmihhRZaaFUsBNJDCy200EILLbTQQgsttNBCCy200EILLbTQQgutioVAemihhRZaaKGFFlpooYUWWmihhRZaaKGFFlpooVWxTzSQ/vjjj3PIIYcwZcoUDMPg9ttvr/mexx57jJkzZ9LU1MT666/PX//61xGvueWWW9h8881JJpNsvvnm3HbbbQK8Dy200EILLbTQQgsttNBCCy200EILLbTQQgvtk2CfaCC9v7+fbbbZhosvvtjT6+fPn8+BBx7IrFmzmDdvHj/+8Y/57ne/yy233OK85plnnuGYY47h+OOP59VXX+X444/n6KOP5rnnnhP1zwgttNBCCy200EILLbTQQgsttNBCCy200EILTWMzTNM0VTvRCDMMg9tuu40vfvGLFV/zwx/+kDvuuIO33nrL+d6pp57Kq6++yjPPPAPAMcccQ09PD/fcc4/zmi984QuMHj2a6667zpMvPT09dHZ20r18IR1jJkA0AYYR7B8WWmifQLPDihHe96GF9pk00zTD5z+00D5Nlk1Bur/0e4YBiXaIxtT4FFpooYUWWkMtzN9CC+2zbfm8iWF8xnAc04TMIKT76enuonPqxnR3d9PR0VHxLZ+pzPeZZ55h9uzZJd/bf//9ueKKK8hkMsTjcZ555hnOPPPMEa+ZM2dOxd+bSqVIpVLO33t6eqwvLtwCkoUbMNEGreOhbYL13/bJ9LSsS+uUTYmO3xA611VaiGRyeY6/4jma4lGuOmlHLR6cvz/+Adc/v4grT9qR9ca1qnYHgHQ2TzxqaPH52PbIOyv4z2tL+eWhW9CaVP9IP/fhar5y2bP85KDNOXmPGardAeCfz3zE6NYEB289RbUrjuXzJv9d3M0mk9ppikdVu0N/KsuRf32GdUY1c/mJO6h2B4BLHnmf+99czmXHz2RCR5Nqd7S1G19cxGPvrOT8o7ahOaH+Xnr47eWccvWLnHfE1hy1wzTV7gBw04uLWG9cKzuuN0a1K44NZXI8/u5KdttwHG0axO41/WkOu+RJtpk6iouP3V61OwD8+aH3eHHBWv587HZ0NMVVu6OtXfLI+8xb2MXFx24X7DzpWwnLX4e186H7Y+tP1yLoXwFDPTDUDblU5ffHW6Cp0/rTNpGF+bHc9qHBPjvPZMutZ8KEzaGpcjEiw+59fRkbT2xj/fFtSv1w25r+NPe+voyDtp5MZ7P6+3tJ1yCH/PlJ9tlsAr8/chvV7gBw8cPv8eHKfs49YiuSMfXnm67283+/zsI1A/z1+JlafE43vLCQX9/1FpedsAO7bjBWtTuYpskLH61lwwltjGlNqHbHsYWrB/j3K4s5Ybf1tIgB76/o47CLn+ToHafx80O2UO0OAH959H26BjL86AubEonoU3/r1HAwTZPT/zWPvlSWK07cgVhUvejE3Kfmc8mjH3DVSTuy5Tqdqt0B4MOVfUwZ1axF3W3bax93cdu8xZy138a0a5Dn/vfjbo649GlO3WsDztpvY9XuAHD5Ex8CcMqs9YP9gmwa1nwAK96y8tyeJdCzFHoWQ98KSPdZf8y89fqUN565+spNoi1btoyJEyeWfG/ixIlks1lWrVrF5MmTK75m2bJlFX/vueeeyy9/+cvq/3P7Aq2d73yrpKSIJmDiFjBle1hnJqyzPYzbBCJyAuFDb63g2Q/XAPDhqn420KDQuPrpBSzuGuSyJz7kt1/aSrU7PPOBBRBvOKGN7+6zEYduox6UXd4zxNeuegGArad2csKu66l1CLjxxY/Jm3DNswu0ANI/WNnHT//9BgAdTXE+t/F4xR7Bsu4hzrh+Hs/NX8NJu63HLw5Vn6ze8/oy3lraw1tLe1jWPcSkTrXAtWmaXPbEh3QNZLjiyfmcc+BmSv0BePr9VZz2r5eZ1NHEV3eZzvG7TFftEovWDHD2za8B8PlNJ3DEzKmKPYIbX7BiwNynP9ICSH9jSTf/U/iMbvjmLuy8vvqifk1/mi///RneXd7Ht/Zcn3MOUH9/3/nqEhatGeTjtYP8djCjvKjP5vL88YF3Abjowff46cGbK/UHrDzgp/9+HdM0OWqHaZy65waqXeK95b384b53AHjs3ZXsv8Wk6m/oXwULn4VFz8Ky/8LyN6B/ZX1OZAasP71LYeXbrAucEQVevAVeLLymc10rz528Nay7C0zdCZJycs2XF67l1GteAuDmU3dlBw0aal0DaT7/x0fpGsiwrHuQs2Zvotolbpu3mNX9aW6ft4RfHbalcrBhKJPj/PutGLDRxHa+vZf65+2lBWs49+63WbR2gGN2mKbFdXtlURdXP7MAgHkLu9hFgzPu+hcWWaDekx9qAaQ/N38NX/77s3Q0xbjshB20yAO6BtJ87g+PABCJGPy/vTdU7BHc8vLH9Kdz3Pzix/zkwM2UA7LdAxl+f691vm04vo2jd1SfU76+uJvz7n2b5z5cw9d2X0+P+uSD1fznv0sBeGtpL1tNVQ9c/+v5hazsTXHZEx9y0Ze3U+0Oj7+7khOufJ51RjVz7uFbaYEHrO5LcejFTwGwzqjm4EBxA+3mlxaRzuW5/vmFnLnvRsqbRUu7B/nNfyw1kamjW/jCljVy3FwWVrwBC5+DRc9ZJJHV70M+6+P/6i33+UwB6TByRKGcBEW511S7ic455xzOOuss5+89PT1MmzYN/ucDaElY47BDPVah0r+Cq+5/noFVC5lhLGPT+HLWjyyH7BAsmWf9efEK6xe1jIUZe8L6e1l/RosDbW58cZHz9byFXcqB9JW9KRZ3DQLw71eW8OMDN1POtn747eWA1a0/64ZX2HezCbQk1PpkBxaAd5f3KvTEMtM0eeI9qyCfv6qf+av6maF4muCtpT3O12fd+Ar3n7mncjbK/9z8Ks/NtxpX9n9V2+3zFjtfv7RgLQdtPVmhN7BozSBdAxkArnt+IWfsu5Hy5+0//11K10CGroEMv7rzDb684zTiiouM8+9/x/n6vRV9Cj2xLJ83eebD1QC8saSHxV2DrDOqWalPbywpxoBvXfMSD561J+Pakgo9gu9eN493l1vX67kP9YgB/3nNKsJM0wKLPr/pxBrvEGsfrCzKiNz68sf8YPYmyicubnxxEe8XnrOLHnyPb31ufeVFxp8fft/5+u2lvSOB9FQvfPAIfPAQLHgaVr1b5rcYMGZ9GLcRdE6Dzqkwahq0TbKY5MkO67+JNuu1tpk5SPVBqtthrme7F3PJbY8wPr+SaZFV7NaxmmjfEuheaP15tyCdaEQtUH367rDRfrDubhATczb/9+Nu5+sTr3yex87eW3kMOOP6V5wz7vmP9IgB971hkYbSuTwvL1zLbhuMU+rP28uKee0VT87nxN2mK88DLn9iPi8uWAvAtc8t1AJIv6zA1gPrXlcNpA+mc7y+2HrmHn1nJWv704xWnHe/sqgLgJ6hLCdd9QJP/ejzymuBH9z0mvP1i5rEgIfesmrd3lSW1xZ3s/26o5X686arhjv//nc4cOvJyif4/nj/Ozzx3irAqgt0ANL/8cxHztevfNylHEjvHsw4Ncm9ry+jZyijfKrQfsYWdw1y6jUv8cyP9qGzRa1P/3v7687X/13cXeWV8uzRdy0cZ0VvireX9bLZZLXThG4c56f/fp1dNxhbSvQxTVj5Nrz3gJXnLnoBMv0jf1GiDcZvauW5HetAxxTrT9tEK8dNtlmvibdAXx/8X+1n6DMFpE+aNGkEs3zFihXEYjHGjh1b9TXDWepuSyaTJJNlEvJYsjjK2jYBxlmd5r/d3say7BAACTPCW7+cTbR7oQWiL36pAKi/AgOr4Y1brT8A4zaGzQ6FzQ+FSVs3THd9WfcQj76zwvn7vIVrOVIxq9FOeAD6UlnueHUJX9lpXXUOAR+6ivps3mThmgE2naQuuCzpGuTOV5c4f393mXoQ7b0VfazoLY5/P/z2CuWs9HdchdiqvjQPvbVcOUvWfX9/vGZA+Xjgsu4hnvpglfP3FxesUQ6kv/pxl/N1z1CWW19ezHGKGeAfrS7GgEzOZEnXINPHqmsULVozwL9fKcaAN5aoT8LeXNpD92DG+fuDby7nxN3WU+cQ8K4rBnQNZHj2w9VKZZ7yeZPnXQ00u2ms0pZ1D/HCgqJPz89fqxxIdxcVawcy3PTSIuVTV+4YMJjJsbI3pVR2auHqAe58rRgDXrdjQPfH8Nad8O598NGTkM+UvnH8ZhYrfJ3tLZb4+E0hESSWxaxct7UI3L22cC0XposFyG/22JLjtm63RmqXv27luQuesUB1m0DyzMWW1vqGn4eNvwCbHAjNowL4U97edzUZ+9M5Xvu4S+n9nc7mefy94hSADjFgcdcgr7kaDs9+sFo5kP66Kwas6ktx4wuLOGl3tTnl/FXFGLC6P60cIFq0ZoB7CkxUKM2dVNmrH3eRyVlEtWze5J7Xl3HszmprOHcMGMzkeHtpD7ttqO7+7h3K8GABtAb4eK36GLBozYDT4AdrClMnIH1Fb4pbXvpYeU7pjgGLuwZJZXNK5ZQWdw3ywJvFe+nVRV3KJ2ZfWdSFvYUxlc1z92tL+bJiHOcD13UbSOf4YFWf0vt7ZW+Ke14vYo7u+0qVzV/Vz4LVA87fH393pQZAerGGW9mb4q7XlvDVHdaBj56AN/9tAeg9H5e+KdkBU3eEaTvDlO1gwmYWQaTBWMtnCkjfddddufPOO0u+d//997PDDjsQj8ed1zzwwAMlOun3338/u+22W0N8GMrkWNYz5Pw9nc2zuCvFumNnwJgZsOXh1g9yGfj4RfjwUevPxy9YLKInzrf+jF4PtvgSbPtVq7NSh933xjLyJiRjEVLZPC8v7Krr9zXC5i202B7N8SiDmRz3vL5MOZA+PMAtXK0WSHcX9ABvLetRDsjaHfqIAXkTHn1HLyAd1Bes3QMZeoeK40W9qaxyMObu/y7FNCERjZDO5XmpwLZSaa8VikE7Bjz6zkrlQPr8laXP3ILVA0qB9PdWlN7bby5RHwOe+cBio9sx4AEdgPRhTP3FigvWlX0p0rl88e+9KboHMkqZMXYMiEUMsnmT5+evVuaLbf8dBgi98NFa5UC6u8AA+Gj1gNLY/fqSbqdY7aSPDRc+Dlf9HBY8Bbg0HsesDxvtDzM+ZwHoLeKkTewJi2jEIJc3ufu/S63Yvd7u1h/buj+2APUPH4X37rf02N/8t/UnmoCNZsNWR1nAery+z3h4rFQNWi3tHnSuG1j+DKSzStnW9xfY6HbsflaDSRn3NBGUgmoqzDQtEo3bPlrVz9ZTR6lxCHh+/hryJjTFIwxl8lqwGm3mZzxqkMmZ3PXaEq2AdFAfA4bXIvNX9ZPO5knE1E052sC+HQOefH8Vp3++PoyhXntzWAz4cKVa0lgub5bcO6Zp4QEbTWxX5tOj76wgbxbrpVddZC1V9nKhjkzEIqSzee58bYl6IH1YDFi0ZkApkP7x2tKz5J1lveTyJlGFewBsYq0dAx57dyXfUixhaE+mGeSZabzLpi/fCo8/VipJGE3CjFmw4X7Wf8dvJkUeW/0mgjqsr6+PV155hVdeeQWA+fPn88orr7Bw4ULAklw54YQTnNefeuqpLFiwgLPOOou33nqLK6+8kiuuuIIf/OAHzmvOOOMM7r//fs477zzefvttzjvvPB588EG+973vNcRnO/i2JWNsUgi6H6wqcyhE4zB9V9j7HDj5PvjhfDj8Mtj0YIg1w9qP4MkL4eId4Ir94eV/WuO7AcxOCu1x4HeW9dCf8qMj1HizGbv7bDYBsNjXKi2Tyzuf08zpVtAdnkzLtqVdVkNm5xljiEcNeoeyyhPDJwsMq6MLjO/nPlxDKptT6RLvFCRvdi2MuqoG0RYVDs5xbQlH9uZ9xYnhB4X//yEF3f83lvQwkFYbA14tMOP2LGjYLetRe92GMjmWdFvPnB0DFiiOAUsKMWCPDccRMSx2nHsiRIU9XZhsOKagY/nc/NXk896Wtoiy9woxYJf1LfBQdTPNTp7XGdXMlMIugvdXqpXmsgGrI7a3ptH+u7iboYza2G0DQvtuZjGHl3UrboIOZljTnwZg+3VHASMb2rJtydoBdou8zk1jLuWF5Lf5YfavsOBJwLSkUmb/Fk5/Cb47Dw74P9j0QKEgOljPPMBRhcnGVyoV9Z1TYeuj4IuXwPffgW88DHv+0FpMmkvD23fBTSfC+RvBXWfCstfL/x4PZoNoO82w/u2qcyX7/7/B+FbGtiYwTfhghdp76cWPLODDzt9eWdTFYFptDHizMGGx9yZWHrC0e6jay4Xbyr4UA+kcEQO2mTYKUM8itMlZn9vI+owWrB6geyBT7S3C7YXCvfTFbdcB1EtPmqbpgGg7rmflb4vWqs3f7Fpk88kdtCdjZPOm8nvpqfet2G3HgJcXaBADCs0zW896ieIYsKRrkGzeJBGNsOU6FpnuQ8XXzcYD9irEyfdX9tE7pDYGvFwgRB68lTXdPJyEINvyrudrh0INpzoPsGu47dYdRVPcIrMuUJxT2oRIOwa8+NFa5TFg2eKFfCt6J8+0nc3NyV8xc/nNFojePAZmngTH3gQ//AiOuwV2OdWaspS0Y/ITDaS/+OKLbLfddmy3nbXA4KyzzmK77bbjZz/7GQBLly51QHWAGTNmcPfdd/Poo4+y7bbb8utf/5o//elPHHHEEc5rdtttN66//nquuuoqtt56a+bOncsNN9zAzjvv3BCfFxWAl2ljWlh/vAWifbjSw0PT1AlbHw1fvhbO/gCOmmuxdIyItTDqjtPhj5vC3WfD6g98+WQnYVtP7WRKZxN5U+1oYC5vOuOl9kKB5YoPzkVrBsjmTZrjUXYsLKlapBxEsw6A6WNb2HCC1ZR5SzFbxx4JPHLmVIfdvKJHHbA3kM46DY/Pb1poyigGY+z7ZuroFjYoxIAPvMQAgba8cI22W3cUkzqayOXNyuCHBMvlTWeke/8tbRBNLUBsA2adzXG2KbDPFipOeJYW7uUZ41qdvRaq5V1s8PPImdMwDEsCZ81AWpk/PUMZB3zZaxMrBqhOnu3//9TRzWwwwbpu7y1X20xb0Wt9RjvNGMOkjiYyOVMpqymbyzsF9OzNrRigGkSzC5zx7Uk2n9JR8j3pNrgWnrmELz31Rf6V+B07DjxBwsjxZn46H257Npz5Bnz9HtjtdEdWUJbZTLQvbWeBaAPpHH21yBmRCKwzE/b+MZz2DHz7adjjTEuvPdUDL14Jf90drpgNr95g7R7yaGv606zqs2KQ3ZgdzgSTbTaIts7oFjaaWIgBK9SCjcsLtcCsjcYzoT1JOpfnzaXqzpNMLs9bBSbavprEgIUFMGhyZzMbF2L3R6sUk2oKecCmk9qZPrYFUKu1m8+bTgywyRmr+tJkXFNYsm1lb4reVJaIAXtsaMcAPRjpU0c3s/Ekq4Z7R3HDwb6XZm8xkbGtCdK5vEO0UWHpbJ73C3Fx3wKxbqniGs6uKaeOaXbybtUNEDsubrlOJ+uMasY0S/eCyLZ83uSVgrrBAQUgfUVPytlLqMIsCZ48iWjEWX68UDG4b+M400a3sHGBXDt8il622TntodtMob0pRjqXZ3GXgs/JNGHB0+RuPIlre7/GOfHrmJRdQq/ZzCNN+8JXb4EfvAuHXAQbz4ZEi3wf+YQD6XvttRemaY74M3fuXADmzp3Lo48+WvKePffck5dffplUKsX8+fM59dRTR/zeI488krfffpt0Os1bb73F4Ycf3jCf7QC87phmF5Du85BKtFqyLsfeAGe+Cfv+AsZuCOk+eP5v8OeZcN1XYP4T4CForSgkz5M6m5zxxLeXqnuQF64ZoC+VpSkeYVaBYdGbyiplyduH5IxxrU6iqpyNWjg4J3c2s1khCXtbYQA2TZOVfVZxO7GjifHt1t4A+3sq7L3lfZimxf62F6/owkifNqbFScKGj5vJNruAntTRxBYFgEhlcTh/VR8D6RwtiSi7FzQsV/WlSGfVFWIfFWLAeu4YoDgJs1kok0c1OcDe8DFYmZbN5VldYOxOH9vC2MIir+U96sAPG6Ce2JF0dP5Ux4AikN7ChgUwZvjYuWxb7soDNphg5SYqmfsfrOxnKJOnNRF1ip7lPUNKpxs+Kjzv641tYb2CpNNHsmNA92K498dwwRZw348Zm1pIr9nMm1OP5tzpV3Bg+lzu6TzGYnsrsIF0lp6CdNkW63Q6S+F8x4CJW1i57RmvwYl3WjlvJAaLnoPbvglztoIn51gLTmuY/WytM6rZKVZVg2g2kD91dDMbFYgQ7ypvptn5W5JpY6wzTiUR4oOVfaSzedqSMXaeYcWApV2DSsEYJwaMa2G9wkShagbhskItMLGzia3WsfLc1xZ3KfNn7UCa3kK9tvP61sQsWGC2KrNjwLpjWpzzTTUZqthMa2bjQjPtXcUgmh0DJrQ3MakwLaf6umVyJu1NMXaYbpHYbBavKrNxnOljWpyp4uGyj7LNPl8ndjSxbWFSRmUzbWnPEL2pLPGowayNrBouncs7E30qzJ4amO7K35RPpRRy7Cmjmh2Vird0iQEdSSYUcBypk875HLx5B1y+L1x1ANE3byNh5HidDViwx3nslLqEn5inwUb7Wuodiu0TDaR/Eq0IpLew/jjr4PTESK9kHZMt1s7pL8Jxt1raQJjwzt1w9cEWe+f9h6oC6stcIJp9cK5SCH7ah/bkzmY6m+NOIbZMIRhjX6MZ41uZXigwVEu72J3MdUY1OwCRSkZ6z1DWATrHtycdIF1lIWZ3djeZ1M46o5oBqwGhEoxZtMbuQBfZDCoZH1AKotnXTWUMsBPldce0ML4tSSJqHVU2a1aFzS80FmaMbWHdsZrEgAIzZ0pnM5sXYoDKZtqa/jSmaWnrjW5JML7dOk9Uys3Ysi4bT2xn6mgrBixWDMYUJ9Oai0C68hhgF9BJxrcVmqAKr5sNTm04oY1JnU3OdMNqhYWY00wb2+rsRpAGoq18F27/f3DRNvDsJZDphwlb8Nf209kldTELdv4VHettC6htzK7qta5PUzxCayLKhI4684BIxNJ1P2quxbLf+3+hYx3oWw4P/hwu3BIe/CX0raj4K2ym90YT25wYoBxId+VvNoj2vkJGummazvk6ob2pGAMUEyHAYlrb+Vt/Ouc0alSY/byvO6a1CKIpn0yzSTVNTk6p8v62pz9GtcRJxqJMKOQBKhvq9vm64YQ2po228jfVIFppDFDPSM/lTVb3ufKAdvV5wNvLrJp2s8kdTgxY059WKjtnE2jWdQPpmsg7Te5sYuoY63NarrD2XlW4Z8a2JmmKR12kGoWN2UJetMH4NqeGUx0DbCB9ndHNbGJPpSxTh+MMZXLODrfx7U1yY0AuAy/NhYt3hBuPh8UvQjTJh+seyUGp3/HbKX+heaeTGKSJZT1DZBVOOLktBNIl28Jy0i7lNNL9mmHAhvvAcTfD/3seZn7NEt7/+Hm45nC4Yj94/8ERgLppmk5gm9jR5AS71X3qilUbwLN9mVgoxFTKu9idzA3GtTpMnY/XDCoFZG0gffKoJochq1I7bmWhCOtoitEUjzqdzJUKwU97/8CG4y0wJmJYo4Kr+tUd5iWM9AIzRiXwkc3lnWduQkeScW3qgfTVheszri2JYRhM7LR8Wqbw/p5fuJdmjGtzmmkLVg8oBWTdBfTkQpGhsuixAfOxbUmiEaMYAxQmz+8Vnq2NJhTBmL5Ulp5BdWCMm5Fus1FVSrsMZXJ0D1p6mhM6mjSJAVYOMr49STwacYA9lWPdtrzTeuNaWc+eSlklOAasmQ+3fgsu2QleuQbyGVhvlqUF+e2n+Ef68/TTXNIEVdlssIFXO3YXGU0NiN3tk2DP/4HvvgJfvBTGbQKpbnjyApizNTz4C0vyZpi978SANtYZXQRjVE45uuWd7CV1KhnpPUNZhjJWYTqhI8m4div/XqXwPFnlmnBsTkQZVVjGrDIPWFBuKkUxiFacKGxmXJtdw6m/bvY5YjfTVIJo77tANLuZtrwnpXSHk8NIdwHpKmuB1X0p8gUixNi2pBbNNBsgnjq6mY7mGC2JKKBW4mnhmkIzbWxrkRCpGkjvLjLSx7XaeYAGNVy7jeOob6bZWNv641udZtqSLrWAbJEQ2eSQalROOtv1YyIWoaMp5pChhNaV+Ry8cp218/HOM2DNB5ac9awfwJmvc/u0H/KGuR7rjWtlXFuSeNQgb8JyxfvAbAuBdMlWqpFuPTTLe1K19SP92PhN4JA58L3XYJfTINYEH78A1xwBVx0IH7/kvHTtQMZhEVvJswYFtA2kFxJCmyWvlpFeANHGtzK5s4lYxCCdy7NcEUhsmqYTgKeManY+qzUKD04bRLOLeYeJpjDYrSk0hCZ0NBGPRpzDXOVooF1ATxtdnEpZ0j2kbJnHqr40eROiEYOxrUnnXlIbA6zr5sSADvUxwJa6WW9cC1NHtxAxYDCTUwZcm6bpFBNTRjUXm6AagGh2AdZQEC2g2fFnyqgmmuJRB2hQyURxyzrYjKbFXYPKEnqbLdwUt5LnYh6g7l6y84Axhft6ciEPUFlAF0E0q6FuGJbsnJBx5d5l8J/vW+yc164HTNjkIDj5QTjpLthwX3KuYmLKKBeIpjAPWDksD7DP3IZOpsUSsO2xcNqz8OV/Wdrq2UF48kKYsw08fj6kioCUDVitO7aVjqY4HU3WlKNK6aLFLiDdJmcs6xlS1pgdToQY31YooBXmAfZzZecBkzvtqUJ1181mpE8f28J646zrtnYgo2y5Zyqbc+L05M4mxhbOXpUSCkUgvQCiOZNpCvO3Quxef3wrY1oTDiCrUuZtiYuNasdJlXm3nSuNabWIEDow0u0abmxrAsMwinmAwtjtVhawY8CqvhQ9ipZ79qWyDoY0qbPJAa+VEiILk2l2M83GcZQC6QVlgfXHtzGhPUkiFiGXN5XmlG4cx/6sVNZwRWmnUiKEkBhgmvDGbfCXXeD2U2HtR9A6Hmb/1pKt3uen0DaBtf32vZQgEjGKeYDCGOC2EEiXaKZpOkD6umNa6GyO094UUD/Si7VPgi+ca2lM7nq6BagvfBou/zzc/HVY+5HTxRzTmiAZK47frFKahJUG4IkagGh24r7umBZi0YjDalK1qKJnKEt/AXid0tnMmEIHeo3Cg3N4Ae0UYiqTsMJ9bIMxUwqMVFXJs2maDog2bUwzo1rijmyJqoWMduwZX2ARO2zUXvUxYGyrnYRZ100pE21NUdYhEYs4h7mqXQlr+tOks3kMw4qR9j2utIDWsJm2dhgYY7PSVYFo+bxZsmRsdEscw5KQpWtQTSFmAxwTO5owDEMrRvrYYYWYWjZqEURrikeZXMhNGqqTnh6AR/8PLtoWXrjcYqBv8Hn4xiPwlX/BtB2dl67sTZHLm8QKcVuHPGAEG7XdZqMKuG6RCGx6EJzyEHzlepiwhcVQf/jX8Kft4OV/Qj7P2oEiGAPWJAioWziazeVdTMsWxrRYfqWzeQYUNdQdaafCPW2DMSs1yANGNNMUEiHs83762FZaEjFnYvYjRfIudoMqGYswqiWuxVSxnfMXaziBMcCj2SSj8QWASLXEUyqbc/KidUY1O/d4z1BW2VLWorRToYbTAUh3ajjLlymK8zfTNJ2G+vSxLbQ3xYvkDEW1gJ0TtSVjtCVjTt2kVKLXURYojQEqcRw3qSYSKcYAVddtIJ1lbaEBO8UVA9b2p5U31MeLjgEfv2RJT990Eqx6F5pHF3bivAq7nQ7JNuelI3EcmxAZAumfOVvTn6Y/ncMwisX86JbigyPM2ifC/r+F77wM234VMOD1W+DiHWl94le0MOSA1Q4TTYNxTqeAtkeCFBbQa/utYGdfr3VtaQdFAdgebx/dEqc5EXUCTH86p0w7rgikW9dLBxDNBqft6+bopCsKwCv7Ugxl8kQM6+A0DIPRrda4stAYUMWcJTWFIlULEG34VIqdhCmKAaZpOoe5nVjYckqqkjCbRTGuzWJW2AX02oE0OUWSUyv7hhfQAtioPs2+bk4MGK22mbaiN0UmZ4GfkzqaiEUjdDRZMaBLWTOtIKHQbscAG0TTYCrFAdGs66aKPWRJYFk+2cW8fS81JC6ZppOX8ei5FsN66o5w4l1w/G2wzvYj3mLnARM7mgoTRUUihKpCbDiQ7ox0i7yXDAM2OQBOfRIOvxxGz4D+FXDH6XDZ3kzqeRUoxgDVINqyniFyeZNEQbKoORGlKV5oqCvKA4rNNJsIoV7WwQY/x46YSlFz3fpTWboKwId9D6lmEtvx0NojYTh1k8r8bQQZymGjqmyol9ZwqnXS7WZQUzzCmNYEnc1xIoWG+lpFecAKp5k2DETToaFug2iK84DuwYyjIW3fQ3b93aVoKsW94wqKdZNKZrOdv42UdlF3L3UNwwPs66dq15U9Gd+ejNHRFHfuo2zeVLYHZKWLkQ7FPKBhOE7PEkuq8PLPW9LT8VbY6xyL8LvHmZBoHfEWe8JyBCEyBNI/e2Z34uzlC2ABoYDTlRJqnevAF/8C33oc1t8Lcmmmv3UZDyZ/wEGx58E0S7S1VBViTgAeJu2i6uBMZ/PO2NSY1tJDQVWy6h4HAmscN1bIwlQVYjrKOgwfDVYdgG3wblJBagZczTRVIFqvDaLZybMG0i79w2NAIXlWxGboT+fI5Kx4aF8vu2CVErvLmBMDCvFxdCE2maY6QHb4VIrDRlUYA+znaswwNqqqGGCzYCePskB0t29r+tUWYsMLaKXSLjaI1lYKoi1TBKK5pwU6m628bVSjYvfyN2DuQdakYM/H0DnNWq558gMwY1bFt7lBNCh+Vuls3plYk20jYoDTTJMQAyIR2Pooa0/Q7N9AsgOWvsKfB37EnPjFjMfSTy8y0lXFADt/s5hxgMNKVw6i2c00DUg1a4ZNpdj5m6pawL42iWiEtqQ1TWzHAlUgmt1UsAlHY13MZlu2U7bZRAhH3kmDZaNrh4Foqptpi101nGEYRCNG8TxRlAesqACi6RADnKmUUWqbaXZt0t4Uo7kgD9SwPCCgOXmATYh0yTup2uO2ahgeoFoj3TRNp1YbTqpRtVvOvWgUoCkepbVwT6lrqJefKq6bVJPLwFMXwZ9nFqQKgW2Ohe+8BHv9CJo6Kr51eAxQTYgcbiGQLtG6nYc47nxvdKuCADx5azj+dvjKDXQnpzDFWMPpK38F1x7J+MzHAAxl1BViTgHdqkcA7hq0rk3EwGEO2tdQlS6i3cm0WXoWs1mttMNIEE0faZfhB6eq5NkutsYUAA8o+qbqui13LamBYhLWM5RVtohp9bCxQEcjXVUBXbg2yVikmDw32zFAbfJsx4B4NOIU9brEAHs6RRUj3TRNp/DRZiqltxSwguJ5oiwGOCPdlk/jnUIspWy6YfUIeSe1DXU7dnc0xYgWwE8nDwgqyZMZhAd/CX/7HCx4CmLNsNePLSB4iy/haP5UsOFAeksi5jCbVS0bLBbQ1vNWbKhL9CeWgN2+A995ifx2x5M3Db4YfZr1b9wbXprL5A7LN1XnybJhsRtQnr8tH85GdTHSVZNq7ALazgNUgWh2DBjVEscw7BigFkRb5lo4DhawH1VMqhmhka54Mm0ok3Mkk+znzM5RVE2COiDaKFcMKJwnqnZcrBiWB4zTSdrFJkM5+shq84BRbhxHJiGyjDlTxYXnzI5JubypTC5wOBFikmIcp2co6+Sy9rWzm9eqarjhhEhQnwcMr08aMpXy8Yvw973ggZ9BZgCm7QzfeBi+dCl0TK75dptgNJyRrlLizW0hkC7R7IBWGoDtkSDJD41hwCZf4I8bXc2fsl8ka8Th/QdpvnwWpybuIUJeWSE2gpGuWCPdPjg7m+MOe0h9B7rIaLJN9bLBkSBakdWoAozJ5PLOCJ4dgCc4Pqm5t+2mzKhmF5DeqpbRVEzCrM+msznuTDeo0tlcNXzZqGJ95K5hTAYoxnFljPRCDJisUQwYXkC7F9WoAGMG0jmHlWfHACXNa5fZoKvdiIGib6rZqHYMGNOawDAgb6pL6FcPmyayQUd1eUChIdPqjgF1SPPNfxwu3Q2evADyWdj0YDj9Bdjrh5Bo8fQrbHa+PZUCxcaD6jxgpLyTguvWNoHufS/g0PSveTW/PpFUD9x5Boe9+i3WN5YEb4DUaV3DpmTcXyuLAcObaYXYnc7m6U2pGTMfLuvgsFE1BNHUMdLtZpoVHyMRw7mXVAGyI/dcqZ1Ms69NNGI4i4ZVTxI4UoGFzwiKsVsZI72CtEtvKsugcmJdaQxQRYQYLg/i/rpL0Zk7vJmWiBVJNcoa6r3DY4BiQmThurUkoo4ihB3HVTUbhjdAoHif68JIH++abvA94TTUA//5AVy+Lyx/3dJBP+wv8PX7rAXxHiyfN107bvQg1Qy3EEiXaEVAdiQYo2qke1EvXJA9mntn3Qoz9oTsED+K/JObEr+kd/GbSnxaOVwjvbPIbM4qWMKytn/kwak6CbPBu3KF2BpFyfNwba1xbRYYk8ubSg4F+7pFDNcofuG/PcoK6EIMKNNMU8dGtUE06zmzdDbVybtYLOJSMMa98V3FqKJ9kLsLaBtEU5WE2Ymqm9mseuFopWZaOpdXAlqtcU0StBQmCexY0D2oBhyy75fOMveSMnmnYQl9LBpx4pKKGJB3nRl28jzZlTyraMqsdUC0kfmbrxiQ6oU7vgtXHwJrPoT2yXDMNfDla2HUNF8+Lespjd1QbDyoWjhqg2jD5Z360zlHIk+mrRlI87q5PidGfgv7/w7iLUxY8yL3JH7EPquvhbx8gMiOPR3N5fIAtSCaDXo2xaO0F+RLVDBSM64zY8S+JMXTqaUxQC9GOqB84eiIhcOF69Y1kFGyw6k4mVqcJOh08jc1n5Ez4eSOAQVSzRplzbTSGq49GSMZs2AiFXnAQDrLUKaUCDHOkVRUe906m8vlb2qbaRM7R+YBquT5Ru5KKRLrVCzTHT6dDupxnO4y5Fr3wlEVNhzHGd2SKBLr/GBLHz5mEUVeuAwwYZuvwOkvwnZfrTlp6baeoYxDxLTjo30NVREhhlsIpEu0YhKmASO9YPY4Z+uUTeGEf8MhFzFgNDMz8h6b3X4gPPUnqYVGKptzWMQ2q3FcW5JoxCBvqmFZrS3DQlHdybQDSGcZVqOq5Hk4iBaLFhcgqtBJXzNQLHrsUdfOekfx6zSH0VSmgFYWA7pHdsVVLhwdSOec5HnsMGZzVtGo4nB9TSheQ1XXrWoM0CQJa4pHHf9ULB1266M7BbRiSZ5iDCjDRlXMQrGZaODSR1UQA9zJs/3Z2P9NZ/MMKgBj7OfcHbvta+g5Bix4Gi7dHV6+2vr7DifD/3sONjukLp/cDfWxytmopQV0azLm6EmrAEDtZ6qztRl2/X9w2rN0TdmTpJHlhP65cNUBVkNDopWrBdTHgFJGOqjVSXcTIUYN20nQn86pIdWUzd/UgjHDSQfur1XEANM0XYsGLT86moqSUyqaMtXzN/1ANFVN0GINVyTVjFchzVUw+z5KxEbuJOgezChpqBeVBdyMdLW1wEp7UXS7Kwa0qosBubzp1N92DTemNUE8auXgKu4lZ6q4VR8yVLkabrTiGs7OA+znPhIxnPPEU+xOD8DdZ8M/DoXuRTBquoUtfumv0DrOtz92A6QtGSMZG06GCoH0z5x1l0vCFI9zlixiMwyYeRK/mHoFj+e2IppPwwM/hX8cBt2LpfhjPzSxiOE8LFHX1yqSnvJJmK2tpeZB7ikTgMcqvJcyubxzcI53HebjFeqkr+kbCTKoTsLKJc+OJpqie2nlsMVQ4AbS5d9LdvLcHI/SkrCS53g04ixhUTFNUHakW7EkT9kY0GY30+Q/b0OZnLNp3l3UOxrJCvRRy7FQRilOwsomz4rZqOVGTMcpXDpsx532phiJAiOuJRF1GqIqrl1R3ikAiJZNWfqQVx0IXQugc1048S44+AJo6gzskx0D7N0tAGMUSrv0p7KOFvE413liN2i0iAGjp7P8kGv4QeZb9NEMi56DS/eAF6+yNjVLsKoxQEH+ZprmCDYqlOqkyzb3bgtbUrG9IMsBOGeNTOsuVwsoZqT3FKYbdCHV9AxmSReaHHZNYhiGUmkHp4YrUwuomk4tl7+plHcyTXMEEQJcGskqajiXtNNwIkQmZyppqHeXaair3pNgnyfu+9vO31TEgDX9aUzTgpRsHXLDMJQury2L4zi77lTF7so4jgplgXzedHJvd0N9vNcabtEL8Nc94Pm/WX/f4evw7adh/b0C+zR80SgUP6++VFZJQ324hUC6RKu6pEJRAV3uQY6MmsYJmR/x0Eb/C/FW+OgJa0TjzX8L98eWKxjbVjw4AUfXrmdIHZBefqRbJzZqUctKttkHZzRilBxUKtkMdkE6pswoVzZvOgW/TCtfQKtjM5im6cQA93VTyUhfNWxJjW32CKwuMcCW6FIVA+zPoTQJUxcDbOAjHjVKfHJANAVTKWvLMHZt3/rTOSUjpt1l2ai23r6aJqizS6JcDOhV0UwbybI0DMMFfsgH0crnAR4K6JXvwmX7wFMXASZsexx8+ymYMatun2ww0S0TNK5NXQFtnxfN8ajT+LR8UneelI0BLQluzu3JAenzMNfbAzL9cNf34Lovw8Aa4T51l5EHsGOACjbqQLq4jLGkoV4AY5SCaK48QMeG+ijFjHQ7D+hoLjYZVMo62E2X9mTM0SIGF/tTBRnKJe1S9Ee/qWKVMo/dgxmnATJek2ZaORCtJRF1pCZUNNTXlmmoOxK9ymJAQSqsaWQtoIJUY5/zo1sSxKJFmNGu4XoVNEE/KaSaIo6jQApzwNpnZxil566z66rSvZTPwxMXwJX7w5oPoH0KHHcLHHwhJNvq8ml1mRjQobihPtxCIF2i2YBLZ8lIkLpOZjaXp7+QPLt12qyix+CxtgPg1CdgynYw1AU3ngB3fMca3RBkDojWmiz5fodC9kA5Jpou2lrlCjEVBbRdaI1tLcqoQLGoVwXuQ2kAbo5HnfEyNaxGm83gXjaq7jMazOTIFiQU3Gwvh42qBESzC+hhMaBJHYhWLgaoLqDt+9ddQKuUdnHGgtuSJU1Qu4BW8bzZ95KbqeM+61T4VG4qRSWrsc+ViJbEAA0K6LGtw5ppBf9UFtDlQLSK/rx6Pfx9L1j+X2gZB1/+F3zxEmjqaIhP3WUZ6erOE0fWpX04EUJlAV15UfSi/Dj6jrnV0k6PJuHdey1G1YJnhPpUbuFwcTJNAYu4AMbGo4azSwLUyjvZ/88xw2OAQvCj3J4E1dJ85WLAOGdBnLrr5p5IgWLs7k2p2JUycqeUnYMPpHOksnqQalTGbvvebnUtYwS1jPRyIJphGC48QEEt4Oy4GVnDqSZDlW2mqSDVOMuGh+dv6shQZXEcV/6mYvdWNRxHRey2r9uo5jhxVwOkagzoXQ7XHA4P/RLMHGx5BJz2NGy4b0N8WlumFohFi1JPOsi7hEC6RCunj2wn9CqWVPRWKKDHuhlNYzeAr98Pe5wJGPDyP+DyfWDV+0J8Gq6tZ5vKAOywGVpHHpypbF7J8pziwakHI73c2BS4C2h1iwZHD0vCVOprlVs0OFohU8dORKOR0gLa1tdTUUDbDIrhIJrK61bu/ra/7h1SM15WLglTuWhw9bAl0bY5BbQCEK247b143aIRwznvVEqEdJQpoFXoI9tnamsiWsIeGqdwDHdVmQIa1I7j25ME5WJA18AwqbB0P9x+Gtz2LYvtPONzFgt904Ma5o+7gC6NAepit11ojasYA9TF7jEubdSmeNSRDOoazFna6d94CMZuCD2LYe5B8MQfLaaVAOsqV0C3qIsBdmxub4qXNEB8aaM22IYvG7ZNZR5QbpqoSIaS708ml3cmCcrJA6icSqkIoimcJnLH7vammLPzTk0tUHlPgooarndoZF4CaqUm1vTrVwuU25VSVBZQM01kk6FKGOlt6hnpI/KAAtCvIn8rP1VsfV55E3oVLEKvykhXgQeUmXJ2/33E8/bBw/DX3eHDRyDWDIdeDEdcAc2jG+bT6jI4TlWfFFgIpEu0astFugbS0jWb7YemJREt6T6NGMONJWDfX1gLA1onwIo3LZbVG7c33CcnAFcsoFUkYSMZTa2u8TLZAKhpmsWRbk3YDHYh5u6Ig0uSR8F1KzLSSw8FlYymcnsSxigc53TGgptipQW0Qn3k1ZXYqM0q5Z1Gxm73eJnse6lSAa0yBlRKwooFtDom2vAGn9pCrAwbVWUMGLRj97AC2m7KKGBZrak0laKymdZfmZGezZvFQmzlu/D3veGVa8GIwN4/geNvh/ZJDfWnpIB2M9EUxgD73h4zvKGuUJarXEMdyox1T9oKvvkobHW0xax66Fdw7RFCpF66yzXUFeojF7X2S/M3+/5Wmb/pJfFWZjKtkF8OZnLSSTWVyVCFGk7hJOjIqWL1IJo7D4hEDCc3UbHrqry8k8oYMFIeBKzmGqghQhQZ6frkAdUmCnsUkGrsOBgbQYZSJ++0qiKpRr08p5uckYxFnc9MSQzQjJFux+b2ETFgGBEin4fH/wD/PBz6V8KELazcafvjwYUjNMIqTqeGQPpn04oF9EhGU0khJskqHZwVC7H197SkXqbvDuleuOlEuPfHkGvcjVxOjgOKSZjKDrQ7eTYMwzVNIPeg6ktlyRUK6LKLBhWyGUYGYPWM9OFJmF1Aq2CAF5Mw14ipwkKs3GQDFGOUioSnZhKmNAaUjpfZCYZsnU33Z9BeRtZBTQywWY2lYEy7SkZ6hWaaA6QrmQKpXECrLMSG5wEqJwlW91dgNWq2J6EpHqUpbqXR3QMZeOsuuOzzsOodaJ8MJ94Je54NkWjZ31mPueU4ml2j+GMVyqnpGAO6yuxKgQrNtGQ7HP53OOwSi2H1wcPw9z1h6WsN88c0zRogmvwxczcj3W1O/qZAjmNVmWXxUIxTKmuBTlcN156MOXKGsnNK+zMYPk1UXDaqDoyp2FBX2QAZ3kyrJc0lyPKuer+jTEN9db98Yl2xhhtGhmpWF7uLDXUNiRBltLZV+OQmQrjJUCoZ6cWGenkSmxJCZBkiBLjwAMm7rlLZHEMZK9cvqyygoAFSkRDp1rYf7IIbvgoP/wYwYfsTrWm+CZsK8WltxenUUNrlM2nlRrnchViX5OUC5ZbUQDF57isH7LdPghPugN2+a/392Uvgn19qGGunV0NWY7kCGtTppNuBIxGLlGjZ2YGmezAjfYmejgV0JUa6KnkA0zQdwNUdA9qTMWe6QXZTphKIZl+3PgXXrbsM6wv0ANFGD7uXVOmj2jHAXcRDkQW2diCtDIyxtetsU8pGda6bHoVYNpd3CujhI6Z2DSS7KVOpgHbyAKVMNH3kAex7ZXhcGtWcIEKexOO/swqMdK9FNvjW47DeHsL96RgmxzHGJeugDozRJ3+ryEivBKIZBmx3HJzyIIxeD7oWwhWz4bUbG+LPUCbvLPUrt8A+lzel50uVawGV+Vt1WQelu1JceYBhGA4YIz1/qwBa25+ZEpmgVPlaQOWiwUoNdVWkmt6hLHZoLkeGSmeLE4cyfYLKeYBaMpQ+Em9FPKB43dykGtkST+6pYrc500QKnre+VPnGrDOhrrKGqzAtpwrHMQyrjrPNvtf70yomnOy6sjwe0Nn7Hly2N7xzt7VT5tCL4dA/QbxZmE+VpF1UNtSHWwikS7KhTLH71NlSHoxRlYQNB9HaaiXP0RjM/jUccy0k2uGjJ6yHa8Vb9ftkgzEVkjClSyqGJ2HOEj01INrw5Hl0S8IBY+QDstWTZ5Uj3cMZ6apAtEqTBNZ0g134qGIzlF63mjFApE8V2HEqR7m6HDZDeTBGVRI2fJLATsJyeVP6M9dTcSpFh2aaHkw0d1HjLnyikeLuBtngRyVpF7shoqKArpSbqJxMcwro5tJ7aZ2mFJfHz2fiK3+2vrHzty0ZvLYJQv2xr9vwPMCOUelc3sk5ZVnl/E3lnoQCO64CGFMxdk/aEr7xiLU0KzsIt34D7j0HcvX9G+x7NxoxaHWN4idjUeeZky2n5Jy5IwpoheBnBRaxqhhQQoRo1iMPKDZAyp+5/emck3PKst4KMaBdIYhm5wEjyFA2EULyvWST6prjUZKxYgyw/m7BMrInimrdS0ryt4q7t9TEgGwu73wOo8rU3yCfVFNpqtidv6mSDa6I4yjM3yrVAqqmijua4kQi7sXsKol1FZppyTj7RV7k58vPgDUfQuc0+Pq9lpSLYKsk7aKymTbcQiBdkrmT5/ZhjD1HH1UVG7XCwdmXylZnNW52MJzygMXaWfsRXL4fvHtfXT71VQLRFGlt5/NmxU6mKjZDJSDdfW/JDi6VpV3ULxr0NNItwez7JDlskgCKTBnZB2dvRUa6ugK6L1UhCVMUAzJuFnGFJSzyC+jyIJo1pWId67KvXSVGkw6Lon2DaILMLrLak7GSUXxQtyuhEqNJZey2GU3DY0Cnosasmwgxyt1QX/sRFw38kM9HXyEXScKX/g4H/B9E4xV+U+PMmUoZFgNa4lGnoS5bkqOvAhu1XWEMcBjpLcNjd3GCr6K1jIFjb4RZP7D+/uxf4Lovw1BPYH9sEK1z2Cg+FMka0mOAA8YMa6grbKZVqgV0IEIMlwdQPZlWiQwFFSaLBVolmSCV00S15J1UXbfh+ZthGMr23FQE0RTWAnZcGv68qYoBbiLESCKbXcOpYqSXr70zOZNUVm5Dva9mLSD3XjJNs+yeKyg2Rbs1igGjlcWAMpigabLRB1fxt/iFNDMEM/aEbz4G62wvxadaihAhkP4Zsi6XJmKl5Fl+J7M8GOMeze9L1wh4EzaDUx6G6XtYI83/Ogae+hME7IDaCbsu8gC9Q1nsXsKIAKyIzVBpnBPUJT21xwJVJGHl729VSVi5JTW2jVI1lVLhutnPXzqXJ5WVO15WCYxRFQPcYGu5KRCQf926KwAfAG3JKtJcAk23GOBmEFYa55TeTCuzZNA2VcsGK02AONIu6RoNdQFWqxCTfd3sa1JChFj0PFy2D1OzC1lmjuaena+GbY6R5lOlPCASMZz4LVuWp7a0i1x/srm8S5KnAohWa6IwEoV9fgpH/8PSTX//AbjyC9C1KJBP5RaO2zbGmUxTU0BXIkKolAcYXguoaqbZeUBTfCQRopi/qZooLL1uyViURIHZLD8PKC8VpmpZfCqbo78gk1Jp4bBsMKYSiAbq6srKpBp1kwQ1Y4B0MlSBCNE0kgihqoYrt28DoDVR/MxU4QEjcRw1RL+BdI50oZkwghCpeKq4PI6jhsQyoobLpuHO7zL9pXOJGCY3G7PhuFugdaw0n+wY0NlcPgaE0i6fIetyxoKrgGiqNNKHJTxN8SiJqA9WY+tYOP42a+kAJjzwU/j3/7MeQp9mPzTDfVLFarQPxZZE6QgeKBznrAAQg2ukM6VmaWXlSQL5I3iDBX2xSuNlyoD0YWPBoLCArsRoSqpPwoZP7qjS2bWlmzrKJs9q76VqMUBVAV2xEJP8GQ1mimPtw4v6UV7YqAKsajNN1XRDhaaM/ZmZJvTXaqg32Jxm2jCpCXUFdBH8NAwDXr8F5h4MA6tY3LQxh6V+zQfRDaX6VGSjjmym2bFTVTNtRP7mSLvIJ0LYNlICx+e9tPlh8LX/QNtEWPEGXL4PLH7Zt09dzvM2MgY4OtKSJwmK1618AySd1aihrigPKMaAkflbkY2qikFYOQbIfub6KsUAxdctGjEq6kjLBq2r5m9Ju4aTvCdhsFJD3eOEugCr1FBX1UyrxGqGYgyQToissCCypKEuOw9IVZDmU4zjJGIRWhKlOE5nGAMcK5kmGlwL1xwOL/8D04jwi8wJ/DjzNSnTlraZpul8Bq3Dm2mKau9yFgLpkqwqE01VAK6S0Nvgo2dGUywBh1wEB/wejAi8ci3862hI9fryyf7/VdLYlM1oqiTrAkXgQ5VGerkCutU5OFUVYhUW1klmNbobCa3JYQenYmmXcjGgyNZRtWRspEyQKlajbiPdlbRawcUeUgR+lkvC1LFRay8Zk6nVaP/7I4alPeo2ZVMpFdhD4DpzZRfQFRogyViEeNSanlPGaNKkCVrUR4/B4+fDzV+HXAo2PoAbtvobyxlTm9ncYLOvW9V7SZMY0K5opNt+lprikRFN0EDyTuvMhFMegglbQN9yuOpAeOtOXz5Va6apit0VpV3cEiGK8gBd2KjllgzaNkpRDVdJ2gXUx4A2TfT23VPOw6fBVUm8VdpxAyqvW4VJgsJ1k91Qz+VNZ5Kg0oS6fCJE+T0poHIqpXIMaFd0L1WcKFS0KNoNWg+PAfa1lB4DdKwFCp/T5NwSuHxfa/9hoo2BI65hbu4LpLOm1IZ6Kpsnk7Nqxkp5QAikf4bMfmjKAbJOgiG9gC7PQrF8CsBmMAzY+Vtw7E0Qb4UPH4G5B0Hvcs+/ouJIkKJOZqXCEPQcCSpqWqrpQI8soIusxpoyQQL8ScQiZSYJ1LBRuwYrT6WokuNwRoPL3N/q7qUazTTJ/nRVGcW3v6fLomhwXTdlI93lGU2WTJA8rcZeF5OhUgGtqglarhBTxh5yGE0jtRpVgB/5vFlzpFt2TOoayBAjy0+yl8DDv7a+ucv/gy9fS1t7p/MamVYVjNEsBnS4CkOZyw+L91Fl8NN3HjCqsGjLXkJ6w/HwzCWe316tgC4SIeSyvyvpWrsXosp85lLZHOmcdVbo0kzrqtIAUQ2iVZUH0FDaRWpDPVUejAW3vJOi6YYy91KrothdiVSjqqHuBu0r7UpRRYYqd93U6bZ7yAMU4SYj91ypwXEqAfugcqq4fN4NCmvvoQxbGR+y71NfhdXvW0tFT76fps0PdL1Gnk/uWsgtVQTq8oByFgLpkqw6iKZqlKvyWGBdhdhG+8JJd0HLOFj6KlyxH6z+oObb8nnTAVtHFGIuForMJKy/wngpFDe+q9JH1qmTWWk0uCle1GqUySCyGenD5UFAfRJWvgFiFavSY0CVJCxQM61OS2WLWnYVm2nSl4yVB4dA02aaZmzUtkTMWX4oM4F2YreGMaBa8qyKjVrujFMRA9wF9Eh2nBqZoP6+Xv4av5DPDz0ARhQO+iN84XcQiboYTXrsuAFoU7wrZXjsdsdOmfd3JXkQKD6DgWJ3Uwd85QbY8RTAhPt+DA/83NNuoGIzrUoMkDxRWEnmEdQwid33yPACWt00UWU2aoeiM7enQhMUNJxMK9xHmZzpLG6WYZUmG0AdqcbLRKE6WYfSz0lVQ92+bvGoMYIMpTp/G774ENyyqvqQoZQ101KVcBzLn4F0jkxOXgywc8qyMUAxqaZ8DFBDrNuw70WuS/yGRHotTN7Wmr6buEXJhLrM3NsduyORSmSoEEj/zFg1WQeb8aHLSDc0YNnBOtvDyffD6BnQtcAC0z9+qepb+tNZpw6ppImWN3HGvWRYXwV9JlCnaVuNidauPHkuI1uiYHGGXYiWu246LhttVQyiVY0BEuOS+99faZwzlc0zlJEZA6z/13CJICh+brIZH46sQ5l7qV0RGFOpEIuUJGHy76XhrBhQx0JxGupVZB1k65F7mkyTGQNS7gK6NEUtakhLZDYPdrHHc99k3+g80kYCvnxtAUC1rNUBPuSyiKvJOhTzAD1iQCIWoSleaKhL9MmOAeVi96h684BoDA48H/b9hfX3p+bAHd+BXPVnxY4Bespy6dFQd/LuRJRohQK6R7JUWKXF7OCKAZJjdzWZRxuMkT5NVIEM1eK6llJjQIUJR3DlARqRodTtuGnwhHqdVmkqDdTXcNVkVXUiQ6loqFcjQ7n/LvOMs//9w5uy4NJI14kMVchXpOYBr9/Cbwd+RZsxRO+UPSwybPtE58cqFqDqGAPKWQikS7Jqiaod7GSPc1ba+A6ujlg9D83YDeDkB2DKdjCwGq4+GN69v+LLqxXQyVjEWYAqtSNWBUi3EzNVyXPVQkziYW6aZsVxTut78g/zSsw4KA3AMgsxHTXRKsk6WD4pYKFUKaDbk2qZzeViQKuC5w3000bNueQ4yjfT5DcceqtcN9XaqOXYqM5ItzJ95HKArDomWjlNW/f9LuVe6l0Ocw9mctc8esxmrlr/QtjkgJKX2CCtKiKELmCMW46jWgxQAqKJKsQMA/Y4Ew75k7UbaN4/4aYTITNU8S1VR7qd66ZmWXzZpZX2FIiK/K3sJIH1PbeGsgyrlgeokuXyIu0is6FejQxlGIaSiaJqNZwqaRcd5TmrT6XESl4jw6rHAOtzG8rIXYJcrSmjvBaoSqyT37yGkeduLBopkmqk1nAFeadyygKK9fa1wAOe+zvcfDJxstyZ24XVh/0Tku0lL+lQieNUuW69Q3LlAstZCKRLsn4noR/JjFEu61CVRVxncGkbDyfeZelJZgbg+mPhzX+XfWlvlQLaMAwngZYZ8JzrVqaT2aaYiVYtAMtkELoXQpQdoVaYPFcLwLILsWpAo7JCrGoDRD4LpdrBGYkYTmIok9ncXwWM0TIGKNDYdN+31e4lmWBMteumarrBy4Jv+SPdlWNAm4IY0FMlBiRiEWdxrPA8YM18uHI2LP8vffExHJP+GavGbD/iZcomCURJ8wW03ioFNLhigMypFA9Ael8qS7beMfOZJ8JRV0M0AW/fBdceCUM9ZV9qSwBVJ0KomSQoz0ZV0AStQoRojkcdzWa5coFe8gB92KgqFg3a160cGcryqThNIMuqSby5WZYySTVeNNLlk6GqTKWoaKhX2W9RQqqReJ4MpKvhAfoqC8j0qcj+HkmGAjceoEctoCp2ayHtYprw8G/hnv8BTK7O7scZmdPpaGsb8VJdp1Jk+1TOQiBdktk3REuZAKxsJKhaIdbIAJxsg69cD1seCfkM3HQSvHrDiJdVO8hBjUZyX5VOpqoOdDUmmorRYNsfwyg/OlVcpquHPnJTvDjdILUpk7ZjQLlmmvwYYJpm1akUFbqfNWOAM9Ytv6gvz0hX1AT1wmqUet2s65GIRmiKl5HAaZYPxlTTR1Y33WDLBOnBasznTQdsFSLxFsCqFdDgknYQWYgtfwOu3B/WfgSjpvPXDS7lLXN61akUVfmbLnsS3OBn2QJaQQyoWkC74kJDGuqbHwrH3QKJdvjoCWsCs3/ViJfZ93dVXWuJ91I6m2ew0EzULgaU8cdiNstnEfZVid2q5J28LB1XMUnQ3hQfQYaC0oWjsqzISB+Zl9jXLZc3pS5Crwp+KjhPBjM5h9Wpy1SKsyCyzPPmJtXoEgPsfEV+DLA+p85qDXUle0nK52/tCibTeqvEABuT60/nyEtkNivfc2WacO+P4PHfAzC4+w/5efYk8kRqEOtk3kuVST7xaMTBUlTLu4RAuiSrtuxARbDL5vJO8SAleY7G4fC/w3bHgZmH274FL15V8pJq3SeAdpc2oiyrprVta9uns3mpizOqjuIr6EDbB3m5hRBun3QZCbKW58gHGqoV9Y6sg+RJAnsUv7zGpgpWY6bk/z3cVBTQntgMabmMpmISVh4kBjUslHIJD6hhoVTTRYxEDFoKgP+AxMKnmAdUbqbJlHXoqzKKD8XnTeqCyFr3kmgwZulrMPdg6FsOE7aAk+9nEZZWZLUYoGqkWxeJt2qTDeCWdlEQA8pct0Q0QqyQrzQMtJrxOTjpTmgZC0tfhasPgb6VJS+x4025uKQiBrgbG+XyJSWLBlOVZSbA3UxTkQdUBmRlNoncRIhyu1JUyAVWAz5AFRmqChHC9QzKBK6de6nKFJhUMlThPopGDGfiy20qplLse6ncZwTFe16XWkCFxFs+X5RVrTpNJBMPqJUH2PmbkutWOVcCnIayDKtWMwmv4fJ5+M9Z8Nxfrb8f9EdWbv89wKApHiEerTZNpGbZaDnTRSc9BNIlmRcmmszRYHdSXHakW8QoVyQKh/wZdvomYMJd34NnL3X5VCsJUxGAC4z0Ksmz9To9QKuGaNv79qfyQe7+vi7JM0CLzSSW+MxVZzPIZ6HY1yNSa5JACZtBowI6XRxVHG72tcybll6jDHPvJKiqka5JTAI1GunVilVQM1Fk+1RtMk2mrIN93axlkOUKaBXjnIU8QEXyvGSeBX4OroEp28PX/gPtkzztSRjK5OuXCPFo0okQHqxWDFBxL1WLAYZhONduoJF5wJTt4Gv3QtskWPEmzD3I0tovmBeGrExN25qTBCpiQI0CukNBAe3kAVVruJy0hnotIkS7giZoT63rppm0SzRiOEuQZTKJ7dhdLu9WQaop5pMjZVVBMRmqxr2kYsqxpQoRQmpDJp3FJlFXm07VhcQGinalOPfSyOvWFI9gH3sqmmnVzhMhMSCfgzu/Ay9eCRhw2CWw4ymuBkilSQIFUykO/la9hpM9BTLcQiBdkvV7SJ6lgmiFh6Y1ESVWtvskKHmOROCA38PuZ1h/v/dH8Pj5gBcmmrplVeWCXTwaIVHQAZQFxmRzeWcEsSyjSYFGuvcCWo+xQCh+dmoOzmpJmES9ZtfBWX2SQA85DnCzURUc5mUSjJZE1JEIkRUDBjM5J3kuyyBUoGfZ6zEJU9KUqZGEDUhdWFc5MbQ/I6kxoIo0AKiZlvNciDUaRPv4Jbj6MBjqgqk7wgm3Q/NooAar0RXPZe3cqLWTQGVDvRb4qUQjvUyuBAIZ4OM3hq/dDe1TYNU7FpjesxQogvbl7iUlMaDKkkG3T1JjQK3pVCVs69oxQKZESHctIoSGk2lKcsoqUymghsjmpRaQ2VCvBaIpaabVIkIkVORvtRvqA+mctOWHdgyoSIRQuGy0pjynzDygyplrGIZzL8mKlaZZ3M9WbUK94dctl4XbT4N511jL0W2VCNx7UqrnbzpNpdjktoYSIQJYCKRLMi9ajZmcKW0DdTWNXRCcqBoG7PtL2OvH1t8f/jU89nvPGum6jHK5vy/rMB9wjR7pwmyutqgKFC0YqiKlBGo6mdUKaDc7VpZOW7cTA6rf2zqxUNoVTDdUG+l2J2Gynjn7njUMaIqVKcR0ZKSraILWKKBV6NsXGenV2Kjyp1IqxQAVsbtWDHBidyPP3EXPwz+/CKlumLYLHHcrNHU6P642mZaMFZcfyrqX7Gc7GYtUJ0JIJWdUz9+KjCZ9wBj7ORwQ8TmN3cCaaOicBqvfg7kHQvdi7fYk1Mq7Vey46avRTLOvm8xl8VVlHVxAtqxr55bCLEeEKOZvn3EQzeNkmqzYnc+bTr2oTzOtVgNEwXRqDTJUi8L8rZrEG8hryjg4jk5NULspU3GSQH4eUAvHkY0HpLJ5p9lSbrpBCP6Wy8Ct34DXrgcjCkdcAVsf7fxYSzKUx1pAtqzicAuBdElWddmoOwmTdJPWYg8Jf2gMA/b6oQWoAzzyWzb94ApPPsk8OGvptsvWRbP/7fGo4bDh3aZmS7dHTTQV48qaJM/gYjSVlVEpfm9Akk5btYVHlk+SNoe7rAiiVWfIDmrCQoFiUS/rc7IbMi3xaNUCWgUbVauplJogmlwmmsVCqV2IpXN5eQ31mk1Q+ey4Wsuq7DO3YeDngmfgn1+CVA9M391aGNnUUfKS/iqx2/JJ7nlSDYgBdzNNBYhWfZJACatRVSE2Zn046T8wal1Y8yHmVQcyPmfJvFSTCpPZUK/dTNNwmshmo0oF0So/c5GIUQT3ZcWAKv6AqulUr3sS9IkB7mWDMqyEDFVtT4KC5nWtPEDN0vHqsVsmI72vyn6LZEzAzo0aVo2cBar2JHgk1ciUeq0JyMqVenXfsy1lJgkaPqGey8DNX4c3boVIHI6+GrY8vOQl3ptp8pfE1ordMmNAOfvEA+l/+ctfmDFjBk1NTcycOZMnnnii4mtPOukkDMMY8WeLLbZwXjN37tyyrxkaGgrsY60xDveCD1kdsf4ahZi0h2aP78E+PwNg1oKLOTn6n4oPsgoWSi2tbVVs1HINGVCbhGnFZqiVhEkeCcrm8o6Gdrl7KRmLOPqksq5dLYBYzThn9UKsGAP0GOkG+VMg1Qp6UDM+XYuNqnJPQq1pIlnXbSiTdyR5qi2vtnySc8Zp2QCpcZ40FPhY+BxccwSk+6xFkV+9CZJtI33ymAfIbqiXm2wA90i3PsxmJWxUjwW00EJs9HQ46W4YvR5G10dcn/gNk1ldNodT0VD3ykiXKqdWi5GeVFcLlJtKAfnsODsHqhgDFCyt7K3BInamUrSaKpbdALH+PxEDR5/dbfZ9JLWhPlgrD1AIotWQdVCx46bcveTeuSGtFkhXxwNU1N618AAhE4U1TL8azvr/NMXLTxS6GyB1N9TzObjtW/DWHRBNwDHXwGaHjHhZ7V13duzWJw9QMVVczj7RQPoNN9zA9773PX7yk58wb948Zs2axQEHHMDChQvLvv6iiy5i6dKlzp9FixYxZswYjjrqqJLXdXR0lLxu6dKlNDU1BfbTPcZRThMN5HcOi53MCv7ITApnfd+Reflp/Fp2XXVT2ZepYaF4HQmSfN0qJM/2fSQzCfM6EqRTB1opC6WiRIhkZnONRR4qF9XUSsIGZC6G8hoDJIH71ZaeQeniM1lajV6baXox0eQ2r93PdXMZFkosGnE11OUm9LWklOTqI1eflmttFPNzyTy49kjI9MOMPeErN0CitexLvUq8ybqXBqosq4PS2C1r+WFvLa1tBWO4XnV2hfs0ahqcdDfZzvWYFlnJtcnfkRhaNeJlKhrqPR6baTJ1dotLKytNpcitBUzTrEk8kB8Dqvuj464UO/eVOVHYW+O6yW6AuCdTyy32LJEIkdZQLzDSK0i92tMqOsk6FNmocnzK5U0GMzaJpRZuIikGOPdSdX/UsIgrxAAFutbOJGgNcobsJmjF/K1RMkH5PNzxHXj9FojE4Oh/wiZfKPvSYgyoQapRMJ2qiyRPJftEA+kXXHABJ598MqeccgqbbbYZc+bMYdq0aVx66aVlX9/Z2cmkSZOcPy+++CJr167la1/7WsnrDMMoed2kSZPq8tNd8NVkEmvCbJa+oXevH/Kf0ccBMOv98+GFy0e8RAULpdpyOHAnYXLBmFrMOJBZiNUC0VQwm6sfnLJZKG5JnmQZXWsoFh/y2AzW/6e5IqNJ/sK62smzfoz0oryTpGmiGmxU9z0v63PyWkDLTHh0Y6S7m6DlJHmgeI/JKlgHajKaFBRitWJAIxpXy98syrmsuxt85TpItJR9aT5v1pzgUyXxVk5fE4qfXVbi8sNazbQWBQW0VyaaFJ8612HhIdfzsTmO9Y2l8I/DYGBNyUsMw5C+bNB7DJB53WotGZNLhEhl82QdMpQe50mxhqueBwxmcmRzkmJADVkH2XJq4IEIIZmg5TxvFWJ31CUTJCv37qvRvFY5VVyZVCM3p3SfEbrs3XEY6TUmQPpSMhvq1a9bszPFL7EW8Lp3R1oNVz2fdMsEBc4pTRPu/gG8cq2liX7klRVBdPBCiNQwBoTLRuuzdDrNSy+9xOzZs0u+P3v2bJ5++mlPv+OKK65g3333Zfr06SXf7+vrY/r06UydOpWDDz6YefPmVf09qVSKnp6ekj9usx+a5njUYZsMN9kBuBaz2WYzpLPymM3XtRzPpdnCyMl/vg8vXV3yczvhkcVmyOdND4WYGl3ESgdnNCKf2VxrNFj2dQMPbFTpB6cNfpb3B+SDMUVWY43R4LQ8vdZiIVb9XpKliZbK5sjkrH97W40mqHR95Ar+JGNREoVxQXk7NwpshhqTBIOS5Aqg9rJR2VMpzp6UCv6A/B0XRYC4egyQyWyuzSK2NdIDXrdV71sg5uBaWGcmHFuZiQ6l00T6TKbVaPAnYthkR1mFT61JAhV6lvb1qLWwTlYTtDsxia+mf8wqRsOKQjNnqLvkNbJZjf01aoEOlQV0jYa6rALa/VxX3pNg+SRLk3zAD6tRMrNZJ0a6d31kubVApbzE/TNZ7M8Bj3mAimXxNadSpMUA6zOKRQySZfaTgXxCZE0cp3Dd8qa8c9eeXKqZv0ltptXYJ5FUc55UaoIahlFUqQhy7pom3PcTePEKwIAv/Q02P6zqW6rp/4MaqbBaMUBFY7acfWKB9FWrVpHL5Zg4cWLJ9ydOnMiyZctqvn/p0qXcc889nHLKKSXf33TTTZk7dy533HEH1113HU1NTey+++689957FX/XueeeS2dnp/Nn2rRpJT+vBcaCQkZ6DVkHkAjGpHOcl/0yCzYuTAjceQa8fqvzc9lsVE8FtLKRoPIBGORLctSSCZKdqELtTqZs8LOvxmSD+2fydXarf0amKZPZXGMET/okQXVJHuv7splo1dmoIF8qrBbrS7ZkCXiJAbKb17VjgPSGesrbVIpMZrN3jfQAn9HaBfCPQ6F/BUzcCr5684jFosPNvhbRiFFW0xbcckpy84BKhVgkYjiNP10a6sWJQn0Y6bIlQvpTORaYkzin7TfQMhaWvgLXHgWpPuc1svfcDHpkNQ5mcmQkMZtra6OqYX9XI0MpY6RXuG6JWMQB/GQBoL01QDTZzWtv00SqargqDXXJMWCgxoS6+97Wp6EulwzV5wI/y0nygOtekrbnqvp1c8cr2XlAJVKNbBJbKpsjXTi3lC0dH2a1ZLnAJcvj1yfThId+Bc9eYv39sIth66OqvwcYrIXjKCBC1Fo2KltOrZJ9YoF024YHNNM0KwY5t82dO5dRo0bxxS9+seT7u+yyC8cddxzbbLMNs2bN4sYbb2TjjTfmz3/+c8Xfdc4559Dd3e38WbRoUcnPHX2masCHZlrbJeNl0gJwBjBYtvP/wg4nAybc+k14/0HLV8n6yPa1qLQUpsQnyduedWrK1BoNbpHMSDdN00MnU3JTJlX9kLJ+Jjl5rsFCaYoXmc2ymjK1RkxlH+a1lsKAiiTMewyQdd0cYK8WYCXpuuXyZk3guiESIT6sz0MMCJw8B7T+GtMNrYmow2yWB8bYbNTqrEbf91LPErj6EOhZDOM2huNvg5Yxnv1p9VJAS25cVQNj6mI0BTCvsnOy8oCSaaKaEiFy4+Sqlhlw/O3Q1AmLnoPrvwKZwRJf5cs8lo9L7rxOGquxpkSImv0WXljEutRwIH/Cyet1k9a4cj3XleUB5DfToEYe0KRXY9b+ft5EolRYrQknuTVcLbKI+2fS6soa4KdbKkzaZFrNCXXZ7G8XGarC/S07dvfVYMhDHZjgkxdYfwAOPB+2O87T2+xaoBKpxv7+YCYnbUK9v9Z5Ei4brc/GjRtHNBodwT5fsWLFCJb6cDNNkyuvvJLjjz+eRCJR9bWRSIQdd9yxKiM9mUzS0dFR8sdtfka55G98r9IVl8xsdsDP5jgc+AfY4nDIZ+CG42HR89IPTrc8SOUCWm5CXyygqyVhcrWtBzwmYelcXgqjqVTPUo/uapHNoF8SppPcTF8tNoPCGFDJ5E83eIgBqsD9SomqK3mWwWhy3x+1mGjSJwm8xABJPg3WiN2GYdASlzuOX4uJ5rAa/XxGA2ssGY2uBTB6BpxwB7SN9/RWXwW0dDaql6aMnAbIYI3GrHTw05X/VJbjsOOk3PytLRmDyVvDcbdCog3mPw43fx1yWXXsuAoxIOHSa5UVA2rtSSjmb3LrpWpkKPk1XHUCC6ibdK4l7yRPRsX6/0SryHGoigFVm6CSwU9nKkWTZpppmjWbMqqIdVrhODUY6SB/4WitpqP8GOCBDJWQGwN8NUH9xICXrrbY6ACzfwM7fSOAT9XPXJAj0emFDKWCJV/OPrFAeiKRYObMmTzwwAMl33/ggQfYbbfdqr73scce4/333+fkk0+u+f8xTZNXXnmFyZMnB/a1lj4TKAA+arBQwD06JZnNkIxDJGrpOm24L2QG4NojGd1nNTPkaX3VLqCVHZzVdHaVMdL1SMLc/+7aBbTsQkyf5Lm/BvgJcnVtTdOsKe2iZfKsKAmrmjxLZqMOeGQzyGI02f9ua7lvpeQ5ILM5oA34kXeSHQOq+NQsMQa495LUGsP17E96AP51DKx8G9qnwIl3QIf3fM5bAa1m8ZkXRroui2tbXIymnARGk3sUv7Ich2yG7LAJkKk7wLE3QjQJ79wNd51Bu7NoUA7w4QWQldnAtvYyWWdE5akUuWCMH3lO2bJc1ZjNshfG23HJlnIbbq2StYjdE461yFDymjK1z1zdiHXuRoSMz2kwk8M+ImruJZE+UahPDBjMeAdkZUu9Vmo6yt6T0FtjOt3tk2yWfEOlXd66E+76nvX1rO/Dbt/x5VOtGq4pHnGmU2U8cyU4jiaSPJXsEwukA5x11llcfvnlXHnllbz11luceeaZLFy4kFNPPRWwJFdOOOGEEe+74oor2Hnnndlyyy1H/OyXv/wl9913Hx9++CGvvPIKJ598Mq+88orzO4OYJxax9LHA2oCs/UANSOg+mabpdLmcBzmWgKP/AdN2hqFupt31VaYZy6UzCHU6OL10MmXLA9QqoN2MJhkHlbsBEqlQQLcoOzhrM5pkF2JeCmgZn1PpJIFejPRqgJVsXWsv91KxmSaZjVpD3gnkfE5u5qcuchxuYK+SqWKjVvdJXgzwNIrvx59cBm46CT5+3pLROP5WGLWuL5/8yDpoyUbVZDLN/fnJYDR5uW4tCcnXrdx+i/V2hyOvBCMC867hiO6rrNdKAhpqTaVYP4sVXivep5LFnjXAGFkNkAEPwIfshrqXGGB/TrJkubySajI5k7SMhrqH5rXsPVeeGiCK9iRU86lFIvHA/ncbRpXzJCE57/ZBhpI3oV4bx5F53cAtEVKLkS53OlUnaWUvmKAvqdf5T8DNJ4OZh+1PgM//1LdPzhlX4brJnk6143EyFiFRkwwVAumB7ZhjjmHOnDn86le/Ytttt+Xxxx/n7rvvZvr06YC1UHThwoUl7+nu7uaWW26pyEbv6urim9/8JpttthmzZ89m8eLFPP744+y0006B/dSzEPPwIDvaceIfmqFMHjumlhyciVY49gaYsAXRgRVcEz+XjuxqshIkQjxdN8lJmKeueJPcQ8ELGCM1CfMwii97UY2Xcc52ydfNKcQ8JM8yDk73/6OlIqOpyEaVkYTpKO3ihZEum4VSS2PTvahRRgzo9RG7ZU83VL2XlOkjV2mox+XFbvv/ETGoMkngMXabJtzxXXjvPog1WczfCZv59slfAa0PGCNfKqw6iJaMRbD72jIb6u0erpu8qZQK99JmB8PBcwD4/Mp/clL0Xnmx2wsYI7FZbMe+aqP4quQBqgMfspdX144BMvcSmGZxFL8WEUKWT17OXOn6yD6miWTXAs3x2k1HmflbNSKE7BjQ54MMJZv97WWq2Gavi7Rcvtggq1TD2THANC3cR7R5aqirmgCppizgtRZY+ipc9xXIpWDTg+GgC8HDnsjhNlC4Pyox0q2fycNNvChCyF5cW8kqe/gJsdNOO43TTjut7M/mzp074nudnZ0MDAxU/H0XXnghF154YaPcA/xpbMqTB/BQQEvs9riLvRFjgc2j4fhbMa/Yn+ldH3FV4g8M9B1IR2ftRWH1WC2NNlCxYKh61xDka6J5kQlqScToGcpKAa1qaeyCChax92aavEmC2gm9zGTVnnxJRKsV0NZ1y+VNUtk8TRWStUZZvwfASvbSylo6pCU+yT5ParA/hzJpqYym6gW0XP1/LyPdbZLl1LwVYvKB9JZEtQK6VCKkkmwHD/4CXv0XGFE4ai6su0sgnzwV0LKZzb7yNzmSPLVySsMwaEnE6EsV8oB2sT45DZAqeUCLZFZjX7XG1cwToX8FPPwbfhH/Bzcu2wDYVLhPvmKAhEmCfg95iXyJEP2mUz01QSXGgHQu70g2VQJj4tEIiWiEdC5PfzpLZ0tluYVGmLMouir4qUbirVquJL0W8JLnSlwU660BIlmWy1MMUDOd6klZQEr+5sJxKsk8umq2/nS2KnDbCPNSCxSvm4Yyj9XupdUfwDVHQLoXpu8BR1wB0WCw7oCnRlGUVX1ymjKOLFeV/M25biEj/dNvngpoVaMlXtioEpLnQacjHi0vx9E+CY6/jdVmB1tGPiJ528nW2LZA87MURtrYVLnR4GEmE/gwTdMprqp3fOUFvL6h2gmPfP1/77qI0uWdPBTQgxKum/3/qJZYydfbLyQ8FTbQg/wkrBb7G4pskAEJCU82l6/JQgG5sjy1tr2De7pBn3FOR9daI4k3mZ/TgIcY4Eki5JlL4Kk51teH/gk2OSCwT36aoDqxUWXmAUNZ1zSRh/NERgxwQLSqgKxs1n6NMfNZP+D1qccAcPiCX8MHD0vwqbo2KkBLXB6z2ZM/LomQVFYCuO+D2SyfCKFXDQc18gCZUmEOqaaaPrLsKTDvUhPSZLky3msBmQ11LzFgIJMjL2HnxoAXPKBJzXniKQZInCquNlEYiRiupowmsTsh97r1eajhak439K2Aaw6H/pUwaSv4yr8g3hTYJy8kTbsJIoWRXkNqBlwxQDEjPQTSJZgvPSRNdK1Bdiez9kFujF2f7xg/YtBMkPzoYbjrTBAo7+AF/GyRzmr0wiKWd3CmsrVZKCB3xNSTbFFSchLmQadN+pJYD/e3bjHALREiV2u79r0tT9bBQ1ySGAPcLEVdYoAnaRfZepZpPz7p00xTIe1SzZ8SiZByn9Prt8B9P7a+3ufnsN1xdfnkZ6JQtjaqlyJDRhPUfW9UWjQIpdJcos2Z3KnKaJJ73Yp7Eir4ZBj8d8tzuCu3CzGycP1x1ui2QPNSQMuUdhn00eAHOUV0n4fYLVuOo88DG7UoxyEvBlSbKAS5sop9PkBr2VrbXvZbSANkPUw3tEgEG73EAPszMk1ZOzc8kKE0nExrkfi8uZdpV5ooLPFJ4tLK6hPqsms4D03+ws+Gyt3b6QG47suw9iMYvR589RZrB1BAy+fL7Cgs55PE/M3L7hb7M0q7yFwqLATSJZinkSBbD0m2tpYmjCYvTDSA+clNOT3zHUwjAvP+CY/9XphPfpgD8hcNVgM/ZQY7byyUZolMNC9JmH3fm2Ypm06U1SygcTfTNGI2a8ZCAZe2tUSNTS+sRun6eh607KRct8L9Go0YFVkolk/ywZjqiarlj6wkrDhNVNkn2UvGHJ80YTR5afAbhuFiEA3zaeGzcNu3ra93PhX2OLNun7ztuJHcUPcwmSa1AZKqMVGowCd7NLgqW881KSdj54b9764qy9WU4KzMt3k9uS1k+uFfx0D3YiH+mKbp0mvVg9lczAMqf0bxaHEBmcwJJ52mir2wUVXIOlS7j0DuVIqXHTdFf+Q2Qav5JPO6ZXJ50oWdY7oQtJw8oIpme1M84khBy4wBOuEBviR5JEynesVxZEpz+dlRKJ0IUcWnpkrSyvkc3PoNWPySJXv81VugfWJd/rjPdS8xQGZjtupUiuu+V7lwNATSJZg3fT25Wj9eGE3FZWx6gJ/2zx/Kz2T+Tr+0vvHo72DetUJ88tfJlKStpZmmrX2/JmK1WCgqANnqI0p2EiYD/PCj+dcnQdvey2IokMto8hwDZMoEaVlAa8ZItwvoeLQqC8W+v2WCMdU09EtlgmTEALuArpYYymuA2HsGoBYbVd4Z54WFYvlUpimz+oPi0qVNDoL9fxdo6dJw87fjRnIM0AX4yHi7bjJ1bb3IFslnNXprgKSJc27bj2H8ptC7FP51NAz1NNyfVDbvDHV62pUiIQa4z5NqJlNW0UvsLrJR5YIxVdmocRXgpzcgXeayUS/s73Q2TyYnoaGuKYEFaoFWFZrXQnyqDci6G+q6TKXIn3L0wkiXL+1SG8eRyJL3UXvLaqh7al5XIh3c9xN4+y6IJuHL18G4DRvmj2HgTHyX9UmzCfXShro6eZcQSJdgztIjTUa6c64xjuqsRruTKW8kqBr4CcXP6aMZxxTZZnd+F95/qOE+eQLRJI+WeFkuUmQPyWR+ejs4pTRlMrUTetlJmJc9CcVRLvH3kVdJHhVNmWpJISD3uvnQRu1Py5EJcuKSBy07mcyB2kw0vQDZRMxafAZykjAvslz2dZPTbCjeG54SeimMJm+F2IiplP7VcO2RMLgGpmwPR1wGkeq/w6t5YRC68zeZhZg+E4U+Y4CMot5DHuBuqMsEib00r1dlm+HYG6F1Aix/HW46qeF7gdz1RjVJHrm7UryTakBOzaRnQ712DFAhzVeLjSp1gb0nmSBXQ11GDPAyVVx4FsvKOjTan8J9FI8aDihVzopNGYk1nNcYoMlUSlHXWjwZCnSOAbVqOJl1pX4yQZ4m08o1QJ69FJ671Pr6S5fC9F0b4o9z5tYiQykg1lXLSyyf5JEzKlkIpEuwInOgWrFq3aBSuobuMQ7NWI21AVk7ec7B538GWx0F+SzceCIsf7OhPnmRB3AXjlI0m72Mc0ocn/bSEbd+Lq8p43W8zPZJJiO9KhNNwdgUVAca1Mg66JM8e9FFdCdDUu5vD+OcarTtPcYAmeC+R4asTL19L2euzM8oGjGchkI1n6QuGqzFanRPpWSG4PpjYc2H0LkuHHsDJFob5pOf0eCsi+Uv0nTTtHX8qTKKD3JHugc9AHslMkFSYkDtnNL2dzCTg9HT4djrIdYMHzwEd/+goXuB3M9bVUkeDQFZFRJvXliNg5mcQ1IQZfm86encbZH4GXlpElk/lwd8DHkAZN0N9T4pOWXtz0nm8+ZlsgHcZ64+MUDmjgs/k2kyrps1QWHFGX2mUrzhODJrXS+NWdkT6kWpVx813Ft3wb3nWF/v+0vY8oiG+WM/P7UaIDLjUlGzvVZdKXcatJyFQLoE8xKAmxLWpRjI5IQzmuzgVW2zMrh1dvUIdjCsIxaJwGGXwHqzIN1raUn2rWyYTw4gW6Wol63V6G3RoLymzIAH5qf75zIYH4NpC8jwmoTpUojJXepn+ZOsIcnTLJNB6Bn8lBiXMrVB66Z4cfmhaDAmnzcdsN7TOKfExpXXcU4p97eHxTlun6SCaNoU0MXrVo2F0ix1ksDnaPBQGv59Gix6FpKd8NWboG1CQ33yUhy647roeymd1VHT1lvzujkuE9jzCMhK1Lfv99IEHZ4HrDMTjrwCMOClufDURY3zxwOjEVwLImVOEgSRdxJkfnalgPjcpJQMVUVuRmLjynMTVAEjvZrEG8htqHuT55RIrPNJYNGKVCNV5tF7/pbNm8JlgkomCj3cS7roWoPk88QDS760oS6RDOVlWXwmBx+/BLecApgw82uw+xkN9cdLnWv9XH7+VisGyMRxKlkIpEswb0y04miJaEbTgIsVU3WzslRgz2P3aXgHOpaEo/8BY9aH7oUWMy0z1BCfvGwxBnldca8FtFT2kIdpC3Dr68kDP2tqNapIwjwAH6lsXrhEiBedbSgm+zLGOYuFmDdms5xR/NqFmGEY0haODmVzRU1b7Rjp+kwSDPlMwqQwmnzst5Az0l07JoGbaSmzEPMWl9b/70Xw+i0QicEx/4QJmwr0qfJ1cy/aFf3MuYGMaj6piAG1CzF5bFT3uHJVnzRbXl1WRmXTg+AL51pfP/hzeOO2hvjjXY5DZh7gT+JNiqyDB+miZKy4/FB0A9utaVsNuJZLzvA3BSZ1T4JHyVBdGuoyJ9O8aLZbP5dJrPMWA4qSoTLJULWfNxD/zNkxKRGLEK9KhtIvBrTIjAE2jqNJM81NhvISA9pSy+C6L0N2EDbcDw48vyG7f9zmMNJrfEYyJUPr2pck2UIgXYJ5GuVy3cCiO75eFh2Am80gkYXiVQ/J/SC3jLG0JJs64ePn4Y7vNGT81bNGkyRGk1dNW6nJs8dmQxGQ1YeJJpON6kfLDiQUYh5Gy9w+SYkBHg9OFTpturB17ITHMKAppgejyXOxKnEqJZBEiGDz0lC3/c3kxDOavMhNuX2Sc554TZ5jHBp5is3f/7v1jUP/DOvvKcSnQY/3t6wmiLPg2zUNV94fF6NJsHlvgspnNtdmpMvJA/wW0COmU3f5Nuz0Levr274NS+bV7dOAhwY/FD9DnWQdZDbUvcQAwzCKOy4Ef06eyVAy8wDnPKlxL9lTKRLikhdpF0AaG9UzGUrimev3fJMaAzziAVKmwT2ccYlYhFhhPFV8DPAmo+KWnBJt/pugGtWVkshQgxnvZKgmUpyX+T/oXwETtoCjroJo9c82iHkm1iUV1HCepxtCIP1TbYNO8lyd0WQXRaITDK9MtGYFTJ2ao8GVDvNxG8FRV4MRhf/eCE+cX7dPnrurhYNVfAHtrQMtlT3kgWEFciVCvAJ7zkiQ4EPBrWdZ7aByA6OinzmvMUCuxqbfkW6JYIzHTr20BkgNTVu5WtvewU/r9TIbfN5igAw5DlvP0stoMEiIAZ4XesljfXltXG2afY/fxwsg+h5nwrbHivPJZwwQzkTz2ABREQNqMdLlLkC1c0qvAJE+BTRUmE79wrmw4b4WO+26Y6F3WV0+eWWjtkoEZD1PEkiVePPZUJfUTPNMhJAxTeSVDCWVkW79P7xKu+hChpI5nap1DNCkCWr55O+ZEx8DvNW5NvAvhzCmHyPdc0NdEkHL8zRRLML58b+yOfOhZSx85TpItgvxyWsNJxMT9HueyMADKlkIpAu2TK5YQNfWjpMDgHoFreWOc/pjDpQNwBvsDQf+wfr64d/UPf7qNQA3SSoOvXagKzKaRPjkuWso717yyyKW0YEe/v8sZ5GIPEaTlmCMZgkPeFtYZ/1cTpFR1LStlTyrGOf0BlhpNRYoiWXlLmKqLj6LRogWGiSiG7NeFlaCq+iRKu1S5br1LOWkRT+mycjw/uhZ1tJx1T4hv4D2yiLWqgkqNQZ4K8RkNdP8ynFAmfMkEoUjr4RxG0PvErj+q3VJGXplo6pYhO5V216OxFvtfUlQBGylESFq5AEyda1977fQKC7Jasr4leMA8eeJl71bbp90AmRlyXKZpum5mSZL/sLBAzzWcDrFAJmMdK/TDU7+ltZDWnn0i3M4OPocaTNK9qh/WIvHBVm/5+smbwLEa24iEw+oZCGQLtjch2CtrngRRBO9pMJjIaZgvKxmYlhrc/iOJ8POp1pf3/ZtWPxy3T7VbDjIYqP6LHqk6O07ur9ekzCZTDRvBbTMxVDV5DhAHqPJP/ChTxImVR7AaxIWl6OP7LeATmXz5ETr7XuUCfosyzrY/iSi1QtotzyAeI1Nj41ZFWPmlZ63zCBcfyztmVW8k5/KTev+zFo6LtInj/dSs6SCVccC2qu0S6vEnQTel1bKAWP6PRbQsWiERLTKdGpTJ3zlemgaBYtfhDu/G1jK0C8bVafGrKwCOp83Gcp4W2DvyDvJIkJolL85Orsed27IAD68Srs0Sarh7NjdViN/kzud6q1ekioR4nGiUJY+cjqXx06jm7zGAE3wADexTrR53nWnoqHusQEi+v7u8xK737id5qfOA+B/s1+nf9LOQn0a9Ijj6LjAvsWZJgoZ6Z9asxOqiIGzjKqSyWJ9+GWjSnlovC6E8JI8z/6ttZQhO2gxdnqXB/KpqNvuDSSWlTzXLqCL/gov6n3qWEk9zGtOgNiaaGJ9sq9BUzxSVY7Deo2kGOBzmY/cg9OrTpvYz8g0TZf8hbfPSXjy7BO0Bn2aMmoW1+pxxg24YkAtk5UHeNW0lSntUlVj0zThju/CkpcZinVySub7rMkmhfqTy5ukC83omsur43I0yT0X0AV/sq5/gyhzCjGdJpzsZ65mAW09k6Kvm1dihvs1FWPl2A3g6H9YUoav3QBPzQnkk182qpx9SXo1Zoeyxd+vi7yTd3nOIjgkejrVvm61J2blNdO8LIu3fJI0CeoxL5E6nercS7Xubf1kVIra9oKJEGnvMUDeVIq3M1dm7Pa7uFanhnrxeRMt72T5U7GZtvRVuM0ig16ZO4Abc3tL273lea+cRsQ6Z5ooXDb66TW3vmY1FgrI6xx6TcIc9lA6Kz4J8zmKX/VQiMZKx19vOhGyaV/+uEe5mhI1GiCywE8Py+pAkd5+rQJagSaa13tJNPjpVWPX7ZPog3PQY/IsSz8W3HHJI4tY8GeUyZkOm7umvJM0fWRvsbspHnEWuwsHZD02G2ROpejGQhny+BlZr5EE7nvUIGyRyCCs2ph9ao61/yQS47Ftz2eROVH48+a+L7xKvIlvyvgroGX41O8RJJa5c8NvDBBNhAiWB1RpgKy/JxxgsdZ48Jfwzj2+fer3yvrSWNpFdE7pB0STJu/kmQxlPW+micOqF2V+l8TqJDXhxABJzbRa/rhfI1pSzfOCyKS86+b5Xqo1od4gs5/neNSoOlEI8qZA+r1K8xV+npYwneod/LTjpMSGutdmmqT9FmXv7d7lcN1XLBLoBvvwp8gJgLypee9SYfqQocJlo58B83oggLyE3iuD0PY5L0EixGtHrNXrgsimDvjyvyDZAQufgfvO8eXPUCbvTMt6BYgGBSeqwQoxPZIwFQW0LqP4XrW+rNfIKsQKPnlkog1lxC890k1n108BLX3JWI0C2i0RIktqwitzQMposOczTs7EhVd5EJAH7ntlo8q6t93/jxHX7Z17LLAQ4IDz6Jm0KyA+ebZjjOFlojAup3nttYBOxCLEChNQosGYYmO2lhyHfEC21kShrB03Qz7yN8/kjJ2+ATucDJhwyymw4i1fPnltqMuUdvEr8SZ8orBw3ZKx2hOF0s5cn/Kc1ntEE328AnvyyBmDHhvYsogQNnDobypFDzxA1j4Z8LFwWJK8k1cwFtw1k5yGutfr5n6POJ/8gfuiSTUlE4W1YoAkjfShSs9bZghu+Cr0LIaxG8GRV5JIJAAZTRlvO0BU7LeoieM4TVCx162ahUC6YPNVQEtKVouMplqjwfIYTd4lFHwkYeM2gsMvAwx44XJ4+R+e/SlhonnWtpdTrHpiM0geMfUq6yBXE81b8ix8pNuebPAg6yB9LNBjAQ3yJEJqSrtISsLsf2/MNeFRyWQxmrxqfrpfIy0GeJR1kDMa7O1ekgVaDwYoxGRppNcsxApAZCYnXiKkbPK84i0LJMSEHb4OO57ivaFepw0ViipvE4UFeSdJsdtLDJB9L9VmEMqJ3e6Jwto7buQ0+LxKzYDrunnx6YDzYL1ZkO6zpAyHuj375FXizc201qWhLktr248kjyOFJ6uhXsOnaMRw8k5ZIHGtSZlWSTsJ0tk8WY8ThbKaxYOu86SWySNCeG2oy5R59FbDySdDeblucndu1PqMkrEIdv9Pl89JFh7gfp49L4kVTTrIlKkFTBP+cxZ8/IK1++TYG6B5lLypeY/KAjKnUjw3QSViS5UsBNIFm11UeTs45Wg1FgNwdZ9qLj1qoA16Bfb8JmGbfAH2/rH19X++D4te8PQ2+6FMxCJEa7BQpCVh5QJwBZNVQPudbhDdySzVtfbYANFIG1WeVqO3ArpUIkRODKi9HE4OIOtotvt63iQV9TVYlqU+6REDZE2lZHN50jlvutayztzimGLtlEuatItPfWQZPo1ogg52WaOu6T4LLDzg9yU+CWeke9RrBplN0AATTtrEADlx0s1Oqj2ZJkkj3aOUEvi8btE4HDUXOqfBmg/g1m9B3lvDa8BjLWAX0KZZqhkuwrwurm2S1Lz2c92kxQCP1816jSyClrdaV1ZD3Zckj+R7yU8tIK0J6vG6pXN5MjnRDXVvjVnZ0nx+agFpEm81PiPDMKQxiXVrqPuZKJS1KLqsssCLV8Ar14IRsc7ysRsAEiVDPe4nc+fd4uWePeaUTgwIGemfWvOaXIC8jq9XRjp4WHrUMJ88socKP+/zk4TN+gFsejDk0nDj8dC7rOZb/DA/ZTObdbyXaurruXTasgKTsHQu71nX2imgJR2ctUbMQR6jqQii1U7CZO0A8LskVtrz5msMVxZj1wMgG9ctBhTvI5FJmB9da1mLov1opMtiNHld8J2IRYhH5UiElLCt83m47Vuwdj50rgtHXW2BhkgEPnxMEshuqPvJA8Q3QQvniceJQlkTV+BnolD0dIOf88Rn7G4dZy0fjSbh3XvgifM9va04TVQDtI4Vfdalod4sqYD2M0kgPQZ4Ok8k5W8+NZvFn2/Wv9fTRKEsZnMAQFY8ic1bLeC+rrJ2k2gXA7ycubKk+fyw5CUTfWpL8sgmHtWeKJSG4wzPAxY9D/f8yPp631/ABns7r5U9Vex1Qt0ULPecz3ufKJRVw1WzEEgXbEHAGPHdJ++Huf1gCZdR8Kmt5euhiUTgS3+F8ZtC71K48YSay0cHPB4Ilk9yrpu/QkwvNqrbZ5GJoT8WiiRA1kchplsHGuSDMbothvKnay2aaRmgEJOmi+iNhSJ654Z93TzpWsu6t31ME8kCYwac5dXe72/xDCLX/f3E+fDuvRY4eMw/oXWs87riyKvgvSS+RrrlkA6Kcal2+i5tEbpHJppdiKUEN9Tduta1Jgp1JEIE0ttfZ3s4+ALr60d+B+/eX/Mt/R5ZjZGIq6EuMAb4miiUNfbug1Qji3ik4wL7AY/639Ia6hrWS34m1ItkKDmx29fODYE+ZXJ5Mjmz4JMeIFqwGKBPM032ZJrXKUdZS2J1ksIsqeF6l1t4VD4Dmx8Gu313mE82RqFHDeeOWyInitxTb7ooC1SzEEgXbP6SZ7kdMR01NoU9NMn2wvLRTlj0HNxzdtWXB9GzFL9cxHtiKGuE2uuYubugFXmY2/542a4ubQTPiQF+ZB0kXTdNGkWlBbRHXWuN2EOyEtVAPkljxnhffCYyCXPf27VYKNIWewZpymhSQINrUazA+zuXN50Gy6jFj1pgIFjg4JRtS14rLVcKMtKt0Zi5tLjklZHuatrIaKj7kb6QBTJ4a6YFBNG2O87aI4AJt54Cqz/w5JOXz8nRJBdY1KeyeWxsteYidFl5gC95TkkxwM9kmqQazjOz2dVQF9kI9TMNLjsP8FNX6qJr7X6NyHvJ/btr5UuymqDOmasRZjLoo64sNtRF398epV1cE+o5gTs3fC2JlS0VFjPh5q9Z5M5xm8Bhl8CwekU+IbL6mVvSUJcUA9zTcOVMVgyoZiGQLtiC6SOLLaBT2QAJvcDkOZ83nYTKqyZaNm/612kbuwEccTlgwEtXwUtzK77UTydT3sZ3DRPDlLcGiKXTZrMaxYNofj4j4Qsig2jaarm0Utx18yPJ0+TStBXJaPIDfsoeC/QzZi4redZl8VmQsXdpS2I12m/hCyCSoEluX7epxgra/vNtwISZX7PAwWHWJAlEC9IA0Wm6QXYhVutzSkSLDXWRzGZfeUDhPNGR2Rzoun3hPJi6o7V09IbjId1f8aV+9PadGCDhukHtayd/FF+fvSQ6SoQ4u7dqadu7psREPnO+njfZGuk+6hPh181XfSJ+ybf9vEUjhrOjrZJJJ0J4keeUNZ0aiFgnC5D1zmwWGgM0JI3av/+ApX+BBU9Boh2+fK1F9hxm8iYJvO8CknEvuWuTSI2JQlkNx2oWAumCrXhwapSE+enSyXhofGxWbnIxMAIdnhvPhs//r/X13f8DS+aV98nXCJ5+bFRph0LGGwsF5ARgf1rEclmNXp432U0ZP8wYGQcneE/C8ibOUkmRPumSXIDfGCB3yZgui8/86MhLWzSoYdETZOxV6DRRKkuSNH+LX4gx1AXrzIQDziv7Wjf7Oy+Q0RRkAkQnyakWSSCa10LMvXND5OcUpAkqbaTby3WrJzeJJeDof0LrBFjxBtzxHajQcB70yCC0fBLP3LdJFl4keeTvJPDO/pYFyAqdbvBhfjRtY9GIA5CKvHZ+GiBNks7cIAQW8UvHfYBo9lSKwHvJOUu8TBTKknYJIBMkCw/QhRCZzubJFnKxWs00t+SiLjFA5uLaQyNPs+Oy661vfOlSGLdR2dfKb4B4aBRJiQH6NUGrWQikC7YgepY6LdFrlfAg27/bMGqPcSSiEez8OvDhucdZsMmBheWjJ8Lg2oo+6chq1AmMsZkJumht+1vAIgdE87dwWE4SZk+A1HreoDiuL0OSJxGN1JTkcSeOQwKXe/pqgsqOAX6WHkkqoP00r6SwUDxcN1nM5iAa6dLAGF0aIKksv41fyRaRBdBSWJ4YS5Z9rfv+l6G374exq1MzrVUCiJbOFjVta0m7gBwmsZYN9QAElsBxqWMyHH01RGLw+i3wzCXlffJznkgooIOwiEXLA/iJAdKIEAGAPaEEFpemrRdSjT2ZJvKZK+bdXhaz6xsDdGyoyyFC+GsUy1hg70lGRcM8QCaLGGpfu4hrOlVoXRnguomuBUb1vMf/xS+z/rLHWbDZIZV9krTHzVczLS4Dx7H88SPJE0q7fIrtk6+za49yCUyefYxxuBlNgR+cSAS++BcYNR26FsBt34Z8aTHuJBc6JTwyNDZ9WDaXdxjBXj6nJgkgmleNNrc/4kHrACwUjViNMu5vP9ctHo0Qjxb09nVhNcpOnjW5bkPZXFHT1tMzJ6OA9sGylKyPrJNUmJ9mmiPLJfA8Sb56NUdGHydHBI68EjqnVnyt+wwUymjyI6MiW69Vk9zETwFtvUYmiOY9BkjbcSPruk3fDfYv7Bl44Gfw0ZMjXqLbpEwQqRnQJwbII0L4aabJu27g7TyRAVrZ7Fs/95KspZXeiBA6LkIX71MQWdVc3nSauUJ88hOXpEtO+YjdImW5Cs9bPGqQiHknjool1fiIATKu22AXX/v4f2kxUiwZu2tRHaGSTwnxzQbTNP0105LyckpPMUCS1Gs1C4F0weZrvEz2ohpN9PW8Lhod7lNdi2qaR1uMt2gS3r0Hnv5TyY/9jLxqufhMAhjj/vd6+5wkjnP6SApTkhhNWo6Z+2Iz6DHKBZJZjX7Y3xoxmqQvhtJkIWMQVqNO4KeMYhWCaWwKS+gXvcDEp38OwN/ix8P6e1Z9eTRSLNZkALJ+NDalTTfoAn4WCuhYxGcBrUljVtbSSl8N9Ub5tNM3YetjwMzBzSdD34pSnwrTHH5ANJHNND/XrUQeQAZDVqNmWhAylFhZLu9kKPt1IBpE87Z3y+2PeAks/2euyM/INL3vJ3P7JKMW8DMNDmEzrZrJkHnsT3n3x/06OdIuGuRvpgm3f5sJ2SV8bI7jpZl/gEh1v4q1gNj9ZDb84SWntBulMqT5/MiFmqbY6dRqFgLpgi0Q+1saq9G75p+URNUjiJaMNSgAT9kWDvy99fVDvyxh7PhKwqQV0AWfNDnM3Y2MpJcCWkJiGGQ5nHCfAulZ6lSIyQNkvcYAGdMEvsCYz2gMsH93MhbxV0Brwmaoa3l1AJ/8gJ86LT4TCqL1r4abTiSSz3B3bifuaDnC09tkAKBB5NSkMdF8FdAygA+NCmg/rMZCHixPHsBHHlDvZ2QYcPCFMH5T6FsGt5wCeet35vIm6az380TG8+YndsvS2/fTANGxmSZjUbTdTPMi6wJyiBBO/iZDSsmj+QE/mySA1m7gydMOJxtEEyqn5p1YF48azi4FXYA96Xuu/NRwAjXS/bD2oXh/10WIrGEDfpoNomPSMxfDO3eTIc6p6e8RbR/n2SehU8UueVRdyFADPvLuJkkN9WoWAumCLcjCOp30WmWOBnvRtHX71JDPafsTYZuvgJmHm74GvcuA4oHjZwRP2iSBJkw0O3FJxiI1l8KAnEJswEfRI3vhiS7SLu5RriZPzTTxTDQ/nxHIYjP4Z+pIYzZ7KqALIJpAn1JZ72eJ+3UyWMSeCsN6l1d79SmQHIe45y2TKy6G8lNkNLzoyefh9lOhZzH9betxduabNCc95gEypcJ8SJfJ2m+hSxPUDzgEcmKALyZawR/RjCY/zbSGxoBEKxx1NcRbYP5j8JhFHnE/N35igMjPyA/7GyQV9QGkwsTLPPqIAVJIB8HyAJEgWpCGeiqbl7O82sdUiixZriY/ZCgp8k7+mmlSGuoaSYUFkXaRQTzyPFXcKEJkFfMVA0R+Rouehwd/AcBlrd/gdXN9bchQ9n6LaMSouZ8M9JPkkbW8upqFQLpg88NCkVFg5POmv0JM4mIBv4ymhjzIhgEH/REmbA79K6zx11xWS40mfw2QzyaI5icAy1p4EkzTViwLxb5NfRXQIpkDfptpMg5zH800aUsrfUkX2T6Ju5ccnW0Py3ys1+nFRm3I8moPNhSgqJcly+WlmSZsmujpP8F790Osied2uJA+WnxLvOnSTJMlEeILjJE4maYTiBZEjsPySZNmWqPvpQmbwsFzrK8fOw8+eKTkufEzUagLIx0kseR91Es6Lh2XsivFR20CcqdS/EwUCvcpUP4m/jNKRCPEPIBoMokQOjVmneWHmpDYwF9DXcqeKx/Pm/t1Ms4Tb40rq/Zs+HTqwBqLpJnPwhaHc2tkf0A/IqvX5y0pY0ms7wn1EEj/VFuQkW6RD42bTaKLTpsf4AMEJGGJVksvPdEOC56ER37js9srR6Mp2OJa/UA0sSwU78AHyGU1+lpYJ6Ho8eyTRDaD54NTs6LezWgSqrcfZJxT6HkSrIAWC6J5b6YZhiF1gZav2C1SrqDwb40YOGyOamaz1Rr6vC18Fh76lfX1AeexrHlDAJo9NtNkNK+KC+u85wFaSbtIaMqknJjkLQ/QTdpFFqPJTzNNSOze5hjY/gTAhFtOIbVmMWBdNy+yXEmJi6I9ywNI2bvjh5Eu/nlzTxTqwpJP+awFZDKbPREhXAtSZezd0WVZ/KDP2G2/Tiwb1SceIGF5td1M87IvSQawn83lSef0mkpJBWym6dK8FjKdms/Dbd+Cno9hzAZwyEXFe8lP7NZE/x/k1HBO/uZ3Mi2Udvl02oCPG6IIogmUUHCDaB62q8tk7HpmNIl4aMZtBIf92fr6yQtZf+0TgNckTI5Gky9WowwwRkMWii3J4zkASynq/RycMq6b5U886m2Uy2ar2SNgYnzy1xWXsbjW32KoYuEvo+noa4GWDDaqh7PE7ZMuS8ZALktel8aVm0XsRZarqGfZIJ/6V8PNX7eWIG51NGx/ou/RYJnLq/00QbMu7elGW4kslx+tbQmjwZ7zAAkgWpEI4Q+QlQNaKczfDvg9TNwSBlYx5p5TiZLTE/jQaSrFj96+6ywRNZ2ayZlOs97X8kOB+shOLeAzD9BF1kHWdKofcF+GRIgfwhhIquF8xm4Ze3e0WsxOqUa9n/pERl2p1XSqjxjgnk5t2LV7+iJn4pKjr4amjkAThUJzJccfjYgQASfTRE+CVbIQSBdsgQKwwCTMvvm9LodzWMRCQTSfbAZRBfQWX4Kdvw3A8cv+j8ms9s1oEtU5NE3TV5EhQ1/PZt97Tp5lTDf4ZjPIABs1ZaH4vG4ygD2dEno/LGL3aLyoa+d3OZwUEM0vG1XKuLLPZpoMRlOA6QYZI93eG1cNfN4cls5iGLuRtQzRMPw30yScJ370WmXIA7gn3nwxm4WCaJZPXuRBQK48gG+ZIE2eOWGxO95s6aUn2mle+hzfj92kJgZUsMAFtISmjB/QGsQx9tyfvx/ZOZEMQr/NNJnNa9+ArCYNdb0nCvVoXLl9kkHQ8kNgSefyZAUtsHefC17O3aSESQLfzTSp0i7+plMb4tOCZ+ChX1tfH3AeTNqq1Cc/0i46NUEl5t3eiRDiY0A1C4F0wWY/AH5YKHmBEiF+kkK3T0JHgrI+H2SRh/l+v4Ip29GW7+WixMU0R701NER/Tv5ZKPqBaDJG8Z2lRxoxmvwsrJMhEeJHbsrtk5zpBp+jwZoU9ZGIIbzI8L0cTiaIplEB7VdfTwoYE2QUX0JD3b+udQM+o6cvgvcfsFg6R82FZFvhd/ttqMto8HkveuJRg2iBnCDKp5LlcLqAaBpOpvnZbwFy2J9+SDVCp4nGbQiH/gmA02J3sJcxz9Pb7OsrcleKX71W3Zoy7mdAlE/2PWoth6tNhpI74eQ1f9OL/Q1yJHD85AFNTgwQOKHuY2mt2yex8pw+l1ZKbPD5ybtF+uTOS7xMFMqt4bzmARKmin2SMxp2L/Wvgpu/VjJxCf4nCqXmuH6fN41idyjt8ik3+6Dyw0Sz3ic+AHsxG9weEqj97ReMEfrQxBJw5JUMGM3sFHmHLd/7qzefBINoflkodqIqQ9bBO4gmUV/PL8NCl4Unrg6sqATDLxtVRgFtM5qSHptpUpsyfuOShBjghYVSfN7Eg2he2ahyR4M1AvYCFGK5vOnoYArzx/foZJ3+lLB0fg+TtnR+5FviTbN7yTCMohap4BiQiEUc0L6ayZHmsxnpXuOkjsuqxLI/3ROFfqX58iIa6lsezuKNjwfgx6kLoWtRbZ9kgDF2HqBRU8ZPzRSNGM5ZKAoAdZ8lnmS5JErz+b1uMpbFewdkxQJ77olCL/WJDJlH3w11iZM7Xn2Swdz3k78lYxGMRkuEDPcnIPgpdirFxgP81QJi8QB/MaAh91I+D7d+E3qXwriNnYlLCL6jUOy9HXBZvMDzxO91k5EHVLNPPJD+l7/8hRkzZtDU1MTMmTN54oknKr720UcfxTCMEX/efvvtktfdcsstbL755iSTSTbffHNuu+22wP75ScJkLD3yG4Bl6FkGZjaLemjGrM+cpu8AMOOtS+HDR2u+RXTA88tCaSiDsIZPOjHR/C+rklGIeWd9uJ8BXZppcorVoEmYeJDY670kWpPcncx7keWSkaj6H+nWcVmV2OuWz/vVtS6+Zigt5v723VBvRAwYoYt+QqlPGoJovpuOzr0kBkQLytRJSQDR/E4SaBUDBINoQXWtQdx06utbnM2r+fVpN/vg1m9Arvo9KwNEC7q0UseGumhSjU47CfzuSpFRn/huFgsGrksmCn2AaJmcSUZUQ13nWsArOUPGdKqPJqiUhnrAPEAnPEBmU8Y/YaQOn568AD54CGIFGbXCxCUMmyj0cH+7Y5Lo6VTfMUBGM81nAyRkpAewG264ge9973v85Cc/Yd68ecyaNYsDDjiAhQsXVn3fO++8w9KlS50/G220kfOzZ555hmOOOYbjjz+eV199leOPP56jjz6a5557zrd/pmkWZR18dsVFgzF+gQ85Syr0OczvMXblX9m9MTCt7mLfyqqvFw3I+mahuCRChDCacIFoPtmoYg/zwr2kSSfT73Z1wzCEH1R+pV2SUmKAfS/pcd1Av/GyoCN4Up43jRJ63YpDv7rW8WiEWKFRIkqWx/9USp0NkHwebj8VepeU6KK7zb88gHiAqAjIemumtQi+v4NOFOq0bFQKiOZXZ1cS+An+JN5AXFNmyIzyncx3GDRaYOEz8Pgfqr5eCrPZ794dDe8l0fuJ/C6HKzIIZcg7aUKGIoC0S1ysHKb7fvA2UVj0Wxi473tyR6LWtt8mv0Ys+WbBMkGDfp83CXmA751pEpjNfmNA3eD+oufhkd9ZXx90PkzcvOTHzkRhNEIs6j0GmALlnv3HbomYoEZ7d6rZJxpIv+CCCzj55JM55ZRT2GyzzZgzZw7Tpk3j0ksvrfq+CRMmMGnSJOdPNFp8yObMmcN+++3HOeecw6abbso555zDPvvsw5w5cyr+vlQqRU9PT8kfsJZN2Bim14NKtFZjsRDzmYTJYDXqlDyn8/wqewJDozeGvuXWcrR85UBWBNHEAh9+mw0gMgAHA9FkjAZ7BvcFg58lBbTf8TLhIJqGDRAdAVnfTRlN2KjxIqNJ1NKjYgNEnz0JQfeAyADR/PokesLJ7wRI4Nj93F/hvfstXfSjS1k6w33SqZkWtCkjHkTzeW9LkObTEUTzni+JBdH8ThRGSiRCxDXUF5oTuWbcGdY3Hv89fPRkxdfL0doOCKJpxGwWzbQcCpgH6NRMK8ZugVrbPhsgwq+b6yzxQoZyS4QIwwOc66ZRLZDVi1iXz5vFqWLP565uygLy5J3870wTv3PDdxM0yHUb7IKbTy5MXB4F2351xEt8S865cmFR0qpBJ9R1aqaF0i4BLZ1O89JLLzF79uyS78+ePZunn3666nu32247Jk+ezD777MMjjzxS8rNnnnlmxO/cf//9q/7Oc889l87OTufPtGnTgNKxbO8LTzQrxCRqEHou6qVse84yRJI1B/zNGtH54CF4+k8VXy9azy4oC0WkTzouG/Wr2y56JMj+7A3D/6iicH09TYBG8J/QywRkfY8GC0oMfbNQXNdXFJCW0jDhCcqQFf28edW1BvHgR9A9CYHY30tfhQd/bn29/29h4hZlX5byWUCLBtHci6H8xwBx4Cf4+IwKhVguL04ewIkBvhsg4hmyfs84UXm3s7DSI4gG7qlCsTHg1dGzYZtjwSxouw6sKft6uQW0tzOuRfCZm8nlyRbYUDZj2atPgcAYD+Y3dtt11VBWnDyAjpI8vhvqgpmWfs8Swyg200SBaP4/I3l4gO+l44KbDeAHkBXcmPXZTEvKmEwLqCyg0zRR4ClH04S7zoTuhTBqOhx0wYiJS/Cfl8SjBnbJIKoJErRRLFJW1W8tIGM6tZp9YoH0VatWkcvlmDhxYsn3J06cyLJly8q+Z/Lkyfz973/nlltu4dZbb2WTTTZhn3324fHHH3des2zZMl+/E+Ccc86hu7vb+bNo0SKgyEyMRQziHsY4wL30SNA4Z8ACWuSiwVTAMQ5RD7J7MVRs0uZwwP9ZP3j417Dohao+iUro/R6c0Yjh6O2LOqj8gmgyFp4Ui3o92HF+JXns14r0yfd1i0m8bpok9G5JHr+La3UpxNyNG3GMJp8FtAQQLaWZVJjfxTkgAUQL2CTy3ZBJ91ssnVwaNj0Ydji54kt9F9CCQbRUNo/pc6JQWgzw2kxzNd7FN9T1KXr8F/WCQTSfcmrgllGQoI984B9gzAbQsxj+fTqUAVzl5G8+F9dKet6g9Fny4pOo+zvodKoUeQCdpop95kv2NLjoJqjXGs79WtHTct6bMuKBdN+NWcHnibu56nkHgCRCpN8zV6TUa8pv/qblZFpA/G3eNfDGrRCJwZFXQlNH2ZcFaaaJVoUIep58lppptcxbi11jGw5OmaZZEbDaZJNN2GSTTZy/77rrrixatIjzzz+fz33uc4F+J0AymSSZTI74vt+Hxv1aYQ9NwMCSzuXJ5U3PjDo/ptsYh7uAbkpEYfsT4cPHrEB5y9fhW09A86iS9xQnCfTQtAWLiZLO5YWDaJ6Z1p/BkSC/HXEQ37wKyki3F554bQj4saD6yDIKaL+SPKLknfw202x5gFRWYAwI2ExLiSzEfE43CJ9KSXvfkWCbaBAt8MJhv5/RPT+E1e9B+xQ49M9lWTq2BW2AiLq33UWw34lCXfYkJKKWPIBpWu/taIoL8CloM00CGKPJvRQkfxNdQJfoIyfbLADg8n3hnf/AC5fDTt8o64+caSK/zTRBeXfhM3ITU2r7JFgf2beudfF1qUze8zPhx3SbJgL/54lwUk0APMDyKSOnmebBinFShlSYJtctXYxJEY/4h/BlowGvG1jPqp970Kv5ngQVnCvl8ybpgMxmX0Sfle/CPWdbX3/+f2HqDhVf6hd/s187kM4JrAUCPm8y9PY1iQG17BPLSB83bhzRaHQEU3zFihUjGOXVbJddduG9995z/j5p0qS6f6dtfotVkMFC8VfUl8gDCNdp0+OhcQOYzfGoVfwfMgdGrwddC+HOM0YwdmQVYn4DsPu9jTbdQGsIrq+nS+PKeq3YSQIb2PPKjiuVBxC0uFYzRlMgSR5JybOfe0l0Y9Y/G1Xmoho94pKOIJrfeymQPMAbt8G8fwIGHP43aBlT9eVB9VpFXzc/kjwyJ5y8mHt59ZCoaTnN8rdSn7wy9yU1QPzEAMGTYCNypSnbwn6/tL6+7yew7PWS10vZcROwMavXRGFB217wmetdHqC4vFoXmUfReUkubzoThZ73JWkWu8GVBwiaTPO7bFTKNFHgPEAP0gG4ajgNm2niaoFgxDqRhEjbhGEUmSG4+euQGYD194Ldzqj6cr8ThVCMX7o0+aUSIn1OpYjU269mn1ggPZFIMHPmTB544IGS7z/wwAPstttunn/PvHnzmDx5svP3XXfddcTvvP/++339Ttv8BjtwJ896dMXdQVFcEuaXjSo2sNgHedQtydPUaTF2IjF483Z49bqS9xQlecSy4/wwm0WzB/QE0YIymj47ybNvfWTXSLMonwJ3oIVpEBbBWM+atrL2W+gExvhMnuXsSdCLGWNPKflqpgm+bg5L3qdkiWd5gK6FcEehqJj1fZjxueqvx3/yLPq62SxXP8+brB03QRrqwsCYgk9e95KIbhS7G75e7yVb01YU+Ol3yRjIaKiXuZd2OQ02mg25lAUQpAeK/hRifFqgPEDw6QYxcTLIdbN9EjV1pWNj1ncMiImtBdySaL7rE43yt6RgEM0/G1V8Ded7Mk14/qZfDecX3HdP1OhGrBMdk8BHM83vhNODv4Dl/4WWsfClv0Gk+v/H70QhyIvdOgLpnvcmSvCpmn1igXSAs846i8svv5wrr7ySt956izPPPJOFCxdy6qmnApZ2+QknnOC8fs6cOdx+++289957vPHGG5xzzjnccsstnH766c5rzjjjDO6//37OO+883n77bc477zwefPBBvve97/n2z2Z86Jjw+JUHAPFsHe+FmBz20Ijgu85M2Osc6+u7/wfWfOj8SPSy0WABWE4S5hVESwpuEpmmqR+jKYC0S1I4+OkvBiSikeLCE+ExQA9pF7+sGHCNc2rCQgHxhY9uUylZ13I4XZjNQ0FigOjYbd/fXkFrP4ymXBZu+QakumHqjrDXj7z55CyK1uW6+QP1rNdKIkL4mUoRni/5ZH5KmpIB/yCaaF1rf9J8ChrqhgGH/QXaJsKqd+De4rPrPneEN2U00Uf2u+Dbeq3gGOBzotDtk/hYqcd1c+fOXn2SpZEe5LqJlnbxm79lBS6v9pt7twg+T4JL8ugzUQgSckrfsVtwbVK4j2IRg5hXWS4/cfKde+G5S62vv3gptE+q+ZYgxLpiHiB44bDnZaPF6yZqebXvqWIJ03LV7BMNpB9zzDHMmTOHX/3qV2y77bY8/vjj3H333UyfPh2ApUuXsnDhQuf16XSaH/zgB2y99dbMmjWLJ598kv/85z8cfvjhzmt22203rr/+eq666iq23npr5s6dyw033MDOO+/s278gwEdxhFrsQ+MVtAb3ogrRwLUeYEzVpHCPM2Hd3SDdB7d+0wINEF+sBpEIkdXx9Z08Z8QwmrJ5E/vX+r+X9EhUrdfKYaIFW3iihzyALPAzEPNTkyaoFJ+CblcX7A/4X1inZSEmfKTbWwrolgeoGQMe/wMsehaSHXDE5RD1psvtuxDT7Hxzv1aKrrVHk1VA+47dgpuyoM+YeZDrJgtEGzFm3jYeDv87YMDLV8Obd1j+uJ5L4SQWTfKAVF1nrh661pZPshqzmjxvhd8bjxr6yHIFkXUQXQv4nU6VIhHiLw8oToOL3U8WrIbTY6IQ9CMeiCdE+qtNwIdESM9S+Pdp1tc7fxs23t/T7y9OOHlfT6lb7LY/z7yJI5/VSDNNM7C8k6gYUMs+8ctGTzvtNE477bSyP5s7d27J388++2zOPvvsmr/zyCOP5Mgjj6zbNx2Bj6CMpi4ywvSHgi4aVFIYRqKW3uule8DHL1igwd7niF8SWw+jSZbGZg0TvfCkpID2vWhQTAAONtKtFwsFrGs3kM6JT8L8gmgaJWHi91sEB/bEAx8ek7DC9c3kTLK5vGemiF9/wAeIJlqOIx3kXtIPjGmOR+lNZavHgAVPw+O/t74++EJrr4hH000qzG9Msl4rJwYEkXcSrUUaBPwUsbzazksSMe/L4eSBaEHuJQXg/vp7we5nwFNz4M7vwtQdiXRMJhGLkM7mhRF9iveSTzBG+GSafo2rQFMpmjDSpe1v8hG7i2CMWJ9afIFoksgZHhvqyVhxefVgJkd7g5dXW1PFQc8TQXVuEBaxLIlejbCloGQo8TiO9xqjeC9VwQPyebj92zCwGiZtVdwr4sGCaaQLvpf87klwN9PSec8NL6+WzuWdFYReCb+iY0At+0Qz0nW3QIwm0dqogbriYtlxqaBsVFUyE6PWhYMvsL5+/Pew8DmXlp0+BbQ81q6/okeUT/Zn72dBZJNoiRAN2UP1JGG63EviQTSbFaNPnKyHhSIM+PA7TVQiD9B4n+zr5gdEEx0nbZaEH2kXWQuG/AFENc7doW5rSsvMw7Zfha38kRGGgoJomjSJoPgZiZreq2/hsOhdKf7OXFGMporSfFXMBrdE77jRSR6gJvCx909g0tYwuNZi3+XzQnNv0zT9N2WEL4n1J18IrhpOWB4Q/F5KCYoBKZ/5kujp1KJMmPfPqCjPKZZUEwgPEDyh7md5te2TiHvJvX/Fr8yjqDjpNya5X6uLPKf7taJ88qttL+sz8gP0evqMnv8bfPgIxJrhiCsglvTtUxA8QFTsrmd5tYgzrlSWy2cMELh7q5qFQLpA88uucL9Wp9Fg0QWr7+UiwxhNjTanoK8WgLc6ErY+xgINbv0GrQwW3qvTdRN7L/kF0aIRg4TAJUNu8NMry01WUyZY8qwPQCT+XvJX+IgG9oMkz0nBwEddI92iYrfPz6lkebUAn/zqNYMMMMY/O64IfOgDxjg60pXi0t3/A92LYPQMOOD3vvzJ503SdTCbRZj97/QDxgifJAjQTBMeu+uYTBsSMOUY5MzVcdGgU0CL1kat5FMsAYdfBrEm+OBheOEyofeS+9+pH6sxCCNdn8k03aTwhk+nNtyfADtuZE0UBgPR9DnjROoRu8FC3/KcGjXUnXtJdA0XZF+SJp+Tfd3SuTxZIQ11//hbzWmiFW/BAz+3vp79axi/iS+f6tqTIHNXikefRNxLdqwzDJwFuZ79ERQna1kIpAu0lM+FXuAqoEUlz3Xofemy2E8Wo6lmR/zAP0DnutC1gB3e+r+S9zba6pF10GXjO4hlWtrPW8M70HVYPQvrdOlAg9jkOZc3nefYr8amOEZTgORZ8FRKPddNl6aMYRhCwY9AIJq0sfcghZhG91I1OaXXb4XXbgAjYukrJ9t8+RMIRBMu8VaPvJM+E07SwEaP564sRlOwSVA94qT1WtGN2UJTptrnNGFT2O/X1tcP/IzNoouF+VSyJFYbrW2bka7PvRRM5lG0zm4wNqoon4I1QARPE/ncSwISYkAA2RKRwLV9HkQMS9/ei8malg3WUNcnBgjfu6PbdGoAWa6q1y2bglu+AbkUbLgf7HiKb5/qURYQji1psrw65SKy+iZEhkD6p89SGQvg8ReAxXagdXuQc3mTTM76nPx2oEEwo6mWP02dFmhgRFh34e0cHHlGIJvBQ9EzzIQX0AFYHyLZn0EAq6I+sphxziDjZbKkXXwdnHZxKKID7Urs/IJo1vv1YDU2SSrEAl03jcBGoYymusZw9WDryfHJ/3lSsRDrWQJ3nWl9PesHMG2nAP4EB9EyOZOMJhIhwkfxA4Fostio/gEikYymYJI8+jSu5Okj1/Bpp2/AhvtCdoj/Tc8hQUaoNF80YnjendHkkngTMp1aVwNE8L3kA5DVTeYxGjEctqFIZrM/IoSc6xaEWCea6KNLU8adK3kG0UTLc2aDyDuJleMI1AARPXmp2XRqKkDeXVWi95HfwvL/QvMYOOxiizLt07TcdRdgF5BIadVA2vahtMun1+pKwjTS15PBIATvAc/NaFKehE3f1QIPgN/Gr6Attazh/kB9uoi6jHOCnHtJp50EOgJ79SRh4jXRPDKaXIe+kMPci7zTcJ9EyzoEAWO8bqEPaIGaaZqBaKJHuuuTCBHbTAviU8m9ZC9eGuqCKdvDnrWXuZczO07G/IBoglmNOsduP800eVNXeuQmwZhociYJfD1vovfueM0DDAMOuwSax7Bh7kPOit0siAjhv3Fl+26aoiVCApChRNdwmkhOWQsig39OQsEYjQgsnhtXLksKngYfDOCTyKZMIGKGLRGSzZMTOp2qTx4QpJkmssmfyRU/e32mU4NPg4+ocz96Ep76k/X1oX+C9kkBfdIwN9EOEwweAwZCRvqnz/x26EBeV1yXJMz9IPrp+Ao9zP0mz3ueTd+4beg0BvhB3wWQF5cY6nLd3L83EBNNZAAOkjxn9WE0iV5cWw8bVQQga39G8ahB1OOCyEjEcD4nMc20egBZfaaJZOnt+5m4EMpoCgB82L6LAj4CaTV+UpZXP/83+PBRa/HS4X+HaDyQP4FG8WMRhxSkCzMm6TDRNIoBAsEY0zSLjSJfewlEgmj1NEHFxgA/n5HonRu+mqDtkywAAfhm9C5alz4r0B//1w00BGNETxRqQmDJ5Exs/NIfq1FcQ72ePEB03u2vmSYJkNXkXqqnmQYanic6Lh0XMlXsnwzl9kmfZlqhFnDHgKFuuO1UwITtjoPNDqnDpzomQTWqBUSecfU0ry2FCzGfUzULgXSBlgpQYAjXstOOPWT5k4hGiHgE0aDIyNKC2RyN8/Hef6LfTLJt/nV4+k8CfdIH2AsmWyK+KRNkpNs0cSSGGutTHUsrRS8XCbLwRJOEB0TLBAW/t4XLA/jS2BS3YMhiogVnD2hX9GTyQpppqbqmG/RhoYw4T9yLl/b/DYzbKLg/ASYbShhNAhp8QUaDpck6BHjeRID76Vwe+5HxtbDOuW4CY3eQxpXg2B3oXlK1bHS4bXYIj7cdQMQw2fbFH8JgV0P9CXKWxKMRR0t5QOSEUyBms07Ah/jmNfh75vRjo0pa7OlHIkTwJMFggFgpp4bz11Af/n4xPukz5ahdDKiXEClywqnez+ju/4HuRTB6PfjC/zXEJ1/Pm0AyVCaXJ1vogupGrAsSJ93vl2khkC7QdBwJCgaiiQ/AfgILyBov8+5TZNwG/CJ7ovWXh38LS19rrE91yAOIYqIFGX2XMUkQZCeB+/0ifPKls6ujtIvQMVz/TB3LJ70KsaTARbru3+uL9eWA+2JZKPoU0EEKw+JrddPb10lru+S6ZdNwa2Hx0kazYYeT6/InyFI/t08DmcbvuAg0UeiacBJhxfxNrykw6/+jyURhHWSRdFbM8upgMkHizpN8vpi/+YkBt008nY/yE2kdWmYBDA20oLWASNZuoOsmmkVcyN9aEjHvPkkgHRhGMPBDJBs1kJya8MXsepwnqWyxCRoIRBP4vPm5bpGIQUJg7p0KMt0gMO+GIoCpi9SrG/z0qm1v+SSwrnTuJf+gtVMHvH4LvHYDGBE4/DJIttfnUyCClqQGiDY1nP8Y4D53RBHZqlkIpAu0tMOO06PbC/WNBYodnw4IounCRo1FuSm3Jw+YO0I+A7d9y9ry3DCf/I8GF5loAth62YAFtMjxsgAFdCJalAcQkoQFSegFyjq4R/F1GQ0Owka1Xl8A0bRhM4geww0wGiyQ8eGOK4FGukUmYX6kZlyvFRErdZsmqp+FkrMWLy37L7SMhUODLV5yW5DPyO2TUHacRk3Q+qbAxJ1vhoGzPNCPT7rklO7Xim2mBVl+KJZF7AeMMZJtnJk5jbwRhf/eCP+9uXE+BZxME7mMrZ4pR/GyDnqwGlOu2sQPiCZ2ojD4FFgmZwrS2g6OB4hgyQfZTwZyJkF95wG2pJqQ2P3pWlyrS/MaXHiAZnnAUCYH3YvhrjOtH8z6AUzbqQE+BZcKE1GbDLryN39NUBn7LfxNp4omslWzEEgXaIG0fmLiOtC5vEk6AAtFJPgZJLC4Xy8GRAsixxEBDM5Jn4zZOh5WvAmP/K6BPgVnM4gMdn59kqJtHzAAiwHR9NLYdLNQtPEpYBIm8uAMNN0gKXn2lfAkBIIMhc8oYuCM13vyScJYoJ97Ox41sFXFxAIN/u8l4QV0AGbzuDUvwlMXWd885CJon9gwn/wy0oXq7QdiNcrZb6GL3IwbsPLHRBMfl3wBVqLlAeqQdxJSQLvyZr8TTvPMjXh+6tetb9x1FnQtaohP9dYCItif9ckD6BMDmgUuHQ9KhhK5/LCe5jWIneDT5V6ya7B41CDupwkqEKMIEidBdM1UTwwQ3UwLQobS43kDwc3iOnam5fI58rd/G4a6Ycr2sOfZjfGpjntJCGaSLuKBvpqgMqRe/Z4ngknI1SwE0gVasINTXPJcCn7qwZIPokEIYlkfQRiytv+rzA6yB86xvvnURbCwMUuZdFugZfsTjfhMwjTsiuum/y1SaztoA0TsnoR62ah6NPjkLa7VozHr9icYiCbyXvLBsjQMST7pcea6WSh+WMTNiSjtDHDAe78ATNi2vsVLbgsMokkoxHztuJG0HE6/xew6SvN5jwGxaIRYoZsm4twtTqYFO08abc5uopjP3USFz/TxSSfBOjtAqhv+fRrk6//MggBW7teLbBQFmQIT0QQtWe7rqz4RmQcEAz9lLD8MIskDgmtdTWSCdLxuek6m1bd3p9GWyeWdiQldNNKL+wCD3Utip4r9591fj95LZP5jEG+xJF2i8Yb4FIQ0JrI2CSLxCKIXRQerBUJG+qfUUoHAGPGgHmg0EqRl8uzfJ3dSO7jB/rDtVwHT2vac6qvbp1RdYIzALr2Pgt7ySTyDMDgYI5Adp0nCYz/DsYANEJ2aaUWgQaSsg58YYL3WNK0lfI22VIAEQ8r4tG9ZLvF6+0ELMX000gUCHwFZKE2xKL+IX82o9DIYNR0OqG/xktuCg2jiGHv1jAZbkz+NbaYF3Usi58zVB4xJ1Q3G6PE5CS2gA+xJcb9+IGfA4X+3gIb5j8MLl9ftU9DJNLENhwDTDQ7Jp/ExqWS5bwA5NTGgdX3NtIG0gP0WAWJAJGI4jWWhE06B7iVxMaDJh7QTiG2COg1Hv8Q6Z6pY5GSafpI8uula+wc/BdaVAXLKRDTChsbHnB27wfrG7N/AuA0F+KQHOaNu9reQCd76fBK1l6CahUC6QAsiDyBWrqDAQon6ZaGITC6CMtEEdlcDaNlZ+oAUffrCudA5DdbOhwd+2jifAsmoiJQs+eQnYSJHgx1ZB00aIPZ1819AywA/dZokCA5Yud/fKAsMoskYn/bZTBOZ0Aduyog8dzVrqAcZCwbYrOsRjog+QZ6IBaLVuXjJbfUm9EJkHeoArS2fGvvMBd5LolmcdL9el/0W1uv1Yu3KaBLVxUQbuwHs9yvrBw/8DFZ/UJ9PAQFZO98TC6L5nwITsbg26HJfkcBH0BiQFEiEKBJ9ggGyQuWdAhC0RE6m+Y0BSYE1XL1ECNGTl979EX+WgH7LfYMTIfS4lyJmlgsTfyVpZBic/nnY4etCfAq2bFRcDAj6vImQCksFlncSK6lWzUIgXaAFuSFEshmCdFZBz2WjurGHRmhtN3XCYZdYP3zxSnj/wcD+5PKmw3ANcnCKLDB0YqIFHQmSotcaaJxToxggYZzTz70Nxc9JxP0dhDngXlzbaGCvFETTg4kWOHYLHOcM0mxwv14kM0aX5DlQA6R/FbPetXZ+3D/qGFh3lwb7VOckgSa6nyVLKxvsU8ly30DMZoHnSdDJNJ2APSmTaXow0YIW0MnhEiE7nAwz9oTsoDV9mQ/ua9Blo2JjpX9STUkMaHgzzfqMAi/3FZm/aVXDBQX3ZUw669FQD9xM02wa3Hq9q/ZuuE8Bau9CDBOxuLaYT/pb7ivleQuqba9JA4QnL2Qr40O6zFaW7fUH8PH5+vNJjyao00zTaCqlXnmnkJH+KbN6Fp7k8iaZBssDBB+dFMggzPrv0Fk+2SxiPcBP9+udB3n9PWHnU62v/306DK4N5I87MGizpCIgIKtjVzypWYIhUms7+POmWcKD4BgQsJlWBPcb61PJOGeA7eoidXZ9F9AxcQlP0CQsIYWR7mcyTaNGsWnCXWfSnF7L2/lp3NJxnDifAss76THdEI9GiBam/Rrtk/379NpLUmeuJBC09gvui1xcq5s2ar1ECAeQjUQswkiiHT5+Hp7+cx0++Z/eA1nnif/r5n5/oyzlyic/yct9rdfrBVq7Xy/kPKlnolDgwmH/kjwC68p6pV6F7kzzP0kAjY8B9U+D60PQkkMY8fg5LX0VHjsPgJ9lTqI/Mb6h/mRzebKFpoouS8eH6pR40yk3ERkra1kIpAs0R9YhwEMDAgJwnVp2eiU8ItnW9S4+c31O+/wcxm4IvUvh7v+pyx/LJx9sVJHBru7t6nqAn1CGZSXAJz8Jhkit7XqfN5HLRYI2ZXQZC3S/XlTy7BdEs88ekUw0rSZAtJ5wCjBNJEBrO+W3AfL6LfDWHeSNGN/PnEpv1t9n68WCLPUD95mrRwPE8klUDKiT/S1UriBgrqQJ+FniU4M/p8ALIkVKXwR83soy0UZNK+5LeOS3sPyNQD4V7299csog4Kd1RgtqptU5VaxVnBQoqagbS969IDIIqUbM1GXAM9f+jATu3fF7fwvV2g7SBC1ZXCsmBmiFmQRtgAhsgqb81JXZFNz2bchneTS6K3fkdxMszRdkOlWj62Y304TGAL+ESHGfUy0LgXSBFmyxgDid3XoTVS31kQXq6/lPMMo8yIkW+NLfwYjCf2+CN24L7E88ajhsN2/+6Dh+I5756R9o0CwJE6i1XS/QKJLNoJMcR3CGrBifgi73daRdRMaAwKP4+iRhokArt7Z9EGkXaPzEha/Y3bsc7v4BAPM3O5U3zBlC5W98S01IkeXS4zwJzESTEQO01EYN6lNjr5t7QWQQZrMQre3Ay+IrsOO2/Sps/AXIpS2Jl2zav0/1am1rlOeKAvaCSyiI/4x0yrvrB/cFThRqIutQ91SKRjmlbjGgZHGtIHknvzhOc0LkhHp9OI5YaT4PPj36f7DiDWgZxyUtpwFGwxsOgaeKJZBFfC/3lRKX9DhzvVgIpAu0IGwGt9a2sLFArcDPgMWqjFH8RoFoU2fCrLOsr+86C3qXSfen0azG4OxvcQ2Q4Ew0MfeSW9veT8FaorUtiNnst+hpdhIefZ43oaP49bJ1Gs5E01D7u97FUBrJOohi6wRdECl2Ms1jDDBNuPMMS5Js0tYs2+Z0If5YvzOorrWM3EQPn4I200SOvAZfDCWjgNZDY7Pe5XCWT5o0ZQqvH8hkS39gGHDIn6B5NCx7DZ44379PdS4b1WvCSXAM+FTsuRLHtq5XbkZU3g3BYoAIre2gn5FI2bnAO25kxABN6pOg07JSplN1mpbzesYtegGemmN9ffCFpJJjrPc3XJrP8icRixAJQIgUi5loNA1ep9xzyEj/lFkmVxjlqldru0EWdJO5UEZT0O3qmo3iQ40C+nNnw6StYXAN3PFd8AFs16s/BgKWHtXN+tIoCXPJKDTWn+K/MajWtjBmcyNGuhtkdXegteqKi5V1CHrd0q7R4ob5FPBecpYya8SyahLU4HPfB358KtHaVjWV8up18O49EInDl/5KU1MSEKyNqskECLjPEz2KjHqbaSKuWypwISZBbkYTcN/+jHwviCyZThVzngTXkS/zGbVPhIMusL5+/HxY/HIgnwLnlCJ1rf3WJ4LARi0b6vXGSY0WDoubJio+b/607cVrbQefvNYJ2BOYU9a9wF5UM00fHCcVOHbLwJaq3EvpAbj9VDDzsPUxsPmhwmrveqX5ROxNDMpIL5IPdYoBYnAcLxYC6RIseJGhBwulSWAns6jVGBSw0mcssOq4SywBX/obRBPw3n0w7xof/gQb5ZKht+/7UBDE+ID6kzBRiar1/9CjONSzAVIv60sfJpooqYl6kzAQwbTUMHl2phsCFmKCYoBfbXsQNynjCRzqXgz3/Mj6eu9zYOIWkhagBozdInV2A4+9iokBiYDTRGIKsXon03Qq6sXcS+6JKz8gWiwaISZocW29pIOKMWDLw2GLw8HMWRIvmSHvPgWO3WIaIKZpNiCnFJQH1NFM02c6VVz+FjQGCJ8mClh7C/UpqCTPZ6ABknVr22sTAxo8Md8InwI208TGAA/30kO/gtXvQ/tkOMBaNCpukqC+ekmET0EnnKTslAoZ6aG5LXjA04OF4nQyBSw+q1+LWKdCrMZBNXFz2Psn1tf3/dgCKzxY0FGuuLsQ00xrW+hhHpA91HhZB+v3+dW2B4ExoM6DU6y+XlDJAo1YKKIY6UGlZlzPQqMbofVLhWnUABF0LwUtVkFcwVqTRWyacMfpkOqGdWbCbmeU+qPJLolSnxr7GVkgml5Nx+DNveJ1bnT81k2P3PqddU44aVKsWu8R25gNeuZWZX0d9Edomwir3oGHf+35d9cLNjY6TmZyJvYQlzYSb4Gly8RNp+rZUNcLIAqa44rU2tZR1zo4sCc277b+H8Hikiit7aALh0VMpwZuXKncATD/CXjuUuvrQy+2ZMmQsN8iYLNBrE96TPFDHbWAQHJGLQuBdMGWiPrTQwKEj5YEvUEtRpMebAahulFBD3MvINpu34F1doBUD9zpTeIlaIHhfo+4AlofBmH9TDQ9mAOWT6KZzcHAGJ309kV9Rvm8SdppyuhRiAWVUIhEDIfB2vD7O+DSI5ENkOBMS72mwNzvkR4DXpoLHzwMsSb44l8hGiv4I16P3P+Ekz1J0GgJrGDa9pZPogDZ4IWYTYQWRs4IvCRWJ1ajjjFAEEM28JSjB39axlh66QDPXAILnvb0u3VbNurOUQOPmWvTuBI4nRpwkkDohFPAPCApqBaop4YTdX+ngp65MnamBSVDCZq6tP4fejD3g8pxNMuIAZ+UZlqqF/59mvX19ifCRvu6fBI8leLzuoncm6jbFD8Ex9/sOCmiwVfLQiBdsPktMEDkgxxQRsWt0yZsiZ4eD7K7WSCEJR+Jwhf/AtEkvP8gvHJtzd/bGDBG1HSDfgenfy15wZ9RkORZu4XDxX9D47Xkg44qitFFTNXDQhHVlAn4GYFL377BjHQhElh1+6QbE02/Arrqmbt2Adz/v9bXn/8pjN/Y+ZGbhdLwZlpgeSdRjav6Y0CjE/qg91LJzo20mGaa79gtFETTi5Ee9N4W61N9eUDNe3uTL8B2xwEm3P5tSPfX9ikwS17s8+ZX2x7ENWWCTjjJmE7VUmtbk/qkMaQaPXITobE7oNSrcCkln9r2In0KytovZTZrMikjUqK3WjPt/v+FroUwal3Y/7elPgmbBK0fxxG1N1FHHEenuFTLQiBdsAUroMV2MoPoxgljNGUDJmGCx6agjgK6Fog2fhPY+8fW1/eeU1Pipb7RYNFgjE7Jc33acaIKMb/JhdsncQlPsOcNBH5OmoGfEJyFIiou6RUD6mUziBgNrg/cFzX2HigGCJeaGPYZ5fPw7/8H6T5Yd1fY5dslP3b/Gxr/OdUJ7AmatogYOACUX58aL+tQRzMtITan1AX4sH5nfcWhVjFAFBhT5xSYJ3mA/c+Fjqmw9iNLi7aGBa4FBDfTAoFomi0bdb+n4dOp9ertNzgm1aVt70W6KIAFzXFBJCCr15kL+jZAtKrhAsYAsTJBehEhMm5t++H30vsPWlOXAIf9BZLtw3wS25gNci81O59To/OAemVVRdZw+sSlWhYC6YJNK13EgF1D92iJLiwr0WPvIBhEK5F4OaOqxEvQwhBcbFRNtLbFjnPW16nXZdrC/R5ddBHjUQMbT2r85xQ0BnhsXPn1p/Dvi0UMYr4XRIo5zIOO4oN+Cf1naVFNUG37Up/ExIARPr1wGXz0BMRbrKmpSOnPxcoD1MtqFBeT/DPRxDRmU/WAMYUzrvFTKfUBH41mWOmpbV9PDNCLVONreXVTBxx6kfX1c3+rKfESFLQS3QDRcxL009BQFxMn69O2F0w8CpK/CSaNBY0B2bxJttHLq+sl1mkUA8RpbQePAeKnHPVqXsOwfGmoB+74rvX1Tt+CGbNG+iRIa7ueyTRx9Um9tbe45dVCZOcEWQikC7ZAwIdwPSSdEsOgWsRiZB1s4COQtr0f3fYSiZcHqkq81AfIimVb13Nw6qe1rcchJdSngEmYYRj6AbJasr4UyHHUMFFshqGAY+aiYlIjmGjimDp1xG5BjauSGLD6A3jg59bX+/0Kxqw/4n3xaMRZmixsf4vv3Q16AY3WewTnb3U008RNEugxBVaXtr1gckY9C4cbDqIFJNW46xlPn9OG+8J2xwNmYdploLJPdQJ7OoGfSUFN/qCTBODWkdYjdosGh9z/D+8+CQY/6yHWCdPaDi7zKI7oE0x+Vtr0ngfTDfx0v0cXtrXo2D3Cpwd+Cj2LYfR6sO/PK/gk6jOqH8cRRqrxmwcU/MmbCNibWKdkaAikf/qsvoem0YdC/V1xbRag6pjw+G2AlEi8/LiixEvQJRVQvP8azUhP1dkAgcYm9G4mmu8dAIJ02uopekSxUIJKX7jfo8ukTFI08KFV7K6ngBZUZARlERf8Sefy5GvJA/iwepho4pg69YOfwvIA+zPK5+D20yA7CDM+BzucXNknYU1+vUZM6wE/k4IYTUFHXkFckRFUdk7U0vF6tO1FTabVd+YK1v716VM0YhCP2s00j5/T/r+F9imw5kN45LcVXxYUuBb1vAWdcLTeI2gUv44YIG5xbX1ECFHAfj3a9nrl3YJiQED2t1Ct7YA1k7BdEo0gsTW8mdaISWcxBETdGOklslwfPlqUdDn0Yki0VvBJr3rJ/R5dnjf3vSduQl0PHMeLhUC6YKsH/BQ3phQ8AIta7Bd8qZ8egQUCBrtdT4d1ZkKqu6LESyNGg0WxGoMenNDYjm99CyJFA1b66CLWFQOEL0DVhNFUh4yKOHA/eCEmnrUbnNHUyDPO/e/zv/ToMxwDnr8MFj0LiTY47BKIVPZV2CKmgI0i4Q0QnRqOdbFR9fqc7OctkzNra2378adwH1mAr0BpPj8+1XXmiibVSPCpqRMOKUi8PHMJLHyuvE9BC2jhcbIO4pEmeTeIAxuDN9ME+eNqyPiV5RLWlNFwGjxo3u2WetXFJ/G5kj6M9HqIdcJiQL2ToKKJR6k+uOM71tc7nlJW0sU24Qu+61GpEIS/+a11E1ExexNN0wzsk6jaxIuFQLpg0/HgrG9xhijWrh5a2/V0oAN1xKIx+OKlLomXf5XxKXghJkynLSDwUSIP0MCAVwKkBw7Aeoy8lvgkSq9VK58+jTFAELivo7xTwOfN/Tsa6Y9h1LPfQr+pFKEJ/Zr58NAvrR/s9ysYtW51n4TlAfXKOzX6fGuEtr2g2F2HT7otibV+R+NjQDAZFR3BGL2YaBCwWbzxbNjmWByJl8zgSJ8C67WKIovoGwPqAfb0kXcSo7XdCMKYLjJ4lk+Ca7hAU1eN/5zyeZN0Luiks+ApsHqm+DWUndNH6rUYJxsp9ToiL3nwF9C1EDrXhX1/6dEnjUhsmk1fG4bhmpoXRYjUQ5bLi4VAumDTaSRIOtvai08BGeluFkojA3BKBfg5fhPY+xzr63vPgZ4lJT+uB/wUv1xED2azfd0iBs7osWd/BI1z1pfwiGZ+1iEPoEnDQdhC1kZo2wvyqa6dG5oszymRB2hkM83VKPa/IFLMxFVDJgmE6VkaFksnMwDrzYKZX/Pgk2jdTz1G8bVsXgfUIQUJgKxvOQ4x8gB1nbnC2d915G+CwM+6llb6jZVf+B20TYLV78Gj55b8KJc3Ha1VXZppKY3BT61iQJ2MdOt3NBJIb4R8oaimjEbXrRFLkBtZwzVgqliY9reGBJZg8rNim45Bd9w0Wmu7BOv66El44TLrB4f+CZJtnnwSt5NAp8ZsHXWlAJ/cv8t/HiCmhvNiIZAu2AIdUqLGpurRaRMFxjSA1ShCHkA6iLbrdypKvNSl1Si6qNdk9N2dPPsH0cQ2roIkPKLGlYMyP633CAKt6tTXS2cbq7VdF4tYw8aVaLmZehL6xsYAfeU4pAJWNcyOcxssvBk+egJizVaBUUXSxfFJANhYAqJpMs5Z3zSRXjqk4Nb/1kNnNxIxSAjwqRExQKc8QEdGemCfmkfDIXOsr5/+M3z84gh/rN8frJmmE/vbft5ENfjqknkUdsb5lwcY/jsa4k9d+2TExIC6CFrCZB3qbxQ1ErSqC0TTkAghTtqlDpa86OmGgLrW7t/REH8K/77OaAb+fbr1ze1PhA32rvle3SavxfpUz/S1OBynPmm+kJH+qbNgLBSdH+TG3aTWgsiAbAbX59rIB6e+5SJ1HJzRGBz2F4gm4L37SyReGgJ+agQ0iJC/qIupI1giJBiLWC/2UIlPDSwyMrm8o5GrjdZ2XdMW+rEaxS2IrGfCSQSboZ4CQy/Wvvs9IvQsJ7OajV79vfWNfX4GY9b36FPjG3z1FdDW6xuttV2ftr2d0Df+uunmk24yWI1pXusTJ0URIdINWH4YKO/e5ADY6mgw8wWJlyHrd9UhzZcUDBDXVS8Jk5qo43nTBGwsaaaJiAF1yTtpFAM0k1Oz3iMgDyjcl/Go4ch/ejXRU2A65W91nXGa1QLW9Gjp72ikP6ekr4G186FjHZj9a0/vLTKbBU046TgtV08MENBMq28KLGSk+7a//OUvzJgxg6amJmbOnMkTTzxR8bW33nor++23H+PHj6ejo4Ndd92V++67r+Q1c+fOxTCMEX+GhoYC+acLaA3B2UOWT40PwJmciV37+vUpHjWwz1ohD3IdwS5wAJ6wKew1UuJFS329BmwzF6KNqgmoB3WC1sIZsnrEgEaMconyqR7Ghy4ahCU+idJG1WTpUV2yRaKbaZqw9gGG0ll+F7+cWLYPpu4EO3/Lu0+CmWj+te2Lr2+kT42ZShGj216PXqtOcoFC8oBGsPWEjb3rCOwpaBYfcB60ToCVb8Nj55X8rkQ0QsQniGZ/rmlXU74RVt+9LVpnV8fcpB6Zx0+3tEsjlo6Lky/T43PSUvqiDoKWaGk+XWoBixAZLM91L65tKCEym2Om8Q4HD91hfeOQP0FTp6f3im9c1ZMHCJqU0SUG1DVNJCYGeLFPNJB+ww038L3vfY+f/OQnzJs3j1mzZnHAAQewcOHCsq9//PHH2W+//bj77rt56aWX2HvvvTnkkEOYN29eyes6OjpYunRpyZ+mpqZAPuo0ElSfLqK4hyaIT4ZhaHiYN4D1tdt3Ycr2JRIv9QQ7YdvV6wl4AnSkG6ONqlPCI5o9pAer0f2Z+40BsWiEmIDFtXpet3qaMmIKsfoYsroV0IKBjzqKw0Zft71TD7N39FXy0SQcdglEvPsmEvwMBqIVfdfmXhLWlAnORBM2Zq7ZM1eftr2gYrUuAkvjG1dQfObqWjoe1KeWMXDwBdbXT10ES+bVeW8X/w3pBuaUjZFQ0KmGa3wMME3T+Zx0WWCv2+R1qU96fEbu31ffFK8esdv2p/GLaxswcSVMa1uPqat6tO3d72mkT+mhAX4f/zsRTNj2q7DRvr79abyEqYYxQLNGUX35ZONxJa/2iQbSL7jgAk4++WROOeUUNttsM+bMmcO0adO49NJLy75+zpw5nH322ey4445stNFG/O53v2OjjTbizjvvLHmdYRhMmjSp5E9Qq+uQ0nC0pLESCpY/hlEvuK/JYd6IQyoagy9eWpR4ee3G+liNogoxzbTjGqVFLGRzuKqmTBlzinpN9PVSroPcr7a92ycRm8N1WjCUqqPBJ4xt3ZB9EiJkHfT5jOobnRTAkO1dxpm5KwFYs8OZMH5jnz6JAz+DPG+RiOFo7WoHxjRa1qEeOTUBhVgub5LO1cG2jjX+jNMTsNKr2WD9PsVN0M0OgS2PADMHt5/mTPzWc90sn0ScJzpNONVDqml8XCoF0fSoT+r7jMRqbeuyUwrqy03ESPPVX5tAYzGKurTtBYOfusgEuWudeqblGunTJm/9mQ0iS+mKjoX9f+vPHw2JrCIWoNaz4Bvc00R6nLn2dcs1uJnmxT6xQHo6neall15i9uzZJd+fPXs2Tz/9tKffkc/n6e3tZcyYMSXf7+vrY/r06UydOpWDDz54BGN9uKVSKXp6ekr+2KZlQq/J6FTKFVgCgWgCkh4tDqkJm8KeP7S+vveHJIdWWb+/LlajRoWYgCKjPmkX6z1mgzeH1yM1Ia6A1q0BEtyfEp8ELKrRipGu2b1UdxImYrqhIcuz8g1upml03UwT/vN9OujntfwMBnf8f/59iukFfICgor6OhqOwRdGNWBbfQJ/SjWKiNVSSp/7GlVa5knCpCYVNmQP+AC3jYMWbjH7pIut3B4jd1mIyTSfTNNK2FxGX6pHms94jQmu7EZMEgmRVNdG2z+byZAPuJrLeI4IIUT/72/o9msQAURNODViC3NhmmvW7IgZOHPZjDa+ZPn6Rzeb/A4AbJ33fWnLtw5KCiKy6nSfuHF6X3KQRsdv9e2TZJxZIX7VqFblcjokTJ5Z8f+LEiSxbtszT7/jjH/9If38/Rx99tPO9TTfdlLlz53LHHXdw3XXX0dTUxO677857771X8fece+65dHZ2On+mTZvm/EynUXzdEvp6C2gxjHRNRrl2PwMmbQWDazmp59KCT3oUqyVJmCbg/lADNAit36NJUS8AsIL6mPsiGE31xKQSnwQsPdJF+xsaBBAJ0rXWAiR2/a56doCAqMW1GjTU37gN3r6LjBnl7My3SCYTvn+FiHHOes5cEBQDtJwCq0O2RHgM0CUPqKfBb70nncuTb6TWdj3SFwLOk5IF3yoZhK1j4aDzAZj46l/YwvgoeDNNYAyoazeRRjFATBPU+oysZoYedaVdN+skgaXbpIwbaNJlOrUeElvJZJqQ/E2PexvqJWg1vlnsznGVTxVnhuD204iQ57bc7rw/eo8A/oiNAbrkAaWyqvWQxvRQhBDVTPNin1gg3bbhD65pmp4e5uuuu45f/OIX3HDDDUyYMMH5/i677MJxxx3HNttsw6xZs7jxxhvZeOON+fOf/1zxd51zzjl0d3c7fxYtWuT8TJfxG3AxwOvS2haRqAZloolLwpSPckXjcOjFYESZlX6C2ZEX6tzS3XjpC9AH3K8nUU1ExW4O10Wr0a1nqUtcqkduynqfprIOghhN9YBowpho2iSG9TPSodEyQQ1oXDXiM+pfBXf/DwCX5A7jbXNdbZZ61XPmlvgk4jzRZFTZ/ft0id325x2PGkR9atuX+KTLdRMkD1BfA0Qsi7gesLEhgOwWX4LNDyNiZvl9/G+0xoL9O4XKBeo03dAQPXIB93aA8816X3ESrPE+BY/dwrS2NZMwhaDyswLzAA0n0+ojsIjJA+oCZDWZ4ocG4ziPnQer3qE/PoZfZk6ou3HVyOnU+hYOi4sB9eZvIqT5gtzbhmGQULRw9BMLpI8bN45oNDqCfb5ixYoRLPXhdsMNN3DyySdz4403su++1ZcQRCIRdtxxx6qM9GQySUdHR8kf2+qSUWlgsMvXqWcpArSuBxxyv0/E4ox6RycbEoCnbAu7fxeAX8evojXf5/tXiJwkgPq07UXoWgd53kRuDod65QEaf29DvSxiAeOcQZtpAjv1dY1OasRmEDPOaX1GQRZEgpgio55mWjwacZJJXRp8DWXt3/NDGFhFbvxmXJL9Ysnv9+eTXky0Up/0iAHCGE2NkAfQMnbrMpXiGg3WpFEkRP6mhI2qQQw48I+kE51sEVnA0enbA/2KpAhAti7SgWhmsyYxoG4QTaRcYJ0NdRGLa+u4lwYF1AKJmE75W32TaWKmG+qfctQqBogkHgVupv1/9s47TM6y6v+fKVuyaRBCCAhEivTei0g1dBRQQDA2RPkh0gQVBEUEEZWuiC/Kqy9NBaQjPfQmJPQiUiSUhFAS0nZ32u+PZ2fmmWR35nnu+5x7T+Le15XrmuzOPHvmKec+5fv9HqH85J2nouHVwD9WPoFZjPRig5eFpV4lcgFJNpFPzST+OdmZBJ4+QElOqdVabAvp7e3tbLrpptx5550NP7/zzjvZZpttBvzcVVddxde+9jWuvPJK9txzz5Z/p1Kp8NRTT7H88ss72WllUI0cithG4QPiBSIb6CGVIGz7H/AfVmC5zCxWfvLM1B/XTDDcgzBNNIOdIEyEFqggNRM/vpNNRgYNRjYpMC4EfIC81rb/vSRL5/S7bpqNIneJEJtJvbcPeOkWeO4ayGSZPfE8CuTJZKhRoVPZpCLv5JtAG5MIUdfathW/uRQZIptssYm0tLatscDi8m5uVHzh6zZiWZ5Z74cAfHHuFfD+wKClYDbhmQsoxN3x49m5l9zt0bPJ3U9qyQP4oK1VhzK7Fj8V5Gdr7FRPZppsruvPcpS8j7xlVTUAYxZ8QKkANx4ZDa9e5/M8PfIz0bGdQKNxmUcr4Aw9QKSp+E0IVCMtq9hqLbaFdIDjjjuOP/zhD1x66aW8+OKLHHvssbz55pscfvjhQCS58pWvfKX2/quuuoqvfOUrnH322Wy11VZMnz6d6dOnM3v27Np7fvrTn3L77bfz2muv8dRTT3HooYfy1FNP1Y6Zdg06Eq1v+aOI9YoM7g+yojyAR8ADghtV2zB+zLcBWPqlv8Br96azyWAHWldr20531YsarKj9nc1A3qUBooBs9kU1quh/ezAJ9LS2PWzSvG5LSAKtZZNPcihSkF3wEdx8XPR6m6OYt8wGNXtMFNEQkHfSAB4IFK17Y1rUvisuy+Ulx2Gk0Bh9zl5hTwcl71OQ1bhunr5bQWv7leX25L7SBrRTgBuPgnK686+CRhUZWilnj7e2vQKq0R8Iocd0dom7s9mYPIAxgJYOgMVS7i3jl6zVAyzKqmr4gHbneoBATPnwhTD9WehcCvb4ldf9HTWY6bPJhsyjZk3QxZ7IJlvPW6NNQ4j0xOvAAw/kvPPO47TTTmOjjTbi/vvv59Zbb2XChAkAvPvuu7z55pu19//+97+nWCzyne98h+WXX7727+ijj669Z9asWXzrW99i7bXXZuLEibz99tvcf//9bLHFFk42unXF9YKLfDZD3geJZqggq9Opdy/ut+UyVOuTkhvVI4U1+b/iZ6P/3HQ09M5L/Fkd6Qt7zq6uG2dHJshPr1UTYeVWRKsNrFPpilvazGWowVI2WdS295blMtlMs9UsFvEBt58Mc6fDMp+CHX4o9rxpIJpcmkRxm6yg5ON7kFQc0FsqUyW4eCX1ClR8U3uuEKrRSoFoWLsiEs07gZYtEJ1UOJSeTCe8+TA8eWmqz+vMcPKn4ktqbftr2+sx09zlnTSb/IaYaV7a9vbOkUV2aketWWyjMRu/blLsVClZVSt+stEmx/v7/X/Dvb+IXu92JowY5yXLFZd6tRIHaA4bdfaTqkAIO0yZJCsf9K8prCOOOIIjjjii39/96U9/avj/vffe2/J45557Lueee66AZdHyoQRV5QFcil4Lrx7fbq+mrrU3tcQGlSuTydDZlmN+b0nMpqq2/S85kEOWfoHcR2/APWfAbj9P9HmdTqbUdTNURFNKDqNj20h6TD9vlmwS0NoulStiNvlq23eooBrtFazqCELPIrEVJJpv8Pzvu+Cpy4EMfO430DaMnuLshmOnXToJhi+yWSOB9mcSRMcp09UuYU/MB3jM3BD1Ab76yKrNNE+2nAZC1qfwYUSvOfqcTqHxbZbl1uW+zb7Tz4c7T4U1dofRn0hokzzSUkLiDaLvNsIBvLTwivsArzkJpgqyivGbR2N2TnfRzB6nw7aw3ACxh0h3et76vkelEjXCXYECDfZ4zibSbBJ5x28ue1y5DDcdBaUeWG0n2PBLkU0CbLnuQlkFue+mbS8fK3kzQTUHfPvO3RmSdlmylg8SDeSSerHBnkYcS/Q5w2hrofNUvf5z6aKw+znRDx+9CKb9M5U9sgMhDFK6PeicoK2PbEMeQIoBYuUcxW1SoSs7D2GRvZd6GhJoHzqnpA+wK6Hg7AOM7SdeRbSeOXDTMdHrLb8NK2+1kD2evttQAq07CD29TQ1a22I+IDpOJkPt2GmWziA2mURMtFks1OS3MgRZV7bIULOh71hPjtsPVtwCeufAzcdCQiSnJlPGita2v7a9BjjDlwWmxyq2As6oVCoi7AbZOUBS0nw2Go4NNpmZbxH3AUKgGikGryUmqM+9NOVP8J+HoK0L9jqPqiaLGFNG6Lp5a9tbBEQqsBwtgv2SrKFCuvKyIg8gRp82UmRosMlQUi9dRIsfJ7/mRNjgIKASDdYo9rS2R0OOw0NDOvqcPWSMSsdXIHgGuSKx2EwCjSDMVV/PJL1MtnAd17a3UkSTQxEb8t1KSEvw00UslSsU0soD3P0zmD0NlloZdjqlbo93HKDJAPGVCZIvNDgnrMLFxvgsCacimsoMEE8/qSo7ZwOcERXR/LXtuwuC8gC+TALFpL6jvR32uRBy7fDK7fDctYk+rwL08QAfacgDiBUZFAbYWyrI9viCxoSL+8VyhSoWxolNZAxpHf+cFSZo9DlFZprDvdSeq2ttS91L/qADjea1PwMEHO7vj9+BO38Svd7pFFh6QswmW37JV9t+mKKfdPYBxgZ8R5+TP09J1lAhXXm5OJeqPADIbVT+2qgKXXGPYT6gpYnmidYRLuwtom2/25nQNRZmvgQPnNPaHoNFa5XivthmbkNHOv49xH2A98apwW6wVPwcRIRFf/Z4attrniNbuta+SMuqrxSU5RLQtoeU127a4/D4/0Sv9z4fOkYschz//c3SvWTPB0jHAd7FIWMzQCKbbDEJGm2SuW69Jb8EunoflStQKEkx03y17ZV997i14DMnRL/4x/dh3gctP69bbLSBarQsW2RS2sVXxlQKCCGlbd8n9Sqx/JsyiuxU53qALbBfJpMRb2D7P2+a4EPXxpWDD6hU4JbvQc/H8InNItZl3CapGU7Cvhv8JN5MsfcMMtQ7FAAjSdZQIV15WUE2exetLaKHFPSQemoIQt/gWakD3TUG9vhV9PqBs2HG800/X/1coVSRlwgxRL+RYhJIob8jFGl0vl3upWw2Q3vOGqJJIxGTacpYor1Kd+p9r1uHAmLXpDaqp++2hkJplAdIeJ6KvXDjd4EKbHhwpBvZj03OrBQVqQlPNpGKTJBfvCSN/pRKMGwVrBSRzZ7xmzQLDNzupQZ5ADG5QFvNhrhNteu27TEwbh2Y/wHc9sMENmnGlDbQcYuco9T22NQjB2OFPeH4zVfbXkXqVUzizY5kqDQQAgTjAHF5JxvNvbhNQaX5nr8OXr4Vsm0Rgynb+LflYhOh6+apba8i9SrUlBEFsnrMKIxskgeMJFlDhXTlZaVzaJEy4atpq4IiNnae+kWirbsvrLknlAtww5FQHvhvqUqEOGtIG6RzSjMJYt/NHf2pE4RZ6dKDPyJdh3FhS2rCW9s+JhFSTCsR0sImf99t77pJMWXi/tZ1eHXqxuyD50Zspa6xsOsZi/zaZvHTtxiz5FNM/fVj635STiLET/6m6jsk51ss6LV13aq+xFWWKy4PYEbmUWV49ULFz3w77PMbyGTh2b/BK3c2/XwdiWYHkS49ANVbvlDlHPk1ZlVRxEaK+1La9vFjidnkLaNikU0kY1OlUjGXV/YIAY8sXrfETaL5H0ZMJYDtjoPl1lnUJiGpV+nGla8iRGSTcD3ACFgEJBjq8jWKJGuokK68rNwQYgm0SrfXTvfJ2nnqN+nJZGDPs6FjNLwzJRo+OsCKf84KxVRlKIwxfeSGQroRuRn/xFAzgbYRPMeP5Ss5JV748DxHIO+XLDGc/LUaq2hU2XNUk+VysilF8eO9l+D+PrbS7mdF7KWFbRIa6KVRsPJPxOztJ/IIQr+CVUVUIsRe0uOf1EvLcdTvI5ciWoM8gBmZx0ASCituClsdEb2+6ZhogHJLm2TOUVREk4oppeWd/J83sWaad/Na1k9CbI/zBWcYuW4qUq8es1tAywdIzdyQOUeFUl3b3spcKTE9coU6jr9scMJzdPuPYN5MGLsmbPe9AWySaYLKNdRlZFQim4RrS6biAE9whrAiRNIlUkhfsGABb7/99iI/f/755rIT/w3LipB/bXiW58bZWyxTFpYIcQ94LFK6hZFoAwWqo5aHXU+PXt9zBnzwar+fz2UzNSSUNDrO1LAqT+RAhzAa1ZfKBfIdXzEZFYWBXs5+qYaOk5cIsaIdJzUYSsMmU9IuxpoyvoXG6LMJz1O5DDcdFbGUPrUrrLf/ADZJnSNLEgqy91KpXKlpW7v7JWF2g3czTV4ixDtWUmATWdP99N3fQKPJLxTjihZjBigQ7XgSLDUBPn4L7vppE5t05NTix0675PcTXw1pDYkQW3JqcZuszAHxtQdivtJYYc+SREi9eS3ru+PHTrvUpV5Trup9pFHHcY8DUuwn/74bnr4SyMDnfgP5jn7f5t0EFY5NfOsTOlKvMsA6W+xU+RpFkuVdSL/mmmtYY4012GOPPdhggw147LHHar+bNGmS7+EX69XuSOUCvYDeN4EGycEZUqgvOSqX1JAKcUpQf45l40mwymeguABuOjqCmzWxyUpgaBFFLM0k6Kk1iXyCZx2aua8PsKW3L3uOijENOt/CnjSC0PUcZTIZ2qUDeil0nEJTxgoN19eeRptanKcn/gjTHoP2ERFbaYC4o4aOs8QC80QQasmpxY/tbpPwveR43XQkQmw9bxI2aVG6/Zpp0vIAUk3QAEi09uGwzwXR63/+Ad58tN/PS4NqGqX5bBQbvZkEsdhYLDYxtudGx/KMTYSvmy8iPf5Z8cKeJVkHsRk3ss9bJkOtiGnFJneApnwdJ9jsrZ65cPMx0estvgUrbTHgW63FJr71CdBjOvvP3dHI4XxZ84uZtMvpp5/OlClTePrpp7n00kv5xje+wZVXXgkgRh9bXJdr0gPy3R7/DrRFVKPsg9xbKtdq0Va045oWrTMZ2PsCyA+DNx6AKX/u9xjSyaE3vUyRSWCFpuS7ScU/K7Up+A4c1tTbt1KQ7W5AotmwyVcXEWLIfTEfIKXVKKm37xsYKknyeATPiXzl7Bhac+efwFIrtbTJt8hQVNDb97VJGmXpZZOxpCeuty+3nwhJ8lhsqBu5bvHPWhlcG4+V5PT2m9xLq+4AG38ZqESDlAvd/dgkW9ir+pKI0WmDVey7n7TlMlTJkeI6u0b8JFiUefSLuyObjDVlVOWd/NDf0iywzrybLBdo3Eu+sZKi1rb2dZt8Bsx6E0avBDv/eMC3SchySecCPZ71CbDXlLEo7VLPBRYzRHqhUGDZZZcFYLPNNuP+++/n97//Paeddpqz81lSlh+dU/aG8HV2+VyWfFWnzdqwA2HNqPix09ukg44bcEMYswrsdHL0+o4fw5zp/dhkbDMXZhLEbfIeDGUEqRP/rPyAIX9Ek53NXNoH1M+1lQBDFtVoy3eL+gBfeSfxgpUAK6WVD6hU4JbvQe8cWHEL2PzQpsfrEQqeQZC9U2vwWSlYRcdpy2Vq2rTpbdJ53mzFlFKSPJI+wJZ0UZ0+7X7d5Bt8nj6gz+eXBfX2WxY/J54OI5aD9/9VnwMRt0k6fqvtbwKFDyM5XCaTkb+/PedcdQg3QeOyXO6sKy1WiocPMFbcj8tzyuvt2wCwSMRv0qjdGmpfoo6jMAfEZSXySW89AY/+Lnq913nQMWLAt/YIgqHkAJH+iPSq/1hgpMmvMzdRiqG+mCHSx40bxzPPPFP7/zLLLMOdd97Jiy++2PDz/8blimoGhcKHpx5So01WUPLCm5RBKleic7Tl4bD8RtAzuz7NOrakh+dISbuI6lp7OuAOaU00z8J+/LPyiZibTRo6bb6Fjw7x4lC9yOCPQpGVwJIoopkZXq2osWlF80+GztnCBzx/HfzrNsi2RRII2eZ/S8pPxo/lu8xq23v5btkkQ6SZpiQ14V/4kLGnICDLJR8HCCLSjTAJ4kUceamJAa7bsKVhj19Hrx86D6Y/2/BrcX1kk9fN3yatONcK+ltGlssWkwAUcl0hSZ7oWFYKskp5rkDxUy4OEPQBZu6lFj6p2BsxkajABgfCp3ZperwGWS5fgJaYjLFc/CbGuBDyAb1FyWaaVINvMUOkX3bZZYwbN67hZ+3t7Vx11VXcd999vodfrJcMGlXWAaui49LaZA5B6E/lEkcPJTlHuTzscyFkcvDCDfDSrQ2/VtPX80yge2OJr79NtnTbfaUv4p8VT8R80HHiQ5A9N3Px4pBEoCpb3PfVto9sCig5lWBJP2+VSsU/ERNGx4lI8jQrxsz/sN443e57MG5tdZuyWXm9fanZDfKxkh0ghMS9JO67PaXCtJDWYLApYyju9o1NoiYzSjY1uW7r7ANr7w3lItxwJJSKtV9pDfj2K3xIF/cl7iUdgJad500AjSocv8ky02yB2EAyXpJhy0kPG5V43sTibpHh1UoALa2Bww+eC++9AF3LwK5nJrAnuh/z2Qx5b0CkjT23wSYjzWKNZpp3cV9Btz3Jcr6qzz77LMVikRVXXJHx48f3+55tt93W2bAlYZnsQAsgZOV1dj3lAQzJcajJA7S6bstvANt8N3p9y/eg++Par7Ror7468iAT9JTLFXrFNNEMolHFpV3soKysIZpkk1Ub2vZxm+QGRfvdS9XnTUprO/69rOh+ShZj+rXpjlNg3kwYuyZsd1xwm6xQ38VRlhIJtPTAOkFEuvggdIHnTQLRFD/X7rIlwjGlADPNWvFTQ28/sV/a49fQORrefQoevaj24w7hQqNM8VM4VhJkFcujiK0AIaJz5CPLpXXdJNgNGsxLl9Wgt2+EmaY1cFiGBWYophSvB3jqWjfz3e+9VJfy2v2XMHyZBPZYPEcSubc0sM6zcaXATvWec9Umm5skXc5RwoYbbsiIESPYZJNN+PrXv87555/Pvffey6xZswTNW7yXRBHNCm0q+qwtRLrJwocWvSzJOdrhh7D0KjDnHbj7tEVsEqe9euoixo/lsyQ10awkq6CHtvZDMyhR373RDDZo79FnLRb3tWzyRzNI0CfjAa+VQYO+QWH8s4vY9Nq98NTlQCZiI+U7Eh1PxgdI+0oZZEzwol5Tm2xJYKnYJCTvJKW1LSPLJY1qFECi1STeLMUBg1TYGzkeJp4RvZ78c/jg1cge6YJVTU7N/3kTH37opdms4wN8QTXdRalmmgSAZTGKAxyXRDNND1TjylBXkuQxVA+QANVozZRxZ6YNcG+XS5GkS7kAn9oV1ts/mT0SgEhxcIYcGMpK/Catt98w38JIHSfpcr7THnzwQcaMGcMqq6xCT08Pf/rTn9hpp51YZpllWHPNNTnllFP+64vq7QYLH6YSaG9NW50Ew1IHuicNCqVtGOx9XvT6n3+AaY83fNaKA85lM7Tlqg7Y3yYZTTTZe0lW2sXGdQONhFUGjSqNilmS9MhBXm/fe0CkMJqh+r2yGWq+Jb1NwgVZwYHDDQ313vlw0zHR682/CStvmdomi6wU/4HDwve2BKXbCIIQ4gwnG/GStNa2TBPUIJNAuCBrUm8/TaNo4y/DKttDcQHcfCxUKgrAI0lmmiFWsVZs4qxpG32uUqFWRPGzR6D4qRXjSgBYxKVdbEhNFEtlitX5Fq71ADUWvx0fIOGXOqQbs54xZZwl09BM++cf4K3HoX0k7HUOJGyOi8wkUGODC1w38ZkbNu7vxvkWvuDaxQSRfuSRR3LRRRdx7bXXcuWVVzJ16lQmT57Mqquuyle/+lUeeOABNt54Y2bOnClp72K1LMkDWBye469pG53f3mKZsoDWtmyzYZDO0ao7wEaHAJWom1vslUfJS6DjBIOe6obgp4mmk6yKFKyki58GKW/eHWgjw7Og7pekUfsiTAIjvltaazt+3byHxBoaONxvoHrfL+Cj12HUJ2DnH6c6ngw6Ts5XRtr2Mshmcc12iSFjRvwkKM5v8WimZWryAHJFNEvNa0lZLmmbJNDWEjalHhKbycBe50K+E16/D56+Sg90IHLdbOy5UH9W5Yey+sXd8WN52SMiz2krVgK94r5fw0EwfhNhFdu7btJSrz2CuYCdeUlxqde+azfrTbjrp9HrXX4Co1dMYY9kE1T4XjKy58aP4yf3LJczNUrzubIbZHO4pMv5TnvppZdYZ511Gn62/fbbc+655zJlyhQmT57MZpttxkknneRt5OK6vB4acQShJDrORnc1HgRIIFEkKd2Deo4mng5dY2HmS/DgueLDc3wHRIIsMkZUE02sSy+3ccoXrW0UGuIDIn11dgulisjgWomAp4aOM9SUkbZJRrNZLvGRbRTbSDD6temdp+Dh30Sv9zwHOkels0kSZSWwnxRKFaqPrbe8kyVmmlrxUwIlL41qdJcHkCzuizQb1BqzlpJ6WzY1MAqTXrtlVoukDAFuP4nhhY8WOZbPEpVRWYLvJV8WSHsu1kwTKcZI5gKysZJFNpEVm+LPrf+wUUt+0l5DXV4qTAYMBX1+t1KBm4+DwjxYeWvY7NCg9oA86ECm/iYdm/jl3g02CfoAifkWUjWTpMv5DG6++eZcfvnli/x83XXX5Y477iCTyXDCCSdw1113eRm4OC8ZBKF0YGijK16pVLyRMdLDDkQp3eIBT4pz1DUGdj8rev3Ar1mxNK3hWL5LBtks2MmU1EQzRMGzqfspt5nHqby+KBSQLcb4BRdKuogmg2cbtMA6ukJYRkXAJr+h47F7qVSMWEaVEqy7L6y5m4NNktR3OQRhZJMfoqlUrlAQkQeQ893ySb2d4r6Mr5QrWok0QbWGjnsV97VkHiUkQqSRaCnupa2PhOXWhwUfMe7hU6NjCcsViDRlDF03a3llJpOp+0qJeUmizWs7PmCYODvVVrGxuk+257NkvYtoltipOg11S7NSfH1AWy5bK5x2F0vw7DXw7zsh1w57XwDZdM+yKBDCFDhDOq+UiAMUgBCG9reky3m3ueiiizjvvPM4+OCDeemllwDo7e3l3HPPZcyYMQAsu+yyzJgxQ8bSxXCJJBjiE99tBBiNAyLdbGoYdmAGzSCMQnEtEq+3P6z+WSj1sv/bvyJD2RQlSLaIZlETzZ5NIkwCySKaxIDIhsG1kk0ZO8GziC6iyeGHckU0iQRDepaEiE1xH/Dob2H6M9C5FOz+SzebBBoOGsFzJuOPRANZZpofA0S6+CmASNdCyEowL0WZaTaae9FxJK6bDhLNCto6LqmYSpYr1wb7nA+ZLF0vX8f22afFZR6tMK7ix5HR2R3k/CS2JIsfMj5JR5rPyjlqsMlIfiIJhJCWwrRSM4mOI5fDSTQcGgZE+sSUVZnej2fCbX1Mo898H5ZdI/WxekRqXbLyNxK5d6fgdQOh4r7gfiIJ8pECsCRdzld13XXX5ZFHHuHdd99lnXXWYdiwYQwfPpxLLrmEX/ziFwBMnTqVFVZYQczYxW1ZQg5YQ8Y40Tn7WaLUEgk5DnG9Vkdnl8lEAzrahjNh3tN8KTfZ1GYuKVsigoyTHp5lkBZoDc1QDQh8BkRmsxnac9UA2phEiKWJ71r3txEdadGZBKZ8QGTTiPlvwuSfRz/c9QwYMc7peLINBzkEYeoiWoM9wqwUg7rWsvGbsHyZkf1ERvdXxwdY8kuSs1JkQDUe9/YnNoUtDwfg9PylDKNbdGilpaaMzDBdOdZVxADyGxAZ2STPcLI0B8jiEGTR/MSIrGo1LpGTeZR83mQbV377iZwPaBwQ6X9/j7r/pzD/fRi3Dmx7tNOxTLL3BNDfejGljRqFTFNW9hwlXe4WExXTJ0+ezOuvv85f//pXrr/+el5//XUOOuggIEKkV4vq/41LJLgQHzRoo7taPUYum6HNcUBkZJN8Yc/SoBovba2lVoadTwHgh/kraV8gww6x18mUK+r1FEuNk8Mdlwh1Ukuv1Yv6Lu8DfAZEQv2Zk+jUSyBj5IdVSUgoyAX08QGRdmQdJJA6Sqgv76SnwgHvng3FbljlM33DpF1tEmRdGdG11tLatqIdCbLyThLPW+oBkQPZpBBT2ip82Go2gPR8CzkkmvN9tOOPqIxeiZWyMzkuf42Q1IRg4cOUPIAcqlEKDKUxsM4Ue08CaSmOkJWwSR6NKuEn5WwyWJAVGTYqf93ix3WyKZ9l2+yzjP7X1UAmknTJt3vZZEuaT5KV4m+ThLRyZJNGDufvA4rlCkWBhnrSlZc4yIQJE5gwYcIiP99uu+0kDr/YLhkKnh29Vg06p0/BKrJJoSBrSB7Au/i5xbeY8dDlLDfnOfaYdg6wo5c9lUol1hUX2MzNBM+RPeVKhGhoz7sXdqVssqlpK48g9Hneqp+f010UQsjaC557fH1Ag03+50hiQGT8s2bYRG314LlSqXg1dyKbBOjK+RxfzN3H2t1TId8Je58PHnbFZRScbRL03T0C161qU0+xLFuQNSUPIIfWkWSBxY/rsmS1tiXkAWTRqLJyMxZlHuWK1s73UccIMnueA1d+kW/k/sFH06bAmlt52STalBFHNUpI8sj6ACv3kggDREv+xsieWxaS45CUmpCUvoAorhje4WdTPQ6QALDYYTdIzgGpPiM+AyIBRueL/Dz/x+g/WxwGK23ubZMlrW3Rpoxg3B0d14bvlgD7xuub3cUyIzxAumlWmL/yX7osdsWtPDRyRTS5jUpU1kEczeB43bI5Hln3xxQqOTaYcz+8eJOXPb2lMlXAtkySMcjU4IXsAamNShL1JYxqNMKUkSjqRTYJNvgkmDvCaAYZOQ5B1L7AgMj4Z+2giOufFaG9CiT1o0sf8qP8FdF/djwJxqzqZ5MoQtaGrjXIsglkZhJIywPI+YBBHRC50JJsOEgmq70xxL3Pktlz5VDyDXIcRuQBJBpXrDGRWyvbkMtUGHnncdFgZi+b7NHMfYf6SdtUjZV8BkRCvJlm416SZxJIFvcl8iUhFLGCrIMP0K9B5nFJbcoY07aXAkJ8vfg3JmTfo2fYcrDTKV7HkmGA6DAKrUi7xONSKz5AAjAmLfOYdA0V0hWXLQcsQFVUknXwWTpoBhu6cXGbfJzLgjFr8z+lPaP/3HI8dM/2sCfmgL2mPdtiErTnsjWgpyhV0cjGGZfjsKNtL+QDBH2lDCJdC81gA9EkMSCywSYjQVjD0ErR+9v9HK3/7M9ZKjOPV3OrwVbf8bKnWCpTlJDjEESiSccBMoNr7foAc8hPD217kC2iySCa4s00G7GJ6P7WoGlr617ybaadm/sGsyrD6Xj/+Wgws5dNkvKFBmQeqzYpsFK8gRDGmqDVz0ZNJ8nivi3QAVjaT/x9N8ieJ9lh8XYYTrUmv5HB7Lz7DPv3/B2A5zf5CXSO8rNJwE/W7iMhqVdrzLTqOcpmIO/RBNUYNurzvGWzGdqroLGAA0eHCumKq0NE+1tWD8kKVVGiaB3ZJO9cJIoxvcUyZYmBJ0LDRS4o7sf0/AowdzrcdarzsSQGRELMAYsyCdzvpbjOrpkBqIIBT1yOw0qDTyoR6zBW3JeXB5D03RJF67pOo08RzVoi1pbL1uipsvJljtftpVtZbto/KFaynD3sSMj5KfF1iyHRbFHxI5skUfJyrBRb1GC5BEOi2QBaRTSZZpqsVJiRBLqBSWDFB/ij9QDmty/DGcW++RGTz4QPX3e3SUT+RlreyR+coSLPaQkMJTjYE6R8pTUmQXSMfDZD3qtGIQ/O8L2XZGc4yTVlpFkpEnr7JhpX5RLcdBQ5ytxS2oJpy+4gaJOPn4w+W6kgNLzaFjgjbo8EEEKyKePbTJOMKZOuoUK64hIpxljUQ7JQZKjZJEd7lSyigYwD7hFK6nto5+KRR0U/eOJS+M8jTseSGhApOiRWoAES2WQLJa+hRw6WUChSxRj5JEPiHEnJA4hq2ppKegwm9YJBmFcC3f0x3PI9AP5Q2pPnyqt42xP/Tu1GmvwS+rGRTbb8krQ8gASFWpYFJoMglGwWS1y3XDZTAwhYKRJroFF9NW0lZeekQDUdbVmuLm3P7PFbQ3EB3HwMOKIJJWelyOvtL2k+QI7FK5EvScsDyM7dkTxHnvGbQvPat5mmIvNopOFYEtK271ABsTmeo8cuhnemMj8znFMLXzUjFdY4uFby/hYAZxhp7kWfV5BSMlTHSbpSQZyOO+64xO8955xzUhuzpC0rGk09YigUQT0kARou6AwbldD8rB7P11HJBM+RTU9m14eNJ8HUy+Cmo+DwByGfbiKLRFEPdFBW3qjGfA4oiG7mVorWVR/gL8chWUSTLcZYKcguLA/Q1e6JJBa0yYoOKSgVZL2TwxzzekuDXyC6+6cw5x16Rk3gvPf2Y5RgYd9X01b2eZP03cJINIFYqSoP0ObRuJCS5dIYMmYrEfMvMkSfz1EoFYURsjaaoFKatqIFWSnfnc8BGV7e7Gds8Y894bV74Zm/woYHpbdJZIB9ozyAD/AkLsslMpPAiJwaxBsONgBaVXZqNLzaAGqX2HUTKRBLIT/tyTtpSBdZaaj3imvbD/K99NF/4J7TAfj72G8zc9rSZgbXVqVeK5W+4w1r87NJYkisgiKEHIBFrh4g0VCXsinpSpXhT506teH/Tz75JKVSiTXXXBOAf/3rX+RyOTbddFM5CxfjZYUSFNdD8pLjMIb6ij6vQel2tymfy5LPZiiWK7LORaKTWSjBxJ/Bv26H9/8FD5wDO56Yzh5pNKqpIEwjwJCQUZHVsxTRtDVStI4+b8sHLCwP0NXubk9clstvsKdG4UMmEZPU2vaWCpP0S64+4M1H4Z9/AOD9Hc6i+29l2g0FzyrzLaTknUSL+/7Fz+h4Ja9Cupgsl0IDxGIRzbcp09GWY05P0QxKvnqOF/Qa0bRFtkAkNychesY+GrYS7PADuPs0uO1EWH0XGD42pU0SzbRGeQAfEJPcgEg5prNUA0RyOLtkfhIV0iUBIzbYDXLob8HrJnUvCSLSRWS5+uKaqtSrD4BBTNte8HnrqeWVKa9bpRIxLgvzYeVtmNK1N0x71wyoJpPJ0JnPsaAgA6oxNyhaGsBiqR4gmFcmXamexsmTJ9f+7b333uywww689dZbTJkyhSlTpjBt2jR23HFH9txzTy17F6vlRZ/uuxmK5QpFT4mQ+EPsVUQTHeonFDwrDGISQ8h62lQuV2pdaAk6Z0+xDMOWht3Pin7xwNnw3oupjmVxOJx0YGhn45QbeCKmaSsY0EshmnQG17r7AEl5gN5SucZOlyjGWEpWRRkXJuWdHJqgxR646ejo9UZfprLK9tGxLF03k8hmQd8tgR5qYKb52SQtyyWL1pNiEy2ZdGUJ5qWsfKFB0IEUOi6+x21zFCy3Hiz4EG4/Kb1NgkAIEPABUkU0BSaorXtJmOVohOksOkRTSEpJ1E9KXTcNcIbUAHvPPU5c234wn7fnroV/3wm5dtj7fDr6WLu2fIDgvivBTJNsgIgpC2gwCqWa/EYL6fF19tlnc+aZZ7L00kvXfrb00ktz+umnc/bZZ4sYt7gvCTon+CcZ4t1e0a6hFDrOTlIvpf0rh0JZyNmtuy+ssRuUC1HRppz83EkNiDR5LxlDyVfvbYmBJxJSM4AsxVQ4eBZFD/lu5kINvvh3kpCaMIVmMMYkAK3hOSlsevA8mPkSdI2FiT+rfba3WPZupomh9kUbIBYLH/73UsPwak9fWf1O3rJcgr67zpKRasrY2HOjz2swwayhUQWL1p5LQkM6+nzsXsq1wd4XAJlI3uXfd6U6loSvbMtlqAJQfQt71bjEV5ZLJ8Y11LyuFoiMAH0aZbkk2KkS50i4YCU6K8U3frOVV0rq7YvFuNW4ZLCklOZ/CP/4QfT6MyfAsmvEdNst+iW/eymS94tid2s5nCVgnXSTX2o2SZLlbPHHH3/MjBkzFvn5e++9x5w5c7yMWlKWHKJJJhET07U2OGzUVGFPyAHHgziR4SLV+yiTgT3PhvYRMO0xeOKPiY9lMniWaoAY0yKN34e+Cas0It0K8jP6vBxyQAqtI9Xg64kV0XxkuTokmw3S+npLKNIyNStl5svwwK+j17ufBV1jRBFN4qh9iyh5SfSQEf3InljxU0KWy4p+bNwmSwUiKSBEVEQTYBRW5QEEhlfLxwH2mmm1AtGKm8KW345e33ws9M5LfCyJ+zuTyYj5AOkcrlfEd8swQSXBUGJMZ6GCbLFcl+WSkAmSbfDbQexaZKhL+ICq1CtIAOtkG8WDBha542SY/z4suxZsewwgPbjWv3kNcvlJA5tIYlaKoaK1ZGNWPDZZHBDp++67L1//+te55ppreOutt3jrrbe45pprOPTQQ9lvv/0kbVxsl8+DnM1maBe6SW12n+yh46SK+1I0vOo58qdyVRPD2HUbvSLs/OPo9V0/hdlvJ7NJKunRkAkyUviIjuG/KVQHnsSP526PRU1bWb9k5bpFn5cpxsSvm08Rrd6lt5FggLQkj3Ai5plklMqVGoskkV8ql+GmY6DUC6t/FtbbH5BtqEsXGWzdS3KJmHwxRiqBtmEP2Gs2RMeQkiyQ2ePihQopvX1/dsMS7AP6k5za6WQYtSLMehPuPTPxsaSGskoXY0z5AIPFGGm/JMUmAl8fEH1WQupVrNBoedio6OwGG3ucnISp5POWso7z2n3w1BVAJmIM5aMBUrISvTLXTcovxT/vs5/EG/z+7FRbzQaQk3fqNw5QXs4WX3zxxey55558+ctfZsKECUyYMIFDDjmE3XffnYsuukjSxsV2+Wv+VTu+Mkg0W3pIspu55MATsQEMQg5YqtC4iDzA5t+EFTeH3jlw6wmQwDlbLHxIoxp9g+diqUyxD4bisylUB56Af/PKImJXrvBhV6fN97qZRKGINdNk9rfoGDJ7nFQTtDetLNeUP8ObD0PbcNjrHKodtLZcllwV0WTGBygkq1JSE4YKe3LFGHtyHNIFWUntXzGWoxCTwNemhkK6sf3EkixXv6CajpGRPwV45LfwzlMJbbJVJBaXwDI1IFKS4SQlOSVb/PSV5Yrnyb7nSazQaDCHk9SSlys2yhZk5cCHga9bYUF9/s/mh8LKWw6+TU2WFFOmJsuV85Tlikm9VqViXJfcfqIhpWQHoJV0OZ/Frq4uLrroIj744AOmTp3KlClT+PDDD7nooosYPny4pI1N10UXXcQqq6xCZ2cnm266KQ888EDT9993331suummdHZ2suqqq3LxxRcv8p5rr72WddZZh46ODtZZZx2uu+46J9vajdAnxdF6lhCEFgeeCDmXbrEGyADyANlc1BXOtsHLt8CLN7Y8llyyKijrYEy2JB7o+tNeZdkNch1oO7qI9QKR5L0k5APMIAj7mmkS8gBLsLyTVEG2AYXSyqY50+HOn0SvdzoZllp5IZuEtLaLQomhwoBvKU1bK8PhQLIYY/l5EzpHloaNCu0n1ect6ynL1TC8WgghK1YcEtxzpeLcRRpFa+wazQWqlOGmo6BUbHksOVaKsA+Qki0ymS9JNtNsNNTje4mXLJcoM002VhKdu2OE4VSpVMT2k0WkVR2XuA+QlMNNYtN9Z8FHr8PIFWDnnzT8SkeiVwZYJ/W8SQHGwA7DSYVVLJafLAaI9OoaPnw4G2ywARtuuGHQAjrAX//6V4455hh+9KMfMXXqVLbbbjt233133nzzzX7f//rrr7PHHnuw3XbbMXXqVE466SSOOuoorr322tp7HnnkEQ488EAmTZrE008/zaRJkzjggAN47LHHUttnBfUhPoRJFM0gRcO108mURqJJUV6jYy5k03LrwKePiV7fegIs+CihTTbubbAX0DfQOY0UY+oFKzuSPFLyThaRMWIFWakufew+9PVL4rR3UVSjrSZoWy5TQ5QPuG49AXpmwwob1zV9G2wS8gHG/GR0DFuathBnXNhogko9b1UfICEPIFWM0UAQWolN4sVYnyIayM24kKO9KzSuNO+l3c6CztHw7tPw2O+aHqcck+XyZjiJFWNkpTAlGbxWBrODXDNN7nmTaVzFpV59r51U0VpyppQUG1yqSNzTwCiUiZf8lQVkc++gAyKnPwsPXRC93vPX0DlqAJsEwRliTRkbdRxJqdfasHix+oQ9hroEsC7pyvt8+O677+buu+/mvffeo1xufCgvvfRSL8OSrHPOOYdDDz2Ub37zmwCcd9553H777fzud7/jzDMX1cO7+OKLWXnllTnvvPMAWHvttXniiSf49a9/zf777187xmc/+1lOPPFEAE488UTuu+8+zjvvPK666qpU9rV76FqD3HRlaRRKNIW4TJvH9zOp+SeFaJKSdRByLFV5gFK50n9guN3x8Pz18MErETJynwsGPJY1GRWQDMJk0ajteT8qF8htChoMkEql4lUgkEJYSAU8cRSKFfqk9JCxqk1d7f422SrIyt5LcnIcLex5qY8JlMnBPhdGLKEBbJKjBltqgEg3+f3OUSHG2JCbA2ILCAFRrDPCJ34TTsQkZ26YYYEJNUGjY2SZ22MH1SjauBKWd+rXB4xcDiaeDjd+Fyb/HNbeG5b+ZP/2xD5vhQUidt36Pi+Rw0mj9m2BoWSZoL6+G6Lno7dYlruXLDWvjbGuGmS5jNgkLn9T9M/hEs1vKZfgxqOgUoK194G19lzkLVLNBlDIdX0bV0Kg0UwmQ0c+S3ehLCj1uiT7AD+biqUy78xakOi9zlf2pz/9KRMnTuTuu+/m/fff56OPPmr4p716e3t58sknmThxYsPPJ06cyMMPP9zvZx555JFF3r/rrrvyxBNPUCgUmr5noGMC9PT08PHHHzf8A7xRKFLJoXQnE+Q2KrFhVZ7nqFyu1HRtxbTkvanBMki06BhNCrJtnbD3+dHrKX+GNx5sYpMwal80ETOycQrd25FNtuQBqkW4soBOmzXJqd5SuTYmQG7wmVBB1tOeuDyA1AAtOeaOHDrOSpE4UfGz+2O45fjo9TbfhfHr9/s2sXtJCtm8UCJmwybZZBXsoK2lfEADK8VIUq+CkBVDW0vJcfjHAbUmvxQa1SAiXX3uzsaT4JPbQWE+3HzsgDOBukWLaNJoVJlzBJKFPRv5kqxNUrm3ZDNNqEgsDBiTlXUQaswKFT+juNkGqEaqcVX13ZUKNeaNv01NztHj/wPvTIGO0bD7L/t9i4ZcoBxy3waQNW6TNR8gw0eBfAABAABJREFUAogUk3eSibvfnd3NxHPvT/ReZ0T6xRdfzJ/+9CcmTZrkegiv9f7771MqlVhuueUafr7ccssxffr0fj8zffr0ft9fLBZ5//33WX755Qd8z0DHBDjzzDP56U9/6vhNBl5iNHOpQLVBIqTMyE47NklRXiVskh82KlOQnddbGvg8fXJb2PRr8OSfooEghz8UFdgXsUkasWsvePbdOCWDZ7ECkfDA4eox2z2OJxXwSEm7NCTQRlDytXMk0ZTJ5yiUimLnSYyGa0ivVV4btck5uvs0mPMOLL0K7PDDJjZVk3ohdoOQn6wmYj4JgjzDSS4OEKMGi+la+9lTlQfoLZbF7iUryE+QRMgKASGE7GmwyUhSH2+AeDPThLXtBzxHmQzsdR78bht49R549mrY4IBF7en7fCJZrlY2iaNRZVjO0TFt5HCiuUANDGUDaSkF8gHJOFc2DlgymQQye278GHIzbgRzuIJn/NYq1531Jtz9s+j1Z0+FUcsPYJNMsyFi2vQxCsVmb9mQVKzbVBBoqMvklaLsVDEZU5nifprPO5/F3t5ettlmG9ePi62FA7hWQV1/71/452mPeeKJJzJ79uzav2nTpiW2v9mS6vZIaWxWqSUgV9izMuygAYkmNqhGStZBIAhLct12+SmMGA8f/Bvu/1VTm+SowXYo3XJoVLkEWkzzT2gzl9RpE0/EvM9R9PmM53A4iKN2Dd1LwkmGnBaxHVRjU3mAVPa0eN6mPQ7//EP0eu/zoG3YwDZVUY1GtLbjn/dHWUklh7JxgO9wuLhN3jRcycasNFPGSCJWqVRirBRb95JPs1naJjkkWozd4F1oEAZCNLNn7Oqw/QnR69t+CPM+WOQtUjFu/BhyTVC5HE5MvswIal9DlkuOuSNVRJObu+M/dDz6TiID7I3Jqso2QYV8t4LWtphkaH/3UqUCt3wPCvNg5W1gk68NeBzp3ATsNGXqYCiDDXUx320QCCEIrGu1nL37N7/5Ta688krXj3uvsWPHksvlFkGKv/fee4sgyqtr/Pjx/b4/n8+zzDLLNH3PQMcE6OjoYNSoUQ3/JJY0xdQ3wQA5Kq7YcDgh9Hf1++SzGfLe2vbSG2eg6zZsKdijj3r10Hkw4/lF3iKnPyaTYIBcIiZXtJZlEoCADxDazDOZTCygN+IDpBsgef/hcNaQaCDnl8RQX4LT1eUHRPoim5sUP4u9kWYkFdjwYFh1h6bHki7G+N5LbblMPRET05Bd8pqgneJNUDtJvTiC0PMcScpyyWvbSzZAbPgASZnH4GjUbY6GcevA/A/gjh8t8uv6nBS55rV/8VOmcQXyMaX/QFbZHA4EC7Jigz3lfLeZ3Dt2jr3BftI5nNhMAonnzZbvls3hmtSWnrsWXrkDcu2RdGx2YLs7xAAs9c/bAWdIAutk41ypGTeFUsW7mSauLCB4L7VazhZ3d3dzzjnnsP322/Pd736X4447ruGf9mpvb2fTTTflzjvvbPj5nXfeOSBSfuutt17k/XfccQebbbYZbW1tTd8zGOh7qS6dVLc3OoZsl06qI2Yp6RHTRBsMiZC194G19oJyMSr2lBvfL6dDGn2+OvTIZ5ljN0jqIgqhh2SLMdLBqpSsg9R1E0QPSSHRBNEMYrRAQW1UH63t+HwLsYF1msHzQ+fDzBehayzsekbLY4lrbQs208QafEYG10pSuuWboHJJvb+GrKxeq9S9HR1T5l7y3080gBA2fEB1gH38mL42iQ2KbmVPvh32vgDIwNNXRTIvDfbIxwFWmg2gUGw00wSVLKJJIz8lC7JGmGkNzTQb+4m0nJpMDifku4WYBKDBTl3IpvkfRowfgO2Oh2XXaHocsTpO333UnsuS9ZTlsta8jh9DDCUv9LxJ2CRXD5BtNiRZzlf2mWeeYaONNiKbzfLcc88xderU2r+nnnrK9bCp1nHHHccf/vAHLr30Ul588UWOPfZY3nzzTQ4//HAgklz5yle+Unv/4Ycfzn/+8x+OO+44XnzxRS699FL++Mc/cvzxx9fec/TRR3PHHXdw1lln8dJLL3HWWWdx1113ccwxxwT5TvEljowRTA5VKUGDYY8QuiKyaTHW2MxkYI9fQccoePsJePyShl/3CAfPiWxqsho00YR0dq10e0E+yTBlk/CASF90hcVmg9Sg6OgYwkm90IBI36FHDbrWRpL6AfX/338F7u9j/ez2C+ga09omIUq3LFNGao8TaoJK6VkqyKhYQe2DRmFPjk3k00yLy3K1Cw2Hk0LrSYIz5GSCJIrE0kl9QEbhSpvDFodFr28+Fnrn136lE3f7+iWZfCmySTqHM1a0FpTlsgSqkUbt+toUH2BvJaasy+DJPG8yrBRhFLEpoM8AvvLOU2DeTBi7Jnz6mNb2iMnfyDWupGWDZRogytctrT0NMzekgAdSrOJwiHTnYaOTJ092/ajYOvDAA/nggw847bTTePfdd1lvvfW49dZbmTBhAgDvvvsub775Zu39q6yyCrfeeivHHnssv/3tb1lhhRW44IIL2H///Wvv2WabbfjLX/7CySefzCmnnMJqq63GX//6V7bccsvg38+aHhIoFPetyTpYSnpEZR1SaDaPWgF2+Umkb3b3abDWnrDUSoBcYU9q6FGjJpoVKpdkAm2RlSIT0EtJF1lMesQKsgblAaS17Ko2uQaakvMtxNCo/SWG5XI0yLnUC6vvAut/IaVNQsUYsfu7IIjct1KMsde4ktKRh7jUhJBfEip8QHR/ut6b8UKjfxHNFvKzwSZTzLS+AfZGACOpn7edfwwv3QIfvQH3/QI+e1r0eVFQjSzNXLIJaqVRFG+C+gyulQSwSBc/LTVlREE1fQPsfWKTSqUidn93COUmFlHEorMbpGzqz1e+fj9MvTx6vc8FkO9IYI9UzUQjz5VByUtKK1thXkoNsC8KzreQkzANUEi3so444giOOOKIfn/3pz/9aZGfbb/99kyZMqXpMb/whS/whS8kS3I1l7xOm6VNQbYYIxWoynR7hdB6glSu+kaV0KZNvwHPXA3THoVbjoOD/waZjNhmXh161FMse91LjUU0KVqgHV3EDiE0qkpTxkjDQdoekURMCo2q0ACxIoFTHXpUqfSdp2FtXvZIzLdQDeinXgb/eQjaumDPcyBhwcCi3r48UyZwEW2AJYlINyk7J0UzFy5+QvTMuR5P5d42ovsLkjrStnyA7JDYlA3HjpGw59lw1UHw8G9gvf1h+Q1lm9fSaFTBXMD7/lYaXOvvAwRBB2INdbnivtjQcaH7e05P0csvFUoVqvLKVubudAs2QaV0rVXAUNKgmsKCCCwCsNmhsPJWyexZaHBtzlGWRZRxpS1/47DE5rhJ3kvVQrpPHUd0voWsskCS5V1If+GFF3jzzTfp7e1t+Pk+++zje+j/+mVNDwnkAkMxiZCFhh24OmAV6qSUpq2kVmPSJCObjbrJF386Ghjy3LWw/hfEO749xbJXUl+9bhKaaHWkjqWCVQomQQKbJOll9nQRpaiTdpJVDUkeK0i0qtb2gkLJ615SQX1JX7c5MyK6K8COP4KlJ6SwSep5E/QBAs2rSqUiV4wR1kW0JKGgI+9kQyKkqrVdKkcF1dE4NtNMDvSy25SxorMrOSTWqdmw5u6wzufghRuimUDfvFuYlSKUw6kAIWwwZheWefRmpYgWGqWumyAb3JeZZgxtHY+1fHNdee1vizJ4FsFQfTbd90v48DUYuXzEak+4GhrqxRJd7W6lSdGZUtLzkiSboEZ8N/Tly91+zTTZ+RayuXeS5VxIf+2119h333159tlnyWQyNX3DKi2rVPL7EkPLHnoofgwVSpCHPVWbhnf4OWBTyaoClStVkXjZNWG778G9Z0aDQ1bbSRa535Zl9gK/8yRrj2WJEEtNGf8gTHRAZN93qg6ubXNEJcvOkjCIRhWf3SBznhYUSl57nM3hcAs1Zf7xfeieDctvBFsenupYckmPLdmSngYUipC0S9/gWnd5ALn9RA6NqlGQtYOy6sxnI4kQgWKMpPyNFdYlxOUvDPkAAV+pMSQ29fO2+y/h1Xvh3afg8d/Tnds7Op4kGtWcLJek3IyfTQ3NNA9fKVoglpLBE2yCWvRLErlu9ftkMgI+QAr9LVmQFWY52tLajtUopj8HD18Q/WKPX0Pn6MTHaazjlOlqd7NHSi40bpPYORL0S3LgDBtNfo35FlKAsSTL+coeffTRrLLKKsyYMYOuri6ef/557r//fjbbbDPuvfde18MOrdjqEC/G2JAtkRwQKTXsQIV+YyjgcaYGf/pYWHataHDIHaeYKxLrDGKTorvZQRHLShZIF9Hk5AGs+ADxBoiI3IyUTfJJhkwQZoltEdtzX/4HvHA9ZHIRyyeXrtkrpfvZU5NQkGzK+BQ+5HxAfHBtNbZwWaISCmLyAHJMGTkfIFkgkvMBsnGAkJ80BM6oxQGiOrv+xU+JIbHO9/bI8TDxtOj1PaeTnzMNsNq4kowDDLF3BHIma7lJ/POW8hPZGQD+e1xPLMaVmm8hN+DbRs0EtGS5fEFjfecpB9x0FJSLsNZesPZeqY4TH1zrx1AfZPBhM5uMNK6izwv6AAH5WYvy02kaKM5WP/LII5x22mksu+yyZLNZstksn/70pznzzDM56qijXA87tGJL2tlZK3xEx/N7cLLZTC0Al0jqJSUUpDTSRQcMpT1H+Q7Y+wIgA09dzvo9T0XHE6VOedxLKudI6LpJSiiYYqX4P2+SVK6FB9e6LlH0UGyAls/SQKNakXaJH8MrEROVvpAtfIzKdkdDmwG2/g4sv6GzTWK67aJxgH/hI0qiZNCo8eM62aTCTJPaT+RQjf6DayUp1P77bo9gs0GMTSQ640YWnCEpX+bHJqr7JDEkWt/QylRr46/AhG2hMJ8tnj8dqMhKKppiOcrIcsnG3v5xgGwxRip+k4+7vdGoCuAjvyKarXhSyybvgqzodfPPKwuxAZGjnvtfePtJ6BgVodGdbJKoLdliWzTaJCfJY2lOgozvtgeESHOOna9sqVRixIgRAIwdO5Z33nkHgAkTJvDyyy+7HnZoxVanUDHGnCZavJBuRKtRMlCVYhKI6uv5JPUrbwmbHwrAD0sX00GvmcK1NXQsyAY8HcLFGFmtbf/nTWJAZHVwLVhCpAsVPiQHQ+WFkgzRhoO16yaL2N3xrd/Dx2/D0p+EHU50s0lIHkAUISuZQAv4pOrg2vhxnWySjAPEtYht7HGVSsVcwirZbJCTvpBvzJpCogmw5TSAEOCQM2WzsNd5kGtn5Q8fZp/sw8IyKoZkHQTupbi2vehMGSusFClks0LcbWW+BcjkuhoN/urMNGebDNYDZK+b3PO2Au8z7P6fRz/c5VQYtbynTVaAEFIgNov5iTFmmgZq33fPDYFIX2+99XjmmWcA2HLLLfnlL3/JQw89xGmnncaqq67qetihFVtSmmiiU7olEmjBAZEghI7T6EBbSsR8N86dfwIjV2BlZnBM/lrhIrE/k0A0KOzT2XVdKlJKhor7Eg0+yUJM/Dg+NmkMHLZE6ZZIxBq07Y34AFkJLH+2BUT748aZV9jw3b9FP9jrXGjvcrNJWhvVSPAsed2qg2vBs7BnTEe+0SZBtI4AAySySTI2EUCjGinqRZ9XSFZNJfX+NmnE3fHjplrLrgGfOQGAn7T9H0vxsYBNUlITtpiX8j7A/zz1aDCvTTIKZe4lKwMZtZppXtKTojOlDBY/BVhg0f5Y4Wdt/0umMA9W2go2/bq7TYIgTdmGo6HrJsAojIAQgqAaUYleOR9QnZnmblMARPrJJ59MuRwZefrpp/Of//yH7bbbjltvvZULLrjA9bBDK7akErEFvRoBvYCmrcBD02CTkYKsmJadoAP2Rn52jqLUR9k6LHcLwz983tsm0QaIYPBcqUSIG2+bDHWgZfX1JFHE0j5AIAgzUrSGGCvFgg9AVtse4o0iH5vkmw29xTJlD0RTsdDDmW1/IEMFNvwSrLaTu01SVEVjGpuS6FiQaTjIamxKoVE1EIT+RYbIJhvsHUl2g7SMiqw8gK8kj0acK5FA+5+j6tDK+HFTr22P4b3OVVgmM4fd3/6Nt03iTRkjjaL4gEhfbXuQYV3JAljsNUElGIVxNpGVIpoGyMfXJkl5Tjm5GVvN4u5CiT2zj7Fzbipk22Dv8yNmj+OSYPDVZIxF81yZPdfK81YoVaimNqIDtc2wiYR8QIhC+q677sp+++0HwKqrrsoLL7zA+++/z3vvvcdOO7knjUOrvsSowUYTaDE0qghKXlIiRErWQQMl79FsWG1XbiltQT5TZsQdx0Gp6GeTgE6b6DlqCML8UY0mtRqNoK0lkQNxmyRkgiSRzXKsFCM+IPZ9JGUUrNxL8fPsc562f/8vrJWdRnf70jDxDBGb/CXellxdRJBpYMueI4N6lhJsIkFt+7hNXjNuFM5RsVyh6NFQ12he++wnlUpFlp0qwSgUlL4AgcZsvp1rPvEDypUM679/K/z7bi97LM64EWmoC2rbg1QzTd53dxcMsVMFCntxgJCobIkIsM7fHqmZaaLPm/hsIhta24W5H3Jq25+j/2z3PRi3lpdNIvOSNBpXYmwiSd8tk8PJNhwEfLcgYCx+XB+bkiyZ6KVvjRkzRmRTHVrRsjw4wwqNo8EmiUE1gs0GqeFwlpzdqYWvMbvSRW760/DYxZ42Sco6+J+jtlyGqtKQSFPGCFov/nmJe0lWjkMqgRa0aQnVs5QMeCS07RtsEkl65KSUouM6nqf3/83esy4D4Pn1fwDDl/GzSaAgWypXakm0RNFKIjmso4ekmmmSUhOCPkAKkW6kyS+J/ha3SfC6ga98mXyTX4pNJOIDROZb6Ei8+fiAf7evzZ9LE6P/3HwM9M7zt8cgm0gGdCCcwxlhOFX3pHIlQnA626QgNyMx3BcMgWoE51uA0Mw0hVkSvnWcBcbqOEs99DOWzczmdVaE7Y4Ts0ki95ZmFPo10xSa10I+wMr9XWuoC+wn0jPTkizRQvrQkl0SBVlpKpdkR0zC2UG80CCQ9Ag64N7YVGsvm0S1Uf3O0UyW4qzSIdEPJp8BH73hbpOoHIf/OcpkMqK0V9GZBB7XrVgqU+y7D80UYwSZBCAr62CxAWKN0i2ubW9E3imfy5KvygO4BIaVCtx8DO0UuK+0ATM/+XlvmySuWwOTwIjWtu1ijI3iZ/zzokU0I9r2jTb5INHkUV9gBzAiMbBOXpJHcj+R9gF+7IZfFw9gbufyMOtNuMedUSQlD6Ax38KmD/Bnyoj7AC+ErCSKWIJxVZfkacsJMAkkASzSzTQjDT4pqVcVtpxrXvn6A4x5+S8AnN15BOQ7xGyS2E8kwYcgw+ATHYQucY7yWVE2kcn9xOu6DRIifWjJLvmhMDY6mZIbQoNNAl066SBMAj0gQncRLFrflNsFJnwaCvPh5mOj4pGLTQKSPJIDIiOb/FGNdZtsoIjlda0FqPgGZR00gmdfeQDRYozEgCFBZBzIFBsltSPBsxgz9TJ44wG66eBHxW/Q2S5I5xSgvILBIpqU7zbGlInvuWYQTYJIHTE5DonrVkN++tuUzWZoFxg6LDscTgCNKi3JY2zYKMjFufMYxpPrnxL94LHfwVtPutkjcN2qNoGw7zYiqQiye5xUrFStMVmRMZW5ty1K8kjvJ4JgPyNzSeKMwkGXVCwsgJuOBuDy4s680rG+tz0gmwtIAiLBr0gsOwNAsD4hnXsbigNE6iZDiPQlY0lqfsaP52WTAF1ZGoUi0qlXoE5626QwPMePqlwtWOWjwSK5Dnj1Hnjmb242Cerr2UI1KmgRC1GURKlcEg0QKR+whMsDiFKDRfT/pQMeCSTaIEtNzH0P7jgZgD91HMxblXGi102CAdKWy9QG8vnZJKizK9aUkWPKiLBS8v7yAJVKJWaTpKyDJVaKpO+WSg7lGtgS95JMk0hWQkHGL8k1QECoGNP3vM36xA6w/gFQKcON34VSIb09sevm2kxrYBQaYRXrNdP8GYUSeW5cHkAEaWmE4SSZ50bHkZCb0QHViLAcJWcTGWIUevmA+38NH75KT+c4zip+yVTuLVkzaRhebeT+tswCE2ETCe8nfsCDIUT6ErFEikN9N1JWisplUNbB2qCaCPETnWsZ9KfkZi6ERh27Omz//egXt/0Q5r3vbJOV69Zokw20tcxwuOiz7bksWSNFNGk0qgzKSq5ILCEPID0czpqGdHQcewwn5yFD//gBdM+G5TfkSvbss0kO+SnSBJV+3oxQ8ePH8RqmqzBkDNyfud5SuUb4kh6i57qkte07BBBNaixHM41ZuRhXjLkjUGgUZ6aJyAPEivu7nQnDxsB7z8ND5zvbA+5+qdsgq1ieBSZ33Uz5AJWBw5bOkQT6W7ihLqLZLGdT1U/6SL02aNsLNmZT1ydmPA8PnQfAcxuezBy65OIAgftbHm1tC6AlMSS2x3D9TQIsAlIgZCOI9CefdKPDDa1oScgDxLthIlQukW6vbFJvDZEO/g9yqVypodjMJNALJz3bHg3j1oUFH8LtJznYZCtZBVnqu3QC7YpoktSNi2ySQzZbaoBIXjcJeYBGSR45Vool5GeHQPFTcsAQOCaH/7odnv87ZHKw9wXML1WPJdGUsecnRWTn1JJ6gcKH0DBGX3kA6eFwEkVr8T1XkJUihZAVsUlhVooMYtdOE1SroS6BkO1oy8HwsbDbL6Jf3PdLeP+VVMeK5ziu8ZI0o1Bi7o40u0Fyj7NUjDGHRhX2k7I5nJ3ivsbMNIBe12ZaQZpR6HAvlUtw41FQLsJae/HGuJ0BYxJvBmdudIuCoQSVBQz5gB7xOECujpNkqRbS9913X83DL/GrQSLE2QEv2QWr+HGsDBmDOBXXzaZGKpdc8CwhE1SzJ9cG+1wIZOCZv8K/70ppk5yWnTzS0h+xJ5lA+8gDqBWsRJJVO7IOanr7zkU0YTqnNFpPYMk2+AaJFtgzB24+Lnq99RGwwkai+278urk203oE2Rbx41i8blYYThLyANUEQ4pRKFogltpzJfS/LcoDqLCJDDavRWYTWfIBC93fGxwAq+0MpZ5IG7ic/Bq05TJU616u50lrOJyt4qdgXildjHG8bpVKRRRpKcEqFs8FJJsy4sw0G4yLRqlXPx8gt+c63Nv//AO8/QR0jII9fiXPKJRo8gvXA3xzuEKMhWBHVlUYDCUoFSYN0JLIdZOsvPNf6VsHHHBAvz+vVCp8+OGHvof/r14NQysLJUZ0pL9c8rqIEkU0JZq5qYDet4gmrW3vjyDsdzNfcVPY8vBoINPNx8IRj0L78IQ2SRY+pO9vGwH9wvIA7Q7PseUBkbZkHeQD+jndRW8fIDUcTmLwmTgtUGRw7SA3i+85HT5+C5aaADuc2PdZSVZKDNVYLDt9T73mtQQ6zk5S3xMrWonY1Jaju1B2fubiflKmiCbgA9SKn5YafH4xZblcqaEPJYfD9RajZprLvdCAtBZYoshPUzYtdH9nMrDXuXDRVvCfh2DKn2Gzryc6ViaTobMtx/zekn8RbbCly+I2ictx+OeV9ZkENpiXPcKSPBIDWaV9gOwAVGl2gw2wX1XqtVCqeDTThOXU0u65s96Eu34avd75xzBqBboLrwPGGIXGGrPSYCjRcyQNGjVVf5PY45J/1ruQftddd3HZZZcxYsSIhp9XKhXuv/9+38P/V6+qPEBvseyBSNdCDlhCovlrNappNnvSOeV0reVogYvcSzudDC/dHG22k38Ou56RziaDaAYfXWtpTbRMBiqVyKZRnW2pj6HHtrBEMfXXjrNWbNQbDrfkPG+NNg2CbMm0f8Jjv49e73UOtA9vHA4nOGQsssmvkC5dtLbUTJMdOCx5ngruPkCrcWVK297gdfP03dJFNMlmmpz8jVyyKqfbLoHY68cvLT0BdjoFbj8R7vwxrLErjFohmU19hXRnjXQlsIg10EF0XDuxiTerWBwMFR2jUKpQKlecJD60hvrJSPLY208kGXyFUlEgDpBl8CaKcSuVCCRXmAcrbw2bHRrZZDA/6RHeTzo8axTx7yIpyyVRM5FuOMrMkhhExsXCNqX4Pt6F9B122IERI0aw/fbbL/K7jTfe2Pfw//Wrs1pId+2ISQ9fEESiySeHEmgGG7RAaWfXEbPHHdE0QEDfMSJC7FzxBXj0Ilhvf/jEJi2PZ3JopSelu1CqUJ0nIxGEVeUBugtlD3kAW2yL+GdtFWSVaK/OvluLgmcJOSCnax28SFzsgRuPBCqw4Zdg9V0A+SJaVR6gXOm7l4a5NNNkr5sMCkW6ASKJtLRR3BfXIjbtu30SaC1Wij8STYTSvdDwapfvKT7UT7SZJl3cVygSb/ltePZqeGcK3HI8HHQFJIijfWXnLD5vJqQmFrFJOn7zs6la1JOS5WocXFuiq92FoS6d51r23RK61nJx7tweez4gUU75zN8i2dZcO+x9AWQbQUvS+YnE/D0rWttaslzRDL2yE1NZXBFCUNrFil+Ky3IlWc5e4tlnn6VYLPL3v/+93yI6wG233eZ6+KHVt3y74tLJqsjQI4s0DqXz5FxEk0br9dlTqUTTw91sauLsPvVZWO8LUClHA0lKhZbHk9HXk6ZzeqKIY0G3OMXUM6CXZ1tYCngsouT97m9N+RvfwbVyOvISSLRBkpp44ByY+RJ0jYVdfx6zR7aIVpUHSGTTAEtckkdUb99OQN8jXdz3RICr+QBTz5ug7Jx4nOsXB+SzGfICslz5XLaGQPVmOBnyAdJzSUSkJwdCf2Zz0UygbB5evgVevDGhTUI+QHogq6EGiIhNaoM0/X23RBEtvk96xwFS50gQ+WkFnNEgyyWcf7vmAtI1k8QN9bkz4bYfRq+3/wEsu0btV/LNBoPgDM96l3zc3chM87PJTv2tHgfY8AFpa2TOVm+44YaMGDGCTTbZhK9//eucf/753HvvvcyaNcv1kEOrnyUmD7AEF2MkqIri1Hehgqx0cAEChb2BztFuv4BhS8OMZ+GR3ySwSS54toJEqwY8mYwghdqzQKQ3ZMxOwUpSP9KKZIE8BU/OB1hh7kQ2SdM5E1y3GS/AA2dHr/f4FXSNqdvTd27b8zKyXOB/f+vpyCsUrByXjNSEFoPP1wfINht6S2XKZb/4zZJMkPQwXakZN1L3EQggm8WL1n4NftBEW7vZFCH9qsPh+rFp/Hrw6WOj17eeAAs+annMdjFE+pIcK0kwCaSLn77Pm+w5qmpte9kkLqcm0JiV9kueQyulGYXRcaSYaYH33Nt+AAs+hOXWh22P7t8mQ41Z+fl7frUlccbVQsw0P5vka4KuS2sOiC+QNelyvroPPvggY8aMYZVVVqGnp4c//elP7LTTTiyzzDKsueaanHLKKUNFdYFVR+1aSaAlijHCD41oAi3byXQfMia7cbbnsjUWqlpAP2LZOjLz3l/AB682PZ6ErINagchXkkeIytVgkwC9TMSeajGm6FGMkZYtEdC21xpW5XsvSRc+wD3xkW/wCbKJhFHyAwZT5VIk6VIuwJp7wLr7DmCPzDkCAR+gxbbQkFDwtMm1wVcolSkJattDrNDgHSvJXjc/mwxS8bVkgnx9t5A9cZvcUY3SjVkJdoM1Bkj9eg9o03bHwzKfgrkzIr30VjZJ+W7h562qtW3DJoFcwFhsohIHeDYdxXMBw1Jh7kNiYz7AiJa8FmCs6V7y8m3w3LWQycI+F0CuUVLQWhMUFBiFnmA/6XOUyWTEGrO2fIASgMUzVkqKg3I+k0ceeSQXXXQR1157LVdeeSVTp05l8uTJrLrqqnz1q1/lgQceYOONN2bmzJmuf2Jo4b8paBU+QKIjZoOCp0Hl8qbiCzuWTCYT02z2vZea2LThl2DVHaDYDTcfE2nJDLAk5TjkNWRtSCiAXHJoiV4m7gM8Ufu9pXLtVpVHNNk4R/lsphYY+BeI7KFQxKnBA52jxy6Gt5+EjlGw59mL6ORKn6P4sfypwfLIZudijJZEiISutZVijDBaTwTRJM4kkCii6SRizrGSMGo/ssmXZm5PRkUL6CPhAwY8T22dUWEJYMr/wev3J7LJd2CdDhjKRg7X4YkibrDJHBpVzgf4NmbFm9ciUq+2CnvV6yYlywX2coHqcYrlCsX+ZCy6P4Zbjoteb/2dfmee1dHf0nJqluIA39xb1idFx5JSO7DTALE2LymtZLCz1S+99BLrrLNOw8+23357zj33XKZMmcLkyZPZbLPNOOmkk1z/xNBCYlOQReu1SWg1SqMZPKmKcT0kc0PGBBFNvjYl0mnLZKLBo/lhUYLx1BUDvtVkIubNJFDYOD01ZKWR1jL0MlubedyXSaNRrejrNWpt27i/bQfP/dj04etwz+nR68+eBqNWWOQt0nMbQIBmropsthGb1CndfkkPyLN3rCCb87ks+Wr8ZoblKFFE07qXbBQawaAPyAsim6WRn67XrSrLlWshyzVhG9jsG9Hrm46GwoKWNnmjGoULVtGxXQEjwnGASEPdWkwpm+dGNnnmcGq61hJACFvXTQcIYeNeavAB/V27u06Fj9+GpVeBHfqv4Vmbu1MqV2q1HHOSPCrMNMU6Thp7PIF+YHBYfMq5cs5ncvPNN+fyyy9f5Ofrrrsud9xxB5lMhhNOOIG77rrL9U8MLfw79dKatlAP6KzIzdQLVgJ0TiuDahSRzd5DKlo5lzGrwo4nRq9v/xHMfa/ft0kU0axpNeo0QIS64kLnSKIYIz+TwC+grya5mQw1HUpvm4wxCeLH8kc02UAONNokjbJa6BxVKhHLpjAfPrkdbPLV5vYINtO8fUBR53mTsMlM8Kwqy2UDQRg/ljczTazZ4HeOKpWKWqNIlb2XcnV47nHievsi7FRbxZhU8je7nAojl4cPX4ukDAeyybvBJ3uOZLS2bfnuYqlMsVzVtrcRm6jkAt7IZp3nLZotYIM1LxUraRQ/7QBYmoCh3ngInvhj9HqfC6C9q7lN4nIzfsCj6Fg2mDLSoFEQiClTFolb21OvB/rOTbQzVy6ypz2hPc5WX3TRRZx33nkcfPDBvPTSSwD09vZy7rnnMmbMGACWXXZZZsyY4fonhhb+geECxY6Y90YljPryHSwgSeWSQjTJUoNlKG+JNs6tvgPjN4DuWfCPH/T7ljgKxYoDtjhkTGrokdQ5Av9CgzwyRsYHdOZzgkU0qXtJUmNT5l6yomXXaJPyvfTUFfDavZDvhL3Ph2z/f0+nCSpzL0mh5CUHn0kP03X1ARqyXP4oYvn9xJcJJq9t73eOCqUKVUC0lWGj0mCRuE3+e5wlZpqWzGOA561zdCTtBfDwhfDu0wPY5OuXNOIAv4a6OW17jQGR3hIKstIXIMC4EJbjMNlM82aB6eXevs/bsHaZ65bN1rW2G2wqdMNNR0WvN/kKrPKZljZZkehtZBTaYMpo1gN84wAxhnrfdytXqA3qTm+TrcZs2uvmfCbXXXddHnnkEd59913WWWcdhg0bxvDhw7nkkkv4xS+i7vzUqVNZYYVFqc9DK/nylQfQRDVaSQ4lkWhSyzIlKAjaOpePutmZLDz/92hwyQD2gEeAYU4TTbEDbUTXOjqWlGSBNJrBHgrFO1m1hGxWKnz0Ft2aaRESSnZAZL/P25zpcHsfxXXHk2CZ1Qb8vEoDxJdJIIxCiR/LinRRyyGxLZbqdTMUB8idJ1lGoa/vjo5lQ69VevAh+CObe4TRcfFijDdK3ohUWOo4YK09YZ3PQaUEN34XSsVF3mJRasJbds6Ytn38c2KoRiE5DktsIvk9N95Ms7HvyknyKPjuQFITyWzqp0Zx31nwwb9hxHj47M9a2CSLkveVMK1+j7ZcpiY/7G2T0HBf0YHDnvUALUkeH5vk51sIsfe0EekQFdMnT57M66+/zl//+leuv/56Xn/9dQ466CAgQqRXi+pDy235IwfkNZv9tbaVuk/eRTTJrqGtZDWySaa4nzgRW2HjaFAJwM3HQvfshl/H70mXwLAQG3Qnjkb1pXJpbJxG9CzB3v3tXdTTRH56Iwfs+AD5IMyvmaYzILIfFMqtJ0T+a/mNIrZNApss3ks6xRgbsYk30lqDSeA7aFBYkgfszW+pDa4tlik7aG1XfXcmo8FMs9MENekDxHTbbUi7OBX2d/9VhE5/92l49KJFfm1NjqPRpkANhxZLTNs+30Lb3sUmX1kuQ/OSpGPKTCYjl1dKF9EM+W7fWEkjP1mkmfbuM/DQ+dHrPX8Nw5ZqYZM0k8BenisHPtRgptmIu9tzWaokbhcfUKlU1FjFvrMkkvqkvNNfWWhNmDCBCRMmLPLz7bbbTuLw/9XLn2JqDxkjTwmyl2BIdVclC7LeyC+X87TDSfDSLZGO5B2nRCj1vtWWy5DNRJSg7mKJ0bSltKd+bpfogqznTAIddoNUQdaID1CdSWAjWY2OJeMDxJKeheQB0p7/xvkWSgynF26EF2+EbB4+95uIbdPUJg1qsBSqUd4HWPFL1nRI4zZ5y3Go+CXP4r5SM21Yu5sPkNS27/At7KkUrWXYDdJN/jndRY99VwmNGnIQ28jlYOLpESJ98s9h7b2iOUEL22REkieySUZqQnrPrQ6uTYso1UF+WpTmk0I2y/qAnmLZKQ6oVCoKgwbtXTdrg6Ljx+opliMmzY1HRsyadT4Ha+8d3CapBr/KcF9ncIYey9F7PpmQTZlMhs58jgWFklNxv7dUpkpGFosphWKlpNdN7uoOLZXljfzURFl5Bs/yHWi3YQepBgyltMnSsCq5ScYpzlN7F+xzYfR6yp/htftqv8pkMl42NWqiGdFpUwpUfWzqqRX2NGyyUbQSk+QRbVzZQ6JZk5xqGFzrcJ5qSLScHBKtI15oXPAR3Hp89Ittj4bx67e2SUWOw7fwoVnct4GyEkOjLq5yaoltEmLKGNHZ1WESGJQH8L2/hQtWvjZVKhV6laT53NF6jgXijSdFesLFBXDTMRDLQ/wBLBoFIpn4TZoFBm6NWZVzZGxILMjFlCrFRgeb4s+E+KBoXxk8lefNzr3U0JR55DcRo6ZzqYhhk8gmaVBNdJxiuULRYXCtphyus5SSKpvIhpwa+DVB4t/Djt5+uvhtqJBufFnsrlpDx1UdcLlCbXJ7KntUKEG+TAINNIOvrrVj0vPJT8Nmh0avb/wu9M6r2+Th8FSQaIaHw/l3V+0FhnKatvV726WZpiGjYq3ZAAIasqr3kk8CrVRovONkmDsDlvkUfOb7iT4vjbCKH8sKAyR+LJf9pFSu0FsS1tr2vrc1nrdB2nOb2mTLBzQMrnUqoik0ir2TVT0f4MoA0WSnusQmjUU0I2hU1yJaJgN7nRcNon79Pph6maBNmvuJjWJM3Oe65QIKKOIlkOVYl7+wUQ/oKSj4AIusYu+ZUnr5SfbD1+DeM6Mf7npGxLBJYpOSvFN0bHcfoDHrzp1VHECSJ+XSHF7t1kyLvkcmEwGiROzxfd5S1gSHCunGl2/wbG3gSaVSEbcpXkSxU4yRod/Y0mnzuG67nAqjVoRZ/4F7Tq/9uN+BJ0nt0dykjMgVgMTgM1vSRcVSudbwkrq/q9etUqFWoEuzVKjB3gG9ZvHTToHIp9ioub+tvWAKTL08+uE+F0JbZ0qb7Ejy6EhO+RTR6p+RRjb3OA6u1YgDvIfFqzCcbGlsxo/l01C31LiyOCtFBzDiHi81ynLJgmoGBcCyzGqw44+i17f/CGa/3WiTESlMiDOcbOSV2WymVkTxYqUo+CRfWS6d/cRO/OYjFVb1G1Ez1ZrMox1ks0Yc0JHPkqHMpx47CYrdsOoOsNEhyW2SruPkPes4io0rb9CBQl7pLctlpFHUE4snpQCR3sCjlAz1oUK68eWf9MjTOHwemkKpQhU0LlZEy8eHHfgU0TRQX4ac3WBqbXeOgr37Bpk8+jt487G+Y3kEYaq0dztULrHBZ0a0GrsVkWiRTTaKMd40XEWKqWtyqINs9imi6TCuhtHNsd2/jX6w+TdhwtbJbVJJ6u0mhz7XLX4cf3vi8gDuNHONPdfWfmIP2ezTcNAcMmYpWfUeFG1Mbqb6mXw2Q16siCZTtHZGfm79HfjEptDzMdx8DFQqcgxeldkNvjJBNhDgOihioRzOFNNZMz/xAEJYajhq1Ey8mWk6ccBBucks8/4/oa0rYtQkLGRGgEjZRlE2m6HdB1hn2AfoSCl5NviMsFIs1nHS+oChQrrx5Y9sVgh4vIpoMSSa4LADnyRDRUbFtCSPX/DsHGB8ahfY8GCgEg02KXR7JtAWkWj2KN11dJyNACN+bqU28/jkcB+auQ6K2JAP8EYzKMhf+CTQGkXrtizH5a/hE5UZEYtm55+ks0kDtS+l2Wwkqa9+pi2XST1YbmB76t/NpUBkEtlsMTk0NnfHso68CqPQWDEmfuzBtye6bqVyhYILM823KZPNwed+C7l2eOUOeOZvAg0QW1IT5bK8tj34gY80ZtxIyXFYOUfR5+TPkw9KXkOypCN23XxkHnUQ6XbupfGZDzkxf2X0n51OhjGrJP6shiwX+AEPNEA+FqVefX2ARt1EwgfYki9M5wMW20L6Rx99xKRJkxg9ejSjR49m0qRJzJo1a8D3FwoFfvCDH7D++uszfPhwVlhhBb7yla/wzjvvNLxvhx12IJPJNPw76KCDlL/NwMuH8graSY97wJPJCG/mHtpxNguy8p3MGp1zMLXtdz0Dho+D9/8F9//SM4FWRKJ5o1BsBKoQGzZqBD1U/Ux7Xm5AZHVyeHR8a0U0Q6hGoWGjoqhGj6BHo8gw6oNn+EbuH9F/9jo3YtOkWCrJqi+yWQVBKFBEE/TdbblsrSjvJDWhOSjaoKyDy3WLCpR9slxGfKXmIF13KSW94r7z4DMF5L5X8VNR/iayyd0vee1v49aG7fvmafzj+4wufQgIyDpY2XO1imgehWtN9p4tFphfcd/a/BZNRLqvzKPOMEYjcUClwlc+vIBRmQXMHLUebHl4qo83aNur7Ls2YkqLUq9y8/dsMGY14wB/mcclHJF+8MEH89RTT3Hbbbdx22238dRTTzFp0qQB3z9//nymTJnCKaecwpQpU/j73//Ov/71L/bZZ59F3nvYYYfx7rvv1v79/ve/1/wqTZdv4UMFHSdQ+JAcEAkyFFMNGq4larBPwCOmbd81BvY8O3r94HmsVX4tsslD2kW2qBcdq7dUpuQyuFaDyuVLCzQ2hb7eAJHdfrx02jTkAYTonDpMgvQ2aWjbRzb5N2bFAtViL8ve8z1ymQo3lLaFNSZ62GQjwYjbJJoc1u5vG0g08AzoFRqO3oOiFRrqEnJq0XFsFIisNfdAac81qLUtAoRQiLvjx3eyyddPbnsMjF8fumexwTPRTCBLTAKfwp6Gtj34FmQ1WcV+ABYr88lAyQdYm3EjNrhWwXd7g9iEbHr+72ww72EKlRyT1zwlYtKksafvWmcz1AaFSyyRhrohH6A5l8S5tqQq82jEB3jKPKZl8edT/wUD68UXX+S2227j0UcfZcsttwTgkksuYeutt+bll19mzTXXXOQzo0eP5s4772z42YUXXsgWW2zBm2++ycorr1z7eVdXF+PHj9f9EgmXP0Uh+twwM0U0+Yem0SYr1GBfNKp8sbE+IDK9TaLa9uvsA+t8Dl64gcNnn8vV/MQcIh2iolVXezoXqZIcSskDaAyHMxI8149X8JJ10Bg47D3UTyHpcQsutJBoHigU6YLVg+fQ9sFLfFAZyamFSexZKqfW7zUpy6Vqk891k22mdbTlmNdbcqMGa2oRLyFSSo1FNPn9xE+WS6O5F8kDpAV9WHve4japNGaNNECqMo89xfLg5gK5NvjcRXDJjox763Z2z67Fa4VdnA6lKc/ps+dKatuDH+Oirv8vDxhzniWhwiTwBdXI+wAvWYeqPYLXrS2XIZuBcqXvvhjWlurzqnOAfGWCJK7b3Jlw6wkA/Lb0OTIdqznYU4+7NQCRLnGA5iwJMw0Q/M5RnFGoMzfRBqhmYWZa2vNfZ/Enu7cXS0T6I488wujRo2tFdICtttqK0aNH8/DDDyc+zuzZs8lkMiy11FINP7/iiisYO3Ys6667Lscffzxz5sxpepyenh4+/vjjhn9Sy6f4CcooFKfgWT4xjB/Pj2KqgRyw5ID9Cx8glPjs8WsYtjQTCq/y7dzNXhunRvEzOr67TpsoTclT1kHnPPnoWssXPuLHs1Lc95ZRUdWy8yui2RlUU2c4ea/pz8L9vwLgp4Wv8hGj3AJDFRSxkCSPRjPNUkPdC5GuiCIeTDm1gWxyKqJF17o9JyfLBTIoeQ0/Wa5QSzwH3SaPe7tSqehKTfj4AOlcwKMxKxqbLL8BfPpYAE5r+186Ch85HUaXmWYDsQt+vlIT+dld8JMH0JCacMmXCjGWrUpx3wiILZPJmLu/OzyaRCAMPLj1eJj/AdOHrc5vi5/3q+MYyuF6FJoyvmCoWoNPRS7Q5RxpMQrd/ZKGvFNc5tEHNJbUdy+WhfTp06czbty4RX4+btw4pk+fnugY3d3d/PCHP+Tggw9m1Ki6BuohhxzCVVddxb333sspp5zCtddey3777df0WGeeeWZNq3306NGstNJK6b5Qk2V5+KHXcDhhJJoExVSl0GhIy85HZ1dc237EONjtLACOyv+dzlmvpLdJodCYy2ZqVDUrdGVvvVZVH+CB/JRGowrIOogyQDyLaDqyXP4+QFLbHmSKMd7Bc6kA1x8B5SKVNffkxvLWDcd3sUlFTs3BB1QqFXXUbtqlodkeHc8nNtHQkfdtgOgl9X7PmyHfraJtH5MI8UnqjcxvKZQqVGuBsrJzHshmBaR1/HgmYpPPnED3Up9i2czH/L/uPzgdwlpTRqP4GR3PFrvBWx5Ac0isE8hHmVFoBEUct8nerJRBBta9cAO8cD1kcty2+ikUyPvVcaTlOUXAGTpSr2UnqVdrOZyStn3evUZhGVSzWGqkn3rqqYsM+lz43xNPPAHQL50kKQWzUChw0EEHUS6Xueiiixp+d9hhh7HLLruw3nrrcdBBB3HNNddw1113MWXKlAGPd+KJJzJ79uzav2nTpqX85gMvn4JVQwdaQfvXTUJBp5PpMxRChRLUd6xCqeKlta0yHM4lMdTQtt/gAF4auRUdmSLbvXAqlNPZZRIZoygT5BKolssVeosKRWIfCp5CAyR+PC8mgUazwRSbyB/9rRU8exVjfH33g+fB9Gegcykye51Lu5cPsPW8NSbQCn7JaT/RSaA7PJ45XUS6H6JJwyZTSY8xbdT2XJZqmGMnDqiyU/0YhTqxifuea0rmUdqmfAczdz6HUiXD7uX74eV/ONhkSypMo0kU2SSQV2rJPBppOvrFSlqMQndZB7WGukcRTXPPdXneovlkAnvcvA/glu9Frz99LLNHrwvYaRKBr+ycHmAM/LS2rcTdNTCUOKPQBwihDarxYcsls8lUIf3II4/kxRdfbPpvvfXWY/z48cyYMWORz8+cOZPllluu6d8oFAoccMABvP7669x5550NaPT+1iabbEJbWxuvvDIwYrajo4NRo0Y1/JNa9aGVnhunmWKMfMEqbpNbQK/rgK2gGn3OkUoCnclw64QfMKcyjPFznoPHLnazSbiwJ6H5pzOM0beIplEkHsTi50JLBJGugB4qlSsUSzao79YkFMDzeZMoWM14Ae6L2DHs/ksYuZyXnJLusFEXlGX9Myq6iIYa6jLMNIVzVCy5yQOYGwylk/T4JNAaTZmq1nZ0fFs+wJdR2K6ga+123bSBEDYKsnxiMy4p7Rm9vvlYWDAr8UcbgBAaOrteMnhacbcNm+LyAF7IZmM+oF0SDIXffqJRtAbfmFK+Meu1v0nlcLf9AObNhGXXhu2/7xkr6dRxOnx8t4asqsE6jtc5UpCaAZs+wM+mdM1iU8NGx44dy9ixY1u+b+utt2b27Nk8/vjjbLHFFgA89thjzJ49m2222WbAz1WL6K+88gqTJ09mmWWWafm3nn/+eQqFAssvv3zyLyK4JJA6YnIcC9tkhDYVP56fPrLgxhn7ft2FEsM7HIdWKjAJLBU/e4Yvz8+LB3Nm2x/h7p/BmrvDmFWTfVZNa9v9PGlsCj6yDmooFInN3JCsgyb6G6JrNyLt0EpzchxaAY+ArIOrTaUiXP//oFyANXaHDQ6oHe/j7qKTTSqFDy/92Ogz2Qw12SoRm4w9b+CJtlZIxKqJZqVPa7s9n/z8xwdD2WnMKlPxjQAhqsfrLrgOrVSkdFthFCKF/rYk86ghEZLj3OIXmJh9glXnvAt3nAyf+02iz6oDIYw0iSC2x3khm+XBGfN7S57MNEEfICGnZqiIpoZslpAuMiLLFf+Ms00v3QLPXg2ZLHz+t5DvEALW2fPdGlKvhVLFr25ibD6ZeANEIn4TZ6f655VJ4wBTiPSka+2112a33XbjsMMO49FHH+XRRx/lsMMOY6+99mLNNdesvW+ttdbiuuuuA6BYLPKFL3yBJ554giuuuIJSqcT06dOZPn06vb29ALz66qucdtppPPHEE7zxxhvceuutfPGLX2TjjTdm2223HZTvKhIUigfPFpFoAigUQZuy2QzttcQnnU1ag6H8kNZ6hY+rSjvx6ohNoLgAbjwKysns09LathZgSGyc+WyGvCASzRoFLzqeO8W0W4GuvHAzLc3SGgzl15SxR8Hr8bXp4Qvg3aegczTsdS5VPQcJ+qQVre048lM0DhCQwJJnptlKxHy0tuPfQaMx65PU6xXRbDxvDTZ5yZbYYBJoNUFF2ERq8k4+OZOsD+ihne8XvkWFDEy9DF69J5U9IFsA9WM622MTaecCVgAjHSJ+UqtobSNfio4n0eCTB7G5aG17AyHmfxgxYQC2+S58YlPAdy6JTvHTb5CmTqNIBgGugUg3FCuJxN1K8ZsP+3pJHjYKcMUVV7D++uszceJEJk6cyAYbbMBll13W8J6XX36Z2bNnA/DWW29x44038tZbb7HRRhux/PLL1/49/PDDALS3t3P33Xez6667suaaa3LUUUcxceJE7rrrLnI5WYeRdFUvZNFBHkCfiu9X3JdcEigraZvq1OB0NvWWykqDoTx0rVXpNxn+Ov4EyA+DNx6AJ/93kG0SQO4bkXXQ17S15AOqBSIbm3lcHiDtedIqonlp22snYh5T6J0C+vdegnvPjF7v9gsYVWedeTWLVRHpPk1QLcSHT+PKkg+QT8R8tLa1NW2tNInix/PbTwzGAQpMAi9NW+lzJMBy1JJ59APVyDdAnqisRe8m34x+eONR0DOntT1951UaCCGjbW+oaF1U8gFeWtuKkjxGAGPx43khP9V8tw1pFx+t7Xjc7QSEuP0kmDsDxq4BO5y0iE1+eaVWHODS5LfFmK1UKkqywf5AVvG4W6JobeS6RZ+p+oBkz5spaZc0a8yYMVx++eVN3xPXpPzkJz/ZUqNypZVW4r777hOxT2ot7IDTBFN6wbNER0y6GCNRRJMPMOZ0F1M7vIbJyipDKnyCCx1n93Z2POz8Y7j9RLjzx7D6LrD0hEQ2aaHj/AZpysuoRFT/Mm1pfIDhpEdPG9UD0aSg295TLKc+T/FnVEOWy1QxZjCowaUi3HAElHph9c/Chl/q1yavYqNKEa2UeKj6wvao6SIaQsdZkyyoNtO6C+XUxY9qUtKelx4MZdB3Gyt+NtpkQyJEAokmLadmElTjU/xUuL+rWtulcoXZ25zIuNduh1lvwl2nwp5nN/2sPnvPxv4GUjNubPiAUrlCb0m+MSuhRawXB9goWjfYZMQHLMxOHdae/NhePuBft8PTVwEZ+Nxvoa2z9isJBoh848ofCCG+xznuu42yXEZyOHVQjcd1MyQ51ZOywbfYItL/W5aPPIC+BqGPlp2STZYmhzsGq9VNRH4wlEADRA1BWIYtvw0rbw29c+HGI1tKvGho2sZtMkPlavPwASmHZiRdNXaDEd24+PGs6exGNrmhUcVluXyaDSl145Lb5IOyctzjHv0tvP0kdIyCvc+vSbrUbXLzAZVKRaeI1ncflfu0ttMs03JqhooxGtr28eO5+gD5PVcARayEIPRpXlvR/SyWyhTLGtr2dXvSDq7V0iH1G8ps63nTtKnqlxZkOmGfC6Mf/vMP8MaDLexRpr0bOkc+zWt16aKUeWX8O6ho2xvSkReRddAqyBoBjORzWfKOg2ud44AFs+CmY6LXW38HVtqi4dd+MkG6jSsvlLwWuyE1IFLXB7jESvoDvn2a/Er7idfA4aFC+hKxstlMrZiadvPURn35UYMtBc+6m7lr8bMzL6tpKzKARSkI6ymWIJuLuub5YfD6/fDEHxPZZEVnN07lkkWixQvpKQN6dSSaBwVPCdlsS7LAzSa1hN6ktn3gIGzmv+CeM6LXu/4cRn9ikbe4nqdCqUJVAlMDkQ4OjVmthqOIVJhFlLwNrW1t9p4pPUsfbVS15NCtWdzdgETTaai7ywPYQX1pA31cijFBZEtW3QE2+Wr0ixuOhN75A35OS7bIS5ZLXZ7TR7LARi7QyCqWRzb3Fh20tpX3N6+itVZeaXGPCxUH3PEjmPMOjFkVdvzRIr+W8AGmmjLabDnHHC4aWCpfD/CSwrQ0V05xUHR0fH3g6FAhfTFYrkm9TQ1Ci4V03fOUntKtnaz6ODtlZMwyq8Fnfxq9vvPH8OHrA9ukoGkL7nTluLa9hjyAi016Q2EkdHZtIAjjn9ELDI0UPrySHluBamRTSlpguQQ3fAdKPbDazrDxl5vb5Oi7QbZ55ae1ba8Boocg9EgOtRF7RpppIlrbaogmD7qyEWaamrZ9bA9PHVNqx7gW9xOvOQlayP0+myb+DEZ9Aj56He7+aWt7lOQKfBiFenmloeKnY7xUtactlyGnIMvlZJOaHrk7QlZfetK9MWsFoFWbJ5PGnn/fBVMvpybp0t7Vjz0ePkBd4s3nutkoEmuz+AulCiXHZpqteTK2fICLtv1QIX0xWPYeZAFUo9JgT5sIC0cql9JGXnIYXKs3yKOfZHXzw2DCp6EwPyp6DSDxonaeHAdnNKBQ1NDWtgqytjRt/dEMasMPHVHEmoiPtPIAegUrn+JnyvP02MXw1uPQPrJfSZe6Ta5souj9mYzsvRRvprnGAXr3tiEfIEEx1ZQvS7F6lHy3iNa2ePPaXyrMTOGj7/3S2vZtuQzVw6VnONmKcSHGJDCkjaqlJb+Ir+wcDXtfEL1+7OKIgdmfPX3XOY2mchp7/PZci77blg/QasiAD8vRkg8ImFcmWFra9hBvXinncN0fw41HR6+3/DZM2Kbft0nkcJaYznrFfVdmmq49TjYZmyUR/4wVSZ7489k+hEhfcpY7okm30Fh0KMhq6yHZki3xowRp2RPZ5OZcxDVt+wvCsln43G+gbTj85yF4/H/6/awaJcgxMKwGhdlMlPRKLntNGQlKt5JkgSV0nLOsg9bzFh3Pkta238C6FDZ98CrcfVr0euLPYKmVBnxrpyMtsIaKEda2B/emjEkarrEEOq5tb+X+1h8MlV5rW913e0mF2UgOtcAimUzG+f62NgMk/hktSR4r2vYwgA/41C6w6dei1zd8B3rmLPI5PRk8e77bT2pCWbPZCBu8QWvbWebRxp4b/4x4s9g1h1PSto+OF6gpc+eP4eO3YOlPws4/HvBtfjKPOn7JT44jJTs14fKW6FWKleJ/I+mqAbSMFK1BT5rPFTDiom0/VEhfDJbzg6w2RNO9IKtHn/ZAxymdp1oH2tHZSW8I8cGl7gVZJXTcwhvnmFVgYl/R665ToyLYQksLsedd/GyT1bavHhPci2jDlIJCl2aaNepkVETTQlj4NkB0mDvgUiS2h0RLXEQrl6NiRbE70qitFjAGWK5JvVaRATz8Ut/+Ju8D3BtXasMPHUEHWtr20fE8pV2U2E2QPl7qUStYeaAatWJKbwShvA9wLTRYaxSD3nVzb1zFGIWhYpOJp8NSK8OsN+GOkxe1SbnI0FN0aKYp+yW3YaPajSIb8pzgPutKW+bRS7NZaz6Z454LdpqOqfbcf98NT/5v9Hqf30D78Jb2+AxjtHKO4p8x4wOU2E2R5nq1mWajwefDcgwylyTFctG2HyqkLwarRnt1pgbrdA3BHbVrJRGrVCr0GkM2a21S2WymRlWxg2xuUrDa9BuwyvZQXADXHxHpG8eWtSn0Wmg9cJcusshuUJMIcdzMe0t6wbMr0lIv4KlrbTtLhZnSbE5o02O/gzcfiVgue18woKRLzaZaE9RG8RM89pNe3QZIqVyh4MxMMyKjoqRtHx3PViLWoLXtWiRWKqJZSqB9UY0qzTTH87Sg1lBXiruLDlJh2tqoqZtEMR+gJT25sE0dIyMNY4An/xRpG8eW3jmKywPYkJzyQTZr57pW8qX4MV2baeL7m5ckj60GSNV3S2vbg0cOl3Q/WTALbvxu9HqLb8Eq2zV9ezX/6i05DK5Vk3eyiGx2jQP0cgF3lLwOSFNkLolWHccVdJDiHA0V0heD5fvQSD/I8YJs+oEnSl1xR1mHHk0UirPWth6aodP1ug3GgKGqxEv7CJj2KDz6u4Vs0k3qnSUUhDepuE2uCbSlZpo2csB1EBtoUt5snCOvwbVa1EmfBDpJM23my3BX30C3iT+DpSeksMm1iKbhu/0KstI6u/GE3Mr97axn2XdOpbXtIZ4c2mioN2htm7luPvIA2oU9RQSho03uxU8d9Hel0tiQTrJqc0nMACEi+6W17SObmtxLq3wGtvh29PqG70YFsapNynIc4BAvaWn/+sg6aKMaU8+4CeADHONcaWaal1SYWkPdc8/VKH5qs4pvOxE+fhvGrAq7nJrYnsgmG/uJ655b1tS29wRCqLBSHOMA/aK1iyKEsfjNAaA5VEhfDJZr8KylPwY+yaF2Ec3NHlBAyBorosWPaUVqomVQuNTKsOsZ0et7fgYz/xXAJlvob4ghZI00ZSQKslY60Lra9o7oISXUftwmO8Nz3Hw3JLi/S0W47nAo9cBqO8Nm30hok0Ef4FgkrjbTpAexNTbTbJwnCaSOliyXlTgg8t1+TBmtPddp2Gix2uBTKuwZKTSCOzpuQdJiTMrV2SbgA7RANc7AI70m6IB73C4/iQpgc96JCmJVm5SAR/lsvZnmPsPJBpsoYkRFBVzxPc51YJ0SyKfRJqWCbMrlU5DVjindWWCWcu8EILaXboGnr4RMFj5/cVNJl+ryUhZQlg1OXdgPIctlRE6twSZH1ryWD+h1kgrTyU9qoNEAzOuhQvpisLwLssJItMgmV7SOTmHPV0Yll82QT6iHlHS56+uFkAdIZ5NaIhajl5UGopdt8tWoCFbshuv/X03ixZpOW48Swio6pl8CrduUsVHc9w5U8xra9vYKsu4yQcoIQo8i2oDn6cFz4Z0p0Dk6YrckvL7+9GkNH+BX/JRGpHs107TknTwp3dLBfGSTK3tPs5nmmBxqoYgdC/uFWNwgH1P67SeaqEYrUmHtubhU2GICzmhpzyD4gPbh8PnfAZmoIPbSrQvZJA+EsNbg87UnOoYNucAQoBorTOcGqTBXv6QEYnMfzK6354qDoeZ9ADcdHb3e5ruw8paJjhsfXGtH4s2v1gV2ZEu0pGbAI4frrbJTdc4RWELJe4JqUviAoUL6YrDch+fodcV9A3orQ4905TgctbVUpV1ckfv6WtsDBj2ZDOxzIXSMhrefgIcvjAZEKg1l9Q+eNaVd0iJjdOickU1+2nHiHWjfgpXm82YqoHe1SYka3HeOCqXKwM20flZDEa2/e+ndp+G+X0Svd/8VjFohuU3ee65BeSdDdGWtgcP+LBlNKr6NPbfRJhvFRl8arqpNjkUGabkCsIdIz2Qy3sPZteIAV6S1xnVLdH+vvFVUCIOoMDb/wzA+wBH9qcVw8vIBarMbbBStwR6oJi4VZgW165vDSeeUEjb1e44qFbjlWJg3E5ZdG3Y4KZ1Nvs1iLXaqYw6X1wBEuu5vmnmlL9NZCRAJHoVrrQZI6nOUHggxVEhfDNaAg2parCA0c9dCg+LQozRLa2AlSBTR7ATPIWiBTTeq0Z+A3c6MXk/+OYXpL1BlEIkXY5xRxDobQvyYqYNnpUGD0TFtFYldhx4Fed6MDIoG98AwjDxA8mvXgEJZ+F4q9kSSLuUirL03bHBAOps8h/uqINIdNWSr95I0CgV8GBdazDQ/JoHucDhXH2AoEVNqplW/Y7FcoZhCa1sXiWZLuix+TCvSfPFjpm+m2WKmacpxJC7I7vgjWHYtmPce3PI93evmLc+pVfhw20vacxra9n6yDioSIY5xbj0XUGimGUPturPB9eIAZ0ZhM0Dkc9fCCzdANg/7/g7aOlMd2//+tgFi00R/e7MbNAEsaXM4JR8QZzekub8rlYpaDc43NxlCpC9hy2bw7El9V0MO2EugXelulrS1FijdS7lspqZL3dKmjQ6GT+0KpR6yN36HHNoBvb17yUoHGgRYIEaCZ9VmmufgM1M2KRVk44FmukJ6/TovUkS790x47wXoGgt7nZdY0qVmk+9+oopIt5Mc+p8nK8GzohyHsXky4IPcD9BQT1FIqxXRNLTtBfT2pZe/PIAhdqqaPvJirG3f1hlJvGRy8Pzf+dT7d0U2qcg82myoR5rn6X2AJpMg/UBWTXknV+alJjs1/b1UUh0Q6csGt7fnLpLnzpkOt3wvev2ZE2CFjR1ssuq7S6m0tkOgv51li0wV9201+RsZhVak+dLnJkOF9MVg+VInbRXRdCjUrpPDdYMwW91eiG2clorESQdpZjKw9/nQOZr8u1M5IncDmUyERBG1xzkxDBA8Gylax22yoiHrWyDWYRLYK8i6DxrUKX5ms5naM+xSRFtkQOSbj8FD50ev9z4fho9NbZMvOk7HT7oFz1oolMgmT19pRiJELxHz1tq2hI5TYxO5slJ0CjEQS6CNDNCLH9P1XlItoqXwS/EBkdLnyXXP7VHKTSAlU+YTm8B2xwHwubfPZiyzVQt7qYsxNZ1dTXZqeh+gO9/CTg7nLBWmdN3ArVkcP6d6slyue64dIES/aOtKBW48CrpnwfIbwnbfc7LJWSaoV0nmse945Qq1/SHJCuEDLAFZXfc4rSZoZFP6elfjfAthHxAwDhgqpC8Gy5k6qZoc+qIa86L2uA476FbS+4sfU5TK5blc0TqqDjhNcjhqedjj1wAclb+OTfL/UUCiuckWhdC2TxsYLlBMoF2KMRGVS6sYUy98pGumhUB/u9LLNK6bY0G2en8rJGIu+0lPfwWr3nlw/eFQKcMGB8HaeznZ4ypdVmc32EnErDGcNAdEWkQPOQ+GUpoBAh5NGaVGUXxwbZr4rV8fILSc5Qs1C7IO5wj0GIVxm1xluaxIu+g2QFL6gM98H5ZbnxGl2ZzR9kc687IxbmSTrSZoYzMtTQ4XIO42AhYB//1ENzZxYxRamZnWEyD3FpHCnHo5vHI75Nph399Drs3JpmpemHpOghqrOOYDHAqyqvMtXGduGKrjBFGpSOO7+94bKRNoSfPpAyGGCumLwXINeGpINCPDRsvlmB6S0oBISFlI10wwDGpsdtQKDa5dOgPFmPW/yJzV9qYtU+JXud9AYYGwPZ4oYlMyQbbQcb2lMtV5ktIF2fgz7OIDVBDp3sgYG74b9FAojTY5oFHjvvuun8KHr8HIFWD3s7ztsSWh4FbYC9IENYNCic5Rb6lMOcXgWmt+MpxNbjGlCqrRywfYOUdhtLYX73upwQeoDRt1bKapyDul3E/y7bDv7yiSZ9fcE3zqvX/I2+SMRtXZT+LNtFQNdYM+IEzByg4zrR4HpPcBbbkMOS1te0O5t/Oeu7DvnvUm3HZi9Hqnk2Hc2t42Ve+NtDZJ+4D2XLamwujSmP2vaVx5zt/TyQXcG+q6jEL9WtdQIX0xWB2OCFkTmn/92APyiVh8cnia8xRiIIQlSlAd2eyISFdNoBPalMkwbeszmFFZilV5G+46VcWe9EU0xQaIscFQEKNzpimi9dbPqe7gWgcfYLKIZicRUx2A6oAeWOS6vXYvPP776PXnfgPDlnK3x+DgWv9hurZQKKAxINKVmaaI/ja4n1ic3eBWRNO8t/2k+SztJ1pMAnC8bn33kc6AyOg79hbdmmmqqMY01238+lw78hAANn3+5zD7LVGbqvHXghQ2VSoV1XvJpfihWbByjbt1mTKO+0kQxkV6H2BpGKOqD3AcFt8wV65chhu+A71zYKUtYesjvWwa5uCXCqUyxT6/qtlMS3PtNJmg3lrbRtjgoBsHuORMuvPJwjVBhwrpi8HyppYYobvEu57Sm2fj5HAbDtiXiq8iN+OJQlGVm0lxL83Lj+SEwrej/zx2Mbw6Wd4eV61tK4lY7P1WBgxVN/K8ApWrLZetIVvSUYMVfYAjFV9Vb98xoNdENtcQFq6JWPdsuKEvqdjsG7D6zn72eOv/6xX2TKHkPWQdhrXl5GW5PHV2rRQZ4u/X8EsuCXSpXKHX2MC6egPEUuPK3n5SLUpYYRNpSs04N9M0Bw47+oC/dX6Bp8qr0VaYA9cdHhXShFYVFGNlOFz8mKlyOE00qjej0A7TWZVRmJZxQTxf0vNJvTEZuWQ2aebe6WPcuE2dbdkIKPL6/dDWFQ0lzvrZWUOkO8pyWcl1Q8xwc9baVswFbDEuBMBQKva4AZDT+IChQvpisPz1kIw8NDU9cnkUSmRT+qBHFWXpWLDS1LYf5pCsViqVOpqhXW9wRlomwf3lDbmpfY/oB9cfAQs+ErHHddCgLsLCTxtVc3K4SwKtEcyDW2FPF2nt2xWXt6mWQKegc8ZRKJrFD2dZrttOhNnTYOlPwmd/JmaPq8amZnJoctCgiw9QYDdFWot9zTQHuRmVpMeRBabZTKue+zSU7vg11rmX0jMvdYfDhdPYTLpc0XG6KOL0UiqqEkHOg2s1kc1uCNl5BTimcASl3DB44wF49CIxm1xkHTRlueLHTIVIVwWM2cu9aw2+1JIFtopW9ThA77qBHXaD736y9LxX4c6fRD/87GmwzGreNrnEAdXrlslozW9xAEQaKxBH7w/BTrWnLJDOd2syQCJ7iuUKxZJDQ31I2mXJWq5aP6oIC4fip6ZGG7gOPdKnlljStXZBokXDGxs/L7ncOpnRey8f9U1YZnWY8w7ccryMPX33dqlcoZDKAdtLoEMU0ZyklBQ28rhNqZppQSimrkmPXjPNFYViJRGr3tufKT4MT10BmSx8/mLoGOFtTw31VSyZGVzrT+e0gZLX0titLpckQ5Ni2uFQII6/XzM2cUaiKUrgpPPdIZJVV2aahk1+Sb21OEDDnnwuSz7r0EwLIX2RGlRT5o3K8ry5+cnRD+7+Kcx4XsQmlzig+t62nDyjENyKaKblOQ0NGlRlFLr4AMU4IH7ezSBkPZDN7RRY48HjoNQDq38WNv+mkE3u8pwajEJw85VhpPnckM2qdZwUNpVjjEJNTXIrwLoGdqryzLShQvpisFy7T7r6ke70GzU0qpNeq0EHrIiyculAxxsBVgKMqgPOtg+Hff8HMjl47hp49hpve+Ld0XQzAOqMC+nljGzu1fcBqYpoij6pwSan4Pm/hYLnnkCroVAcAsPuQonl+JBvf3xB9INPHwsTthaxp7rnVioRPTiNTaCFalwyNJs1z1H8uHa0tj2LMUZk5xbEYiUVRqFTEU1xQGRsf0vTTOsxlqw26lprFj/T7ydaoBonmUdVdoOfD5iz7iGwxm5Q6oVrD4Nij6BNNuRvIps8tLZNgaH0UPK+utbW9hONekA2m6E95wGsU95P0qzuQonj8lcz7MMXoGsZ+NxvQaiA7cJOVWcVW5N28fQBOnWcvns7DZtIcUYhuAIi9e6leJ7qxnIcQqQvUctX68cK3UWTVgJ+A1CtnKPo/foIC5cimoauddymVNctTg1ecVP4zAnRL245Dj5+x8uejnx8crgNNINzEa2oT6F2um5aaFSPyeE6CMJqgdhVHsBG0tMTSzA0UCguzeIFvQV+3XYxI8pzYIWNYYcTxezpbGimOejtG0HHlcuVQAN97BTRXJDEYZBoromYHqLJBZGudt28fLe2PICNOKCOREtuT2+pzijUYIL5MAq1cgG3gqw+ith5vkV7Hva5ELrGwnvPwz0/87bJpSBbYxWr5XAeYCjFmQSptbZDoFGXEEahpf1Es6Huqm2/fuEZvpW7JfrPPhfCyOXEbLIZB6QvXOs2Qf0ALBp5pRObSHFGYfyYVmQes9kM7bW6Sfq5O0PDRpew5ZIYRrIU1Q60YgLtokNqqJPZo4gccKYGK+rsOgXPoRJoB2RzrSD7meNhhU2ge3akl+4xlCk+OdwK0tKl+Fksles+QHMQkxEUCuCkRxxiQKSzPICGPnKfTS7NNEuFj9Veu5ztcs/Rm+mA/S6BXJuYPe25ejPNRbJAF4mWXrIk/nnJ1ekgNaHPTHMv7OmwLfyaoFaGjWrKhIEfqrFLmxpspEDkgiCsUvHBToOvFlMqIZvdmmmK8k6+g2vzORgxLiqkATz8G3j9AS+bfPSRbQEh9FkpQE0WIY1Nmj4gXfEzskeLUeii226SlRICdJAmDlgwi59nfks2U2H+eofAWnuq2OSSC6gxCl3kZhSHjlf3qEKpknJwrS1AZDUnbldiFNYaIEb8JLiB/VwkFYcK6YvB8qFMxD8vuVw0mxcoykzEj+vUfVJEobgPO9BL6i11oEVQjbk22O9/ID8MXpsM//yDl0214VCpBtfqIwhTFfViz4EVlLx+8GwLkR6/t920tvXknVLROa3pWs94ns3/HUm63LLCkTD2U6L2ZDIZx6FHevuJRSRaPXi21JRxaPKrMtPSI6xAt5nW6VNE075ursw04dWWy5Kram0bkQpzQhD23dvxQbySq8PleVO8buCXM+mwG9LvJZVKZdFm2lp7wCZfBSpw3eGwYJa3TWnuJU3Ebtwml5iyS3GAHriyG/TuJZchsWqMQh+GunYu4AT2U5TmS3GOyrd8jxUyH/BGeTl6dzld3KZ6M82OsoCP5JSm747+jktjVjGHc6i/6QNYLNnk01AfQqQvUav60LhMwwUtGofFjdMWCsV32IEVWqDmdHVwo75392fT2E/BxD7K652nwMx/udvkkogFQBCaHA5n5HkDN+SXKgqlz55yhRo7IMlSLaJ53EsagWpkU4ogrNAN1x5GvtLLXaWNeWa5/XRtSrXvaiLR3JkE7bGioORyQhH3KqNQXJqOmvJODoNrK5WKWWkXjb0E6jGly8wNPYaTTc1mF0p3Zz6rOxzOYi7gUkTTYO853EdxSZ4Gv7Trz2HMqvDxW3DrCc42+QwbtcRK0WQ4xZtPqYYgB/HdNpp74CbroN5Mc7EpQEM9sT3PXkP2uWsoVrIcWziCzuGj5W1yAENpgkXAsSBbY6blxe2JxztOzbT/Fh/gwSi0ZJOLxNtQIX0xWLWHJtVggT4aR05pMJQHOk5b1iFNAl0PDPU60JCWWqKYiDnRAu1unIvcS5t/E1bbCYrd8PdvQrHX0Sb3+1sFjepSROutFz50fYClBLqvGGMkwIgXnpM2QisVXV1r0wl0knN0z8/gveeZm1+aHxS+xbB2+eC5wSanRMwWEs1EA6RvBfMBKQqyIQZEphlc29PAJrIh7bJAHUUswExTsslFI12j4eAix6E5JwXcClbBrpuLRIjyYPakzbR4XNXgAzpGwL7/A5kcPPs3eO5aR5vcfbclKr66X/IA+qjKO5nac32KaNo+wIbE27A09syaBjcfB8BvSp9nauVTqvuJ07BR9TkJLk0Z+XPUMLjWiGxJLX5zyAX0ZVUN2VSrB+iCoYYK6YvBihc+kgdh2gl09aFxcCzKdM5USY9iEOaitV0qV2rJtkZS79SUCUTlcrpuCzu7TCaaaj5saXj3aeehTE6yDsVqIqaIREtx3Xq0E2gXGZVQxRgXqQkl+Zu0g2vVi2guxZhAkjwtk4zX7oVHfgPAtSv+gA8YbSo5DMEmMtUAcZpJYBAdp3jdGhvqCX1AQxFNYz+x2wBJ5bt7tYdW2rqXfBogGuwmcGWlKLMcvRiFesVPSB7nVpP/TIZaIae2Vto8mgsEcPOxMPvt9DYZZBS6NECCzXBy8gFWcrgwubeVuLvBJiPMtOr37C2Vm0u9lstw/f+Dntn0LLcJvyl+vi+P0ANDpQNoafsAe8w0az7ADRAZ5rpZGl7tw0xLUzsdKqQvBqt6k5VTIJosdnq0BwwtCYimOGpVNxFzoOIrI9Jd7qV+A55RK8A+UbGNhy+AVyc722Rl4xwWu4/KCQeeqF83hyJauAFDNrriLs00bV1rk4MGkxQ/538I1/2/6PVm32Bq51aRTWrIGPfBZ1Z0EUMVPqw8b402pfFLevd3ey5LNuXg2kZdaxtSYZpMOYjNJTEi6wB+ww815yS4JNDaDXUX6clB3U8WsUkfQQjJC6Dx+6jfItpnToAVNoHu2XD94VEBLsVyKcaEa6YZKqI5SYQYk3cKlHunyuHUm2nuRTQdVnH9mE3v70d/C288AG1dTN/5PIrk1fZcH3CGpZjSmk3FUpliX55uJQ5QbzjmE4Kh+rFJPw5I31BPAzwYKqQvBit+k3UnHAphMYEOtnFaepBTJmLdykg0t4nv9rqGLQsfa+8Fm349en3d4TDvg1Q2OQ3QUtVHjgdh6Yox6kwCi4mYC8VUnXGRzgdoFdEs03AH9JOVSoS8m/MOLLM6TDx98G3qZ2lq21efmUKpQiFlQ117wLdLAq31vDkVP5WZadVrNz9xEa2a0CtdN8tFNEs2pWwW9zsgUtKemMRbWnaqtg6ppQaIi+/uUbQpl83Qnk8nz9fyPsq1wX6XQFsXvH5/jamVdDkhmwMxCl3mW1hhNxRKZUqaRTSPHM7icF8zA+yJ53A6Uq/VftiAz9z0Z+Hu06LXu53JnOGfVLMnOq7LOapeN22bXGpLNu7v7qJyHcdB2iWcHrmd+M0LCDGESF+yVlsuS74P0pR081Sfru7R6dHbON2pJV1KOrtp0Z/V97XlMirD4VyCZ00deXC7lxJtnLv+HMauAXOnw41HQsLEE+zJOsQD8uSIpmpRz44+snZS74Ieqha3upT8Upe1IpoTnTNMQXbA5+3pv8AL10M2HxUP2oeroojjNiVlE2lr2zcMr065n1hKVsMhCJPbNL9QjGxSSsSqOv6Ji2jKQIh6HLAYNdP6s0mdGpxujxtwQKTQql63SiW5XwrFTnWRddA4R9Fx0yOba3GAlg9wjQOanaOxq0dxLkQFuHemprbHLca1U9hbMJDMo7RNiYEQ9fdpSKvWJEKK9YJ9Upv+W+TUouO65yca9YB4Q73fHK53Plx7GJR6Yc09YJOvqp8jN5ajdvPavSmj5bvTzt+Lv08j/3bJ4YI1r12Yaep6+7p1nKFC+mKyqjfa/N5iovdr6v1Fx00fPA+oay20XFDE9cEZykWrxEwCPWpZgz1OiCZLXcME91J7F+z/R8i1w8u3whOXJj5+2qFH5XK9iKaxcWazdYmQpJtnvfipXfiwg0Lx0tvXCsJSapJr+24nRJN2E7SZ7/7wNbj1hOj1DifCJzaJ3quOskqXZGhr2zcgmpL6AOWClWltVBetbbVnLiUaVTuB9mBbqDVBDTIK0zZmBxwQKbScmmnauYDTsFHtJqg7Os7KM5e4mbbp12DtfaBcgGu+AT1zktnjMbRSWx7AZT+xotse9wGaQyujv2Wjoe4zm8hSfqK9nzSV5Lj9JJj5IoxYDva+ADIZVZmwBnvSAOvUGYXuYCj1hkNiNnh03drzWbKKgMhiOT071QpqH0LUKHyaaUOF9CVupdVE0nbAPoGqelJv6EFOW7SqTQ1XtgfsIJpcUMSJg7DlN4BdTo1e334SvPdSouP7FNHUEE0pE5/qZm6rYBVqM7dT2HP23cr2pEI0BaN0L+STir1RcaB3Dqy8DXz62LpNxmQdtAdExhFNaSXeLBWsrDVAGmzSLqKlZRP9F9FwOx2KaOFmAQkMiBRYbbksbbl07FTt4XBODRDt/cSHKaMcv6VtprUsxmYysM8FMGrFvqbz9xMdv3qObMk7ufslfVZxunxJa0Bk/H5IC6pRZ4AYmUsCcUZhsnNUqVRiMo+B2aAv3ABP/i+QgX1/DyOWBcIxQFxANeq1JUNzEtwBkVrSfOl9gDZI06UBEmw/SegDCqUyhVIltU1DhfTFZKUtotU3Ti30UH3jTIpsVt84PQqyWjZ1OTMJtCh49eMmvpeCUfCUErEt/x+stjMUu+HaQ6HQndimpM2G+PXV2qi60m7mynIcqg0Qx2VR/7srLSJduYjmhGhSlCyBJkW0e/ro6p1Lwf6XQLb+90OhGZIi0aryIHklbXuI3UupfbcN/dj4e9WHICe0KZ5Aa0u7JJZ1KOqeIydEUzCGk0P8plT4cAVCDDggUmDVk3ob7AYf1JcVvf1SuUJv3zOnJfGmet2GLR3tj5ksPH0lPHN1a3uc9Pa1Bw575ALK1y2p7+5RZoBks5na/Z2c5WiwoW6smdZTrMtyqTVl+ssFZk2DG78bvd72aFhtx9qvaoMPlf1kOpnHQMOrDYEzUtdxlPfc+AD7pOCMWkNd/XmzxExLt5/En4M099JiW0j/6KOPmDRpEqNHj2b06NFMmjSJWbNmNf3M1772NTKZTMO/rbbaquE9PT09fPe732Xs2LEMHz6cffbZh7feekvxmyRbaTUt9aVdPJDN6kg0B6kJZV3EtBQ8reuWd0A0BRtcq4VEy2bh87+DrrEw4zm469TkNjkUrDSoXFDfANM2ZUI8b3aaaelQjeVypY7aVT5PZpADHoimoA2QV+6Chy+MXn/+Ihi9YqNNoRCEiQNVXXsg/b2kOUAPHJtpgXStkyZivbHhcHpxgKu0iyVEUxg/aYpR2JZO276OjtXzAWkZTuozbgzKqKQd8O2aQKdZaZug9eZ1wus2YRv4TB8a/eZj4cPXm77dpt6+vWZa6uumOLCyutLmleozbqoa0gZRxGnPEeghiRe5bqUi/P0w6J4Nn9gUdjq54f0h2anllHr7VpigoN9MU5PlclwNevtpJd7UmATpm6A9yjlcWm37alMim5JRuNgW0g8++GCeeuopbrvtNm677TaeeuopJk2a1PJzu+22G++++27t36233trw+2OOOYbrrruOv/zlLzz44IPMnTuXvfbai1Ip+causdIXY7QRhLFCekrKmxUqlyuNI51NKdEMAYKwtMiYUAFP0vvIyaaRy0XFOIDHfgev3Nn07Wm147Q38gab0gbPyhsnpE/EtGnmiTfOmK/QHjJmJRGLI5rSNor0fUCfPXNmwPWHR683PwzW2nORz4RK6ucnRaQH9AFJm2mhGiARmitpMy3QvZTUJ8XACVbknTSH1oIjoskgslldlquvOJc0fqs+l1rnKLIpXVLfo73n1prXhqRd0iLRYtdXazh72pjSKVb6zAmw8taRFNq1h0KpMOBbXfT29Zug7kU0/cHMyfbc+tBaHVRzg00p41wrDBAIt5+kbaa157LklRiFi1y3+38Fbz4C7SP75nm1Nby/HuPqMq4gOfgo3MDhZPY0MAqVfUDyOo7uOYL0bLn6nqt73ZI+bxCCMZvuXorncGkYhYtlIf3FF1/ktttu4w9/+ANbb701W2+9NZdccgk333wzL7/8ctPPdnR0MH78+Nq/MWPG1H43e/Zs/vjHP3L22Wezyy67sPHGG3P55Zfz7LPPctdddw14zJ6eHj7++OOGf9IrfTGmWkTTucRtuUwtEUu8UWl3xR3R3/HPSq/0aAbd4id43Evq8gDKKJQ1doUtvh29vu5w+PjdAd+aepOqIdH0g+fUXXHlpAccmmlqm7l7Aq0myZMS2axNDY4fOz1TRksmKOYDymW47lswbyYstx5MPL3fz2g3r1wleVTRqKnnJIRJVsESqtGtSaQpyZP6uikXGZwQTYGSnt40g6LVKd35hr/TagVFpCdkp4ZqXJlCNTrub2kTaBeb0rKJUsUluTzsdwl0joa3n4TJPx/wrS56+3VUo278lhQIUS5XavuOXjPNlQGiGL+ljU1CNdQtzUlI2biar2xP/Njze0vwxkNw/y+jX+x9HoxZZZH3q8tyxXxLWmCdFUnF3lKZ6rajleum9QH1e0mvHuAsFaY+N9FQE9TVd6e8botlIf2RRx5h9OjRbLnllrWfbbXVVowePZqHH3646Wfvvfdexo0bxxprrMFhhx3Ge++9V/vdk08+SaFQYOLEibWfrbDCCqy33npNj3vmmWfWJGZGjx7NSiut5PHt+l+1RCx1R0wvEUv74ITrQKezJ5PRR6EkvW4hN/PUSYYlbS1XB/zZ02C59WH++xGlrtz/30yLHpqv3CQCB71WZSpXWy5Lrq+blhTNoI6QTXkv1QYgK01Xh/QSIdpFhvix0w7P0R8KU4aHz4fX7oX8MPjCpdDWucj7QwyGSs1KUd7f4sdOft3CyHJFfyttsKrcUE+JRNN93tJppJtENIWidCe0J84o7GrTSVjrjMJ0DBBL8k7aA+x9ZB61pSbSItFCNEGTxwGOzLSlVoK9L4heP3guvHbfgG9NqyMdqviZtlGsaVP9uiU9R0VVe8CH5ajcTCulGGAfKKZM2ygOEXeX5n0Q5Z+VMmx0CKz/hX7f36M8KyWbzdRqH1bigI6UPskio3B+7Rzpyzulvr+1JRUdEOlWmASuucliWUifPn0648aNW+Tn48aNY/r06QN+bvfdd+eKK67gnnvu4eyzz+af//wnO+20Ez09PbXjtre3s/TSSzd8brnllmt63BNPPJHZs2fX/k2bNs3xmw280lO5wkmEpKUEWUnEqkFhlyYKpd3tQTaFaFKXCIkV0RIsLxRKWyd88U/QNhzeeADu+2W/b3Md6hckgU553bQKVlBHJlmTCEntkwwVPoI009LKBAVqgq5ReAnu6UOg734WLLtmv++Po1D0kGjp9JGDFGMcr5vWOWpopqUsxuhJTaRsgCjLFUDdB6duyigy01InrKGYBCmLsaDXTOtKW0QL2QQ14gN8BthbQxFrNkG7HAsfTjat+3nY5KtABf7+LZj3fr9vS41sDpbDGWIU1q5bwmZawBzOyvPWyExLe39ra9un9N3qzbQKWz7zE/j4bVhmddi9/xwU9M9RdGy3Z05d4i0lEKItp88oTMsAUWWo99mUlAWinsP1+d9CqZK+maY8lyR9TXAxRqSfeuqpiwwDXfjfE088AdBv4bNSqTQtiB544IHsueeerLfeeuy999784x//4F//+he33HJLU7taHbejo4NRo0Y1/JNeqdGoIdBxKYto2sOqOtJuCAE2zq60w6oC6Ow66+0rdzJL5QqFUutr541CGbt6RKUDuO+sfhE7abXtux0dcJqVXmdXvxiTNgjT3jg7Uku76NKC48dOrrNr2AcoNkBGMp9fZs6HchHW3Rc2+crA9sQKW9raqIl9QIhEzJgcB7jEAbqxybDUCXRUILFU+AjJTEuPkLWBRq0+A2kHQ6VZlq9bUpajtg/I57Lk0zLTtH1AWjaRQSao9zna7Rcwdk2YOz0qppcX9Yf2kM1uRTRLjML5yoXGBpuM7LkdsRwjSewdUtc6rba9dtz95dxdfPL9yZBrjxiXHSMGfH+IOk7aPa4GYjPCSgk5lyS5D+hjpfyX5XD1v9XaphAzChuklBIsV1CNqUL6kUceyYsvvtj033rrrcf48eOZMWPGIp+fOXMmyy23XOK/t/zyyzNhwgReeeUVAMaPH09vby8fffRRw/vee++9VMfVWK5JfRidXSMdsbaUFKUgAU86m0Joa5lDNKV0wCIolA0OgI2/TITYOQzmzmz4dbWTnDp4NlSMCXF/p9ci1aUqpr1uIRCEzl1xQ0U0dUp3LssZbX9k5cxMKqNXhr3PjzS3BrInAAol7XWrJ2L6KJT0RbQAPiAxEk23eZX+ebPXTAviAxwL1+pDKwulRINr46ADLUZhPRFLVowJMifBoGRBmlygXK6og2pcZxNpXre04AxvZHN7F3zxfyOJtFfvhofOXeQt1nxAWq3tkIxCS747NTtVWU4tl83U9PaT3Eshda3TXjfNe2mVwr85JX9Z9J9dToXlN2xuU7VRZKgpow32Sz3nyiQLTHd/a7DJSK7bkZKZFmJGYWoQm6Mkj6lC+tixY1lrrbWa/uvs7GTrrbdm9uzZPP7447XPPvbYY8yePZttttkm8d/74IMPmDZtGssvvzwAm266KW1tbdx5552197z77rs899xzqY6rsdKjGXS7TxBHgNtwwGn1yIM6YEvSLs6Dz3QHDUIyjU0xFMruv4Jl14K5M6LhhjHEjqu0S1eIgEdbYzPF6kgxl6ABhaIVPKeWUdHXs0yLHHAdeJJmpR5cqzxkrOvZ/2Of3CMUK1nm7/M/0Dm66ftD6pEvCfrIVopoxVKZ3pLycLi01y0E6iulTFBIH5A6gVZmFJYr1JBKTe0xyAAJgUa1hkSLjp2clRKPFawg0YKgiF2fNx+bllsX9vhV9Pqe06MBh7GVVtpFvRgTQ6Qna6bp72+pcwGDEm89ygCW+LETFdEC6Fp3pdxz1RuO3bM54LUf0ZEp8tLoT8NWR7T8SAi5wLRDK0M106zMcIO4xFtSHxCO5Zh6eLVSPSCbzdBeBUOkqONozihMOyzeVZLHVCE96Vp77bXZbbfdOOyww3j00Ud59NFHOeyww9hrr71Yc826pupaa63FddddB8DcuXM5/vjjeeSRR3jjjTe499572XvvvRk7diz77rsvAKNHj+bQQw/le9/7HnfffTdTp07ly1/+Muuvvz677LLLoHzX6krt7AI8yGmC50qlUi/GKG+c8xMimizqIy8IQglyo+Jr2ZTJZBrQaInt8b1u7V2RXnp+GLx6TwNiZ0koos0PUIxJEzzHtdP0fIAbglC1meaY1IcpfqYLMFTu73eeIn/niQD8ovgl5o3buOVHQkhgOWtsGhowVD1PHQGaaYl8d7yIZgWJFqSh7shM0/QBKZPDmlSY1oDI2HGTsBtCMK7SJ9AhgBCOevuaoJoUcUD8GVCXd7LkA/quW1Kgj5hM0MZfhg0OigYbXntoA/uyJstlRNe6ej9UKulANRbBUJbkOOqD2UMA65Jft3xWUdc65XVTleWqVOCGI1mq523eqozlr584qSnjsrrCsBvSxSbaPqB63XqKyQbXhmimOc+5CpBXWpmTAKSr48Sumx6jMLJHOxdYLAvpAFdccQXrr78+EydOZOLEiWywwQZcdtllDe95+eWXmT17NgC5XI5nn32Wz33uc6yxxhp89atfZY011uCRRx5h5MiRtc+ce+65fP7zn+eAAw5g2223pauri5tuuolcTu/mS7JckTGqDrgaPCcIeHqKZaq1be0EulSu1FBvzVbVAesmYm4SIWGGVtoJDNOgGkVRluPWjiF2zoD/PALE5QFsyBaBSxHNVjMtbrc2Eq27UKacJAgLiGZIztwJd90GXd5pwSz421fIlHq5q7IZfyjtkYjWHfK6JdXYXOCIZkizXItomjalaabF7dZDodgDHaSV5AmSQKcsomk3r9pzWaoEsyTnySalO5xNVhiF8WOnKaK15+uDiqVXdVaNqWaa8/BqT9+dycBe50R66XPebWBfpmc56u67cUZnEpvCsIns5d7Oevuq85KS7ydhnjdDDfXHfg8v3kgpk+c7vUfxQakr0ceCFGRT7CflcqWuka4MiIRkz5zJ3DskSDPl/a0pE5QGoBUmVkoXB7gy0/SyK+U1ZswYLr/88qbviaOShw0bxu23397yuJ2dnVx44YVceOGF3jZKLouIplRItDgKRTmBhsi5dLQIGkKiUFJLhBiiBIWiBs9eMEgOeOMvwxsPwDN/jRA7hz/IsPY2IDmyOUzwPEiIpiarro+cpAES2RPXU5ReDT6gUGJ4R/MtLkQzzVnLbkn3AZUK3PAdmPUfWGplfjr7O0AmHSvFIArFEhJtfsCmTBIEYfy6aaFQqkW0Yt/w6laIN9cBQ2lWWp3dEJJTaYpocVkurfs7k8kwrC3HvN5SomcuyHBfZ51dg5I8IRLoBEW0WmFfKQ+AxuJnpVJp6Wu6Q8RvqYsxgr67fTgc8Ge4ZKeIffnA2bD9Can2k2KA4XD5XJb2XJbeUpn5hRJLt3i/RQmFoLGJkYHDcZvSNNQ191zXOQni1+2tJ+GOkwGYutbxPD11dcallgmyIfMY9+96w0azZDJRejC/t8iIVjlcgOct9eytgA0QWzKP6RvqIRiFaRuOafeTxRaR/t+23BFN+ki0nkRJT/RgteUy5JWoXG25bK1Al6iTGaTIkBYdZ88Bh+yupgnCxDqrmQzseTYsszp8/DZc922G5ZPfRxBIIsQxgdbUbU9z3eIJtFYRLY64SYNmCJH0pO2KW0HIqhXRHr0IXroZcu3wxT9Tao900ZOcp5CyDsGGwyVYzhRTI747REIf/66J7qUACUZavVZryOZCqVIfDhcAtZvMBwRoghqkT6eV5BFDNjezqUrHTxG/hWiAQLKkPuSw+EEbfjhu7SjOBbj35/D6A6liyjhYIggCPAGIJQjowPF5s9hM0/UBfQ31NIzCAPtbb0KJEJXm9fwP4eqvQbkAa+/DtE99GdAv7KVZafaTuC/VYjdUG+qJbQqynxgERKa0qbtXP/ZOVxMMCYQoqso9DxXSF5PlPrDuv6f7BOmC1aCdTEOFjzRFtHK5Qm+xOqhGX/s33XUTtKdjZJ9eeie8cgfLTIkYKYklQoJcN7diTJjgOcV1UzxH2WzKICygD7AylDl+7CT3Uk9DAi30zE17HO78cfR615/DJzZJhf4MSQ22MksibpMlzeZ6Ec1GAt2Wy9QkI9LIA1gpWkPY65am4QjavtKWD0gtEWIQ2VxjpXTYyAVCgg4gGaswqEb6YLKKNzoYNjqkppc+NhNJny7oTeC7A8hyQUofEESe0zH3NsR0Dir1miSmDN5QT+ADehvljrxXpQLXHwGz34SlPwmf+009h7PETKvtJ+lkubJKslyQzgeEOEeuYKgQzbSkMwrnB6gHpJHBWhDQB5QrJJJ7nu84o3CokL6YLJMa6Q4oYs3gAtJRcGpBWIhNypKmbYp7aX7sPZo2pdk41TqZ49eHPc+Jjv3QWWyXfQZId55CJIfpN3M9m+pDxpInYurNNGNBmKvvtjK4Nu67RK7dvA/6UDpFWHc/2PybQLzpaAOJVi2iFUqRREirZfleqn4XjZVKGzUA8jOTydRYOEkS6DDIGEdpviBIy+TFz2wGNVkuSDcsOgz6u37dkiCawoAz3FDyVopoIUA1uWx9gH0amSDdBkhKeQAtm/b4NSy7NsydwUHTTiNLOZUkj6YsF6SL3ywyCkM205LqWgdF7hthgnbk6zM3ktnkVkQbcD18IfzrHzXGJZ2j0wMig8hypZhzFaiOk84HhGMUJlaEMCbv1FuqszJC5CeJ6jgBAWOQriY4hEhfQld6jaZwsiWphoso2hM/vpUgzKKeZZoOdDWhzWR0O4dVLetERTTNc7TxIbDJV8lQ4fy237AC76cqNoYoxthCNaYfNqoehKUooomjUPqzJy0FLyRyIEERrdokas9lW+pNt1zlMlz37UhCaZnVYZ8LIueCYzMtQBENkiZi+gG9xQTapYgWKhFL1AR1RKGkssdx6FEIab5U+5tyES2VDwiw51bPf6WSbAZASHRckuvWW6zrWqs209IU0QJcN0g3dLh63SwOrRQ/T+1dkV5623BWnfMEx+SvScXe08wDIN11C8koTCsRojtTKvk5it9vwwMgZNPk3prnKK1EiGi+9OZjcNep0evdzoQVNgIcgBBBGnzJ47dgPqAtOYvXch0nhDxnWjCUpk21Oo4RHxCXe07ml4YQ6Uv0SlOMidM4wgwbbZ1g1KhcilPDIV0RLSgVPyGiaX7B1pCxuM62KgrFUhC2+y9h+Y0Yk5nLRe3nsWD+/AQ22dLbL5bKNSqTlWZad4CNE9IlYmFouG5FNNUicT4NilhQGuDBc+Dfd0YSSl/8cySp1LdqRbSeFMhmxXPUnsumkwgJOSAykaZtmOC501gDBFL6gCDNtD4/mXI4XAh5gCSyXCGoypCSURhgP0mNaArYTEsTv4E2e8cWgCV+fCuoxrTyTvUBqArP3LJrwt7nA3BU/npW+eC+lh8JEZdAOjmlIACW2PdNVtjTj7vTNYqj9wQDQxm5btHxU9xLUvvJnBlw9VehUoL19ofNDq39Ki0gMggzLc2chMBAiEFlqMft6fu+xZjUbbNlTZKneh5FwFDNbDLGKIwfX7PJP1RIX0xWmiJaT7FMtWYb4kFORec0hEIJOfQoKaKpmtSHQBH3JCiizesJlUCnKKJpO+C2Tjjg/5jFCDbKvsbI+37c2qYAhb00G0JckscMlStAsgrpNC1D6rUO6tCjhW1KUdiry4N42vPvu2HyGdHrPX4N49dr+HVXLelJI+2iF8KkRjQFDOiTyRbFfIDi/T3coXGl3UxLQ8e3OCg6yMDhVBrp0TM5XFFnG+wxCnPZDO19Tcf5iRIx/YZ6KumyvuuWj30PjZWmiGaxGBOyIJvEnkZNWyWbNvgiz634JQAOmHY6fPBq07eHKOrFj58mDtBFf9efm2T3UgAfkEbXOhCbqHrd5hkBsUU2JQcgijSKSoVItnDOuzB2jahZFTvnaewpxYq2qsy0VMydMPFbOlZxgNw79iwnyyv1c90aiM2IhCnUc8R5Rvbc+PE1gXVDhfTFZKUqojXQOPR1rdM4YNEBkf0sl0TMFKIpCM08jWPRDwohHXIgBKWbpSdwWtuxlCsZlnr+/+DpvzR9e0gUShotu1w2Q7tiB9oFhaLdTHNJoEPMSYCk9MlwTIIk+0m9meZhz0dvwDXfiIacbTwJNpm0yFtq180InbPBplR7nI0GSD3B0B0MVfXdyRJo/eFwYG9oZRpEUzBJHhcfEOy6pZB4U2ymQdp4Kdx+kmQvCV38TOUD1EE1yeUBQmikp9Hbj2vaavrKZ9Y9nsfLazKsPA/++mXonTfge+vNtDCgGita2/GGupUZAMPSFNEC5XBdDn4yFLshTYPP6zzdcQq8+TC0j4QDr2hgXIK7JI+Vhnp1PwnmA4zcS/EB9sn23XDNtCSs4hDAjPjxLTXUu9KwUhxzuKFC+mKy0hTRqg9xe75OTdexKf0NqqnRBrFELMWmoOlc0iCagqBQSDlsNLADnp9m0KCyA35m2OZcUNo3+s9Nx8D05wa2yVgDJI4iDiHJk6QDXZeb0tbYTB481543I4imUJI8LmhU56Zs73z4y5ehexassEmERu9npQrCAtHMU9FejaGIQ+hsR8d3aFyF8gEJ9pOapm2AJmhkU/PzFEqSJw1S5787EUuR1Ac4Ty6Doi0W0cLJPCbPmTSLn2n09kNp2nZ2dPKd3qOYlR0D770AN34XBijyh2qmpZJ1CNVMc2ioh5BTS4W01vYBHWnqAWGaaU7AOlebnrkaHvtd9Hrfi2HZNRa1p+/Z6SmWKbdgp8bnk3UosolcZknoA+tcgBC67FQX+TIrcxLCNdQHQUqplU2pcl033z1USF9MVvVmKJQqFErJgjBtZ1eldCdBocwLRS1JMV05GL0socMLLcljsZBuSR6gqz3HBcX9+GD8dlBcAH+bBN2zB82m+HVrhWgKURyCOtV/QQIfML+nD9GkXNhLNSchQICRBtEUb7YFGXymnRhWKnDT0TDjWegaCwdeFkknNbEpSNKTcKVKMkIMQE3lu/Wbe+Am7aLuA2o2JaC+VxkgRhBN8fOoWWx0k3bR9t19iZgR5GdkU/rCdZC5O6l8t3IzLVURLUwzLZ1ESAAqfqwY1jIO6DtHbbmMqqZtV3uOmSzNr0afBNk8PHctPPq7ft9bA0MFQqNaYRPFj59KLtBIDlefc2XnulWbxeHmJCRpqHvYNP25qAkFsN3xsPZe/dsTuydaIYnDSfIkZxQGrwekALBo15aSSuCUy5UgrGKXYaOhaoJJACwhZhPFj5+kRuGaVw4V0heTFU8WkgZhmokhuEm7hEqgLXbE0iTQ1uQBtBOxdHIcYRxwZ1uOMlme2PQsGL0SfPga/P3bUF60OBMShVKuUEMtD7RCbZy1ICyBtn3tHIXS2TVCDY7b1CroqV63rDIKJVUzrcfjXnrsYnj2b5DJwQF/htErDvjWVEPGAuntu6A/g2jbF1ojmoL7gATXbV6P4ODaZjYZbqa1ipfmxwqNupI8yffc0NIuVmbcxI/fygfEGYVhhlamGHpmSJKn+p5QBVkr0i75XLYms9cyDghMe5/CWrDrz6Mf3nEyvPHQIu8NDYZKVfgIhpJvblOhVKZQivZlzcJ1On3kQIh0B1kufWZaCh/gGi8t+Aj+ekgEtlptZ9jxpAHfGm+MJ40DghU/UyHSwwwdT9UACQTQalUkbpTk0bPJReJNu5lmbcYNuDFmhxDpS+jqyGdrMysSB2GBAp5Esg6Bhx0kkggJHmAkQ6O257LklVEokLDwEei6DU8hxxGa0v1xZhQc8H+Q64B//QPuPXNgmwKgUAC6WyAtQ+g1Qz0ISyalFCoIS9EoCtxMa+UD4o0rTRRKGt045+v2xoNw+4+i1xNPh09+uoVNKZADge7vpMlhuVyp0fVDFNGgtTxA+ETMIKLJkA9IOgC1Ti/V9ZNp9txQaFSXQYPhGIXNbQrNKOwtlSkaaainSVZD+YA00i4hBtZFx88msil8blKELb4F6x8AlVI0MPHjdxveWwdD2btuoc5TSzBUnFGoKDeTjlUcSI7DQUrJFEDLZT8pl+Haw6IZQEtNgP3/ANmBP5/NZmoAmZb1gMCN4mR1nFDgDLsF2VYsx/gzGQIMlQgI0RsGwNKVAljXXYu7A824UWQUDhXSF5PVIA/Q6kEOro2aQNqlp5qI2UmgQxVkk6IawyGs0ifQ4TbONCiUgA74E5tEE9gB7v8lPH997X2hUChtuSz5PoRiq3speMDTY6eI5jJs1Mrk8PmBEvqqH0503VzQerPfjpLxSgnW/yJs9f9afiSVNmqwZnH6BDrEgMiF/2Z/a36gc1RLxBKxUgIn0IZYKUnpysGaoB3VBDoN6stOQTaYNF9KNpG2TY3yAAkb6qZANdWCrJ0iWjCgT8LYO9x8i1hDPZOJYtzl1oN578HfvgLF3phNYYEQaZqg2jFlXY84We6dy2Zq7AONlWZ4dbCGekfyvHJezQdYKu47xN73/QL+fSfkO+HAy6FrTMuPJI4pA6GIq37YUg6XZuaG2TpOWy4IozCJ1Gvohnqa2UShcoFW95IPo3CokL4YraQDGUMHz+koE7oPTWeaIlroRCwpCiUQiri3VG6ptx8aQZhGHiAcOq7Ppo2+BFsfGb2+/v/Vho+GQqFA8u6q94DIhCsdsjlMAt2VQmc39JyE1gXZMOih2nUrlOQlQoo90TyBeTNhufVh7wsgAbo+jS5iiOFw8eMnRRGDrq51fHh164A+rA9Ict1CJdDWBkRCch8Quqg3P00DxJK0S6A5CYnZRIEYhXGUWyvgQYjh9fHjJ2GlhJJ3SqWzG0DTFuLSXAl9QOiGentXNMekczS89Tjc+r3a8NHQuYAlJkFSqbB68VNb1zrWUDfSlBmWsD4B9futy4i8U5xRmPj+fulWuO+s6PXeF8DyGyT6WPIcLkwdp+YDDLGKnRDpgXLvlj4g8HWrVFrLvNXBGXbmJNTqAUbAtT6MwqFC+mK0kk7pDUXlqj00CTqZ80LZlKKTGcoBJ+3ShbtudWealF5mCYUSrCDbn027/BRW3REK8+EvX4J5H9QkRLIZVFEokHzgSahmWk3aJUUCHQrVqD5IM8VKLu0SJqGvHr9SaT30qKaPnOR5q1Tglu/B209C51JRUt7elcomU02ZlGhUbV1rSC41YVEbtZZAh9KzTIBCCZX4JPXdIfSa48dP1VBXb16nb8xa0W2Pa9trrkwmE5Mva4WQDTPg26S0S0L0d7FUrs2csYZqDMbei6Max6wK+18KmSxM+T947PfRe3xmpaSyKf3A4VA+IOl8Mu3mXnu+rrffilG0IHDunawxG/hearXnxmLgRHHAey/C3w+LXm/xbdjwwMQ2Jc/hwjTThqVpqAfyAS4gTe1mWlofoL6X5HM1fJIZH5BC7WBeoFygBoZqcd3i1zXtvTRUSF+MVtpOpvpD09FPEDaQTcEKH+mHVIRCNSbV1tJO6NvzWdpykQduiWgKpq+X/LqFasr0+7zl8vCFS2HpVWDWm3D1V5m/oLvPHl1d6+hvpETGWJJRKYTpQCeVCYoX0UINq2ot6xAGaR0P8lojLavFmAQ2PfZ7mHoZkIEv/BHGrJLcphTBc9UHqN9LCQuyoXStId68StgEDaUjb2rgcLJiTKFUodTHyFBPxBIG9OEKxC4NdRvnCOr324hAzLTkDRB9H1D9G3NbgFjqTVA7hY9gqMaEzeu4PI7+vtvHJkq4n4SaTbQIqvFTu8Bnfxa9vv1EePWemFRYKACLnTlXaVkp2n4SYvm3kYZ6lSFsCQiR9LrFf9+SUTj/Q7jqIOidC5/cDnY9w8kmK800J4Z6ICZBEomQYDNuUioLaF+3bDaTuHllUVZ1UAGRTexpy2VoSwmIHCqkL0Yrrc6uPo1jgCCsnxVqaGXSglUppi0XbFhVCm0t7ZV0KERoVGMiFHFNbz8MOm4Rm7rGwJeugvYR8MYDjHrgVEB/I4fkCWu4QYORPT3Fcq0gNdCqIdK1J4cnDJ7jwxpDJWJWmqDZbCZxATSxD/j3XVHSDTDxZ7D6LqlsSjW0crB9wML2hPTdHcl8d7BErKNetG7VUA8fPCej4UI4ibdWQ5BD7bkWG+qpJEICN/kTa9sHKKINT1hECwaqScNKCc4mSnZvZzK6w+EgTUM9zH4SP/4iqMatvwMbHQKVMlz9NUbOfQMIoGudohgzLxDjIu2chBBxwPCUOZylOVfBGOoJUcSJGYWlQjQ7oDpc9It/hlxbKpuSS7wFahLFjt/qmatdt0CxUit7KpVKQMnQZE3+6n4TIg6o5QIJJd4ssVNDD0BN3Lx2uLeHCumL0UqqI113wGE0o6K/mawrbkUPKW6vdjEmbVIfJBFLi2wOhWpMpLNrYAr9uLVhv/8BYMxz/8sBucnqzxskv26hmmmNQZgtH5A0UAXoDJVAJzxHQRBN7cmCsHk1OmeTe2nmv+Dqb0RJ90aH1GcJpFjDEu5v0XsC+wAjg6LBwQcEKjKUYjqjA61QDfW0kjy5bKZWVNZa1pBo0d9IW4yxoY1aqVQCzkrJJrIplMwExIpoSeUBAhWtuwsJGuqBEujETIKqnJqyrjXEmZc2fEA2m6nvcQv7gEwG9joXVtoSumdz5PSTGcU8fd+dkAVWKldqAC51H2BM1xri9YCk7FQbMngQEgiRLFZKPCvpH9+HNx6IQFQH/xWGL+NsU0sgRKAmaHsuS76veZAUbW2ljhMHcIViOicGQgSJAxLmAj1hGo6pJN6qPsCItItPDjdUSF+MVpXC2kqTPNSQsVw2U9ODTIqQDVXYS2pPLptRR6Ek1UUMWkRLiGqsIdFCD/YcYDV0oAd7UM1ae8KOPwLg9PylbJZ5RdUeSINGDVNo7MhnyWWrqMbFqxhTLcR05HWHw8VtainvFKj4CWlQjS1kVOZ/CFcdCD2zYaWtouTboSCRFDnQkECHKhAllL8JySZqJesQbHBt7DsnTsRCBc8pip/aRbT0NoWQCEnalLGlsdlTLFOt14ayqTWqMRwSbZEhkQOscAMi6/dqyzg3UAKdVo4jZPEz+YybgHFAf8j9fAcceDmMWpEVSm9xYduFjFA2KSnrMl5ADoW2tqJrDfVcoBWjcF4gm7r69qtCqc72bmWTldlEiYqfj18CT1wKZGD/P0RgKoc1vHZ/J91zdR+4TCYTA7G0ANUE8ktJC7Lx31uRCgsJqrGnLFBn77Vip4ZmpSQFsrrcR0OF9MVoJU2gw3bEEkpN9LQoxgitxEFYT/0hVkehJNwUwtICkyXQ8wIlYtX7qLdYpthEpy3egQ4XhDU5R9sdz4wVd6U9U+In88+IKH+Ka3jCgCfUxpnJxHTaEiYZVooxVXu1NXYhjmxOyEpRHlgXtylxENafXyoV4OqvwYevweiVoqQ73+FkT7yo1ywIiz+P2qjGzsS+u08mLEgRzZa8Uz6XpT2fbPBZbd81gmiaFyguif+NpEyCMIj0dAlrOImQZNct+oytpkxYNpENZHNnW7bWO7VyfydFyIaaSwJ1HzCvZRPUECtlxDj40pUsoIPtc8+w9nO/VrUnKYq4WkDOBwBDJS2kh2QTJc0FQs9Liv/N/pYpMFTfatlMe+0++McPote7/ATW3N3ZpuEdSX13wJgy4cDR+vBq7dw7XR2ns60O6FKzKSnLMaDvtirx1kruOSSbKC071SUOGCqkL0ar/tDYeZCTdjLnB36QWz008wKhYiA5VbG+mYcbVmUlEWuQCGly7YJ2oJMk9dksT2z8c54rf5KlKrPhygOhe7aaTcOTItIHwwckbPBZoZfNDVTUg1jjKikDJAgSLSEyppm0y+0nwev3QdvwaG7AiGWd7aneR+UKTSVCqtc1n83Qrswk6EpL6TZUjAmp2ZwWaWmtIKsdzEc2pWMThW3K2JAHiCer5SYSIfHmnnYCnbwg656IpV1pmzLafineUG/mA0rlSrDYJGnxc16gobVQj33mtnzeQjKcEtxLy2/I6W1HAbDCS5fClMvU7WmZw8WAGfqSPFUgRLI4wOK8pKAzN5oARnpLdTBUKP1vLxTxB69GuuiVEmxwIGx7jJdNyZtpIdkN6YB14WamtbIn+n1IMFTyOQkBbLI2JyGh3HMDGEq9yZ+WlZI+pxwqpC9Gq66LaKMDHbepZQKdRGdXYCVCERMbUhOgiNaVsAMddGBdrbCXjF6mvSl05LNU8+Fm91LIDnRSNMPccjuH9h7PR7llYOZL8LevRkhdhZVa2z5gMaZZgFEuV4IF9IkRTYEGVUEchdLquoVDoSRGoxYGaDg8fgk8Hs0JYL//gfHr+9mTUCJkMNhErZFo4aVdrOjsQjJmWm+xTLHGJtKOA5INiAw1rA5gRNoGSMA4oFUiFpqGC82vXcj4bVhSIIRBbftQDRBIltTHr2koXeukDfUgzbSEchyD0QRtdZ5uLW3BecX9ov/cfCy88ZCqPYVShUITdmoone24TUn1kUOiUVvuJx6SBWlXkmcufu+rD61M6LvnDqQhPe8DuOIL0D0LPrEp7H2Bk2xhfCUFQ1lkpoWS5ovPTGvGTk00v0napsS+2+DMNOXzlE0o9xyfTaTNJko7N9FlPxkqpC9GK30QFiJ4br2ZF0plevsColAolO5CuQWiKVzwnDSBDqVrDcmL+6GSw0wmk6hAFArVDMkTsXk9JWYwht9/4kxo64LXJsOtJ0T8JuGVXNs+oA9oa31/NybQYYLnZtQyiLFSAibQllAoSQfW9esDXr4tGrwEsPOPYe29vO3J57I1hHkSVkqI65aUzhmy8JFc3ilMExSSMdNColDSolGDNNSTAiEGQdbBCpOgMx9HNDVrpoUsEKdrXluS5psfaE5C/G8saIJGrQI3shkCJNDJmmmhJOcgRTMtqDxAUs3mEucX92P+6ntBuQB/ORjel58L1DjAvnUzLQzrMpnv7g5YtE7eUA93noYnqFFUz2GI2URJfUD1eWxANhe6o3v8w9dg9Mrwpb9AW6e3TcMT1EwgdDOt9b1UqVTCadvHJEKas1ND7m9p4zdLygIBfUCCe6kmGRxkwHdShpP7njtUSF+MVlIHHBaN2vomDSnHEf/O3cWBbZrbEz5ZTaqLGLIY05o6Fa7QkCRhrW3kAe1JGoTNGr027P9HIANP/i888ltxmxIHYYX6RqW9aj4gQQMkk2kslmis6jPdW2qutx9HNmuvegJto2AFMTpn0oF11YLsO0/BNd+AShk2/jJ8+jgxm4Yl8Eshr1tyhlPAgmzKhnpIvdamTIK+37XnsrSpJ9D169Yc0RQSkZ4wDhgENGqz5LBSqQRDNmezmUQowrAJdFLmTsDrlrqhbuM8xQeOayfQSQfp9ltEU7PJHqs4CSulVK7QUyxTIUv3XhfBiptHKN0rvgBzZ4ra056rs02TMNPCgqGSPW9B5J0SN9TD3UtJcrjBAEKkZqWUy3DDd2Dao9AxGg65OpoVILBM+4AmNvUUyzVsWFcgNhHY8QHDU8ZvQSXeWtgUatYdJKzjBJRVTeoDfO6loUL6YrSSygNUUSghgucq2q1ZgFF9oPLZTG0omdZKimiaHzB4HpH0ugWldKdDo4bRbU+QQAfUtk8chMXZDWvtAbueEf3ijpPhpVtEbUouERIerdM8ga4jrbOBhsJAK2RzOB+QVJZrMAofzXxAXJKnqyMHs6ZFcwAK82DVHWCv87yprv3ZlIiVEvK6tZK+GJSk3g6yeViCe2nBIDRBW+nth5R1SDpkzNqw+N5SXZInaEG2CbI5JJso6Z4bsiBrUeItSUE2LIo4GTt1bkB2w4iEDZCwcXdrVkoDm2j4CDjoKlj6k/DRG3DVQVBYIGZP4wD7ZqCacLlAUjBUWCBE0gGRgyB/0UyWKyQQIrGsw0JAiMlnwHPXQDYPB/4fjFtLzKakDfWQjMIkEr1xe7Vjk6Ts1JBxQFLfHVaSJy2r2EgdZxB8dytZLp/4baiQvhitpMNG6wjCgB2xBB3oEI4lKaKpNmgwpD5y4oDHRiezGJfkCXAvJZFSCZmIDU8YPC9SRNvqCNjsUKAC134T3p4ibpOVAUORTWl8gP7zlhTRFDKBTopm6A5J6a7eS01sirN6usrz4MoDYO50GLcOHPB/kGsTtSlJ8yqoD0hYtK4FYUHpnJaaMtVELEHxM6DcFDSfcbFIAq24uhJLvAVMehLYFPehYRFNNooxSRPooFrbCRPowUjqm0q7hESjxn1AE3ZqvaFuA/kJMXZDyDkJCeK3miTPiGXhkGugcyl4+wn4+2ERildoJfEB82vPW0AfkLCZFqbJn+xeChkvVVmLzeLuUDrbkT3p2KnD2/Mw9XJ44NfRL/Y6LwKMSNpU3XNbFT8LYeRwIak0XxVprT+fLG5Ts5iyPucqXC4wN2EDJCQTtFnuXalUgtqUBFgXUlkgvr81Y6f6xG9DhfTFaFUD1VYP8qB0oJOgiAMEF4ltColqTOiA687FRiIW7wQHKch2tHbAYbXto7/RU2wehNVR8n3nKJOB3X8Jq+0MhflwxRejye8Cy2IxJlHSE3Ajb0Q02Uig0w4YCjq0MkGhMU+RYdd9Hd57AUaMh4P/Bp2jFWxKIBESUo6js55AawVhaVfShrq1OKC6v4XYS9pyWdpymdY2DYK0S8vrFlQjPXmsFEKSJ25TEoRsyEHRLeO3wfABiWWCwvmApoj0QZDlgub3d0jfnVzeKWSzOAkivR9JnrGfgoOuhFw7vHgT3HmKmE11vf1m+8lgACGSNdOCNGUSINLL5UptVlAYyanW+cm8mk8KVyCG5nFu9bqttWAK3HR09MPtvgebTBK3KelMggUB46VaQbapskC45y36O0liykFgE7W4bnUfEAII0dov9RTLVAlZVmY4zR8EEFu50nxu2hAi/b9kjUiwcYK9IRXzA24I8b+TRGs7RCezft2SOeCRQYsxrZFoISYrQzJNy3kBte3jiVWzjarfRCyXhwP+DMtvCPPfh8v3F9GSTCsREhS537RgFc4eSEbprLFSQspxWEI0JSjGRHtNhbM6/pfM6/dC23A4+K+w1EoqNlURTYkGDQYsfJQrLZL6wdDZbXLdQqNQUjXUQ/mANAynINctXUM9hMZmPX5rjfoKgR6CpIimqg8IEL/12dNbLFNoimqMbAramG1y3QoxRmGIZy5JAyQk6zLOTm1aIBqUoeN2crjasPgkPmBhez65LXzuouj1I7+Bxy+RsSlJXhkQkT48Fr+ZaagnKFjFY5awA4eTgKH07enI1xvqzeKl+b0l1s78h31e+gGUi7De/rDjySo2JZULDAqqSQFiC53DJQFCWGlcxW0K6QOS1HEgjLJAIjBUwPpb/Ds3i72Hho3+l6yktMDB0EVMNFwkcCczCaoxNPq7mVZjSL2vrgSbee0cBZisDMkKHyGRaO35bE3Tf05PYcD3VZ/HRYpoHSPh4KthqQnw0etw5RehZ66XTcMTolBCDq6tP282KN1xm5r6pVrhw0bxE2BO9yAUZJuyUop8L381+2cmQyYLX/xfWGEjNZuSDasKF4QNa8tRZbE2DcJCajYnKDKERqEkKsjWkNZhfEAS9GfI4mdSNGr19yM7QxZjEiDRAiRh8b/T3HeHRKTXv3ezazc3pE0J4re4fwiD/kzRAAnkA5KwCeYG3E+SynEMjsxjEjRqP/Zs8EXYqQ+NfusJ8Pz13jYliSkHA41aqSQt7IWL35KwiaBxfpjWGpYGCBHgumUymboP6B74XuqcO40/t59Fe2kurLxN1BzK6pTH6swdOz4g0Z4b0J7432lexwkIqqk21EtlehPM3bGCSK/G3e25LPkAjMI0TdAQ1y2bzdT33aa5wJC0y3/FSqKzG9e1DioPYITSHf2dBAWiQUigIRm9LEwQlnzjDHXd0m2cYWxKoo86t1kRbeRy8OW/Q9cy8M5UuPqrUBq4KN9qJWmmNehaGxk0GBrNkCSBDqu1HdlTKFWaBmEDNmVUbGrtA4ZP/QPfzV8f/WfPc2CNXQPZZKMYk8lkEhWt5gZEx3UlYDcMFgqlaUAfUNYBksVLdamJsIWPJA31kIlYElkHU3FAwMZsPpetMfKaN9PCx29JfEAum6kNbtNcyWalhPOTUG9GJbluIZL6JEAIgDlGC7ID+sntvgebfQOoRHrpr93naVNyNGoovf1qQz3JfhIyfksy32JYW45sAF3r2nVriv4O17iK/k4LHzB3Jke/833GZWYxe9Qa8KWroK1TzZ4kDfVKpVJH7QaMA7x8gLRNCZoyg6GRDknBGTYQ6fWidVggRBJZrlA+YESKOGBI2mUJX3U6Z+sbNP5+zZUOkR4oeE6SQPeGS6A727K1IKxZgDE3KBq1deEjpFYrJOxkBkSkQzJ9+3mtimhjV480pdu64N93wY1HRdAWJ3taJ2KhUShJJr6HRjMkaYAMBgUv/ncXXpVKpb6ZB0Cj1ijdA52jZ69hpcd+CsCfOr4Mm309gE22KN3R30m+n4Tw3Ukk3kKjUNIUP0MUrKD+DM0xdt1g4IZ6uVwJPLSydTEm5FwSSDdzI1giZm0/SRQHhGUUJit+2mOlhGSmDU+Aauwt1n83skN2mHd/K9Gw0VZN0EwG9vg1rL0PlHrhLwfDO08525RGliuED4g31JuyGwaBVdzUTxbCNq+7kgAhAqKIoUUzrWcuXPlFxpfe4a3KWJ7e/o8wbClVe2rnqDBwQ31BoVRjFNoB1g3OvZSIBWaooW5t6HhoRmEaVrEpZpqH7x4qpC9GqxowNNNqrN4oHTFZCs2VTBs17EMzIsFDU6fiBwrCWthUislxhNH8S0DFDzioCmL3UsEGnRPiFGrPTuaKm8EX/wSZHDx9Jdx9mqM9rbUa4/aEQKEMS1GMCe8DmknyhJOcShKE9RTLFErRNQ1ajOnPB/z7brjucAD+t7grN4z6kro9YI/SDXV/PKcJNThkES2J1nZwFEqC2Q0LBq34aUOSJ0lDPX7+wki7JEeihWA4QspZKYGKMckSsUFogBhiFCYBQoT2ATXfbeW6xfzxQPd33F8FYTil8QHNrls2B/tdAp/cDnrnwhVfgA9edbJpRJL8ZJB8QHNmWhRvWmEUBmcTVYEQzTTSC6F9wABxQLEX/jYJ3pnK7MxIvtL7Q/JLraBuT1wmKM4ejq8qqC6TCSvRm0QqzFIdJ7RscKuBow1gKCtzrgL7gDpTpvW9FAoMlaihXgPVDGmkL9Er7sAGQqKERDXHbUqCjguGRk1C4wiNbG4hDxB3zCHQqGkaIKECniSoxtBo1GoxQ6QrvsausPd50esHz4GHzk9tT5IJ1CF1tiObElC5Ag8braFRExQ/Q8sEDfTMNSTQQaQmBvABbz0Jf50E5QJvfWIPTitOCpas1gtECdCohoKwkLJc1Xujp1imOEBDPaQ0AKRDpIcK6JM11G2hGqt+MvSA7yQF2VCI9BF9KNxEPsCIVFhExQ+IbI7tJQM11ENftySFvXmBwRm1eylRLqB/L7Xl6gCnge6l6s8728KwiZLIqSVmgrZ1wkFXwvgNYN5MuGxfmDM9tU21HK5Z/DZITZmBrluxVK7F5CFnpTSXU7Onaz1/kFgpc+PnqVyGG46AV++Bti6Oy/+I1yorBPHdw9pyZFrM3YnHk2HYRK0bIHUZPIuyXKGbMv2fp55imWK5CoYK1wBpdt0W1FgpYWuCNn1AgnvJwabFtpD+0UcfMWnSJEaPHs3o0aOZNGkSs2bNavqZTCbT779f/epXtffssMMOi/z+oIMOUv42yVZ7PlvTOhwo8al1xAMUYyFOU0qAHAidQDcJwuYHRKJFf6d5EFa1tS2XoSOgHIc3CkXSpkS61qHRqM3lAVJ3oDf5CuxyavT6zh/DE5emsieOChzYB4STB4lsal1orLMtQlO6W9/f4RoOze/vubFANReASTC8v8L++69ESLLCPFh1Rx5a/3QqZGvXWHulQRGH9gEDPW+hE+gGVOMAAXTwhnoSjc2Awxih/t2tMAmgNfU9jmgMmUAnaV4Ha4DUmqBN2ESB0agjWtDMe4plSoOQQJfKFXoGkAip3kshmA2Qdlh8qFygL+5u6gMGJzYZ2AdUfbe+rAukk+dMlMN1joIvXwtLrwKz/gOX7w8LZqWyaUSLuDtuU/iYciA2UVxWNZwPWFAo1XzPwitkgx+SyXGEnE0E8XpA335SqcBtP4Bnr4ZsHg64jH8WVu2zSf88xRvqAwIiqwPHQ+UmibTtBwdFbAmR3koKL25rGDBUAiBraGZaW+vifvgmaHJG4X+VRvrBBx/MU089xW233cZtt93GU089xaRJk5p+5t133234d+mll5LJZNh///0b3nfYYYc1vO/3v/+95ldJtbpaoD5Co1Fr056TUIICBzxWaLhxm1rROUMn9M0kQkJroiVqgARGo7bSR+4plmtadomv3aePhU8fF72++Th45urE9mSzmdhAn/6fucFCpCcZDBVKHiCJtEu8cB1iJQ3CQqOIa/Z89Ab8eR9Y8CGssDEceBlzClExLzQDpHkCbSsIC51At+ey5PsaLa0SsVGdgYoxbSmKMaESsQRsonmBk8PWzbSwzb0khY8aozCQ7x6ZIA6wlogNVgINA++74eOA1k2Z4A2QFKjG0MWYVvdSqAZIVwJk87y0vnvEOJh0HQwfBzOegyu+GOlRJ1yJEOmBr1urhnrVnlBgqLgPGIgNWgfVhG3KNGOnhpfkibEcKxW461R4/H+iX37uIiqr7xyUTQQJfEB36HpACmBdMFBNdM9aAkK0bKbFGI4hZFWTzNyo3kuhmjLJZFRszUrxBUOF+RbC68UXX+S2227j0UcfZcsttwTgkksuYeutt+bll19mzTXX7Pdz48ePb/j/DTfcwI477siqq67a8POurq5F3mtlDW/PM2t+YcCgJ3Qxpl9U40IrPvQoxEoi62CtGBP8uvU5sEqfREh/3co5tYA+TBCWjMoV2AG30EiP25rq/t75x9AzB/55CVz3bWgfDmvtkeijwzvyzO8ttWSlhEvEkiDRDKIZAj9zrZppgyXL1VMsU/zwTfL/tzfMeQfGrgmHXAMdI5nfO73hvdqrmvA1D54HpzHbKngOlUBnMlEz7ePu4sA+oHovGfQBweKAJHIcxhrqoX1AImbaIMlyadFwXVarhnroBDqXzdDZlqW7UGZeT5Exw9sXeU/oQvqwFsUhiCMIbcTdoWcTQeth0fUiWqBzVGOlNGEUusy4GbMKTPo7/GkveOtxuOogOPhv0N7V8qMjE8RvNWSzkSZoSG1kiKR/Mpkoh5vfU+z371ZR2KFygUTFz+CslJhN9/8aHjov+sWe58CGB9ITQ/QHbajP6Rm4CRqYVZxm2GgwP5kICBEWDNXKB8wJ3ACJ120W9Jb6nYtYtSmYD0jEKAzru/uVd4rb4wmGWiwR6Y888gijR4+uFdEBttpqK0aPHs3DDz+c6BgzZszglltu4dBDD13kd1dccQVjx45l3XXX5fjjj2fOnDlNj9XT08PHH3/c8E9rDW+BIJrXE/ahqQ0aTDIcLjgivfWgwXDav81RH6EL6UkkQkI74JGmGyDNda270ibQmQzs/kvY4CColODqr8Fr9yazqRWyebDmJBia0t2qmVYuV2KzG8IWYwbezAOjUPruo2WZReayz8GsN2HMqvDVG2H4WKAeDI0KlogtRMPtZ4X3AdUCUXMfEOq6QetiTGiN9FaFRogXPmww03pLdT3LcPqRze+l0LJc1USmWK4MjGgKbFOyOCBw8TNhQz2kD2jVBAl+3RJR8fuYaaF0dlv4pXjMEnrftQKqqV6L+YUS5QEkQmra9mmboOPXhy//HdpHwhsPwF+/DMWelh9L0kyryXMGRjW2YoGFuo/iEiEDzZOYM0ho1GZFtAXB0ajRPbvBtMth8unRDyeeDptHtZ+4bwg9wL5VHSc0Qt6S1Gui/WSQZLmsXLckcs+hmzKp4rfQufcANlXjAFcw1GJZSJ8+fTrjxo1b5Ofjxo1j+vRkg03+/Oc/M3LkSPbbb7+Gnx9yyCFcddVV3HvvvZxyyilce+21i7xn4XXmmWfWtNpHjx7NSiutlPzLpFxdCTfOwUA0DSQRsiBw4aMVsrkQo8GMCLyZt0Q0Bbpu2WymrmXVAhkTLgiLkAOJEOmBqcEqCXQ2C5/7Lay1F5R64KqD4c3HWn6spQ8YJKR1EiRaaOTAQNdtQaFE1V2FlsAZyKbQvrsjn2Vsdg6Xt/+c3EevweiV4Ss3wsg6G2uwmmkW5yS09AGB7IG6/2tFDQ4VPCdjgdkKnuNN7XDoOFsF2Tg7oJVcYChmmvZgKJfVqgkaunkdt6kVKyWUvNPIGpuoNYAltA8YSCos9HDfuE0DslICa6RX45JKBbqLLQqyLvvJipvCIVdDWxe8ejdc/XUoDXyPQDpkc7iY0lYDBOzJBaaJ30Iim7+Uu5s93rkw+sEOJ8E2363b01NvEoWYTQTxHK75dQst79RsgH1oKaVW8k7RgO/A7J24TFA/KzQYCpLIPVdZKWHjN0u+O2n9zTWeNFVIP/XUUwccCFr998QTTwD0O4ipUqkkHtB06aWXcsghh9DZ2dnw88MOO4xddtmF9dZbj4MOOohrrrmGu+66iylTpgx4rBNPPJHZs2fX/k2bNi3Ft063hrd4aEKjUKp/p1Su1DSGFl7VByqYJlp786QnXjgOPUizFfo7bCLWnE1g0QEP2rCqFomY83XL5eELl8KqO0YDHi/fH6Y93vQjNR9gpIhWDfa6C2UKAwRhoQvprdAM1Xs+m4kosiHW8BbBc+ihZ5nu2fxf+y9YM/sWxeHj4as3wFKNTeDQfmlki+AZYkMrQ+m2t0ShhNXXhNhwqFbyTqGvW29xQFRj6JkbrZL66vXsyGfJ58L4gK4WyOYaozDQdcvnsjU68MDgjLDyAK2uW6VSCT4oumUiNhgJdItZKYNZRBtw7s4gUbpbXrf2XJDhvtHfatFMq+25Yc5RZz5H9asPrLdfZaY55gITtoYvXQW5Dnj5Fvj7t6A8MPq1VTMtnm9aYV0NBjOtlbRqaHnOUQmk+UKzU9d9/zbOyF8a/Wfbo2H77zf8fjDYRC0ZhcFZxXGGukIzzWG1GjjcXYjNJzMDqhmMXKBqk40mf9XXWGQSzB0wX/K7bqYK6UceeSQvvvhi03/rrbce48ePZ8aMGYt8fubMmSy33HIt/84DDzzAyy+/zDe/+c2W791kk01oa2vjlVdeGfA9HR0djBo1quGf1qoXiZsHYaFu0OHtOapN3I8HQKLMqSFjQncy+7enGjy3x5JIdZuMUYKgtSTH4Em72JHkSaqL6FXUy3fAQVfAJ7eD3jlw2X5Ni+n1poyNie/xe3agADp4U6YFQnZejBYcLIFO6AOCPG/dH8MVX2AdXuf9yihe2+PKSNZloRU6EWvVTCuXK4OGSB8ooJ8buLAP9php1QS6Uhk4WJ0XWms7YRFtUFDELeUBwt1LtaZMC6ZMOB/QvBjTIMljZOj43J6wKMsGmwZ43qrxeOiGeqFUoWcAmaDQrJRWA+wHs/jZKn4Ldd2y2UyNmTLQeRLJBVbdAQ68HLJt8Pzf4YYjByymt2qox+/5YD6gJYo4bHEIYoj0VgCtwLn3/N5SE2RzwDjgmb+xzTMnk81UuOP/t3fm8VGV1/9/31mzJySBLGyCIqAgILhiXSpS96oVq2i16s+ldcPWVlvbr7Xfql/t3lpraV1al6K1tdW2WtEqilSxKKigoLLJTiB7Mvv9/XHnuXNnMjMJkNxn0PN+vfLSJJPkYe59zj3POZ9zTulpMONWyPD33e79DX1v7+TWvVTk99otQnKdv3Wd4XK16HXe87vccmp319SbH+By/A36bgPcir/1JaGurbd9r37A7q3HvavdB2pra6mtre31dUcccQStra0sXryYQw89FIDXX3+d1tZWjjzyyF5//r777mPq1KlMmjSp19cuX76caDRKQ0ND7/+AXSQejxON5i9xy6ShzMvQci/xSIRQKNTj+0YiytByL4OLjazfHwj2qwnSGY7R0t5JZc+ZRxR74wwt91LuMwmFQvj9frzegdtAvakZ+iX4uYuU9KKSd3tquLUmpbIqjIEnygCHY1brncwkh7MlT8GV4u/pwTBQCrMfg0e/aPWSfOgs+NKTMPyQHi/ts6LJpevm83ooCXjpisRpD0WzDj5r63Y3KdNbkMHtYSfWmvq23wbcLnW3wMNnwcYltFHGBZFv873ifbKvye1hVRnK5sy5A2owHLg8GIpCU6L1Evx02XYHfR78XoNo3KQ9FMuqXHT7INbXtg6u2oBeKglSCRB33iOw7pHmrmjO96nd5eqG3kq6nSo+twbXFtqgQeh9QJyOwbVq+GFbKEpRlmvjdqKot17bWnrb91Ld4HZrF4CKYj+dkfjACyH2nwln32e1d1n2KJgJOOMe8KTfD72d4ZQN8HkMOwA40PR1XpJblQTgaK2aU42qpzINrOdrZUnPa+NaZdrSP8LfvopBgnmxY/lj0eXMzCKa0dGar7QXEZvbbVUBKop9NHVE8tgAlwOyvfW1diRk3Bjwbf2twrMBSlTYa2Way3EcNcg7U/BkmqY9J6HQetvv7noKKpDeV8aPH8+JJ57IZZddxm9+8xsALr/8ck499VTGjh1rv27cuHHccccdnHnmmfbX2tra+NOf/sSPf/zjHr/3o48+4pFHHuHkk0+mtraWFStW8PWvf50pU6Ywffr0flu/aZps2bKFlpaWXf7ZE0d6OKp+CBXF3axZs6bH949thENrh1BVEs36/YHgW0fVEEuYhHZuYU1bzwfnV6dWkDAr8Hc3sWbNTgCqqqqor68fEDVo72oGdxWN0Pf+yDrKy3qbQO22GlWtqdqXHpB1li+6pkbtJWjd1Z+qxh7B9DOzBtN7zUBrOIiVF/mSgfT8BzHX+rUWshKt12DMAL5HXTut+2rzUigexC3BW3l/S22vzrNbTphT2dwVjffYV+qeNwyrJN0NClrZnEvV6HIQzTAMyov87OyMJPd6cY/XtKmDWHGBOc+u+gF9DMi6tN9A7blu2rrzVxS6XdIdiScIx+I9hj+p/eZmSx77XuolMatj2Ghv1Q1uXTePx6As4KM9HKM9FGNIefr3TdN03Q/obb+lBlZqqCbqtRTfvTWVF/nY3Np7VXG/3EsHfB6+8Dv48/+Dt+dBIgpnzrXaHCZxJkDiCbNH72qnotGtisLe2jvpmZWS/yzgtg3wez0U+T2EognaQlEqS9L3eSyesM9xA3qufOthq+IBk61jzuNb75zCqEh+hbwO/63XgKyLfkB5kT9vIL3N7XhAhrI5c5/racnTRxugoc1jry16XYoHqFkD8YQlqsmM1YRjqYpCt1sr99bqdXdtwF4ZSAd45JFHuPbaa5k5cyYAp59+OnfffXfaa1auXElra2va1+bNm4dpmpx33nk9fmcgEOCFF17g5z//OR0dHQwfPpxTTjmFW265pV8V1CqIPmTIEEpKSnbJEdjWHqK5M8KgkgBDKop6fN/f3EVnOEZdRRFVJVnk4QNBUyeRWJxhg4opzdispmkS3dqBicmowWX4PAZdXV1s27YNYECU/mWOIEM2J6wr7H7gw+6J1stBzE3nuaI4/3AoVVLl1vvk83oo9nvpjsbpCMV6KJvVe+T3Gu615OlV0dTPmVUVTH/kHFi30FIOX/CXtGC63Rext4OYy07Y1rZw1oNYLJ6wA36uK5tzJkDcLTGH3oMxA36A7twBD30etrwDJTVw4d9o+kcXbGnKGURze2Bd0OfB5zGIJaygS6btsVUofvdUKL0OGtTgPNttuXpx6N3ab+pvWYH0nmsKReN2NZF67rixHsijaNLQ1zo146a3vtbuBtEgX1sujQn1UIxgWfp70eWymsn5twrKBvTxUO+2DVCB9Ew6I3G7p61rNqCvPdILKRijITFb0cug2H5Ppk04Czw+eOJiePfP1vDRs+8Hr7UO57+9M9KzwsntHrvOv1VQ1Q29CH3cFkKAJQQJRcNZbYDzvRswu7Tk9/D0tdb/T7uU7ZO/i/nOot4HDWqoTs1ZmaZJDAXkSai7XJ2a3EeqVVhmhZPb89KgDwO+NSRAemuH6XZ1qmEYlAV9tHZHaQ/FqMvodK3WaRhQ5vLg2t7acu1ulcxeG0ivrq7m4YcfzvuabP15Lr/8ci6//PKsrx8+fDgLFizol/XlIh6P20H0mpqaXf75YASMMHj8gR6DUgHwxjB8HoqLiyly6eATCMaIEsPrD1JUlB78jCdM8IUxgJLiYrweg+JiS622bds2hgwZ0u9tXkp7ccI6tDw4C1GJph6chVHKBdZDujsat8vJnbS5rGaCXWkT1I/vUaAUzn88FUx/6EwruL7P9OTf6qMKxUWHPl8wJt15dleJZjlhuVWNhdTeaUAP0B3b4Q+fh23LoXQIXPQUDBlPRZE1RLv3voguOmFFPlq6olYAtDL9+3oc1b5NfNcxbDTn8ByXg5/W38oduNbhPDtV+9naBOnoadvXYIyrbR2S90i2JKhTReyWDfB6DEoDXjojcTrCMWrKgmnfV++RW31RofeKQh02oK8Vhe4GY/zQGspqA1SAJuD1EHRJCFGIwc+S3npt28FPHUG0nmuKJ0xHUqYf13TA6VbP9McvhPeegscvglkPgC+Y1iqsI0urMB0JkIKacZNEVXf1WlHoalLGR1NHOOueU/dXScCLfyCqif57P/z9euv/D70CTrqTsh1dQO/99gvKD9CQALGTaVnO3pFYwp574Vo1kcNP7AjHegTS9XQW6GNVsYtrUklpV6qJ+kgqkJ47jlMe9LkmhhroWSkFNWz004DqiV5SUrJbP+9JqtcT2Xv4k0gmD7zu3J/Jv2X9sXiWxEUiuVADA+eeUf/+Xe0R3xeUEwbZN44ONWrf+yMXhgG2DtDuB2PyDYls7bLWWemSmgl6Hw6Xag/Qz4d6FUxXA0gfPgtWPQc4S4ML53Co7pFsagZ1LYv87g33TXPCsqnjNJThlvXS13rABtW0b4Xfn2oF0cvq4cv/gCHjgdRBrC3LexR3DPZ08yBmJ2WyvE+t3TptQC4nzP1Bg731ke7QENhTpaPZnif24EMNzjNkD1pp7WnbSxDNzXvJ9gOyBNHCsQTRuOXDuXoQy+MHqGeMW6pm6MusFPd9ypSKuHCCaPkGxjsP9K6140gbgNrTh9PR2qWvc3d0VKdms91O29nvNmDsSXDuo+ANwsp/wGNfgmjIVjVC9mCjbScL8Lq5eobL43c716QjoZ4viDYgwdjX7k0F0Q//Kpx0JySFGZBKqGeiI/iZGvC9d1SmOa+lm0OQ8wVAdXYW6H1YvA4b0IuoRkN1Q/Zkmvv+W29xnD29lySQronddSRVEjfbA8H5dbcOq4DdOiXbmlRw3eNJ/zcPpCPtdMKyOT22It3NkqBeVCg6FE35nLBQNGFVE+Byi5A8D067R5urBjil/s5W4TKgD85AKZz/J9j/RIiFYN558O5f+lxJoOcAnTv46aYzr1SNkP1hnho0WDgqlAFRNDWvhQdOgu3vQ8VQuPifMHh/+9v5bIBzD7qaTEs6fPlUjW5WpZQG8l83Hc6zSiS09lKG6257p3wHMVXd5N51U22CIIcNsPvsFk6LELUmt9txQP7Ah2HoaYOVNZCe/FqlS732oe+2280ESG82QLXm03MvZbtuGg7QvSTUtbbkydHeyZVZKRnYivQ8tjvg9WQdILvHjDkBZs8DXxF88C949BwIt+cX1egIxvRx0GAhiaF0tHfqWxK0H9djmvDi7fDsjdbnR1wNn7vdemjRe0LdbuugoUK993hAYbR2aXMkrjJb5Q4k+ZJpbRp83EIcOp4SQ2Vvq9oddbetqvNv5fPfdHQWUHN3MtnT6lQJpO9l2OrvHIF0O3DtkuIDUkH7eJZZHmqdbhpfcDzM8xhgPRmxwjPA+TLQ1gHazax47vKyVBDNfZWlaWbvazvg181fbJW/TvgCJGLwxCVM2Po3oLAO0BV9CqK5tx7I79DrUHzYfa176Y/cbwexrcvhvs/Bzo+gaoSlRK/ZN+0l+Q5iag8Gfe5VEkAqmVYoB2i1ty11bs+HXL8OHO4jygnNZgPSDtAaqlLyHaDdtEmGU42WNZnm/nXrrUVISmmpIaGexQY4h9a6Kc5QbS2yHVhbNSTTnMKMbAl1rQfoLDYgGk8Qilq2yt0gWp6qFA3+m9djpIazZwmA6pmTkL+aSEdf63w90l1p7bTvZy3RSKAM1iyAB09lqD/ZkiPPGc7NyrTeh1er6j33Kwmy+QHd0XhKDKWhMs0VRXoiAf/8Biy40/r82G/DzB/YQXSw/FcVf8hnA3Qom7MlrsDZI70wKpxSNsC9/Qa9JWVUQt3NZFrf2qoWSlWK03a6PTMNehFDuSmEcMSwstmAPfXfJJC+l6EeCNnaqJimSSKR/jpX1pSntUvcbjXjciA9j6pRR3uA3kqCtLR2yXPocT7I3SrDVX8PcinS3Q+iFfk9dkui7NUNLvTZ9frhrN/C1IsBkylL/4dLvf/I6jw7D9DuKtL7chBz1wnLl7xK2QCXBjKzKyXd/XDd1v3HUqJ3bIEhB8Alz0H1qB4v60sCxM1ADDgHxeY+iOlo7QK92AAXg5+VdgKk53q6o6mhfnoU6YUx3wLyK5t1VO701qtRxwyAfP2RbRvg4nsEKbuU1QZobO+UMLGfr050HqCz+QFOO+Vui7feFYRu+m+Q+vdnE2fobMmTq6etnrYO+YJoLvkBo46Gi562BqFvXspPOr7JULbnPcO5K4ayroczQO3EtgGu3ku5bbd63zyGu9XX+Vrz2WrU/rhusQj85TJ447eAASf/CI69MS2IDvTeJkhjRWHOljwafG+7PWcBnQXyKcBbNSRmexNEqueJq0nQPGcBZ1vVAZlJkINUoqgwzgI+r4civ/Xvz3qGs6tTd89OSiB9L8MOpGd5kJsmmLivSM/XbkZHqxlIOaFZDXCy13aVDkV6JJa/T5uWvtaFUYpvrSmPE9bt/poMw3AcxHKrGge8pNvjhVN/CtOvA+C7/kc4r/1+7MxZxnqsNbmpQulDKZfLB+jyPE5Yi4Z++6ny6ejAqhpXPgsPnQGhVhh+uNXOpaIhx5ryJNM0zEiw/l7vKhQ3neeAz0Mg+ZDL3iZIY0l3npY8HsPdgYx9qkpxUYUC+UuDlQ2oKnHv/u69HYcKXLs4bLQ4XxJUjw3Im1DXEEgvceyjfG2C3PTfKvNVE2k6QPelvZPbwZhyO/jRU8SSupfcv265qol0tHXIV93gqhBi6MFwyb+gcjiN8Y38Ofg9PE3v9XiZzlkpkH3GhY65JPkqCtsciWJXxVB9aO2yxzYg0gXzZsO7T4DHB1/4HRx6We419aXfvpu2uyS3DXC249CRBM3+PNGTBE2d4XquSacNyDVzQ8fcnVQyLbcf4OazBHrrka4nHmCLawfgDCeB9L2MfIF0pyLczbi1J0+7Gbu1i+uK9NwHMdsAu3iAVo6qaeYKyLo/1C9fby0dGXHoxQmzH+Z6gjFZ2wO4eYA2DDjh++w4/CYAvhT7Czx5OcTC9kvU++Z6Ow47AaKpNDgLZXke5jqcMBWwi8ZN21F20i/KmKV/tA4YsZDVW/9LT0LxoJwvTx2g85Vz6tlvhdLaBfIPi9aRBM2naNJ1gM5XlaKjtz3kt9067qWqZAVMdzTe4yAWT5ipQeiuHsTyKZo024ACUTZ7HDM3srcJ0qdEyxaM0XWAztciRJcNKM0TjGnpjgDungWUH9AeivU4M4VjCWI6ZhMVgiJdUTsGLn2OzYF9qDeaOW7RRbD+9bSX6Gjr0OvMjQKrKtYxaNT597JXpvWDGKprpyUU+XA++IrhvHkw8ey8P5LPD2jpdl9Y50ymZYpqnLMTdAwdzyeG0uUHFEpVitPHz9cytFDmJKj1FFJbVX3Vqbn9tz0VjkogfS9DKbsTpkkiwwAnHP3I3TxA52s3Y7d2cb1Huuq1XRhBtKDPa5eNKEW8IpEwtZYG51OhuBkcgvzDRnVcN8hfXqZD1Wge9TVuiF5B1PTCO3+Ch86C7ua0Nbqu+srbH1nPwzzfkEgdqsZiv9dWNrdk2IBwLE40vgcHaNOEl38Ef70SzDhMmm311g+U5P2xvh3ECicBoqO1S29r0tLTNpkAyXYQ03eALjw1al8G1rl5gC4v8tmV55kBUGffTXf7I+duyaP7uhWSH9CXmRta2jtla+ug6QDdpyFjrivRlO3umQS1/TcXW7w579tM39v5vpVoqCbKp2x21QZUNHLfmHtYkhhDUawN/vB5WPGU/W0dcxIMw3BUghVGEM0OyHZl8d802e6KPLZ7j/sj7/gIfjcDPn4diirhwr9aw2p7QQWks/oBGivT4gmzx9BhdR8FfB6CPg0teQqpMq0ot+3W4Qd4PYZ9f2dLYOv1A/LEcVy3Ab33SNcVx8kWE2zushLqu2sDJJCuGdM06YrE+vwRjsYJJT/aQ9G077WHo4SicSKxRJ9+V7b2Ar2xfPlyjj76aIqLi5k8eTKvvvoqg0qDrFzxTlZFekLXsNECy2RC6sCuVDCKLoc61dUBkX3oraUvIFs4iqZ891JL0gC72Wu7stjPE/FjuDj6TcxAGaxbaA2VbF6npbwUnGWBuVWNrl+3AgvGOA9imYF05xp32QmLheGvX4V//6/1+ZHXwOd/ZfXW74V8LUKcymY36YsT5nrLqWDuhINywgZpOIjFHCpmRWFXExXinAR3lc12b+scNsDvNVw9QOcLDrW52dbBQd5WYXZpsLv3d66WHKZp2tfSzTWp+6g76fM7Ueprtw/Q+WcSJO8ll58n+YZ76qhO9Xs9KVFNZjLN4b+52Q4zvyJdjw3wllVzfuTbfFB5JMS64fEvwcKfgWlqC8aoQIvy+xWJRKolj7tnuFRwKLNlqC4xVD4bsEdq1HWL4HfHw86PoHKE1QJoxOF9W1Py7+XzA9xMpjlFNZk2wPbfdJ3h8rZ30tWarzBauwBUlVj3SeYZLhpP2M9hLXGc7p4xPW1iqDxzSVIJ9cLpLLCnyTR3/yVCD7qjcQ74n39p+dsrvv85SnYhaLN8+XIOP/xwrr32WubOncuKFSs4++yz8fv9jN5vbNbe3/Gkf+9mz3ZIGY5s05V1GeDKkgCbWkM5g2hej0HQxXYcqYFeMWLxBD5HL0172Ki2DHThBGMq7QRI+nWLJ0z7oeCmmkEdxBZGJrL5C3+l8e8XQtNKS6kx/TeA+wfo/MNG9fZGzVpJ0L1nGejdparET1NHuEcyTbUGKAl4dy3p2LUTHrsA1r0KhhdO/iEccmmff9ypIDRNM62SSdcBOl8/y9Y9VTTtJoNKsx+gw7G4Hch2+yDm9xpE4yZtoWiaCs4Oorl+EOtLv/3CsQH2AbrEvetm/T0/rd3RvEE0N8k7dFy3Ir1AEiCQuk+aM2xAdzROJOnoDnLxXnI+49tCUWrLgvbnOgbpgsMPKKDeqPZZIM8B2vV7qdhPVyTeM4imyQZU5mnzqNN2hwjywPDbuH3sH2HxXHj+FtjxIV3dZwJ6rhtAc8YZrj0Uswd8u+lTKtttmtbAPGeAur2Qq1N39bq9/Tj87SqIR6DxYKudS3ldn38838w0HWcBJapp6gjT2hVlaFWx/T1dSdCKvMk0XfdS79UNOpJp63dCa8YZzmnLXW3Rm3yPIvEE4ViCIkclky4xVP45V5rEUDnWZJqmo73T7vlvokgX+szVV1/NySefzG233ca4ceM466yzOOKIIxg//gD8gQBXXTKbQYMGcfbZqX5lulq7KFVnvpJu1wPpSWc1MyBrl5UU+7X0tIWeDoauDHShDRqElNI0M4jmzNy72R4AUg+hHaX7w/97HoYcCJ3bmPLCbE72vOZ+MKY4z3XTrEYtJBtQlUMB3rY7+63pA0uhs+5VCFbA+X/apSA6pO6jWKJn33Ztyua8E9/1BGOUg5WZBFWBGI/h7vtkGA5lc472AO4n0wrPec5VzmmapkY/IHtVSruG1gCQum5dkTixeLqyWd/A4dyHeh1tHcBZUZjpv1mfBxxKYzfweoycKkJ9gfTc7QF0z7jJXFMsnrD3nOv+W457SV03N3sjQ/p+y1Q16k6ot0awBAIn3QWGB956iO+1/Q8VdLh+L6lkWmYQTZ3hSgJeV6uJivxeexZSZoVTyg/QFLDKJ4bq65pME166E/5ymRVEH38afPkfuxREh9zVRFZ1v/XMc7MqxVpT9hYhqo2Jm+1BIH8gXXc1eL57yf3rlt1/U/GBiiJfmihxoCkN+OyZiJl+QIftB2i6bgUUD8glhOgIp2aViCJ9L6XY72XF9z+3Sz/z4bYOQtE4I6pL0m7Gls4oG1q6KA36GFVb2qe/3VfWrl3LSy+9xLvvvpv29WAwyEGTDgJg9sVXcN1XLucPf/iD/f1Ua5c+/6l+IZeiKZ4w7c3tfhAt6YR1ZXfCBpW6q4wL+DwU+710R+O0dcfSlHm6g2iFaYCzJ0DKg+4+OMG6d7e0hSwnbNhQuOQZePwifKtf5J7AL/hHZxMkDgOPO+vKN2Ss0FSN4VjKedZW3ZBxL+3sVO1B+mgD1rwMj30JQi1QNQJmPw5Dxu/yepQCPp4waeuOpVUo2dfN7dLgvBPfNQXRSrIr0VocwVg3S/HV39zRGenRkkOXqrFvvbb1JBx7HDAczrOuQHrmAVpHr1ZIt8vtoViaH1KIJd265iQo29zSmeG/daYGVrophADr/m4PxXIqmwtpToLda9vlQ/2gHLbb2YZOlx/QMwmq1Kh67KQaeOxM5qUGsbntB2S0eDvsChg0Cp64mGmRd3kycAtF4QOBKtfWlGrtkv0s4GZFiqKy2M/29nAP4UGHpmRaWR/8gD4lQCJd8PR18M7j1udHXgszbt2tM02uIJraf16P4bqfm7IBGYE9zUKI7micaDyB31mhrvsMl0VFrC2hnjMeYH3udhzH4zEoL7KqHNtCUYZUFNnf0yeI7EuLXl2CyMwEiPV50OdJU/PvCqJI14xhGJQEfLv0URb0UeT3EvR7074e8Fs3Qlmwb79nV5z+ZcuWEQgEOPDAA9O+/t577zF58mQADjnyM5SWlad9Xx1WvZpau+RyVEFnf73sG9nNHruKihwlnbqCaMoAF1JJt32AznDC7CCahuvW4yBWVAnnP8Hbwy8A4JTWR+GP50Ko1ZX1qP0WiiaIZqgabbW16wfo7NdNvWeG4f79re6VXFUpvR7ETBNeuxceOtMKog87FP7fv3criA5K2ZzLBmjqj1xgve0h973UvKsJkH6kPEcwRlcS1Gm7M1WNutSo1cmWPM2dGUHr5HsW8Hko8rufBIWeNmCXk2n9hM/roTSppO4RjCmwgcOJhOkYWOey/1aa/bqpe0mH/2YPGsuwlfoGDeZJqGu6biqwsTPTf0t+Xhb0pQWN3ECdBTJtt/IDalwOxhT5PfiSieDMJIi2IFq2tlz7zyT65WfYaNawr2czDY+fDB/Md21NSgzVI6GuKQkKjkGxPRLqegJWFfmSad199Clb1sP9n7OC6IYXTv0pzPzf3RYGVavgZ2emDUj5k24nQXMl01SrGV2tLyCLDQjrTahnrscK9usRQqjqpR6CyE7VIsj9s0CFXd2QXVSjrSVP1koCTVXFyeuyszN7PGBPbLcE0vdCVJuUzOGe6nPfACjjvF4vsViMUChkf23BggUsW7aMyZMmYWD9zUTGAVq1dnFbracc0cwHp9o0JQGv685zriDaTp0GOIdiL/Xg1KVoSl9PImHaRtltB2NQrmCMTuc5mxPm9fHs0Gu4PvIVokYAPvgX/PZ4qwXIAFOWRcGU+bnrB+gcD842jSriXC1ClJ2qzneAjnTBXy6HZ2+ERAwmngMXPQ1lg/doTbkGjurrjZo9mRaKxgnH9FQS9KpIL4RkWpJ2TYp0dZ8kTHoMQNWlSM8dRNN3gO4tiJbXBgwQuVqp6O5tn7mezkiqF7GuisJMVaPdmk/rATp7AkTXoMF8CXXX51v0klB3+z5y/s3MYMzOTpWUcfdecg5CL5SEekUOMVRbxVjOCP8vbyb2wxNuhUdmwYIfQiKR7df0KynbnaOqWIsNyHXd9M5JyJtQz/c8Wb0AfnMMbHkbSmrgwr/BtEv2aE05/bfkddNqAzLjAR16kmk+R2uyzPN3qiqlMNpxqPfM5zFcbadmrSl7HEerIDLHnBvdve3ztglyec8pv7qHIFLFcfZgxpUE0vdCcgXSY3HVRqX/L+vUqVPx+/184xvfYPXq1fz973/n0kutfrxTpkyxW7dkPjhtRbrLASv7AJ0jkK7jwZkriKY2drU4YWkZaOe91B6OoT51+6GQ62FuD6lxccigojLHddvZGeHJxGd44qDfQcVQ2PEB/Paz8P4/B3Q9+Z0wPWqG6hw2oEXTgDHIF0TrJSmzcw3cNzOl0DnxTjhrLviLsr9+F8jl9KQGDutxwnIF9nVUEuSsStFc0g093yddidlif2pQbua9pKucszpHQl2tx+3eyJAviKYzGJNrz+mpJspVvWdXEng9rg5mh9QBObMXsW27Nd5LmddN11Bm57Mis6IoNeNGUzItQwjRUgiB9JzJNPfXlEvEoisYMyiPGGo7Vfw/49ZkgNWEF38Aj50/4BWYudoD9Oq/DSA5Z6Vo8t/UGS6eMXcnTQyVbc+ZJiz6JTx0BnTvhIbJcPkCGPWZPV6T7QcUYjIt039TNqBMR0I9e3WDLiFETR/iOLoqCQqpvVNOQaTmHuldkXhanDJNDKWptUtPMVSqNd/uIoH0vZCcgfRkRt7n7X/D0tDQwP3338/f/vY3DjroIO6//34uvvhi9ttvP6qrq21lZ4YIJdUj3WVj1xcD7Da51QxJJ0yD85yrLFCX86zeo1iyV6NCPSD2pI/V7pLTee7UqUjPrtbZkbzfYw2T4fKXYMQREG6DeefBv26GeM+S6/4iV0DWPkBrykAXkg3I1Rcxrxr1vb/D3GNh6ztQOthSoR9+pRVR7gd6VzO4fN2SB4jOSJyQ4yCmrltZ0Od6JYGqSsnVlktHEC2XYm9HRxiAWpcPYoZhZA3GxBOmfajXZQMK6QBtz0rJkUzTqUjPbBGiyw+oLg0C1nvkVDY7nyW6Kgl6JNR1JkBy2O6mpA1Q76Nb+L0ee/aS0w8IReNEktfR9XspR1sHnRWFOYNo6l7SYANSwZjCCqI1d0XscySkbFRxcYnV8uP0u8EbhJX/tPykzcsGbE2VuRSydlVK4STT+lTlOACouTuQbgPyiqG6dsK82fDcd8BMwKTz4JJnoWp4v6wptxiqcG2AFmFdjtZcusVQzV2RNGFdq0YxlC2qyZEA0RkPyPTf2jQl1J3PCue9pOyBx3B/mG5OG9APZzgJpO+F5A6kD1xrF4DZs2ezfv16Ojo6eOKJJ3juueeYNWuWtabkoSZBak2maWpr7aIc0e5onO5Iz2CM2wd6SG3UXG0dCqksUNcA1JKAzz6I7ehIGTxdg0YhdV32JiespjQAZUPgwqfgsCutb/7nbnjgJKv/4ABQnuVQr/UAnbx320KxtGBMISTT+jRsNBaGf34zqbRqgWGHwBUvwz7T+3VNudQMulTE5UEf/mQyeEdnTxugJwGSq62D/tYu2apSwP0gGjgUTQ6H3tmiR1sQrSuaFozRqkbNNSfBtgEaE+oZ91KbpiBaVbEf5TI6A6C6lNaQOoj1KOlWfoAOIUQOP0D5TjU6VY2Oe0n9v44DtEqC7swMxuj03+wKpxzBTx0zN3LaAD1BNHX2SJjpe67HGe7gL1lB18rhsHM1/G4GvP4byKiO7g9ynuHstg4aq4kygmi2DXDZD3DO3XH6S8qfLPJ7CPocYqiP34DfHG0lQrwBOPlHcMavwV/cb2tKVaZlVO7orCYqUQn19Ou2U1MCBLL7b87PdZ3hovGUGAM0x3HsyrTMhHpSCFFAivSmTiuh7rYNCPg8dtVwtjNceZH7bVUH5UqoS4/0TycqaJ2rR/pAtFF5+eWX+fOf/8zq1atZvHgxX/ziF1m7di033HADYAXKrzz/C1x0/nn885//ZNiwYby2eHGPNbuFMxjj7I+qVY3aW2/UQjLA7UrV6H4wRh3+tidVVeAsC9ZxgE45z+lZcf2tXXKqGZQT5gvASXfCOQ9BsBI2vAH3fgbe/0e/rylbWaB6cBoGlLl8gLbK/qz/b85iA3Q4YTkHDNkT35NravrQOhAu/o31+ZHXwJf/CRWN/b6mbAcx0zRtVaPbNsAwDNvx25FmA1RgX0cyLVerCf1J0FxVKToOYqmy154H6KAv4wDtAir4GU+YaQEi2w8opCSopuQ1ZJ+TkEiYqdZFLgeJPR7Dvn+bsiTUtSrRcpR0a23xliMYU6shmaauW9oBujuVkHH7AK3WE4kl0qocdbZ467Wtg05FusMPiGucTeT3euz3yekHpM5wDn9y6MGWyGDsKRCPwDPfhHnnW0rnfqRXG1BAZ7gdKoimIZmmfMasYih1HyUS8Oov4IETofVjGDQKLp0Ph17Wb9WWCuW/dYRjRGIpUY3dnlNja75ez3Aukk0MFY7F7ffM7YR6kd9rtwzd2VEYcZxc/fZtG6DR785Mgqr953Z1KkBtuWUDVCwJ9CnkIeXDtnZniGr6wXZLIH0vxFakm9l7pA+EIn3r1q1885vf5IADDmDWrFlUVFSwePFiqqur7b957yN/5v01G+jq6mLDhg1MnToNsAIjbjvPhpE6iBWMAVY90ne1P/IAki2I1h2J05k8cOhwwmrKegbRdF435TxH4hkHsQJQpPdwnjtUBjrjuh1wOlz5MjQebKmb582Gp66BcHu/rckOfnamrpuz177bNsDrMRxZ6NT7pLMdR67+erYivdgPb/4B5jqGLZ3/BMz8gZUUGQCytQfoCMfsXnY6k2k7CkSNqu6jzIOYzvZOuW2APud5cPJeaeroaQPcPoRBujJmZ5Z7SY8foBRNhadGdZbit3RH7SpHtxVNzr+Z7brpSKalEuqRjIOYUqPqbM2XupdM07SfwTr67A5OHqC3tzttgB5VM1izGwLJfvrZEuqVhSyEcJFsbbl2dIYxTauSQMeaarIkZXLa7pJqOPcROOkuS9m88h+WaGT1gn5bT2rQYPb2AFpsQBY/IJ4wU9WpGgPp2fyAimI/tG6Ahz4P878LiRgceKaVCGmcPCDrqShKVTg5k/yFmEzT1ZIHst9L6j7yeQzXZxNBjsSs815ymUp71l1h24BILGHfW1rOcPmumw7/rThV4eQ86/aHDZBA+l5IttYupmnan/sGYNjorFmz+OijjwiFQqxbt4777ruPuro6+/vqb6pgPljlOAB+lwNoChX8KBRFeqokKF3ZnLc/8gCTLYimnB9nEMJNarMaYH0q4pKAl4C350EslQApDBVKNJ6wH1RZ76VB+8Al/7LUzRhWwPbeo2D9a/2ypmwHaBXU03FvQ8qpKZggml3OmalIjzCYFqa8+hUrwRHpgJFHwZULYcwJA7qm8iy9UZUKtDTgpTjgrooYnMm0nk6YjutW4ahucF67QlA0Oa9bdyRuD/jSsedSB2jHYTX5HulIgIBjaF2WA7QWFXEvlWk6+yM716T8gKoSvx2IdJPUAbqnokln4CNhklZm3h+Kpt1eU0lP/609HLN97x4JdRfIFkTTeYA2DMPRJ72n7daaTCugHum20tLhKylfrro0OCCVzr2Rbc5NXhtgGHDYFZayuXo0tG2AP5wOz9wIka49Xo/ab6FoIm1+i85Bg9nUqC1dEVR4QEdi1q4q7qFGNTmFV+CeI2HNy+BP9rk/+wEoqhiw9Xg8hm2fnfGAQhNDWUlQfWemmixVYNsd1elui6Gca8p+htNXod4WiqXF4PQOG+1ZDa7eL6/H0PKMq80iiNRZVRzweewhqM5qgv6wARJI3wvJFkiPJ0zMZH9y7wAMG+0NNeA05uhFbPds9+q5zdTDfGeBHMTURo3EE2nTzJXjqiUgm0Udpw5Ag8uCrg/0gsIzwIZhZO1tnWrtUhhtgtR9ZBh57iVfwFI3X/S01VOyea3VN/3570E0tEdryhZI39Zu/c4h5e5nxGE3DmIDjLpXOsLpfdsP6XqZfwW/SeXHL1hqqhO+Dxc9NSCtXDKxe8g67KTd1kXTdbOTaQViA5zOaDZFk55hoz1tgAo6Brwpp9FNstkA9f+6bMAg2wY4ejbrPIg5KtNUQj2RMLUOG80W/NTZ3g0cVSkdPW23jqRMkd9rz2/JagO0KNKz2IDk+1UW9Lk+mB1SNqApLaGuArKaEuqlPYNohTZsNBpP2KpdHcHPIeVFAGxrd/oB+qqbIFeboD74AY2T4YpXYOrF1uev3wu/+QxsWLJH6ykP+uzzt/MsUAg2wBlEU+/XoBK/lvO3fYZzXLfu5q3c7f8l17f9EMKtMHSqdY2mXdLvrVyykUoUZfMDCsMGdEfjdiWoDls5pCK3/zZY+xmuMOI4zr/pTILo7SyQWxBZXRrQkwCxW/T2TIDoqEyD1LVJS8r0g6hGAul7IdkC6Spo7TUMPBqCn6ofecy5pmSgaKCGn/aGygzuKJDWLsX+lLJZOV4xh4pYR0mQcnic/ch1Dqpy/t00VaPGEjzIPnC0ENQM6UG0VEa8V/XQqM/AV16FSeeBmYCFP7XU6esW7faa8gfRinb79+4J1dkO0BptQEWmE9a+hfi8L/Fz78+oNjqI1x0Ely+A6deBx50gSNYDdKEE0bIdoDXZABUsb85ygC4UJZqzNYDOJKjzebKtTbMNyKK0tNWoGm13PGHaLdTaHeomHc8TdYBW1wpS11BXEK0mmyJdY1UKZJ+VUAhq1PRAut6gda3tv6Wu29bkfVVXocsP6GkD7CFjGoMxXZFU/2F1H3kMPc+4rDZAcxBNVabtVnvOYBmc9jM4/89Q3gA7PoT7ToDnvgORzt1aj2EYqYGjjvYuhWADnOtRe69Gk/+WlkwzTVj2GDNfOo1Tva8RxwvH3QyXPAe1+7m2pupsZ7gCSaaphLo6ewd8Hrs3uJuo1nxKAAX6bcCgXWnv5AJ+h0hFxQBMMzVPRsdzN1usS71f+s5wPQWRuu2SujZpQgi7qlgU6Z8q1ODOhGmSSBpge9CoBjU6pFq7OFWWdmsXTWuqyVLSrdMAG4ZhO8jqAa4MsWHoWVN98mCzpTX14NQ1ZFBRk0XNsKXNWl99pZ6DWLYBI4XghLWFYrYTtsv9NYsq4cx74YsPQ1kd7PjAUqc/PQdCrbu8psHZgmgFomZID6Lpu25ej0F5kQ+DBIk37oO7D8X7/lPETA+/ip+J57Lnoe4AV9dUl+UA3aQ5iFZd2lMhu01zcL8qazJtz52w3aXSDuxHehzEdCVB81WlqPvMbbKqUbv3XIWyuxT5PXarFOXQq7WVBX2uD2SFVIBza5YDtG4/wKkeUv+v47pBTxuQSJj2vaRDCGHf21kO0LpsQLb2TluT/tsQXTZAtXXI4gfoTqir+yc1b6MPQogBQNnuQgqi1WRRo+7ysPgxM+Ari2DiLDDjsOiXcM/h8MHzu7WmyoxkWjgWt2cn6Qikqz211eG/2X6A5mSa2bIOHv4CPHk5xbFW3ksMZ95B98Ex3wSvu6rUfP6bzjkJzoG+am01moQQQ5J+QFZFui4/IMsZTmccx/l3lf/WEY7ZIlIdNsD239occZx2vWe4wVkT6sk4jqaEesoGSI/0Tz1ej4EysSqAHhvA/uh9wZdNkZ5IKtI1tXapzjKsSjmrugxw5rAaZYgrivSU4KngRlNH2K4g0B1Eq7VLunsaYF2KJvVwVNcrnjBtJagOJ2xQSQDDSB8qtNu99cafBle9DgdfZH2+5AH41WHwzhOWmqSP2CqULGpUbWqGLAfoXT6I9TNTijbxp8D3GbzgWxBupWvwJE6P/IDfF12A4XP/fVJ7alt7yB6it90u6darSHdeN5Xsa9CUTFOBMlUKGIrGCUUtm6lTRRyKpoYK6eyvCdlbhGzVrkjPfRDTYQMMw+ihJE71RtZjk+pUVUpb2E7KqECo7iSoMyCrbIDuhLq6bu2hmN2LWEd1gzqQtodj9pDIVBBNU1uuLDbATqZp9gOyDhrUmFCHnjZAl+3O3tqlMIQQTVlENbvUKqykGr7wO5j9uNXSsGU9PPIFeOJSaN+6S2uqygiiKX/AY+hpWaD8t9buKN3JgP4OzWKo2iKDK7xP878bL4OPXgBvkCcHXcJpkdswGw/WsqZsVSk6xVDOhHqm/6YjGAupPeW0AUoYpSsJquI4TmGdur91vU/KT1PJWHUfFfk9WtqpKX9oR2eEcCxpA5LJR13JtGxzrpT/pk1UU5Juu03TlB7pn1YMw7CDrkoBbgetNbVR8TuGjaqDmBo86tOkSK+2e/8WkLI5oye56tuqQ80ElrHzegwSZurA2mSrGnVloHsexDa36s1kDrKdMOt6tXVH7RizDics4PPYTrJ6b3Z27MGDs3gQnP4LuOjvUL0vtG+GP19qKdQ3v92nX2Er0ttTwZhC7JGuFBauBxq6dsI/vs4Doa8xzbOKmK8UTryTJTMeZ4W5jzanUB2So3HTVsToVqPWZumPrNt2Z7Z3Us6z12No6Ude5Pfa97dtAzQ7z3nnJOhWpHemnOeU+lNzm6BOdRDTfIBOXpvuaNwepFkoNsBpuze1dgPQWKXZBiTXpGxBScCrpZKgNOizB42pQ+qOPfED+oF8yTRtQoiMqhTTNLX22QVH/+/k+6TuJR390SFlA9pDMTsgq12NqmyAww/Y3JJMqFcV7/ov3P9z8NXX4PCrwPDAu0/ALw+2WhvGwr3/PM6kTLKSwA7G6ulFXFHks9uAKB9Ja1XKqueYPv80vuX/I8WEYOR0+MqrPOj9AjF82sVQzY62qmomgY72ToZh2PtKCcWaNSfTlP+2szNix5Z0i6GyDRvdlHzWNe6ODegH7Dk3qqJQcwJkkGMgvLpeOzTHcbL5AVuUH6D5DKeuVyiasFur7cmMQgmk76X4VSA9eRPEk0FrHSWBkGopY2LaKnlliP2aVPKZivTuSNz+f20GWPWyyjiIDdL04PR6ej7M9bd26RlE22or0QqjrYPKYpYFffZedJvG5MNoY4sVXOgXRdOoz1hlsMd9B3zFsP4/MPcY+Pv10NmU90dry62/G4om7FJFu0e6tt6o6Q/OjnDMVn8MHeSSDYhH4bV74RdT4I3f4SXBM/FD+Odn/gqHX0lzyLKTutSofq/HDlqpgIfuYaMqyaGCDKZpsjkZRNOlSM8sC1S2oKrYr6UMF1LvhXpvlM2s1qRGVc+S9lCMUHKg9rYCmZOgrldbd8y2T42VevyA+ozrpvsgVuT32gHZbRk2QFcQrTrDBiQSZqo0WNN1s9s6dKfbAF3XDaAh+V6oZJr21i7lKR9XVTmmkmm65ySk1N+R5Np0+bnK9ij/bYfmqpTyoI8ifzIYk7xeulu7ZPpvsXjCXlvj7voBwTI48Xa47N/WwMtIBzz/PfjVofDe071WYeayAbqSsoZh9GjR2aSjKqXpA3hkFjw6i6K2NWwzq/hm7KuYFz0NtWNSQgjNyTQVrFZJNV1tVSF1BtnYooQQegPp1SUBW4ypnv/btfsB6TYgHIvbdklXHKcy43mSsgF6rpthGLbKOxXHKYyq4h1ZWrxpswE5znA+j0HpHswkkED6XooaWhmJZ7R20aT+9hiGo096YaxpUIYiXamZyhwqHrcZmlRSbWi21qJbiQap7OCWHoF0vcNGd3ZFrIFs4ZitktN1gM4sCVIPBF2HVUg5EZszDmJ7rETzF8Ex34Br/gsTvmANI/3v/fDzSfDi7RBqy/pjJQGfrcxVjk4qiFYYatSNyX1XWewfeBVxIgHv/gXuOQKevRFCLVA3gfv2/QVfiV7PqlAloF+FAqkgp+qRnAqiaR443Gn1/27tjtptVPQpmtJtQKodh/4g2qaWwgiiVRT7bN9E3UP2sNEC6Y+8oaULsJ5vxRoGegEMG1RirSVpj2w1qk4boFo8ZfgB+gYNposOdnRGiMZNDEPj86Qk3afUPQQdUkmZLRmBdF33Uk1pEI9hxSN3Juc3pBTpheEHqH1XVxHUUooPMEwF0ZQN0HzdDMPo0d6lUIJo6p7e1h4mYVpzt/Y4QNQ4BS59Hs78DZTVQ/NaeOwCeOBkWLco548p/1r5uIVwhrNtQJtKqCcHDrvhB7RuhKeusdpBfvAcePzEDr+Gz4Z/xOOxo2gLJ4gnTPv90t3WQT1rP96ZFGZUFGlrPzu0Kt0G6A6kezypfaX8Nu3JtIyA7NZWaz1Bn0dbJb/yP1TMRPkButYDjnl3Gf6b7lkp7WFLVBOOpYSsujsLKJutktgNVUV7JIaSQPpeit9nXXSl+o7bPdL1BK3B2Sc9gWmaqdYumhTpNRmK9E0tqbJgXQrC4dXWAfrj5q7k2vSWmEOqb6U6QO/QnMmsTvb/Nk3L6VEPhrKgT0sLBejZp239Duv6jUheTx1kKtH63QmrHAZn3w9f/ic0TLaUOwvutALqi+6GaKjHjzhbO0RiCXtNugIfmQOHNyaDaEMHUslgmrDyWfjN0fDExdYQ15IaOPWncMXLxEYcBaRsgG41AzgHjhZIVUpyv0ViVnWDuserSwPaAh/q3lZrWb/Tun7D3KpsyEJDRhBtZ38l03YTwzAcsxIidEVS6m/d7Z2UCkUF0QbUBvSCumc22AdodRDTbwO2ZqhR9dkA671oD8WIxBK2en9IeVBbFdjQqvQEiDqI6Wo3Bak2N5szWrvoum5ej5Hqbd0eobU7apdP61Y2q2etun4qoaWDlBq1MKpSwNEjuUAq09Q93NwVIZFIVaXVVRT1TxsVjwcmnQvXLIHP3ADeIKxfZLU0fPgLsOmtHj+iznDrkmeAbXarQI2BdFuRnmzrkLyXagdyTZ074F83W5WWb/7BGuQ69mT46mv4TvwBBCsA6x7a0WElQLweQ1urCTuhbvsBSf9N4xlO+SCb+rOqeA9RgodtyRad2gPpGUIIZS+HVhVri+OMTN4zKg6wowBENXUVmQl1vYLIiqKUqGZHZ8R+pgR8Hn0tFTPupf6K4+iJSgl7jL9Hj3TV2kVfbkQF8WNxq72Lie4e6ck+Vt1R4gnTzvrqKgcCRyA9GYRRgT1dGTpwqhkKI4jm83oYVBJgZ2eEHR0Rez26lAwAI2us67Z2RycA63Z2pn1dB+oAnVkaXN3f122f6XD5S/DeU/DC/1qB4eduhkW/gMO/CtMugSLLaR5cFmRNUyfbO8L2dfN5DI2941KKJtNM2YABaeuSSMCqZ6x+mxvesL4WKIcjr4HDv2K/R+rwrmyAUusN6KGnF1JT35MH6Ha9ybTigJeSgJeuZDuuLZqHDQOMrCkFUjZA/Xef5Nd10JC0AZvs1i5JJZrGe6m2LMDGlm62t4ft3qMlAa/GJKi1BvXebCyAIFoqkJ48iNnDs3Qm1FMDRxMJMxWMKdd1EPPj9Rj2QG17ToqmqjTo6QesbdJvA+orrPdDqVF3aq5KAeu50ZT03VS7yUElfi195K2/rQbXWvtMJbF1JkFtNWpLIVWlqCBaiHAsbistdSnS1XWLJ0zaQlG78qrfW3IFy+D471q+7Mt3wVsPw4fPWx9jT4GjrofhhwCpoMv65BlgjbIBtRptgJ1QT/cDBiRo3bbJEtIseRCi1r+dkdNhxvdg+KH2y2rLAnSEY+zoiNCZTKYPTs7k0oEthEjuN+V/Dy/EZJpGG+CcddUZidOdbNGnTViXfI51R+N0R+KpFo+a5qQAjKhRNsC6h9Yn/QGd91JmeyfdgkjDMKgpC7C5NURTe9iOVdZVBLUlQFRHCLX31/eTDZBA+l6K3dolqfRQvQh1KtLt4H4iYbd38Xk8eDRtmkElflvZvKMjbGd9dSrRhmcE0VZvtwzw6MFl2tbkDKJF4wlbuafzIFZTqgLpYfvB0KDxAD0q6SRvaO4mHIuzPlkWWIiK9AFRxhgGHPB561Cx7FF46U5o2wDP3wILfwKHXAaHXZmmSN/mUDLoGMKk/jZgq+M3DIQNiEXgncfh1V9A00rra75iOOxymD4HSqrTXj68Ol2N+tH2DgBGDdZ3EBti24AQneFYynnWpEIBy/507eymqSPisAH6nGenDYjGEwVRlaICCpltHXSpviC9KkW1UBtSrs95VnayLRSjuTOSUqRrDKJlKtJVYHaExsTsYLvHZtgWH4CGocxJPEll8/b2MDs6U37AbvdG7gdUIP3jnV3EEyZrkzZgVK1OPyBdkd7UoT8gax3e29MGjelNglrXp6nDUshvKIRAeoYNUGcCne+Ts7WLCsT4vYa21kUBn4fyIh/toRhNHZGBD6JVDoXTfg7Tr4OX/g/efhxW/sP6GDkdps9hn+ojASsIY5pmKpCuM5mWYQNSgwb70QY0fQiv/gyWzYNENPmHD4Ljb4H9jrfOCA5qy4Ks3dFFU0fYjg3oFEONrrXO2Nvaw7SHonZrF+WP66Axo7XL1nb9ohpnMk2p0UsDXko1CSHKgz78XoNo3GRHZyqOo2u+DaR8/o+TNmB10gaMLoRkWlsI0zS1Dxu1/rYVSN/RGaYrOcBap2hU2YBNrSG6IrFUMm0Pz3DS2mUvxe9VrV1MTNMknAyoq8m9A8Xy5cs5+uijKS4uZvLkybz66qsYhsGyZctSrV3iJrFEMrCvSY1u/W2PbfA+2NZhD/TQq0i3/nZzV5T2UNQOou2rMYhW5wiiqT6NHkNviamzR3IhqFFrSgOUB32YplUOpDLQI6r1XTe7pLulm1g8YT8UBjTY6PXBwRfCtW/B5++BmjEQaoVXfgQ/PYDLd/wfU4wP2N4WstuE6GrpANYQPWUDVm3tSCnS+8MGtG6EF++Anx8Ef7vKCqIHK+Gor8F1y+CE7/cIokNKCbutPUwoGmd10gbsN7h8z9e0m9Q5gmgq+FHk9+zRAJY9RQXwtreHHWpUfTagriJIsd9LPGGyobnbDqLtozGI5jxAW4PY9Pa0hZQCpqkjrH3QKEBp0Gfvd8sP0B9EUzZgS1uIaDzBqq2WDRgzRKMNsINoqQN0VYl/wH3KfKh7aWtbyK660GkDGiqLCXg9ROMmm1q6WbdDVaYVwAE6aQOUsllXAgRS5eRNHWF7noyuQaMA5UV++wD/4bYOO3itU0Go/vbGlm4SCZMPkjZg/zp9NkAlQbe2hdIqU3UJISDl929o7rIV6QMuqqkeDWfNhateh8kXgMcP616FR2cx8vHjucg3H3+0g23tYbsqZZTOIJrjDBeKxu2ZUrV7agMScVj5DDx0Ftw9Fd56yAqij5wO5/8ZrngZxszoEUQHxxmuQGxAZYnffp6s3t5pV6VoVaQ7WrtYNqAdgP2G6BPWDXYk03S3dQFL2ayu0ZqmTjuO06C1NZ+1nvZwjJauqEMQWRhxnLZQzB6mrbPllH0WaE+JoXTGcQaVBuyqzzVNKRsgrV32dkwTol27/GP+eAIj2kUcCHWCGenEaxgEEz6I9NHp8ZdkfQDmYvny5Rx++OFce+21zJ07lxUrVnD22Wfj9/sZP348reHkkNG46VCk63PAAMbVl7NuRxfvb2kvCEV6eZGfQSV+mruivL+l3W6loFOR7nTCVNC6ulRfCR6kss1rtnfavb7qK/U+zEcNLuXtDa2sbuq0S4L0tnZRJd0hPtreSTiWoNjvdedQ7wvAlPOt/pLv/x0W/gw2vcmknf/iyeC/2LDsETZ0nksFwxlcXjfw68nD/nXlrN/Zxaqt7an+ersbREvE4aMXreGrq56xBrEClDdYbW6mftlu4ZKLQSV+SgNeOiNxlm9qsxWEWp0wRxDNeYDWpSIGa28t/biFD7e12yXLDRqdMMMwGFlTwvtb2lnb1FkYybTK1EHso+2dRGIJSgNerUFipyK9JJmI0TVoVDGmroyNLd18sK3d0R9Z43tUFiTg9RCJJ3h3Yyut3VEMQ68NsJVojmSarrJgxZghZby3uY33Nrc7FOn6rpvXYzC8upiPtneypqmTdUk/QGt7J0cy7YNtHcQTJmVBn9YEdq2jPYA6C9RpXA9YNmBLW4iPHIF0ne2d6iuL8BhWtdzyTW20h2P4PIbWgOwQh+3WPSNBMba+nA+3dfDe5nZbkd7oVluHwWPhjF/Bcd+G138N/30AY/v73Op7nxu9j9L+1HNUtRwEjNJ63ZzVqSqoVx70UVG8myGe1o3w9mPw3wegdX3yiwbs/zmrzc2Iw3v9Fc4kqKpK16lIB0uw1tQR5qPtHalAus6KwuR93B6OsWJzG12ROAGvR2ubIOechEIIpAOMayhndVMn721us23AUI2tXYr8XuoritjSFmLV1nY7ya81meZQpCtRXWWxX9tMKUgJeja2dNMVsZJ7OhXpYMXalqxrZvX2VBxHAul7O9EuuL1xl3/MB0x0fD4x1wvz8e1NEOj7xr/66qs5+eSTue222wAYN24cDz/8MKtXr2br1q2cd/4FbN6yFb/Pxw03fYtDP3uKtqFQirH1Ffxr+Vbe39xmGzudinSwHtzNXa0sWLkdsBwOXaWTkHJutrSGWPZxCwDjG/SpYgAmDqvkL29t5O0NLXZAX2dvVLAekm9vaOXtDS12+xudTlhtWRCfxyCWMHlp5TbAcjhcTYB4vFbLlwM+DxuXsOaZn9P48T8ZFlrFsHe/zxtBP6t2Tof3L4f9TrAC8C4ztr6M59/bysqt7bunSDdN2LgE3nkClv8FOramvjfyKJh2MYw/vc//NsMwGDaohJVb21mQvG6NlUXaSichXc2wfFMboNcpBJg4tJK/Ld3Esg2thJKtZnSqUcF6T97f0s4ba3fSGYljGHpLg+uSycVwLMHCD5sAOKCxQquCUF2jtTs6U4F0jYp0sJJpL63czgdbOxzDqvTZbo/HYOigYtY0dfJS0g8YUV2i9dBj24D2EB9us9SxOkUHABOGVvDUsk28u7HVbluk2wbsU1PKR9s7eW31DiKxBH6v4V5gLwvq/WjtjvLG2p0AHKjZBqgWRe9vabfL3XUq0QD2HVzGKx80sWpre0G0dvF7PdRVFLG5NcS/37f8gH1qS7VWgKhrtK0tbAcZdCZkwLqX//H2ZpZvarUr01xv81g5FGb+wBpI+vbjbJh/N8Ni6yj58HH+6n+c1b5G6t66CCbOgpp93V0bKT9ge0eYN9c3A9YZapeEEKFWWPGUFUBfuxCSM84oHgRTLrD6x1eP7vOvU5UV72xsoz55xtQdRNt3SBmvr9nJyq3tdnWDTv+tJOCjOtnG9MWkDRg9uFRr3CQlhAjZQWvdgfTx9RX8850tvLc5JYjUHccZUV3ClrYQL3+wHdO0gtY626nVO1r0Lk3GcSYOrdS2HrBs95+WwLINLZQXWTEu3f7b6NpSlqxr5r3NbbaQdU/jOBJIF/rE2rVreemll3j33XfTvh4MBpk0aRI+n48f/fgnlDTsS/OOJs496RiefOlY7Q/OcfXWw/z9Le1stlu76F3T8OoS3t7QykurUg9OndQlDVtbKGYHYw4eMUjnkpg0vAqwDLB6YOq+l1Rg8SU7ARLQNkAPLHVcXUURG1u6eeE9614a35BfDT2gDJ1K+NS7Oexn/2R24BVmBxcyLLqWia0vwbyXoKjSCqaPPcnqqVjszj2mHPrlG1vtVhO9KtJjEfj4NfjgOXjv79C8JvW9oiqYdJ4VQB88drfWNLy6mJVb23kxeS/tq7GUE1LJtO3tYV5N2oBD9unZlsZNDhpWBcA7G1opT/ba1u2EKaXQglXWdWusLNY2QA8g6PNSWxagqSPCC+9ZCZ4DG/U6z1NHWvv6v2ub7Yo0ndVEkCqVfmt9sz1AT2ePdLCCeFYg3bLdY3TbgPKUsvmVD6z7+5B99PoBE5L38rubWu2v6fbfVMWX8gOGDyrBpzHwUV7kpyzooyMcY/4KywboPkBPG2k9O95c12yrUXVXpSgb8PqanYSiCQxDfzBmaFUxm1tDvJi0AfvX6bUBam+t29nJy8ln3MEj9doA9TxbsbmNtm5L1ahtVkpxFRx2OfdsPJwP3pjPV8sXcER4EaONTfDSHdZHw2QYdwqMmWn1EPcMvG2oLU2JapQfoPynvLRuhFXPWh+rF0A8NdOAEUdaAfQJZ4F/1/eJ8gPeWtdsn+d0tnYBK5kGsOjDHcQTJgGvx37u6aKxqoidnRH+rcRQ9XpFbKq6atXWDl75wDoL6PYp1bn2vc1tdhxH58w0sOI4i9futM8Co2pLtVbwqudrJJawfcrJyX2niynJONJb61sYmzyH67YBqvvDy0kftyzos9u97C57bSD9tttu4x//+AdLly4lEAjQ0tLS68+Ypsmtt97K3LlzaW5u5rDDDuNXv/oVBx54oP2acDjMDTfcwB//+Ee6u7s5/vjjueeeexg2bNjA/EP8JZYyfDdYu6OL9lDU/ryhsmjXyvD8fc/CLFu2jEAgkPZeAbz33ntcdNFFNDQ0UF9fz/tb2hlUU0t5ZRVtLc2U7aO3rYN6KL2z0TqIeQz9yhjV7+vdjZbyc1+NbV3AKgEcUh5kW3vYPohN1ew8H9BQgc9j2MOhQL86TgXSlWJX55BBxdCqYja2dLM4qUQ7QGcgHRhbV46vrIZ7Ok7mnshJjDfW84dD1jJ4zVPQvhnefcL6MLww4ggYdTSMPBKGTdstZ70vqED6sg2WDSjye3r2jUskYPv7VvD8oxetj0h76vv+EutwNOFs2Peze6ysVyXlyi7ptgG1ZUHqKoJsbQvzXNIGTNMcRDuwsQKPYZUq7ui0HFSdw0YBRtWk2wCdrZ0UDZXFNHVEWPTRDsBSpOtk/yHldvsylSg6ct9avWvKsAFVJX6tSVBIPc/UmvbT2B8drMB+Q6WlkH0+mZg9bHSN1jUdmAwIq8FwoL8yTc1EWLG5Lfm5XiEEWAnGD7elAh8Th+kNfIytL7eHRKpAg+5DvQqkq2dufUWRVvU3WHvuv+uabQWhzhkJYPkhygYo233EvnptgPJpVcsS0J8AGVlTyqPmOC5uG0cZX+IbIz/kovL/Wn7j5qXWx4u3QVmdJR4ZdbTVDqVqxC61U+0rHo9BfWURG5q7efVDyw+YlM0GdLfA+tdg/SJrrVveTv9+7ViY9EVLWV81Yo/WNK6+nJKAl/ZwjFc/arK/phM1i0zZgKGDirVW7oDlB7y7sY231rcAsL/m92j/ujK7bYmy3Uftp9d/G9eQEkQqdCfU1flfxXF0DhoFS1SjrptK8ut+5o5vqCDo89DaHWVJslJmlMY2eJCK46jrNry6ZI8TIHttID0SiTBr1iyOOOII7rvvvj79zF133cVPfvITHnzwQfbff39+8IMfcMIJJ7By5UrKy62NOmfOHJ5++mnmzZtHTU0NX//61zn11FNZsmQJXu8AKM8MY5faqzgJFHswHRnkopJSCAxMixCv10ssFiMUClFUZBmwBQsWsGzZMiZNmgRYLQvKgj4W/ud1EokEw4aNoFhjqTJYDk+R30MoavUyHjaoRHu7mcxSMp2DRsG6bmdMGcrcl1eTMK1bcvKIKq1rKvJ7Gd9QwTsbW4nGTUbXlmp3wtTEZ0UhBNLH1pfbQXTQH0QzDIMj963lqWWbAIPm8rHUnvkVMO+ADW9Yg4tWPWsFrdcttD4AvAFoPBgap0D9BKibAIPHgX/PnaXRg0vxegziCatUdXhlAGPnati2AraugI3/hY9ft0pbnZQOtg5B+8+01EW7aaezkVlSrnO4EFgHsVMPauS+hWswTWu2hW4nrDToY78hZaza2kE0bjKqtrTHHnSbzKBZIQTSp4yosg+GkFLx6sLjMTh8dA3PvLsFsA6KB2q2S5n7S3dSFnraAN2KdI/H4MQJ9Tzw6loAgj4PB2kOyFYW+xlRXWK3mRheXax1TgL0HCxaCDbgqP1q7XY8oF+R7vUYHLJPtd2yZER1ifY1Ze4vnW1dUmtIv3fGavZxDcNgxvg6HnptHQClAa/26za4PGgLfcBqg7enCsI9xbnnOyhh66gz4cRvQWeTNTPog/lWoLpjKyx92PoAa5bOiMMtP3fIgTBkPFQ09ktw/XMH1nPfwjX2kMFJdT4raL7lHdj6LmxYYv1XtWwBwIBhh8DYE2H/k6z19FOg3+f1MGVEFa9+uAPTtAJYuu+lTMFKIdiAzHOk7nOuYRgcN24wf1z8MWA9gydovm5Dq4qpKPLRFrIqUhoriygJ6A1fjqhJv3d0dxYAOG1SA799ZQ2x5FlXdxwn4PMwcWgl/13XTDxhMnpwKROG6j0LZMbbRvRDa6e9NpB+6623AvDggw/26fWmafKzn/2Mm2++mbPOOguA3//+99TV1fHoo49yxRVX0Nrayn333cdDDz3EjBkzAHj44YcZPnw4zz//PJ/73OcG5N+yu1gl3Y5A+gAGradOnYrf7+cb3/gG119/PStWrGDOnDkATJ482X5dtLOV71z/FW656+eUF/m0lrqA5dD7PR5CWM7Flce4378uk6kjB+ExIGnrtKtRAb5w8DDmvrwasBSFFUV6HVWAScMr7QDRBYeP1K4cUEo0he7gJ8CVx+5rH3pAvxMGMH2/mmQgHT47fohlAwyvdYAYcTiccCvsXAMfPg/r/wNrX4WOLZYa/OPXUr/I8FqqmKoRUDUcqkZaCp/iKqu9SlElBMosx9/wWP81ExDphHC79RFqJdi2kVu8i2jw7qDRaGJs11b4Zajnwv2lljJ+5JEw5gRomDJgZblH7lubZgMK4V76/GQrkA6WElS3owowcWgVq7ZaAaJLjxpVcDZAdx95gCuO2Zc//CdlA8Zobg8ApAXST5xQr90PyFSfnzllqKaVpPjsuDp+8cKHduCjEK7byRMb7ED6lBFVWtsWKfYbUmYH0q86dj/tNiBTUVUINuCyo0fz4KK19uc6h58qnIH0Uw9q0G4DajKqdY8bN0TTSlKcPrmR376ymnDMsgG6W7sAnHBAKpB+6Khq7cIjsJTDKpA+54T9td9LmWc2O8FeWmsNnJ/6ZYiFYd2ipJ/7mqVSb98My5+0PhRFlVCzH1QOg4phVj/2sjrr68Fy60OJOMyENbPHTEC4zVKYh1oh1MK1xjom+P9Lo9HESE8T9fc0ZV98zX6WjztyOux7PJQN7ud3J8XUkdW2Qv7MKUO1X7fMBPrhmiuuAM49dAQPLlprD2VW1XM6OW7sEDuQPn2/GnfnbmXBMAyqSgJ2IH3OCftrXQ/0rB4apVnkA3DeoSP47SvWGW54dbH2QdFgtQb77zpLjX7OtOHabcCIDOHD2H7Yb/pPyi6xZs0atmzZwsyZM+2vBYNBjjnmGBYtWsQVV1zBkiVLiEajaa9pbGxkwoQJLFq0KGcgPRwOEw6nAtptbW0D9w9xEPB5qasoYmtbCJ/HM6B9GhsaGrj//vu56aabeOCBB5g5cyYXX3wxDz74INXVVj/EcDjMRbO/yCVXzWHytMPsvra6OW1yI4++vp6xdeWcd+hw3cthXH0Fv7toGv/zt+W0dUft/nE6GVtfzsShVuD64JH61wMwaVgVD7OeYr+XL0wdoNZKu0B5kZ8vThvOm+ubmXFAHRceuY/uJTG0qpjzDxvBI6+vpzzoK4jg53RHGeCM8TkOq9Wj4NDLrA/TtHqQK/WMUtB0N1tfd/Yn300udMaDEoCvyOpvPuRAaDjICvDXTQSvO+/fAY0VPHjxoVzzx7eIJ0y9ve2TTBxayajaUtY0dXKo5rYuioOGVfLnNzdQXRrgCwfrtwFDyou49KhRLP24hbH15Zw9Vf/zZGhVMSccUMf8FVspL/IVRODDeUD93IH1GleS4pSDGvjH25uZNXUYlx41SvdyOKCxgt9cOJVLH3zDrr7QzdQRg2z152Gj9AcZwEowqIDsWQVgA0bUlDBnxhiWrGumJODl1IMadS+JoVXFTBpWybINrVSXBrQnGwAOHZV6hhTCewTYdvIrx+7LVwpAVLN/XTk//eJkvvrIm1QU+XpUO+jg8NE1lAd9tIdj2ltyKSYNq7JbXxSCHzCmrpxbTjuA+Su2Eo4lmDE+SwtTXxD2Pc76AIh0waY3LT9367uw7T1o+sAKhG9cYn3sAZXAmZl5z/LGVIVnw0FW3/Ny99qtTnO0CD1jsv7ktcdjcNzYwbz8QRPXHT+GK47u+/DUgWLfwWV87/QDufnJd6kpDRREtdz0/WoJeD1E4gmO2m/gEi27wtH71/Lwa+upKPJxdgHYgAMbK/j5uZO5b+EauiJxjtTcAgus/t9HjK7hP6t3MHl4YZzhpiTjW16PwVkH67cBQZ+X48cNYfHanVz2mdFc3g82QH/UxSW2bLHUUXV16Q+Ruro61q1bZ78mEAgwaNCgHq9RP5+NO+64w1bIu82Q8iBej+FKC5XZs2cze/ZsABKJBMcddxyzZs0CLMX/l7/8ZY4//rN8+cIL6Y4m7Cm9urnu+DGMri1lVgFkwxSfHVfHMfsPIRJLUBzQr/oCuPHEcdz+z/c4/7CRupcCWErGZ9/dwvHj66gsLox76c6zD9K9hB5899QDqCkLcvhovcMhFcMGlXDG5Ea2toX7dhAzDKgebX0oTNNS7+xcAy3rofVjaF4Hndsh1GIdPrpbINqVUuhgAgYEy1JKnmA5lDfQVVTPqlAlB44fj3/IWBi0D3j07ruj9x/MKzceRygaL4j72zAMbpg5lp+/sIovHqI/QAzW4es/H+3gjClDC8ZOfvfUA3QvoQc/mjWJH/1rJSdNKIyg9ZghZZx4YD2xREL7vA3FDz4/gdmHjuCI0TUF4wccN3YIL91wHHHTLIgkqMdjcO3xY/j9orUFEbACuOLofdnSGuL8w0Zq72mtmDNDvyIuk7kXTuN//76C2YftWW/j/mLSsCqOHzeEymI/4xv0qywBfvbFyWxq6WZMAag+FSdPbODPXzmSIr+nIJKgAZ+Hrxy3L399ayOnTSqMBMhVx+1HNJ7goiP30a6OVVw8fRQXT9+FhGygBPY5yvpQxMJWML15jTX4s20DtG6Aju2W4jzSYVVWRs9z5NkAABMDSURBVJL94Q0PkKzADJZbqvWiSqtKs7yeHf565q0yOPawqRw4YQqU6D0THDa6muPGDmZUbVkPJagu5l44jY5QjEGZc5I0MvvQEdSUBhhSUVQQvklp0MfFR+3DK6uaOLFAfMprPjuGymJ/QVSng3Ve+vzkoXy+ABJETr518ji+//QKLp6+j+6lAHDM2MEcN3YwU0cOYojmwb6K3144DRP67VlimKZp9v4yd/je977Xa0D6jTfeYNq0afbnDz74IHPmzOl12OiiRYuYPn06mzZtoqGhwf76ZZddxscff8yzzz7Lo48+ysUXX5ymLgc44YQT2Hfffbn33nuz/u5sivThw4fT2tpKRUW60jAUCrFmzRpGjRpl9xrfG3j55ZfZvn07U6ZMoampiR/+8IcsXryYt956i+rqahYuXMjRRx/NQQelAo0PPfQQEydOzPr79tb3QRAEQRAEQRAEQRAEQRCETw5tbW1UVlZmjeU60S+BcXD11Vdz7rnn5n3NPvvss1u/u77eyqpt2bIlLZC+bds2W6VeX19PJBKhubk5TZW+bds2jjzyyJy/OxgMEgzq70U0kGzdupWbbrqJjRs3UldXx4wZM1i8eLHd1uWoo44ikUhoXqUgCIIgCIIgCIIgCIIgCEL/U1CB9NraWmprB6Yn26hRo6ivr2f+/PlMmTIFgEgkwoIFC7jzzjuB1EDN+fPnc8455wCwefNm3n33Xe66664BWdfewqxZs+w2LoIgCIIgCIIgCIIgCIIgCJ8mCiqQviusX7+enTt3sn79euLxOEuXLgVgv/32o6zMGto0btw47rjjDs4880wMw2DOnDncfvvtjBkzhjFjxnD77bdTUlJi9/2urKzk0ksv5etf/zo1NTVUV1dzww03MHHiRGbMmKHrnyoIgiAIgiAIgiAIgiAIgiBoZK8NpP/P//wPv//97+3Plcr8xRdf5NhjjwVg5cqVtLa22q/55je/SXd3N1/96ldpbm7msMMO47nnnqO8PDV45qc//Sk+n49zzjmH7u5ujj/+eB588EG83sIYdCYIgiAIgiAIgiAIgiAIgiC4S0ENG/2kkK9BvQzZtJD3QRAEQRAEQRAEQRAEQRAE3fR12KjHxTUJgiAIgiAIgiAIgiAIgiAIwl6HBNI1kUgkdC9BK5/2f78gCIIgCIIgCIIgCIIgCHsPe22P9L2VQCCAx+Nh06ZNDB48mEAggGEYupflGqZpEolE2L59Ox6Ph0AgoHtJgiAIgiAIgiAIgiAIgiAIeZFAust4PB5GjRrF5s2b2bRpk+7laKOkpIQRI0bg8UhRhCAIgiAIgiAIgiAIgiAIhY0E0jUQCAQYMWIEsViMeDyuezmu4/V68fl8nyolviAIgiAIgiAIgiAIgiAIey8SSNeEYRj4/X78fr/upQiCIAiCIAiCIAiCIAiCIAh5kL4agiAIgiAIgiAIgiAIgiAIgpAHCaQLgiAIgiAIgiAIgiAIgiAIQh4kkC4IgiAIgiAIgiAIgiAIgiAIeZAe6QOAaZoAtLW1aV6JIAiCIAiCIAiCIAiCIAiCkAsVw1Ux3VxIIH0A2LFjBwDDhw/XvBJBEARBEARBEARBEARBEAShN9rb26msrMz5fQmkDwDV1dUArF+/Pu+bLwhC/9HW1sbw4cP5+OOPqaio0L0cQfhUIPtOENxH9p0guI/sO0FwH9l3guA+n+Z9Z5om7e3tNDY25n2dBNIHAI/Haj1fWVn5qbvxBEE3FRUVsu8EwWVk3wmC+8i+EwT3kX0nCO4j+04Q3OfTuu/6IoaWYaOCIAiCIAiCIAiCIAiCIAiCkAcJpAuCIAiCIAiCIAiCIAiCIAhCHiSQPgAEg0FuueUWgsGg7qUIwqcG2XeC4D6y7wTBfWTfCYL7yL4TBPeRfScI7iP7rncM0zRN3YsQBEEQBEEQBEEQBEEQBEEQhEJFFOmCIAiCIAiCIAiCIAiCIAiCkAcJpAuCIAiCIAiCIAiCIAiCIAhCHiSQLgiCIAiCIAiCIAiCIAiCIAh5kEC6IAiCIAiCIAiCIAiCIAiCIORBAumCIAiCIAiCIAiCIAiCIAiCkAcJpPcz99xzD6NGjaKoqIipU6fyyiuv6F6SIHxiuOOOOzjkkEMoLy9nyJAhnHHGGaxcuTLtNaZp8r3vfY/GxkaKi4s59thjWb58uaYVC8InjzvuuAPDMJgzZ479Ndl3gtD/bNy4kQsuuICamhpKSkqYPHkyS5Yssb8v+04Q+pdYLMZ3vvMdRo0aRXFxMaNHj+b73/8+iUTCfo3sO0HYM15++WVOO+00GhsbMQyDv/71r2nf78seC4fDXHPNNdTW1lJaWsrpp5/Ohg0bXPxXCMLeRb59F41GufHGG5k4cSKlpaU0NjZy4YUXsmnTprTfIfsuhQTS+5HHHnuMOXPmcPPNN/PWW2/xmc98hpNOOon169frXpogfCJYsGABV111Fa+99hrz588nFosxc+ZMOjs77dfcdddd/OQnP+Huu+/mjTfeoL6+nhNOOIH29naNKxeETwZvvPEGc+fO5aCDDkr7uuw7QehfmpubmT59On6/n2eeeYYVK1bw4x//mKqqKvs1su8EoX+58847uffee7n77rt57733uOuuu/jhD3/IL3/5S/s1su8EYc/o7Oxk0qRJ3H333Vm/35c9NmfOHJ588knmzZvHwoUL6ejo4NRTTyUej7v1zxCEvYp8+66rq4s333yT7373u7z55pv85S9/YdWqVZx++ulpr5N958AU+o1DDz3UvPLKK9O+Nm7cOPOmm27StCJB+GSzbds2EzAXLFhgmqZpJhIJs76+3vy///s/+zWhUMisrKw07733Xl3LFIRPBO3t7eaYMWPM+fPnm8ccc4x53XXXmaYp+04QBoIbb7zRPOqoo3J+X/adIPQ/p5xyinnJJZekfe2ss84yL7jgAtM0Zd8JQn8DmE8++aT9eV/2WEtLi+n3+8158+bZr9m4caPp8XjMZ5991rW1C8LeSua+y8bixYtNwFy3bp1pmrLvMhFFej8RiURYsmQJM2fOTPv6zJkzWbRokaZVCcInm9bWVgCqq6sBWLNmDVu2bEnbh8FgkGOOOUb2oSDsIVdddRWnnHIKM2bMSPu67DtB6H+eeuoppk2bxqxZsxgyZAhTpkzht7/9rf192XeC0P8cddRRvPDCC6xatQqAZcuWsXDhQk4++WRA9p0gDDR92WNLliwhGo2mvaaxsZEJEybIPhSEfqK1tRXDMOxKSNl36fh0L+CTQlNTE/F4nLq6urSv19XVsWXLFk2rEoRPLqZp8rWvfY2jjjqKCRMmANh7Lds+XLdunetrFIRPCvPmzePNN9/kjTfe6PE92XeC0P+sXr2aX//613zta1/j29/+NosXL+baa68lGAxy4YUXyr4ThAHgxhtvpLW1lXHjxuH1eonH49x2222cd955gDzvBGGg6cse27JlC4FAgEGDBvV4jcRdBGHPCYVC3HTTTcyePZuKigpA9l0mEkjvZwzDSPvcNM0eXxMEYc+5+uqrefvtt1m4cGGP78k+FIT+4+OPP+a6667jueeeo6ioKOfrZN8JQv+RSCSYNm0at99+OwBTpkxh+fLl/PrXv+bCCy+0Xyf7ThD6j8cee4yHH36YRx99lAMPPJClS5cyZ84cGhsbueiii+zXyb4ThIFld/aY7ENB2HOi0SjnnnsuiUSCe+65p9fXf1r3nbR26Sdqa2vxer09sjHbtm3rkVEVBGHPuOaaa3jqqad48cUXGTZsmP31+vp6ANmHgtCPLFmyhG3btjF16lR8Ph8+n48FCxbwi1/8Ap/PZ+8t2XeC0H80NDRwwAEHpH1t/Pjx9gB7ed4JQv/zjW98g5tuuolzzz2XiRMn8qUvfYnrr7+eO+64A5B9JwgDTV/2WH19PZFIhObm5pyvEQRh14lGo5xzzjmsWbOG+fPn22p0kH2XiQTS+4lAIMDUqVOZP39+2tfnz5/PkUceqWlVgvDJwjRNrr76av7yl7/w73//m1GjRqV9f9SoUdTX16ftw0gkwoIFC2QfCsJucvzxx/POO++wdOlS+2PatGmcf/75LF26lNGjR8u+E4R+Zvr06axcuTLta6tWrWLkyJGAPO8EYSDo6urC40k/Hnu9XhKJBCD7ThAGmr7ssalTp+L3+9Nes3nzZt59913Zh4Kwm6gg+gcffMDzzz9PTU1N2vdl36UjrV36ka997Wt86UtfYtq0aRxxxBHMnTuX9evXc+WVV+pemiB8Irjqqqt49NFH+dvf/kZ5ebmtVqisrKS4uBjDMJgzZw633347Y8aMYcyYMdx+++2UlJQwe/ZszasXhL2T8vJyew6BorS0lJqaGvvrsu8EoX+5/vrrOfLII7n99ts555xzWLx4MXPnzmXu3LkA8rwThAHgtNNO47bbbmPEiBEceOCBvPXWW/zkJz/hkksuAWTfCUJ/0NHRwYcffmh/vmbNGpYuXUp1dTUjRozodY9VVlZy6aWX8vWvf52amhqqq6u54YYbmDhxIjNmzND1zxKEgibfvmtsbOTss8/mzTff5O9//zvxeNyOs1RXVxMIBGTfZWIK/cqvfvUrc+TIkWYgEDAPPvhgc8GCBbqXJAifGICsHw888ID9mkQiYd5yyy1mfX29GQwGzaOPPtp855139C1aED6BHHPMMeZ1111nfy77ThD6n6efftqcMGGCGQwGzXHjxplz585N+77sO0HoX9ra2szrrrvOHDFihFlUVGSOHj3avPnmm81wOGy/RvadIOwZL774Ytbz3EUXXWSaZt/2WHd3t3n11Veb1dXVZnFxsXnqqaea69ev1/CvEYS9g3z7bs2aNTnjLC+++KL9O2TfpTBM0zTdDNwLgiAIgiAIgiAIgiAIgiAIwt6E9EgXBEEQBEEQBEEQBEEQBEEQhDxIIF0QBEEQBEEQBEEQBEEQBEEQ8iCBdEEQBEEQBEEQBEEQBEEQBEHIgwTSBUEQBEEQBEEQBEEQBEEQBCEPEkgXBEEQBEEQBEEQBEEQBEEQhDxIIF0QBEEQBEEQBEEQBEEQBEEQ8iCBdEEQBEEQBEEQBEEQBEEQBEHIgwTSBUEQBEEQBEEQBEEQBEEQBCEPEkgXBEEQBEEQBEEQBEEQBEEQhDxIIF0QBEEQBEEQhJwce+yxGIaBYRgsXbq0Tz/z5S9/2f6Zv/71rwO6PkEQBEEQBEFwAwmkC4IgCIIgCMKnmDlz5nDGGWfkfc1ll13G5s2bmTBhQp9+589//nM2b97cD6sTBEEQBEEQhMJAAumCIAiCIAiC8CnmjTfe4NBDD837mpKSEurr6/H5fH36nZWVldTX1/fH8gRBEARBEAShIJBAuiAIgiAIgiB8ColGowQCARYtWsTNN9+MYRgcdthhff75J554gokTJ1JcXExNTQ0zZsygs7NzAFcsCIIgCIIgCProm6REEARBEARBEIRPFF6vl4ULF3LYYYexdOlS6urqKCoq6tPPbt68mfPOO4+77rqLM888k/b2dl555RVM0xzgVQuCIAiCIAiCHiSQLgiCIAiCIAifQjweD5s2baKmpoZJkybt0s9u3ryZWCzGWWedxciRIwGYOHHiQCxTEARBEARBEAoCae0iCIIgCIIgCJ9S3nrrrV0OogNMmjSJ448/nokTJzJr1ix++9vf0tzcPAArFARBEARBEITCQALpgiAIgiAIgvApZenSpbsVSPd6vcyfP59nnnmGAw44gF/+8peMHTuWNWvWDMAqBUEQBEEQBEE/EkgXBEEQBEEQhE8p77zzDgcddNBu/axhGEyfPp1bb72Vt956i0AgwJNPPtnPKxQEQRAEQRCEwkB6pAuCIAiCIAjCp5REIsHbb7/Npk2bKC0tpbKysk8/9/rrr/PCCy8wc+ZMhgwZwuuvv8727dsZP378AK9YEARBEARBEPQginRBEARBEARB+JTygx/8gMcee4yhQ4fy/e9/v88/V1FRwcsvv8zJJ5/M/vvvz3e+8x1+/OMfc9JJJw3gagVBEARBEARBH6JIFwRBEARBEIRPKRdccAEXXHDBLv/c+PHjefbZZwdgRYIgCIIgCIJQmIgiXRAEQRAEQRCEvNxzzz2UlZXxzjvv9On1V155JWVlZQO8KkEQBEEQBEFwD8M0TVP3IgRBEARBEARBKEw2btxId3c3ACNGjCAQCPT6M9u2baOtrQ2AhoYGSktLB3SNgiAIgiAIgjDQSCBdEARBEARBEARBEARBEARBEPIgrV0EQRAEQRAEQRAEQRAEQRAEIQ8SSBcEQRAEQRAEQRAEQRAEQRCEPEggXRAEQRAEQRAEQRAEQRAEQRDyIIF0QRAEQRAEQRAEQRAEQRAEQciDBNIFQRAEQRAEQRAEQRAEQRAEIQ8SSBcEQRAEQRAEQRAEQRAEQRCEPEggXRAEQRAEQRAEQRAEQRAEQRDyIIF0QRAEQRAEQRAEQRAEQRAEQciDBNIFQRAEQRAEQRAEQRAEQRAEIQ//H+OOtV83u1P6AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" } ], "source": [ "# we will use our function 'wave' again when we can\n", - "g1 = wave(A1,(omega_1 + omega_2)/2)\n", - "g2 = A2*np.cos((omega_1 - omega_2)*t/2)\n", + "g1 = wave(A1,(omega1 + omega2)/2)\n", + "g2 = A2*np.cos((omega1 - omega2)*t/2)\n", "\n", "plt.figure(figsize=(18, 5))\n", "plt.plot(t,g1,t,g2);\n", @@ -335,20 +334,18 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "id": "b37d2ec1-a1e9-417b-984f-ef28667c3254", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABCoAAAFBCAYAAACxXk70AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9d3RdWX7fiX7OuTkBFzkRJMCcyWLlnLq6q1tqtSS3rdZ45LHX2D09ltb4eRw0fpb19DwjWw7r2SNZrbYkW9k9rVZLVqtzdVdiRRZZzJkgQSIQGRfAzeGc98fmBgjeyHM2iqH2Z61aRZx7cPYFcPc5e39/v9/3Z9i2jUaj0Wg0Go1Go9FoNBrN3YB5p9+ARqPRaDQajUaj0Wg0Go1ECxUajUaj0Wg0Go1Go9Fo7hq0UKHRaDQajUaj0Wg0Go3mrkELFRqNRqPRaDQajUaj0WjuGrRQodFoNBqNRqPRaDQajeauQQsVGo1Go9FoNBqNRqPRaO4avHf6Dawl7e3t9sDAwJ1+GxqNRqPRaDQajUaj0Whu4siRIzO2bXdUeu2+FioGBgY4fPjwnX4bGo1Go9FoNBqNRqPRaG7CMIyr1V7TpR8ajUaj0Wg0Go1Go9Fo7hq0UKHRaDQajUaj0Wg0Go3mrkELFRqNRqPRaDQajUaj0WjuGrRQodFoNBqNRqPRaDQajeauQQsVGo1Go9FoNBqNRqPRaO4atFCh0Wg0Go1Go9FoNBqN5q7hjgsVhmH0G4bxmmEYZw3DOG0Yxj+ocI5hGMavG4ZxyTCME4ZhHLgT71Wj0Wg0Go1Go9FoNBrN2uK9028AKAL/yLbtDw3DiAFHDMN4xbbtMzed82lgy43/HgV+68b/NRqNRqPRaDQajUaj0dxH3PGMCtu2r9u2/eGNfy8BZ4G+W077HPCHtuA9IG4YRs9H/FY1Go1Go9FoNBqNRqPRrDF3XKi4GcMwBoAHgPdveakPGLnp61HKxQyNRqPRaDQfM/KFPMeGjt3pt6HRaD4CsvnsnX4LGo3mI+KuESoMw4gC3wD+X7ZtL976coVvsatc54uGYRw2DOPw9PR02euvHHmFz/+7z3Nt6prr96zRaO5eHvp/P8TDv/TwnX4bGo1mjfnc//U5Hvi9Bzg+dPxOvxWNRrOGvHXqLUL/OsQ//N1/eKffikaj+Qi4K4QKwzB8CJHiT2zb/vMKp4wC/Td9vQ4Yr3Qt27Z/27bth2zbfqijo2PVa8eGjvHJb32Sb6S/wS/+0S8qevcajeZuw7IsjgSOcNh3mK+e/OqdfjsajWYNeW3sNfDBv/3mv73Tb0Wj0awhv/7BrwPwx6f/+A6/E41G81Fwx4UKwzAM4L8AZ23b/v9VOe2bwN+60f3jMWDBtu3rtzvWd498d/nfkQ0RJ29Xo9HcA5y4cmL537/94W/fwXei0WjWklQ2Ra4rB8DR7NE7/G40Gs1akcqn+Pb1b4t/k7rD70aj0XwU3HGhAngS+DngBcMwjt347zOGYXzJMIwv3TjnO8Bl4BLwO8DfdzLQiRGxeekIdTCWG3P/zjUazW3zxb/6Il8//fU1HePbh8ViJmbHOHbl2JqOpdFoKvPP/uCf8egvrW2DrlfPvQp+WBdcx8XiRVJ5vYHRaD5qiqUi33zvm2s6xrmpc6QLaeJ2nEwsQyKZWNPxNBpNOf/uG/+Ob73/rY9svDsuVNi2/ZZt24Zt23tt295/47/v2Lb9Fdu2v3LjHNu27Z+3bXuTbdt7bNs+7GSs4aVhKMCBtgMcGT6i9OfQaDT1OT1ymt/58Hf4l2/+yzUd593L7wKwLr2OhJUgX8iv6XgajWY1+UKeXzv6axzyHeLq5NU1G+dC+gIA/+jZf0TRKjK6OLpmY2k0mnIm5iaI/JMIn/v+5/iP//0/rtk433pTbI62FreCB7595NtrNpZGoynHsiz+6al/yme/91m++8F363+DAu64UPFR0r2jmx3dO8iMZJguTGs1VqP5iPnyt78MwKmpU3zjrW+s2TjTxjT+nJ8Heh4ADxy9pFPCNZqPkl/56q9Ai/j3mYUzazbO+NI4YV8Y35wPgO++9dEsnjQajeA3v/2b5JtFMOC1c6+t2TgXpy4C8I9+7B8BsBRZWrOxNBpNOR+c/2D53//u3X/3kYz5sRIqhuaG2NS2id3du8GA146v3Q1Vo9GU8+rlVyEHWPAfX/mPazaO1Wbx7I5n2dGzA4AjQzqDSqP5KPmzk3+GkTMwMDg0fmjNxvnzV/6cUqLEYPsgABcnLq7ZWBqNppxT46fEP2yYNWfXbJyr81fBgs888BkAJpITazaWRqMp53tHvweAx/CQi+Y+kjE/NkKFZVmcnTiLMW/w+JbHAXjn/Dt3+F1pNB8vhkpDdGW68CV9XF1au3TwyeQkvbFe9g/uB+DU6Kk1G0uj0ZQzW5glnAmzIbSBr73ztTUbZ6G4gD/vZ+/gXuDGZkaj0XxkdO/sJuqN8syGZ7Db7TUbZyI1gZk2iQajBK0grx3SwUaN5qPk/SvvA/Dy4Mtcnrv8kYz5sREqzlw9Q9Es4k/52b9xPwBX5/SCRqP5qMgX8hSiBTbHNhMuhVmwFtZkHMuyGJ0b5drZazyy9REAhueH12QsjUZTmY7NHTx/4Hn8037OLZxbs3HSZpqYGaO3rRfycH3pthuCaTQaF1xdvMrm9s3s6NjB2emz2PbaiBVzxTnCxTAA1pLF0MTQmoyj0Wgq07K9he5wN5nhDBOpCRZSa7OOv5mPjVBx6qqIqG7q2MTGno0ATKem13RMy7LW9Poazb3EhdELYEJvUy9xT5y0N70m40wlprC9NkErSGdLJ+2hdvp396/JWBqNphzbthldHGVTxyb6on3YYZt0dm3me96fp9XXimma+LI+ZnIzazKORqOpzAeXPiCaj5IfyzOfnefklZNrMo6/w8/2nu0AhK0wS9baelQcGzqmvew0mps4NX2KA30H2NS6CYD3zr635mN+bISKkdkRANa1riMcDBP1Rtmyd8uajXdx9CKeX/LwN//D31yzMTSae4mUKdoGfuLRT7CxfSNWxFqTyMvFMVGj3t3UDcD6+HpGFkeUjyN5/+z7fOl3v8Trw6+v2Rgazb3EyPQIqUIKFqCnqQeAM9fUG2omM0nskE1npBMQIqi/za98HMlXX/8qnl/08F++/1/WbAyN5l4iX8gzU5ohP5lna+tWAF498arycWzbZslY4qm9TwEQM2NkPBnl40gSyQQHfucAL/zqC2s2hkZzr3F+4jzeJS9714tSy8NDjppw3hYfG6FifH4cgHVt6wDoinWRtJJrNt5P/8ZPQwB+lP7Rmo2h0dxLzBfmAdg9sJvPPf85LNNiNqPeeGvoukgH7Yv3AZCeSXPi4gnl40g+/zuf5z+P/Wd+9hs/u2ZjaDT3Eh9cuOEMvgTrW9cDcH70vPJxxhJjAOzbuA+Ax3c/DjHlwyzz22/8NlbY4p8e+afkS7rlsUbzwYUPwANb2rews38nAFemrygfZ3ppmlQhRXdEBCDi/jhFf1H5OJLf/PZvYodsjpeOUyyt3Tgazb1CMpMkZ+RITiZ5dOujAJwZX7uOXpKPjVCxVBQpYgNdAwCYOZNTl9fGYG8xtcipwI1rB1izej2N5l7iyAXReaPF10JfkxARxhbHlI8zPD0MwIaODQCkZ9NMLU0pH0cyjSghm0hOsJBd+3o9jeZu59Q18fzb0buDwU7RjWNoUn09+ZItnuvPP/w8AL3RXsYXx9es7PLigsjWmivM8f7o+2syhkZzL/Hh0IcA7O7bzaZukQ4+nhhXPs7xi8cBuHJSiCDdsW7soE06tzYlZf/9zH8HwIpY/Ncf/Nc1GUOjuZe4MHoBgK5olwgOlGBodu19Yj42QsXGXcKXYueAUHwT4wmGxtfmFywV5gHfAJOpSU6Pnl6TcTSae4mDHx4EoCPUQW5GtDX6qzf+Svk4xYCIfmxfL2pZY94YRd/aRESy+Sy5SI5YVoRxv/X+t9ZkHI3mXuLilNjQ7x/cz7MPPgtA/3b1PjEj86KkqzsqoqyXjl0iXUwzOjOqfCyACc8E8UwcgGNXj63JGBrNvYQsqx7sHGRTrxAq1sL/bXRWzOnOJlHm9fmXPw/AfG5e+VgAM60zPNLxCB48nLfVZ4NpNPcaF8fFc70v3off56fV20q4J7zm435shIrZ9CwRX4SANwBAzBMj51mbHrBHhkTkeBe7APi9H/zemoyj0dxLTKQmIAftze1sbBfC4YXrF5SPE++NA7B3k6ihiwfi2AGbUqmkfKy3T78NXtjlFXP9tZO6XZpGc3X+Kliwb9M+1sVFueVUSn1W01+88hcA2Esia7Et1AbAtalrysc6P3KeUrTEg+EHwYY/f+3PlY+h0dxrTC5OAjDQOUDQH8Rf8hNoCSgfZyIxAUBPi/C8kb40a3FfyRVzDCeG+fFdP85AywDjGfUZIhrNvcaVKZHNtL5dlHNu6tlEMB5c83E/NkLF64deh5t8d+L+OKWA+o0LQKxfRFd/+Wd+GSw4dO3Qmoyj0dxLzOXm8OV8wI2achuuJdRvKKZT0/g9fmJ+MQ9bQi1gwvis+sXGwTMiS+RnH/pZKMLJibVxO9do7iXm8nOYWZOgP0jEH8Fn+3jjyBvKx5lMik3S5t7NALTH2gEYm1VfUnYlKxZpX/z0F/GkPYwsrZ1Br0Zzr7DjwR0A7NooxPoNHRto6WtRPs7EghAqelt6AcjPC4+Y1z5QHxw4eukoAIW5AnEzzsmr+rmu0VxfEK2/N3aJQGPMG+N6Yu3bgX9shIqxuTGs5ErdamuoFfzCT0I146lxPIaHA4MHMDMmU+m1q4/XaO4VFqwFwiWRJhYOhjEyxprMjb/84V9iJ20MwwCgq6kLWEkdVUl4g/h5fvrpnyaQCnA1dVX5GBrNvcb2B7azfcP25a/tpL0mXT8S2QQUobWpFYCuZjHXZfRVJdeTYkH28OaHieQjzBR1G1SNZjY9S9AbJBqIAtAR6WAmrX5uzCTFNfs7RAlZW1BkT50bOad8rKNDQqgI5APMXJnh/Lgu/dBoNu4WAsUjux4B4NKpS5y+vPbWBh8boSJtpwnaKykqnVGRNnZp/JLysd44/gYtnha8ppdAIUCimFA+hkZzr5HxZGgym5a/9ha9JIvqO+8k8gk8Oc/y1z/+4o8DrEmK2tD8EG2hNta1rqOddubMOeVjaDT3GvOZeVqCK1HVYDHIoqU+KLCUX8LIG8tfd8eFV8XkwqTysd47JfrFd4Q7aPe2k/StXdcwjeZe4d3j7+Ir+pa/vnr2Ku8ce0f5OB3rOwAY7BHmvDKLanJJ/VyXJanb+7bTFeqiGCqumUGvRnOvMJ2exmN4aIsIkbDJ27Rm/m8387ERKnJmjrC5Yvrx8jMvA2BG1f8Kjl89TmG6AEDEjpBEL2g0mkBbgBcffXH567ZIG6GWkPJxUqQI2ytzvTUkoq1zGfUiwvtn3ydqiUhSV6QLK6QXMxrN6aHTLEysdMCJGTHShnp3/lQphbfoXf56y/otAIRb1Rt8HTpzCPIQDURZF11HKVwimdHPds3Hm6HxIQqJwvLXYcLkvOr93wJNAfweP/FIHICeVuFVsRadtq7MijKv/Rv3s65pHXjXpr2yRnMv8ebhNwlYAUxD7JvjQeH/ttbtez82QkXBV6DJuxLN7W8T6WPzWfWOwSlfijavUJwe3vkwka6I8jE0GpXYts3XTn2N2fTsmly/ZJVIFpJs6NqwfGzv1r3Ee+LKx8obeSLmypzLL4pa1reOvKV8rEvXL5GcEJuVz33ic5R8JfKlvPJxNBqV2LZNoVSof6JDZtOzpOdWhIm4L07er35etPa00t3Svfz15j4RZY21x5SPNZ+fx5sVosgnHvwEmHBtQb3HjkajkrXOBLg1W7kl0IIVsJSPe3XqKk2+puWSTr/PD3mRVaWascUxKMJg9yCbOkQnkxNXTigfR6NRyT//o3/O6eG1K8W4dP0SpcUVb8e2UBuYMDaj3hPqZj4WQoVt2xCE7uaVBY1MDT90Wq3RZb6QpxQu0RsRhj/7Nu4jUUhg2TrSqrl7OXjtIF/4xhf4pe/80ppcX9aMZ+ZXHG1bgi2ixlwxRW+RkGclU6PZ3wzAxbGLysfKeXJEPTdqc8MiNXUt6nM1GlV859B3aP4/m/n81z+/ZmOU/CVivhWxIB6IY/tt5ZuXcGuYreu3Ln/dFBDBiLUo/VgsLRIqifvK47seB2Amp+e65u7l177+a3h+xcM/+/Y/W7MxsmZ2VWCgI9wBXpiYV+sT8/aRt1mcWl0+5rf8sAZNB5JGEn/Wj2mabO8TXjunR9a+Fl+jccoH5z/gX13+V/wvf/G/rNkYKTtFyFpZW3fExJr38sTlNRsTPiZCxVJ+Cdu0+bHnf2z5WMgQv+yTl9S6+V6ZuAImdEWFqVfIClGwCozNra3ipNG44V98+18A8Idv/+GaXH9odAiAmdGVhf25Y+e4NKreI8YT9rCxb+Py14PdoqZ1Nqk+W6ToL9LiF7X4ifEEAB+c/kD5OBqNKn7uv/0cS/YS3zz/TUqW+s5X+UIeAkKckHz2k58FD2RLWaVjzSZniXhXNkle0wt5+N7r31M6DkDaTBM1hCgpxcm18LjSaFTxZ0f/DDzwa4d/jQuz6luBQ3m2cneTCAheGlM7N9JWWggTN7Fp3SY27thY5Tuc07W5i0d2CsPAp/c+DUDrQKvycTQaVfznV/4zAO8uvsuV+StrMkbGzBA1o8tfP7TzIQCswNoG4j8WQoWsTZe16sByuuhCRm192/DkMACdMWHWOXtVbI4+PP+h0nE0GlVcuX6FN6fehDSkm9OcH1Ffi3l9Xjjmy/aBAEGCWD61KaIlq0TBKPDY/seWj7XGWqGovswrmUlC4Eb6G6I2F3Qtq+buJuFPgC3+/fb5t5Vf/+qk6HzTGl553saDcUB9PfnFkYucPXp21TFP3rMmJr15f35ZlLRT4hf4xiH1LVc1GlUMpYeW5/qZafVddyzLwg7Yq4xzd2/aDUDSVjsHs0aWEKs9rZqDzWviUTG2NEZfrA+Awc5BTMNkNr82ZbEajQp+eOWHGFkDC4t//4N/vyZjFP1FmnwroqSc60Wv9qhwzdGzotXQ+JXx5WPdrUKoWMypdSKPdYp015eeegmAwQ4Rzb14XX3auUajgoOnD4IBj/sfBwO+/L0vKx9DChWyfSBAS6gFvDC3pM7kcikn6lVlCjiAaZqYOZOFvNoFjYymyg5Cg11iro/MjigdR6NRxej0KFbEYsOS8Ir52htfUz6G7Kt+81yfGROZVOeG1bYStPwWUV901TFvSX03oaJVhBD82LMiK3NTj6hbn05OKx1Ho1GFZVkkQgk2pkXGwe/+xe8qH2MpvwQe+KmXf2r52KO7HwXACBvVvs0ReTO/yhAf4PrwdY6eOap0HIAr01dIjCQAkaUVM2McvaB+HI1GBZZlcc17jQ35DZgpk1cOv7Im49h+m3govvx11Cuevbr0QwHS6MNbWnEH93pEimgyr3ZBk8glAOiNC4+Krb2ifvbK9Nqk4mg0bjl+9TgAX3r2S2DD8fHjyseYWpwCVm9eZMT12pQ6Q7rzwyKb4eTh1SVdQSNIya82zV12DPrxF0T70y29ouPA+MJ41e/RaO4krx5/FYCf3vnTUID3R95XPobs5HNzqWUxJSIul8fVLWjyhTz4oTnQvOp4wAqQsTNVvssZ06lpbOzlwEN7czsUYTajo6yau5ODJw9CEB7vfRwzbXJhTn3ph/z8t4dXMiVlkGA2pXZulHwlYt7VJrmlVEl5sDGZSVLylCgurUSJM3MZjl9Qvy7SaFRw9tpZ7LDNga4DRPIRpgvqBfRsMQse+LEXV57r0uvx9fdfVz7ezXwshIrZpRs305vSzgHMgkmyoFaoOHRKmHN6C0IU2bVhFwCjiVGl42g0qjg/JTb3z+55FjNjMpFSa4IFML0kbpx9bX3Lx9qjYj6OzqqbG9LAKx6Orzq+f9t+1m9dr2wcWDHNlKLkpp5NYMNUakrpOBqNKo6NHgPguV3PEUlFGEoNKR9DlljdnA7e2SSyjqYW1M0NGYCQZSWSoBEkZ6htj3j0ooimlpaE2CmztGRgQqO52zi/KJ7rn3v4c8TyMSYK6p/rH54TJc1LUyudN1JzKQB+8PoPlI1j2zZGyOChPQ+tOh72hJWnncvy7ZtL1/yWn7Slvr2yRqMCaer81J6naPW0kvSqL32UguDNgYGB7gExfmptTaU/FkLFXEqklnc0d6w6vql/E/se2ad0rJMXRSRXdhro7+iHEkwm1buQazQquJq4ipE12NC1gcH2Qdo3ttf/pttk+z7hnL1jcMfKsQFxrGCqa5Mo3f7bIm2rjsf8MeXZU+8efxcAb06Ikn6fH1/BR9G/tvV6Go1TohuimIbJSwdeos1sI+VJKR/j4OGDABSWVuZ1d1yUWs4sqVvQjM0KoaIl3LLq+I6BHUTbo5W+xTFSqDDTK0smX9HHUlF9a0SNRgVys/LSgy/R4+shGVS/eZFm2EZupcyjp7UHUOtHs5RfwsJi18Zdq47HfDEsn1ojv5FpUbopAykgzPezhlojYI1GFYsIEeHJvU/SF+mjGC6Szav9vJ6/KoTPiWsrgmc0FIU8zGfU+r/dyl0hVBiG8V8Nw5gyDONUldefMwxjwTCMYzf+++XbuX4inQCgs7lz1fF4MK68B/NMegZsWN8poremaRIPxtmye4vScTQaVcQH4wzEBwDYuW4nS6hffKdKYkPUFl0REB7c+SAAwbi6/mLTiyJzo71ptdgyMjTC2ctnK32LY04OCVEy7o8vH9vSt4XeLb1Kx9FoVHF+9jyD8UFC/hCt/lYKAXUioWRoTGRp3JzpIDcvM0l1QoXcoOzbtjrYsGfLHko+tWVesr3y+o6VrKzt67fTvbG72rdoNHeUK9NXCHgCNAea2dq6FTtkc3FUrVfaXFIEAW9eW0v/N5VChfS4MvOrtyyxQAz8kCuoy6CSAmhX00qZasSMkPfklY2h0ajkzKgwyu2N9rKpdRN44OgltZ4qV68Lk2wrs1oY9OQ9LBTUG9rezF0hVAC/D7xc55yDtm3vv/Hfv7ydi3tCoo6mp61n1fHFmUXODqndvMxn5zFyBn7fShuljlgHRZ+OsmruTuasOfYP7Acgake5MqPeT+XDMx8SICDaB95AbmRUpo3JFqS3ipL5pTypgtro8VRSpLFv7Flpj9YR7mA6pQ32NHcnB08cxFgQ0c9PP/1pCEAqr3ZezKbFHBzoGlg+tq5jHQAZS6F3xA19c/fm3asPG0ESmYTSbkKy3n5d+7rlY5t6N5HzqC0x0WhU8Z03v0MxUcQwDB7e+jAgsidVIrOVZcYUgM/rgzxKg4AXhoW/xtWLq9+/nI8yQKGCpYJ43/0d/cvHYr6YcvFTo1HFX73xV2BBZ7iTH39KeKal/WpLlWS2ckdsdWWCt+QlU1LrCXUrd4VQYdv2m4A66/9bGNg2AEBfR9+q4wtTC0wm1JZkLBYW8eQ9q46ZeZOL13TXD83dh2VZDM0M0eYRmQ5Tl6ZYKi2RSCaUjnPm8hkKydXRWystNhLf/tG3lY0TbRMp34O9g6uOh71hLK/aFNGZzAxG1iAcXHEinxqe0q2INXct06lpCgkxD6XR82RK7TNwPjMPBYhH48vH1nWsw8Bgx/4d1b/xNpGRz7BndSeAs8fOYmEt+9WoQKa23ixUmFmT8XltnKu5O0mUEgRLQs175sFnxMFwjW9wMkYmAUBXS9eq42bBVNp5Z2ZRBDNuLfN64YkXACh61AUCuweE6PL4/seXj33iqU9AECxb7RpCo1HBZHoST9qD3+fngcEHABhPqX02ybLNrvjquT7YN0jfxr5K36KMu0KoaJDHDcM4bhjGdw3D2FX/9BWWckuEvKFV0Vy4YcRjqs10SNtpAlZg1bHpkWnOXzuvdByNRgUXxy6Ss3PMXhYRw/UtIrX56JDatLFUKYWv5Ft1TC7659LqNMqWLrGQGegZWHU84otg+2ylUdaFwgLe/Op7ip221UaNNRqFFANFWvxijvhyYj5K/wVVLBWWylK0TcMkFoixkFOXIvrGe28AkJxZvSGS7dMm5tQJFQvZBShBa2zFYG/0wiiJnNrMDY1GFSkjRQzRJaMjLKKgk0tqRcm8IcohZGmXpD3aTnuvOq8rWWLSGm1ddVx2GFHZ+SORTQCrS9fWt6/HxlZazqLRqGKuOEeoILpt9TeJTKCDJw8qHUNmK98qVPR39i9XLawV94pQ8SGwwbbtfcBvAP+92omGYXzRMIzDhmEcnp4W6WA/eutHFNPlgkTYE6bkVZvONbhzkCceeGLVsZAZWr6hazR3ExfHRaZPX7NQRLd0CS+VU1cr2sU4JmNl8Fv+VcekEY9K53xZAx/zr25jFvPHwAOLaXULmhw5fNZq8SXqi2L59cZFc/eRSCYgsNJK0MyIx/+hM4eUjmMEDYJmue9MKVXi7cNvKxtnuRyjY92q481BYWQ9vaAuHXzfY/toi7ZhmitLptZwK3hQmrmh0agi78/T6hcbeymo/8UP/kLpGDv378Tv8dMUaVp1fKB3gKaOpirfdftIoaItttok+/qw8K549+i7ysb6wVuiW0nUu2LIm50XxoRD4+q7JGk0bkmaSZpN8dwL+oKQgw9Of6B0DLmH7WtfnT1h52wm59e2WcQ9IVTYtr1o23byxr+/A/gMw6go19q2/du2bT9k2/ZDHR1CRZ5LzWFn7bJzo/4otl9tlHUuM0dHdHUNT9QTVd5CSWJZFp3/sJNnf+XZNbm+5v7m2vQ1APpaxc1n57qdAFy4rrbnes7IETTKNy9mwVTajeP7r30f8uAxVyu83W0inVO2KlbB5l2beWz/Y6uONQWawAfp7Nq0MvvlP/5lHv2lR3UUV3PbnB8RWX3dMTEXdvSLMoxrs9eUjrNx+0a2b9xedryYKi6Xa6hARlFvjebGI3FgJV1c1Vi3tkHtjAofnMvXLysbR2JZFj//lZ/ny9/6sp7rmtsmnU1jh2w6w+IzOtg9CJb67nOLucXlrIabCXvCSp+10hD/VpPsiDcCwPXZ68rGGpsZgyLEQivBjqUZ4VtxbvicsnFu5sA/O8DT/5+n1+TamvuffDBPR2Bl3+nNe1nIq83+kQ0hZEtSyZVzVxiZGlE61q3cE0KFYRjdhmEYN/79COJ9N3wXzFrZssgn3NhUeGApo870Z2RmhPmx1a1aYv7YmkVZ//N3/zPT8Wk+MD4gX9JZG5rbY2RW3GD620S62N7BvQBcm1e7eSmYBcJmeYGsp+Qha6lro5QsJDEL5be15594HgAzqO6Wt5hbpCm4epEmNzOjM6PKxpH8xjd/g/9z6P/kkO8Q56bWZsGkuX8ZSwiRYKB9AIDt/dvBhutL6hb5AMl8siyjCcBv+cnaCud6PgkWNIVXz0FZxy6jsCo4dvYYuYXVxpk9cSGQDE8OKxtH8gc//AO+PPllfv7Iz/N//MH/ofz6mvsbOacf3fUoAF6PFyNrMJtRJx4AvHPkHXKL5YayF05c4MSFE8rGWb9FlKRuXr951fHuFiG6Ti+py55aLCxi5lavE+RcH5tTJ7RKZhZmOOo9ylvmW/zff/l/K7++5v5mKbsEAdGaVOIv+UlaatsRL+YWCXgCBLyrrQ3Wwv/tVu4KocIwjK8C7wLbDMMYNQzjfzYM40uGYXzpximfB04ZhnEc+HXgC7Ztl6dIVCFn5/DZ5ULFj78k3FHzqNngF0tFckauvGY2GAcfLKbUpZ1Lfu3VXwMbMmR4ZegV5dfX3N9cXxALmo3donPF+q71mJgM7hys9W23TXNXMy89/VLZ8c54J63drRW+wxnpUhpvyVt2XG6cVDqRD18fZnpk9QJpQ/cGYKXOVSW/9dZvLf/7/evvK7++5v4m3CGEwk8/+2kAgv4gRsZgKj2ldJyTF04ydqV8QR8kSM5Q1yUjXUhDnlXlGAA7N4ussHhnXNlYozOjJGdXP9e7mkWt7tSi2t8fwHdPfHf538Uu3TFMc3skCgkAHt+9YgjpL/hZKKqNsk7OT1JIlbc4DnlCSg0uvSHxTO9oXp2t3NsqWoHL7iMqSBaTeIur1xAy43RiQX2Z11e++xXwAiX4V6//K+XX19zfzOdEYPyBbQ8sHwvZIdKozep94/03oMLjO+pTX5lwK3eFUGHb9s/att1j27bPtu11tm3/F9u2v2Lb9lduvP6fbNveZdv2Ptu2H7Nt+53buX7eyBMwAmXHZS2rKiOeibkJMFauK5HOxGlLfTr4iG+ETelNRD1RfvUvflX59TX3N+u2ivru7etFqrbH9BAPxSl4yhcfbljKL9EaKRckNvVvormzucJ3OCNjZypmT8mN0+GTh5WNlSwkl1NCJc88ItzVfZHy9+CW8fw4sUSM9lA73zr1LeXX19zfyLa5nZGV1r3+vJ/5wny1b3HEUm6JfLJc/A+ZIQqmuvtK/6Z+WiItZccHegcACMTKn/lOyRk5QkZo1bEDuw4A0DPQU+lbXHF04ihG2mB/937OzJ1Rfn3N/c35cVHm1RZY8XQIWkHlUdasnS3zngJRkqEyynp5VJRXRXyRVcdltxGVZpppK03AXn3vkK1Kp5bUi5KH5w9jlAye7X2WYH95eaxGU4urU6Jl782f2agnSs5U2zp7Yn5iuVPfzcQCMTBhIbV2RrN3hVCx1vij/uUUsZuZHRdpcGcvn1UyzvV5EZ2WruOS9R0ibW0xrzajYnR6FDtks7V5K54ZD6euqzVA1Nz/5D15gt7gcl03QMAKcOaKusVxOpsmV8oxPVaenhnyhJbrT1WQs3P47fKFkxQqVdWyWpaF7bfLUtxlva7K7gaSxcAiPd4eApMBvnn8m8qvr7m/+e5BEaWPeVY+s4/ufpT1O9crHafkKREyQ2XH26JtoHAdHo6H6Yh3lB33G2L+j02rS9MueoplbVClN4bqzmEAo9Yo7fl21vvW8/aQOgNSzceDV965kV2bWjm2qXsTwTa1G+FqQcCYP6Y0ynro+KGK3lPtzcKzItysru+qN+qlLbLatHOwS2SYSgNflYx4Rnh+8/M8t/05RpZGyBbVlcdp7n8OnRRm2LOjK5/NFx5/gUh7pNq3OCJtpatbKADX59SWkN7Mx0KoCMVDPLr/0bLjshPIlfErSsaRzqe39nrOL4nokuoWpUNzwoH4iR1P0OHtIOVP1fkOjWY1J4dOEjWi3LCAAWBxcpFTQ+pEr6mEiELMT5ZHbs8cPcOZi+pEkebOZjat21R2XJpwzafURI9nF2fBpMxIbG5cpKC+9s5rSsaRTC1NYYdtnt7xNLtbdlOMFZW2X9Tc/1yeuAxF6IitbO67m7uVi2qWzyqLfAJ84ulP4A2Xl2U5ZWJ2Aq9Vfj1pnP3WobeUjVXylYj5VouS0hz47BU1gQ5JupAmH8/zN5//m3hmPCRJcuKyunp/zf2PzJ4a6BpYPvbonkcpBdR2uSuYhYom2U2BJjBhbklNSUa6mMYoGmXHvR4vYV+YgS0DSsYBiHXGeOLA6s59rU2tBDwBdj+8W9k4kivzV9jWto122rGxOXhabVtJzf3N+Pw4AOvaVrpfrW9fz0J+gaKlTkTP2Tn8lAcBHz9wo7xMXQJjGR8LoWIpvyTSU26hPSY2LzNLatzBZWT41hZKmfkMAKcuqc14mLPEQ+Azj3+G/lg/VsRiblFdrZ7m/ufo+aMkp1engwbtIBkyysaQQkVTqNwdPOgJKq1l9Uf9bNu4rex4Z7NId59PqxEqxmfFw+HW7CkpUk4m1LqrX5gXXVh++umfZlO7EGIOX1RXxqK5/5nLzWFmzVWeDguTC0qNX4ulIvhFR61bifgiZIoZSpaazdLxs8cZvVz+3mU6+FJOjR9NoViAQLkoGfWJn/HDUx8qGUdyYfYClm3x5OYneXab6Ob1zUM6g0rTOPOZebCgt613+Vh7qJ25zJz4PCvCCBpl612AfTv2Aeo8odLFNJ6Sp+JrEV9Eaeew+cw8LcHVwUbDMGgONpMsqC2dmZqfYj47z/Xz12mxxJg/OPIDpWNo7m+kkazM3IeVdrrXptSZ4ufNfEVRUpZaFlBbLn4z971QUSwVSeaTnP7wdNlrXXGxoFHlDt6zQaSCyg4Dy8dbxPHpRXXOxACnr4ufaWPLRrZ2bAXgvXPvKR1Dc3+TttOE7NVp2mEzTN5U10FmekF87m/1bgH1jsGLmcWKxrmdcSFULGTURI+luCnFTolMB1edIvrekJjX29u2s71X+ImcvHpS6Ria+5uF4gKB4uqwx/z1eVIldZl480khBFYqtbx8TtSZS+HSLdXSzqOhKJRQtnlJFcXv5yc++ROrjjeFm6Cktj4e4OAxEVEN5oM8u1sIFafHytcvGk01FnOLGDljlSh59shZbGwujKprPe6L+JY92G5mz5Y9AMo8abJWtmL2FMDizCKvvvWqknEsy2I+Pc+FU+W/o1K6xIlzajObZLChJ9zDi/tfBOD42HGlY2jub2T2lDTEB1iavNFO95q67nBmyKQjWl5qaWXF+n34+rCyscrGXrMr3yXIRZGP8s2LdBCez6iJskr1+Na69XXtIiVHVeaG5Gvf/xpG1iAejLN3vWgrefTKUaVjaO5vsp4sUXN19LPJ10TRpy7LYWZRfO7j4XjZaxFfBPwoq2WdWZzhxJHyxYQUEFSZXDZ1iOjqJ5/95Krjcq6r7vrx9R99HUqwLraOfQMiWnVhQt2CU3P/k7EzBO3VEZF4MA5eSCQTSsaQfg3PP/l82WuFtNi0yBJJ12MZxWU/ipsxTROjYJAqqBFgFrJC3JSth1eNkzdYKqjrJARw+LzYvLT6Wtm5fidYMLqovt2x5v5lqbiEp7A6A6G7SYiHVybVlDqXrBKpQqpitnLgRh74xLya8sQclTv3AVBQJ0omkgkwwciXl5mk59NcHrusZBzJiatirbKjdwfdrd2YSZOhhSGlY2jub+Yyc1AQ5UkS2U736vRVZeOEmkM89ehTZccTkwkAjp9bO4HtvhcqZB13pWiuFCqKqNmUvfvhuwBl7ZqkY/BsWm2UdSI/QTArFp6fefwzALRsLHdB12iqUfQVafKtTmluDjRjB9QZYcmSqNZoedePmF84Bi+m3UclLcsCH4R95cZasXAMr+llYOuA63FgJYp6azp4U6QJiuqjrLPZWTwZD36fnwNbRLeBSK9asyTN/Y0ZNstM4lpDYk6qShGtJtYDNIfEM3h2Uc1zsJppJ4BZNMmU1JSvnb4sshmk+fbNeIoe0kW13bxGEiMA7Bncg9/nx8yYylvIau5vuge7V/lTwIo3jSrxQJrnDZ0t31jLkqwPTnygZKx1G9exZ+ueiq95bS85S02HA1myeetzHcBn+8jZajspnL8ufOtk8CFaiDJbVG/Yqbl/Wb9tPa3h1lU+c/1tYs85OqdO4E4X0hW9pzqabgT8Ffm/VeK+FyrkjefWWnKA3g5Rv7fnQOUb4O0iTTkj3tV/zM54J1jqo6yL5iKthlhorm9dT8AT4Mq8GrVcc/+TL+SxgzatwdUCwiee/ASY6upLN24XKWlPPvxk2Wu7tuwC1ERE5pfmwShvYQaixjTmjymLvLx3TJRipOfLNylBgoRb1LmQAyyUVtL2o6EoXZEusn7tDq5pnEh7hGcffXbVsfaoKF1S5VNx9IzI6Lt6sTyS0xwWQoXMsHKL5bEIeSsLFT1tPazfrKabyXIUtcJ081pe0iW1QsVkahIjYxALC7Fnz8AeNu7bWOe7NJoVjJDBQM/AqmMyMDe5oCajSXbQMnLl2QeyJHI2qU6U7Gmr3AbYb/vJo6ZUVWZ7SVH1ZgJGgLyhriQWhJEmNsvBh5gZI+NR5w+muf+xAha9Lb2rjm3o3ADA9YSaThylUolMMcPZk+XG0bKsWpX/WyXue6FCug7f3H5R4vf48ZpeZSmii1kRRZVp5hLTNGkKNrHv4X1KxpHk/Xna/CJCZhomTVYTPzz8Q6VjaO5fFnILYNwQJm5C3uRUCWtSHKiUIrpn241aVsN9Lav0wogGyo38ANKJND9660eux4EVUTJslgsS6zrX0T1QXqPvhhQpIqwIMJ3BTk6P6rp1TeMsZBdoDqxegMtoiGyt7RaZwVjJO0KWfqnavHjCHh7c82DF17rbugnE1NiQy2BHV3NX2Wu7N+9m4w61IsJcYY5AfuW997f0M5HSHX40jTM+N46vuLpUojsunkmqSpDlPaNSSWdrTAQ/FtJqPKGm5qfILFTewAeMAEVDTVa0FFFv7dwHosuPKs8NiafFQ9gKC18d4NPPfJpIp86U1DTO0PhQ2Vzf2COeSVNJNZl4sjS0lC03wpZ+VKr83ypx3wsVnqCo01vfXTm6YhQM3juixoByKbcEFsSj8bLXYoEYWUtdBDSdTUMQ2kIrqby5uRzDU8PKxtDc3yzmhbB2a4poYUk8jM9dVWPEI9M/S5nym5xsd6Ri8yIXGZUEEQByK/XmbklkEkC5KAmidEbVOJKcL0fcG1/+emZohqOXtB+NpjHS2TSpQorLZ1fXWEsjvL5NfUrGmV0S8/hWk1lgOSKqYlNRKBUo2kU29Ze3IgYgD+Mz467HgZXSNRmRvpnOeCc51KaDp8wUUXtFbC3OFbkwrv1oNI0zMjPClbOrs2s3928GoLmrPFvACTIw0BYt7/oh24EvZdVkZc4uzTIyNFLxtd6OXoJN5d0InCCFiP7u/rLXwp4wJa/a9q6eFg+7+nctf93f0s98dp58SW3mhub+5fzV81y/vDrQsK59HaZhsudhNdUCMuAf8ZeLaN2tQqhQXe58M/e9UNHSKZTRvdv3Vny9lC0xNjOmZKxkIYmRX+20vDxOusSZS2eUjAMwmRRRnod2PLR8LGJEyJg6bUzTGJdGLwGQX1z9UMzM3WinO6Smne7lEbE5qtSy8Mp5sZhS0eLPGxKu4DJLo+x126tMLFwWKiqko167eI13PnxHyTgAtm1jRAwe3vHw8rHOYCe5oNoNkub+ZWRaLPJvNdhrC4tNhqrsKVmn2t5cLlQ8sOsBAPoG3IsislOXNOi8lWuXrnH+ynnX48BKpKiSUJGeTzMyVXkD5ZSmviZ+7JkfW/46M50hbaZFcEKjqYNlWdh+m2b/akFiQ5fIlIy1VRHybxMpSlbynloWKhS1CLb9dsWSToADuw8oEypau8TP8tCeh8pee/mFlwk1Vy41c8rY4hh9sZX7YXZWrE/OXitPsddoKlHwFoh5V89p0zRpCjQpqxZYFioC5XMwFAjhN/1s27NNyViVuO+FCvmHqmSwB+ApeciV1Cz4LZ+Fz6rsTLw4u8jQqDo336WSeAA8svuR5WPNvmbyPq3Eahrj9JAoHVicWa2ErmsTnSsmEmrSjaXXRaWFfktUCIkqWgTL7Kmtg1srvu63/cp6PS/mFqHAcsrmzXhLXrK2uuyp+ew8JUo8vHNFqOiOdENApMRqNPUYmxVifGt49abCVxLPq3ePvqtkHCngdTZ3lr0mhUoVi6drE8L888q5yp5MQTO43IHELbIsTdbi3szE1Qml3bxKVomJ5AR9TSubl3VxcT8+fVWXemnqM7c0B97yLjVRfxQDQ1mZl+2zgcpifVerKJPq31SemXC7JDNJ8FQOdIA4rsp7Sq5VKo0VD8VJFVJYtrp26ueunePc0ZXMVXtJ/E5PXtatxzWNUfKXykRJAHIrnlFukevzatnKzcHm5fvBWnDfCxWvvP4KALMTlVPLPZZHmWPw1j1b2bJhS8XX/LafvK1ORBieHgYg7o8vH2sLtmEHbYolda0lNXeWPzv4Z3T9wy7ePv228mtPL4rUzVtrr/vbxeJiclGN6VYyn4QihIPlYqFMEVfhGCxryav1W/cZPmW1rLbfrjpO2AxT9Kibg5cnRUZKzFx5SHTFxN9s6LpuZXa/8KPLP+IX/ugXePPEm8qvPT4ryiCkJ4VEChfnr6rJPvBHRSlXpc2LzH547e3XXI8zs3CjzCtYeeEUMkOUPGrStHfu3wlAb3tv2WsRXwTLq27jcmHsAiW7RGZqJTNysG0QgFNX1WS4ae4837n4HX7y//lJ5QbrAMOTwwBlHX5Mw8TO2vzwLTU+Zv0bxTph97bdZa+FA2G8ppdoS2Vx4XaQBpfVNklHDx1lKbukpEvZK2+K/cLSbHkmyNTI1Kr34xbLsrAC1qo1/GCnmOtDk/q5fr9wef4yG/7jBt4YfkP5tRdTi+CHlmC5p0omkVEWHJfr5p72yoa2ZsHkwtW1K0+874UKaXBZyUwT1LYcWsotVb2ZqnYM/tG7whQwNbUSneqMdoK58qDS3NtMpab4wqtfYCo+xS/92S8pv770hbjVZ0GmiKpqp5supDEK5c7gsJIiqkKoOHT0EADXr1WOGPW09RCMqUkR3bJ7Cxu6N1R8LewNY3nUbV7eOvYWAPMjK7+j7mZRF6g9ae4PSlaJz3/98/zm5d/kC7/3BeXXl9lRnU2rswLi0TgU1ZV+yE4bsm71ZqRB3VTCfRaQTDuv9lwPe8PKBIRkPknAE8DnKc+WbPI3gR+yeTUZVCeviEiqkV65X27rFSm1F65rn4r7hX/79r/lL8//Jbt/pXyT7xZZyizbkd6Mp+ghWVCTfZDKi7VntZKMoBlkbNp9WbW8X1RdW5sBZS3Oa5WzLM6K66sqFR+fHQfPSvkdwPa+7QBcnS3vmqS5N/kHf/oPuLZwjX/8zX+s/NqypPPWTEkAv+VXltnb2imu//D+hyu+nphOcPbS2pUr3fdCRTInbsqVamZBdAgwg2p+DSfOnVhWXW9FZSoqwHhCRMg2925ePvbXXv5rABR8ap2JNXeG1668RgkRFfwgoaYf+c3MpUU6V2/b6khhZ7wTbHX1pUVPsWr2gUwRl4KiG2QteaVFBsCBPQeItKhx1E7mk1UXTmFvWGka3JVpkd6+qXvFOPDxfY8DEGhR09lAc2c5NXWKRDaBYRlM+CeURAdvpugVz57B7sFVx03TxMgby8a6bknmk4S8Ibxm+XxvbWpdPsctMhW1kjs/3DD98qHk9/jOkXeo1v2wOShSbmWrRreMzoo2sX2tK6UfW3pFlubkkppIrubOcm7kHG8Mv4Ev72MsNKbcjyDYIsT4R/c9Wvaar+RT1k731bdeBaCUq5y5lF5IKzGql8/sJx8pb28OKwKGCgFUrnkqmWS3hNQJrQCXr4tMyc7oini8c4PI3hpfUGMErLmznL12lm+NfgtScHj+MH/5zl8qvb4RFIL2kw+Vzw2VwfF0QdwzqlkoePEqrRi4lfteqJCqr4zc3sqjBx6ld0N5SqcTEpkEucXK2RkhT0hpiuhUStwsN/WubF66oiIdfDo9rWwczZ3jraG38Jk+njOeIxVPceqK2tRfWU++rn3dquOmaRL1R5W10925fydbByr7Rsh06p6Byillt8NiRmy22prKXchBRH7kDdctx04fY3K08sZhU/8m8EK2oEbNHkuICM72/u3Lx7auE7/PvEd70twP/Ov/9q8BeNb/LHbY5vUTryu9fud6sRjeu63cVNpb9JIsqomyvvLmKxRSlYVyr8cLeTUeFTIDS3rc3MqjDzwKJmQK7s2lr89cp5ipHGSIh+KAaAepApn5crNQsWuj6Aqwbf/amZVpPjr+zV/8G9EWPCzagn/n8HeUXj9vimfCzUEsid/yk7HVGK7LLlutkcqBAU/Jo8S8uoiYe5WytGBFqJBdSNwgO/c1hZvKXmuJtCgbB1ayIXuaV9Y+7c3tkIf5gvsMU82d5+tvfx288Pc3/n0AvvruV5VeX2ZMVMruDRkhZe103/5AlJ5PjFT2rVPp/1aJ+16oSBfSUKpcHw9CIVLljFr0FAmZlV2BP/nsJwk2q0k7B5jLzGFkDIL+lWvaKRHFfeOw+loozUfPf3vtv+Gb9/E/Pvo/AvCHr/+h0uvveWgPAU+goiFkU7CJjKVmQZPMJ6saYbVEWzAwiLW6dyKX0ZBq2VPHDh9bdi92SyKVILdUWZR8eJ9Ij8sU1fz+JpYmwIItfSv+N7Ku9fQVbbB3P/DO6Dt4kh7+16f/VwC+/u7XlV5ftsu91WAPIGgHKXgUmcxmFqtmHwCYRVOJWNg3KDbyu7bsqvj6QO8AAKmi+2d71sriLVXOCHvxqRcBiLSqydSSWRPrO1baqUf8EQKeAHMZNfcuzZ3l/dH3MbIG/+Zn/w0Ab118S+n1z18TfjNBytebQSNIzlBT6pzKp8CqbCgNwitKhf/blVGRUZheqHzfaAoJUUGWbbghVUhV7dzXFhMBEGXmuTe2JHs2r+5StqlrExv3blQzhuaOcuTqEQB+4TO/AHk4N3OuznfcHtKDwsqUB8HDHnVeaXOL4tlTLaPCZ/iWTafXgvteqGjtasVv+Ku+fvncZcam1NScWV6LsLfyH7Il0kK6kKZkqTH4ShQS+Aqra2bbguJGevaqbm10r2NZFvPBefo8fbz88MsARPvdG1PdTLqUrrhxAdFO98SFE0rGOXXhFNNjlaMQhmEQ9oYZn3EfkZRlXpW6i4BoT4oX8gX3WQhFiviMyh1+pCijqnRmIbeAkTNERPoGrSERxXrrQ7WLXM2dYdwcp7fUy08+/pOQh7evqjXP/far3wYbor7ye8jjBx5nw7bKfiu3S9bK4rE8VV8Pe8NKWvzJDj/VoqzZJRFpkqabbsjaWXHvqIA0J1UV7EhbYjM20DWwfMwwDLwFr57r9wkT+QnC2TB7Nu7BTJucnlErNr9/7H1AGNzdyvbB7TR1lGcLOCFdTEOBipt6EM9bFengss2w9Ii4lc3rReaI4a/sg3U7NLU3Vd2Mybmuys/HFxPrh31bVmeudkY6mU7prOj7gfOz5zEyBjvW7yCUDjGWVbPXlBw/dxyA1Fz58+fTL36aUFxNO92lrFjLVstgDBgBSqaavW0l7nuhont9d9UIK0BuKadE9ZW9q6tFjmfGxIJJVdpY+/p2NnatVl1lOvhkUtey3uscuXgEO2Szr3Mffa19NAeamcyp/bueuHgCO1vZSyE5m+TKWOXWf7fL3NIc6UT1KGpmIcNbh9wvwjds3oCBUfVmGvGLqKeKyEvRLFYVQE99KEp0Tp5X02Ksf2t/WWeWoD+IkTWYzagxPNXcOdLZNKVIiYHYAH6fn+3t24lviisdYyY5A3lWiV2SmD+23JbPLXnyVTf1AIPrBpcNN91waeQSIBZIlbg6JMzohkeHXY+Vt/P47cpzPbMgsqbOXVYTKdu8ezNe01smwBSXilyZUHM/1txZlrxLtJtiTdpaaGXWq/YeLrOn+tr7yl7buXEnlk9NCXKmmMEsVt9C+PErqZFfSIufpzlcoQUjsGebyEhQ0WGke0M367sq358e3isyJbfuqlzGeruMzgk/Ghl0kCQmEpy8pNuT3g+MF8aJ5US2cIfZQcKTUHr92ZS4d1RqBx4Pina6KoLjMgjYEqu8tn78ocdp665ccq2C+16oSOaSVRVSuJHKosB0aymzBCZ0xbsqvj4/JWrOVESOAYqBIts3bF91LBqKQhZm0ur6umvuDK+dFC38ntwiTHI6fZ28d969MdXNXBq5RHK2cm263/Yr64ZT9BQJmtXLnkzLVCIWRloihH3hqhEeKSLOLrhfGFqmRdBT+WdqCoqIlazhdU0Q+trKF53evJfFghoTRM2d4/CFw2DCpjbhN7SzbyczebX38GQhiadQOdPh+vB1rl5X4zJfsAv47MqZRiDmoAozzSMnREqtj8pjybaliVTC9Vhm0Fye07eSS4r71oVhNR055rPztIZaMYzV0eGgFSRtq/HX0dw5soUsxWiRHZ07APi5T/0c6Wgay1bnX7aUX4JSZZ8Fn+0jkU1g2+7NnsPx8LL4X4mdW3fS2Vu+gbpd6kVzZdcRFYbcS7mlqsFG6YWhStT9zuvCm6TZv1qAycxllo3ONfcutm1jdpm8tO8lAD798KcpxUrkimrW1bDi1VTJ/HVqVPgYXp9zb/QsvR6rGdV3xjuV+NFU474XKt545w1Gr4xWfT3ijyhpbSTrc55/8vmKr0vTLVWOwRMLEwSt8o2SL+8jUUgoGUNz5zh3XUTo9g/uByA1luLUqFozzZydI2BXjkgGjICymrOSp0TIUz0FzWN5lKSIjk2NVY2wwsrmRYVPhRkwl7sY3Iq8mcvOBG65NnUNX7F8Q+a3/CyV1CyaNHeO0ZR4Pj28VUTsQvkQQzNDSjt/pEopfKXKm/rkXFKkcSsgHA/T1VpZrAcYvji8LDK4QfpctMYqz8FY6IZQkU64Hqu9t71qxwFp0i07Drnl4OGD5BfK74VhI0zOVLfA1dwZri5cBQN+9uWfBWBjy0ayxayyVuBQ22fh/PHzFKwCiWTC9Tj9G/vZuK66l8KGng1Qveq6YZLZ2tFcaWr9o4M/cj3Wu0fe5fK5yxVfCxpivf3OkXdcjwPCZ44sq3zmAGK+GCXf2qXRaz4aplJTLOQXeHr70wA8s+sZbGwuzV1SNoY0xL+1cx+slIOMTI24HkdmK1Vb8yamE8uC4lpw3wsVeTuPz6od4QGYTrgryZALp2oKs+z3rirKOrM0w8WTF8uOh80wll9tazvNR0+kR3yODmw+AEBvqJd8OK9085I381XNX0NmSJkRj+21q3q3gLpa1kPHDlWtYwUY6BsAhHDiFk/IwzOPPVPxNSlUSLXbLRdHLjJyqfxhEyFCxlBj2Km5c+RD4rP/qUc+BcDi6CJ58lybuqZsjKydxW9V3jVEfBFsn63k3tLc3sy+nTW6BeUgU3L/mU0X05CvXh8v08TdBiDghhlwBW8PWOkwJDsOuWUiMUFxqfy+G/PGdIef+4CheWF+t7lV+CqkJ8W68a0T6vxHUsUUZqnyvJAtNsdm3NfKpwqpmhkVhXRByTNw2SQ7VrmEW5pcqsioyFN9v9AUagILhseHXY8DsFBYwFsoL5OLB+LYAZtCce3MCTVrz7vn3gWg3SM+t+vDoqToR8fdC2qSxdwilCAejZe9JrvxTMxX7tRxOwxsGSDoDVYsHQUYGx6jSFGJ/1sl7n+hgnzV9FBgOfrjNh1V1qheuVC5jlR+aFQ4BqezafCv9HC/mUf3PUrfpvI0cc29RS6QozPSSVNEpG9ubN0IPjhxRY3BJYiSjLCnsoAQ8UYoed1v6C3LAn/1tE0QQkXBdv9Qzlm5mkZ+D+x6AIBI3J1Dv2VbZIvZqiVlMsqqIpoLUPQWiXrLN0qP7n2UeE9cyRiaO8fQ7BAGBv3N/QBsahclIIcvHlY2RigeoqulcqZDLBADj5pNfbqQrllqGTADFE33Ami2mMUoVTfPaw6JZ+NSxn2UZ2ZhhktnK0fB5FxXZZybNbKEjHLxuC3chh10n66vubP8/jd/H4BOryiJaPWJdaHK5/qmHZsY7Bms+Jpch47Nuhcqjpw8wpXz1X1TLp6+qKT0av/D+wHobqtsnCvnoAqholaZqmmaUBBldCpIWkkCpfIM0NZQKxhqIuGaO8fbJ4QhtjctNvdxMw7AW8fViZI79u+gOdRcuUtNVAh4Uwvus/jrPdelYKms3PkW7gqhwjCM/2oYxpRhGBVz2w3BrxuGcckwjBOGYRxo9NpFo7rpHcDTj4q0nFCTO3fUiVmhWhmFyosnqQar2LyMTIsbWEuwfPMXD8aVuRJr7hxnxs7QGVyp79zVK9rwSZVWBSVfqeIGGOBTz38KX7S6wNcouZJIV37xmRernrNlcAvd/ZUXIbc1lp2rWR8vb7TSGMgp80siSnTuZGUDvf5useFsalfjrm75LZp85dfa0ruFxaL2qLjX+ep3v4on7cHvEc+pXevEXD91TV2pV6w9tizUlb12o/Z6ct69We/Y1BgnDlffdIU8ISUZTdlStmrUGGD7ZuHfNLit8oatUYqlIiVPiUKqspDaGRf3aBW+GwB5T56oWX5P/omXfgLba5Mp6Ayqe5mh2SHIs2yEvmu9mOuXpyuXGzjB8lnLn8tbiYfjgJqyxGwpCzXiCxFfRIn/W5EipmES9FUWEGRWUzrvvnytXpmqWTSVtR3PkCFE+Vg9ceE3MDavtkOE5qNleHYYgD0Dwux167qtYMH1JfeeEZKCWaAlXDkIKLvUTC+6b+Dwozd/xNJsdTFeViao6LJVibtCqAB+H3i5xuufBrbc+O+LwG81euGSWSJgVq9bl0qQNAtxikxxq+ZM/Mj+RwDYvnd7xddvB6mGS3V81WtDY9od/D7g8IXDzAytTPo968XN7sJ1NaZtlm1BAD713Kcqvt4SbiFfyrs2/pFt+6ThVSXW96zHG6reKaBRChRqZk9dvSQMA998901X48ibcSlbecO1rmMdIGrb3ZJIJsC3krJ7M1bKIlVIkcyo2SRp7gyzxVlCuZUF6/6N+wG4MKlmroOI+Mf8sYqvyQXNXMr95sXyWjW7foS9YWyv+8yA7bu3LwuClZBRVtPvbokztzgHBlUN9vw+P0FPkAOPNRw7qUnRXyTmK/87yc4AcxltsncvM5ubxZv1LkdA9wyK5/pIQl30/OrEVQrJygrCcmavgshnQ2trw70n1KkLp/DZvjKDWYlMe1chINg+u2bk2FPyKDH+BiEe7xjYUXb8089/GoBQi5rWkpo7w9jiGJRWujH6fX7MjMl0Wl3r2fPD57EylYXA7rgI/i3mFGRK5tNQIxFSpf9bJe4KocK27TeBWj/h54A/tAXvAXHDMMptTisQbA6yaf2mqq+PDYtN/+GT7tJsZYqb9KK4lWXHYAUpouOzonNIpZq94lKRvKHWy0Dz0ZML5OgIdCx//dCOhwDo31F9cX47yM9hR6yj4usz42IhIz9rTrk6LsSBaiVRAKVMifmk+1rWglHAX8O9S4qIbo3v5M04Gqi8eZHip4r6XOlTcGsLM4DxK+JvMzw57HoczZ0j6U3S6ln5++4d3AsluDqvphMHwMTcBKeOVM7QePFpke3ktr1fvpAHLzUX+uu614EP110HjED1NsQgOgkBDF0bcjWONL+u1vUDxH1AxSapWCpCYCWiejOzo8Js8dj5Y67H0dw5FkoLhEorG9BoKIqRNphIua8jl1ybuMb14cpR211bRAZHa3dlU7zboeQp1ezmtez/tuBuY3b+8nny6eq176Zp4rW9rjuMlKwS+GDL+i1VzwmYAWrEQm4Ly2+xa9OusuMyU3o+o8bjSnNnmMpM4cl4Vvk6+At+5ovq/q4Xr14kMZGo+NoDO0UG5dY97tvp5u08Xqt6AEIKFbNLalstS+4KoaIB+oCbJefRG8fqYvpNdm/dXfV1mSo+Oecu7VVufqq1b5HjHDp+yNU4ANF28QB4aNdDZa/Fg3HwrqSna+49rs9eFy0pYysf8d54LwYGC3k17vJXJ8QmaG6isj64NCOEjJFJd5EeOa8Kmeo5oudPn2dixv1Crb2nnd3bq891OTfduhNLUaWaUOH3+KEI33/t+67GAbADYkP35IPlXQfaI0KoVGGMprkzWJZFMVikPbgiOvt9fnpjvWzYu0HJGMVSEdtvVxXxZKaF27Z7Mkpby2DvkQceAQPyJXemW9fGry23Bq2EzKw6fvq4q3FkfW8toaKYLnL8rLtxABZy4t7+6ec+XfaavyT+dhfHyg20NfcOaTNNk7n6s9RkNFEMqTGuhtreUxt6xD3FF3G/265nkr28eVl0t3nJWTk8pereUyBasXatq95tqBGyRdFe8YHdlUvkAPZs38PmnZtdjSNZyC5UvCcXlsRa6c0P3GV+au4s88V5QsXVWTFRO0oSdRmwOSNXtdNdU0DcZ1RkVOTtPF6qCxVPPfoUAF397uZgNe4VoaJSzlfFkIxhGF80DOOwYRiHp6enSRVSNdPTZFTGremWGRC/ymqGP9Lc6/Ko+1pE2y9+9I195a2h2iKiXu/qlLponOaj5cgl0b5vY9vK39djeoiaUd4//b6SMa5Niki9FCRuRda9uTXikZv6plD1hX7QE8Tyus8AMnxGzXRw2VrJtUfFjZ9JtkCs+F4KhpKWjxlbRGo39ZVnhclsmPE5d1kvmjvHVGIKfNAZXh0N7Iv3MZ9XIzbLrACZ1Xcrc5NCrPzg+AeuxplbvJFpVKVMAiDkFQs3txkIl0cvMzFSXdyUbUtlNy6nyPfZ0149gTOzkFHSCWA+K/7elbKn+tvFfW18Xs/1exkjZrC5e/VG98m9T9LUp8bPCIRHRcRbWSyUG2P5/HeKbdvgE2Wb1ZDlzsGm6lkXjVDPJBvEGmIh7S6II7NM65kGur2nACymFslbec4ePVv2WjwQB+DyuDrfEs1HT8emDp7a99SqY88+9CzxvriyMQpmoWrnPllu/dYH7s0765VVyyBg3vp4d/0YBW7egawDKj6xbdv+bdu2H7Jt+6G29jaKVpEP3/+w6oVlayO36eCDW4Vp16b+ymUmQX8QCmpKPy6OiqhKJXfw9qiIzI3OjroeR3NnOD92HoAt3atTEPPzeU5ePqlkDJmOKc21bkXeeKYW3QkVcvEghbpKhLwhaoi1DbOYXiS7lK36uqxbdytUSFGl1ubFLKkx3Tp/TXwWvMXyX5A0TJtIqEsb1ny0TCTF3+7A1tUeB6WlEqeHTysZQwoVlbpEAcvt+Ean3D0z8ohFysb+cgFdcuKIMNq8POJuEV6ktkm23yeymtzOwZYuIdg++VB5RpPEa3uV1K0fOS0E6kpp+1KomFpy7+CuuTPkijlyZo6XHntp1fHeaC/jS2oEKNllq5pYKM3e3z3szpQ7W8yCAY8+8GjVc/q7xGfW8rgLQuTtfE3fG4Dp8WnX3lMXh8W6utZ+YezKGOevnHc1DqwY4sdD8bLXBroGAJhNr00aveajYTI9yebO1aLk5u7NTGemXZc+SkqeUtXsKa/HC3n3WdEAkZZI1SA8QGZJPGfPXioX3lRwrwgV3wT+1o3uH48BC7Zt17VOLRZFOl2tCI+MvLjdvDRiGmgUDeGU7JJ3jrwDgN8qX6it7xAKt4p0n1v5G//lb7DtF7dp/4s1JtolPq+P7Hpk1fGQHSJpqUkbk67fUqi7FXncremW7HJTzWQWIOQLgQcyOXebioX0AhfPVE+Nlu7gbd2Vf+ZG6eoT6W0Hdlc30POWvGQs90KF9M6R6aA3I2vZp5fUmTNJ/vLcX/LJP/ok00n119askDHEZ+TJ/as3wonxhLLouezmUU2U7GwWgtd82l0Ghz8inke15oXPEKKIW0+aekZ+IJ63boUK2c2j1nPdb/uXRRo3jE4LoShIeQS6r12UAbr9G1XiG2e+wS++8oucn3G/AdNUR7r9d0dXL/gnLk1wfem68HhxyVRiCoyVtO9bkS2K3QbMGlnvFjNi/X1twl32RiNChcfyuI7mSu+pWkGV9EJaScvjiXkhULeGy7OnWptaobg2xrl/59f/Dp/73c9pEWSNmV2cJZFNYC/dIkgkoWAVuDbtbk5ILJ9F1Fd9f2sU1WT2NrU1sWf7nqqv51Ni7l24os4A/GbuCqHCMIyvAu8C2wzDGDUM4382DONLhmF86cYp3wEuA5eA3wH+fiPXLVriRhkJVL+ZtjWLTUsw6i497UcHfySu461+HbNkKhEqZPtRuXi5macfFu1WW3qqG4054cPrH/L10a9zIXyBL375i0qvrVlN3ism/Zbe1RkVMSNGxqOmNdayUBGtvGmXmxe3vcktU4haHfHKpp2wkmrpxjHYsizw1p5/Pq+PoDfouhWqbBFYK0XUa3vJ2e6jrDNJIRT1d5SXtOzZIh4cG3dUj2A74dDYIT7/9c/zyuVX+J/+7/9J6bU1q7k6K0r0OiOrSz9a/C2UAu7beAKUvOI6m/sr11bLuek2q7CR1GlZty7Np53SkFBRMpbrzp1y8NBBAGYmqgu2fsNP0XDvMTCzJMaQ996b6W3rBXvlb6mKY0PH+PzXP8+/feff8q8O/iul19as5rUPXgOEMHEz/qIfDLg66b5ct2AKQfu5x5+r+Ho0FIWS+3a6F4bFhuTkh9UzPBNTCQBOnK3errgRNu/YLLxtauDBQ8Gu0Su1AeQ9Sd6jKhEwA0raK1+fE6JVtUCRmTNZzKsNNmbzWf5g5g/45tg3+Yn/5yeUXluzmuOXhWdRbmb1GjA9lV71uhuKVhH88NLTL1U9x1PyKNlzpgvpms91+Tl2u1+oxl0hVNi2/bO2bffYtu2zbXudbdv/xbbtr9i2/ZUbr9u2bf+8bdubbNveY9t2Qy06iiWxeKhlhCUXaZt3uDPImV2ahbzwEqiGF6+Sm9xibhFyN9JbbyEejAMrYoYq/uWr/5LWUCvhhTB/fPmPlV5bs5rTw6cxMMpqleP+OEW/GtMteUPpaK4sIEjH4B37yttn3Q6yJGrPtupq7EP7hClsyXQ+N9K5NJg3sjNqEPaGXW/IZIqprO2vRH9XvxJndRn5qCRUdDWL6FgW9w+im/m/vvF/YVkWsYUYr8y/oiTSp6nMt17/FgDW0uostfZwO/hXfB/cEI6LBYac07fS0yoyc9xm4cl08qGz1TttyE3AYtrdWLbXJuipHVxY17WOnft3uhpnel5kFNWKWqnavEjxWJZ03YzX46Up2MTm3WqM/CS/8d3fAKCt0MYfH/pjsnm19xLNCpcmLwGwoW21SW5Xk7iPX55w70kgo6e97b1VzzEKxnJGhFNkpmWtzUtTWKy73WYrZ0vZmh5XIMzqC7gTKmSXrmqd+0CUqbotZYGVktrOpsqdSsJmGBR3J/33f/7vsT02A4EB3hl5hyuT1Tuxadxx6bqY6+tbV3u4bOwUQaWL4+5NkaXYWG0ND0KoyJTcBzfHpsYaslBwO9ercVcIFWtFyRKLh2ru/AA+04dpmEpMt4xS5T7Pkp2bd7Jzn7uFE8BSYQlPobIg4smL468cfMX1ODfzrWPfomWmhcfij5Fryi2nqWrUc/DDg5ApF706wh3YQZtkxv3NYPcB0R2jWkccVY7Bcl7VWtBs6BULt5LhfLEvncVrjQOwMLPAqwdfdTwOrLRgCvurj7V1YOvyBtENC7kFKK70ir+ZqD+KgcHx8+7V+Zt58/KbhBIh/ofN/wPFWJGvH/y60utrVphYFNHVHetXC4KdMbGAvTR+yfUYiUwCqF4C2RRuAku0/HQ1zo2IpNygVEIa0Lo1vvOFfTz12FM1z2kKN7n2vpFZIrVaob707Eu09bgrJ4OVdoRSOLqV5kDzcmcQVfzwyg8xUyZ/Z+PfwQpafPnbX1Z6fc0KMntqe//2Vcd740JUuDrtPqPi8pgQO3KL1bP5zKLpevMiu8rVKpOQz6xk1t16ZWx6bLldejV8hs91VtOyn1aNMtWwN6ykPWlzpxhj1+by9qQAe7fuZd3mde4HuonfP/z7GFmD/23b/wbAb33nt5ReX7PCyIzwhRjoHFh1fHOPEJovT7kXJcemRbe3+anq5YBhb9j1cx3A9tg1PaHam2/4v7nM1KrGfS1UmB7x423dWL2PrGEYUMD15iVbymIWa/86VTkGp0opvKXKK7CuuFDnVZppnh85TylaYnvLdl7Y9gIY8Kdv/amy62tWs1BYwJcvfxp+7sXPAbBYdJ9eJVsRVqtlle78h465a6f7xrtvAFDKVRchZH2brKV3QiKZAOoLFR7LfSqcVI2lv00lAgSWIzSuxiokMfKVHzSGYUAGpUJFNp9lIbLA5uBmPvew+Ly9etrdvVFTnan0FEbWECnZN9EXF2V9QxPVsxMa5ZU3hGhdbbFvmibxcJytu931W5eZSrU29bJLQCjmPFxo2RZ5K18x8+BmsktZ1122UjkReZb+NpWI+qNKFmhmSKwf+toqd15fmllS4uAuKZaKjPhGGLAG+Cc/9U+gBN84+g1l19esZnxBeM7sXL86WNXfJrLlVKzZzgydAWBxpvoaoa+jj4GtA67Gkc+2Wpt6eR9wG2VdSC8wfb22V9LG/o00t1d/L43Q1C7WQoN9g1XPaW9qB8+NDE4XeCNi/b6xt3LZZlOgyXW76FsZK43Rnm3ni5/+IuThe+e/p/T6mhXG5oWIMNi1+rMkv1Zhiiy9X+YmqmddPrj3QddzvVgqgq/22lrOdbeZWtW4v4UKU/x4Wwa21DzPztuuIzw5K4fXqh2+mRyZVOKKun7LerZt2FbxtWgoCnlI5BKux5F889A3AXhmyzN84ekvAPDO8DvKrq9ZTdJKErLKF/L9rTec31Pub3JSgJCCxK0EfUEowdVxd1GeqXnxXqsZ+QGMXhELtPNDzs3c/FGh9j78wMM1z/NYHtfeEal8/c3LyQ9PMjLh3m15255tFb1oJJ6ih2RBnYr9jbe+AX54ZvAZXtz/IhTgw/HqKX8adyTyiYqi5EtPirrTtnXuI/VSQKiVIhrzx1wvjJey4vur1V0DbB0UYkh7T7vjcaQoOT9dWwicvj7N8Miw43FgZeFVa66PD4+TzCVdm0wPbhvE7/HTFKksHpdSpWXPGhUcuXAEO2TzaO+jdLZ04k/6ubKk08HXipnMDEbWIBxcveDfsk6sT4s+92Wds0mR7dceqz6/ulq68IbdpRrJ9XJLpLooKTcv6by7Tb3ttQl5agubWwe3EojW9qypR2unCDzUEiqef+p5QBh8ukH6kVRrIztycWRZdFJBvpAnG82yPrSeSDBCa6qVizn35QeaykwuiaDblr7Ve8/BbvHZUmGUKrOIa4mFEV/EtYjeSBDQ4/EQ9oZ56PGHXI1VjftaqJBmmvUcg03LJFdyt3kJN4dpjtRWdJPzSddu5wBFb5F1HdXTwsy8WiOeNy+ImvzPPvJZNvVuYlPLJuw+Ne11NOVkzAxRs0Ka9o3n/bsn3bUWgxspovkbLYyqUcC1Y3CqkAKLsojxzcj608WM88+sZYhNQl9n9U09iFpWt4sMmRVVqRxDEvQEldSyFj3F5baqlfCVfKQsdSr2D07+AICffvSn8fv89Pn6KLap8UXRlLNoLRIslXstyHTw2Yx7d/aFrNhUdLdUN5FdnFnk7Q/edjWOFCpqZRrJxY6bzEKZeTV+tXZXFD9+Coa7uvVQUwjDNogEqxtyL84sYhv28oLOKYu5RWL+6kZ+QYLkDXV+Me9dfA+ABzYI75J22pkx1QkhmtXEOmO0BMo39rsGRfp/+3rn4p1EZjrUmutWzlpOG3dKNC6e5+u6qq9Dpf/bjr3Ofa6kSXY97ynTMl2XmEiPmGrBGxBZ0bASrHDKm++LNXXMV3m+F1IF0iX32deS4cQweOEnn/xJAAYjg2Qj2WUfP41adj68k6AnWBYcCAfDRH1Rdj1UueTndpBzvSVcXSy8duma61bgUhCRn/1qRPyRZaN51dzXQkUqJW4mE6MTNc9T0dqoe303OzfX9p8ImAEl7uBjs2OUUtVT6X0lH6mSus3L6ZnTmElzuY76gZ4HODlZ3e1Z446Cv0Czr1z08hVF5PXMZfdKe6qQqluqZJZM1+39MoUMFFaymyoha9rdZDVdnxEu2tlk7bIOH+5rWaMtUTyWp6bIE/KGlNSyXh69TCFZfbMVsANkbXUGeKOpUSjBEzufAOAzBz7DuDWurO+3ZjWRrkhZzTqwLFQePHrQ9RjSZ6G7tfrmpZguMpdyF+WRWRKyBWIlFmbFHH/lNeceSrI7UK224yC6cbjxvQHYtG0TsWBMlFlVQXpgTS+4a+X76juvkp6vvjkJmaHlrg4qCPcJ0egnn/lJAB4eeJhirEiu6L5bkaacSEeErf3l5VVNgSY8hkdJy0jZDrxW9tTo0CgXr7qLpnf2ibKrwf7q2QchfwgDA0+wusF8PZbSS2DWL+k8fuQ4MwvuRDbZua+WJ+fl82LT5/b3t5BbgAJl2TWSqC+K5XMf6JBcmBddWl7Y+wIA29u3gw8OnXNX2qupzGxmlvZIe8V1b1u4jYW8e68hKazVKrXMLGZcBxulSe2mDZtqn5cucOKcuw4/1bivhQrLFhO9VmoM3BAqXEZZU4VUzZ7SoC7KOpmYZORS9bTy5lAzgZi7NLib8XX72NG+ooqXpktcmrmkuwGsASWrBCF47uHnyl5b3yHqu6eT7hbEAJlSBk+p9gLCU/KQs9wtWrOlLGap9m1GumzLiKwTzg2dA+D6yPWa523o20C8Pe54HIDBLYM1ncHhxsLKA+msu4fElfErTI1WL/UJGSHyprp52LWti43tG5c7Cu3p3MNcZo6hafdeCZpy8t48B7YdKDveGesEC04NnXI9RjKfrJs95bf9rp+BcvNSK9NouW7dRTqqzEqMBusIFabfVSchqN+WDSAWEFFRt0JFIp3AzlUXBKPeKEWvugjoxbmLBDwBNrWLBejfeP5vYBs2F+d0SvhaMJWcojVYnm1kGAZG1uCbP/qm6zGk+XUt/5agGaRouvscSd+JWnPDMAz8hp9LV50bAjcazQ15Qq6Nc2WWRK2MMDsv5ufknHM/LRDeU2ah+roo5o+BHwpFNcLk9w4LP4rtbUIU/9zTwn9q3nSf4a0p54PTH2CnKt/LrZTF0XNHXY8hSzprlVpGvBEsr7s9pzckJta+HftqnpdeSLsuFa/GfS1UyK4ftRZOAC2xluVUNqecuXiGcyfP1Twn5Am5/tAA2D5buA9XYf+O/XStrx7Vul2WzCUe3f7o8tfhfBjbtPnwkq5dV81sZhYbu6wLAMBA14A4R0HkJWtlqxqySvyG3/XnNRgL1kylBDVCxVLmhjlonTZmWzduJdTkru9XI5sXGe2VHUKcUjALhMzq7/fZR5+lrc+9j4HkSuIKg/GVKFnyqliQfve97yobQyMoWSXmMnNEPeXPHr/Pj5EzmMu6r2Vt7W2t2V4TIGAEXJdJLKQXCHvDmEb1ZYWKuvWFlFigyQ4i1QiYAdeBgdffeZ3EdKLmOdJ/R26qnJK1s/it6s7qPa09ULsj623x3fe/S9yOL/+9ZDDiyNUj6gbRLHNq6BTnjlZeI5o5k/ms+03jvofEZkKWXVQi5Am5bqf7g9dEiWAuWTuQkU/nOXXOudgqfSc+9fynap4X8oXAA5mc8wzQdD4NBZZF+krIue7WKDtVTOEpVg8UNQdFcHVirnY2eKN8/+j3MVMmrWEhwjy+9XEAriWvKbm+ZjXDU8NkZip/FpPTSYYnhl2PITv37dm2p+o5YZ/oUuOmxEeWZNcrv/LaXtfBjmrc10KFzKioF/3cvnk73f3V02IboUChbip9PBJ3nQ6ezWfBR81a1pg/5rqtpCSdSzORnKAruCJ87F23F4D3zr+nZAzNCudHhaGkJ1f+EGuKNEEBJQsay2sRMGtn3ezdsZetu9x1AhjcNsjguurpobCSPrppW+3UslpIkaORfutuXchff/v1ui7ku7aJGkS3vd1LnhJhT3VRpCvexVJBnTv40StHKUyvvOcDG0W0//ToaWVjaASj06NYtsWF4xcqvu4r+FgouE8Rbe9pp6etcstLScAMuM4++OGbPySzWHujIIMGbtJRl9sI1miNCPDsE88SideOxNZjKbu0HEWthhRfpBeIU3JGjqBRXYl48ckXsU2bbFFNqdfFuYtwkw62ISraRP/hd/9QyfU1qykFSsT98YqvBUoBJV5DBQqEfeGy1uY3E/aGXZcVSI+ZWtkHIMpH3XTZkuPI8qpqyMCBLAtzQqaUwSjWbuUos7NlK2an1BMlpQfdfFpNxsNMYYZIfuVe2BvrJWAG+OHRHyq5vmY1OU+uYgACIGyGyZnuy+vk3GgKVl/zRv1RMGBu0fm8OHziMEDdQLzX9lKw1ZUm3szHQqhoiVWv4QFxk3Nbi295LYKe2uGOF595EUzIl5yrTtJIrFpbSYCLpy9y6ZrzdLubOXz+MDY2ExdWlN1HtjwCwPFr6toiagQfnhNZKunpygt5M2+SKrpf0AxsHeDxA4/XPCfij7huN9RI9oFMXZMpZk6QRlrVHPMlxw4fY2LGXZQiXUhjFGovaLZvFCmWtsedt4Pls6o6gwMsTS+xmFtUUoY1uzBLzpfDn15ZQMlMqoszOh1cNVcmRIeFzljlNG2/5SdtuTdUm0vN1S1LbG9uxxNyXksON8q8rDq+N6YJBVyZbm3YLDbUD++v3eGnNdbq+rmeJ1/XjPuZx54BoH+w39VYRbNYM3tKRlndCiIgImy5cI51oRUzxNZYK2baZHRJXWtzjWAxtQh+aA1V3thHjAhZw70AderCqboBs4gv4jrKmi6kwYZYuHZWk2mZrvzfpBFgPZ85WRrixqw+U8zULVNdFiVddgns3tDN1g3Vg0DPPCruKbKNqVtSnhRxM778tWmYGHMGb51V1+5Ys0LRX6zoMwcQ88aUdPg5ekqUjwTN6vvOzhaxtnAjeC2mRdC7noWCCv+3atzXQoU/IBbc9Uo/zhw/w5kL7gwKba9dN8Vd3kzdOJ7LVLBa0SQjbyhzBz96RUyG7T0rhm+PbHsELL15WQvG54WT/bq2ym7a2zdsZ8cB5y7akqX8Ul0zuvHhcS5ecfc3PnL8CNcu1U4vlJkdbtyJZZZErXZpIHxibK878aBAoX4noRsLHjelH/lCHvy1TQNnxoSB2MS8+xTRd8+JbjJbOlZaasWjccyU3rysBdemxbzobqqczRckSMHjPkLx3ofvceVc7baTTz78pOv2fnkrX9f3BiDoDbpqTyqzlGqZiAHMXJ+haBVdpYMX7AI+u3YapIpOJgCeiIfe9t6qrw+fHwbg5EX3RtYXxy6CDwZaBlYdD+VDzBbclxZqVnNpXASOOiKVSzJi3hh5r/s124XhC2QXawseTzz0BBjuxMJGTLIBvJa7dPDRSfHcSSZqZ0Hu3i7S4A1f7QBCLXrW99DeXPu+JDd+ht/5OAB2wGagZ6Dq6zIQqSIz2rIsCsECHcHVn702o42EmXB9fc1qsvksdtCmLVS5JDceiGMFLNftrC9cvQA2RALVgxDPPyHa6frCzlP5ZelHXaHC9LnOyqzGfS1UeLweAp5A7RaMAEV3KdrZfBa81I1aXbkgFovXrjuvCws2C/XsqYefqnqONOJxOxEAzo6fBWDfwIqRSjgYJpgLsuhR1wJVI5haFMaJ0jjzVlpCLSSyCdfjXJu4xtiV2i3KUonUsmGPU1KFFKVc7ZuXrH07etq5wdCOPUK82dC3of5YPndzo0ABX50aLukOfuKscxdkmR7/4lMvVj1HRlllppUbjgyJ2vR961ebJoULYaYL7g1cNasZmRWGyH2tlVvqvvjki3QPuCtJBCgYBfxG9TRjEJttt9lTOTuHx64vVLQ3t9PTX7sUpRZnL4lnUj5VewMkjXXdpIMXjWLd393SnCi9kimyjgnAUw9Vf64HbxhUjM24ay0JcGpY+AZsaF19v2w2mlky1ZWSaQRXJsXar6e58ud+U+8mjIi7zS/cMMm2as/B9d1ibeGm/CpbymKU6r9fj+1xlQ4uvafq+dFs2SDEdTcCQnNHc9325tsGtwEwuLV2OWs9phemsbPVAyaTI+J57rZlNMDI9Aj4RbnHzXQFu8gH80r2CZoVZKZkNVGyJdgCHvfmy6l8CvK1xUIZ5HJjXi3nYL3AwHNPPEffQO3545T7Wqgolop16/DBvemWTDvf0Ft7k1RIixu2G8fgrCXU8lqRl5g/Biau2zUBXJ4RG64Htzy46viTO59cbm+mUYfs6DHYXflBuDi5yOnL7v0C0sU0qfnaG5Og6b5LTdEoEjBqz0HTNCHvLsJj+sWtrG43jhsmtIlkwvFYRepvXqT67CZFNFkQ95XuluqbVWnuNZlwL1RcmBReCQc2re5CsX9gP8FuhS5+GgAmEiILpqooGVQjSjYyB88cP0PRKrrqUlOw62cagchqUtHhp15sQS7S3AgVwaYg3W21xSKZcTEyUb0TVz0KpQLZYram91Rns4jmTi64n+tX54Q7++buzauOdwW6yIf05kU1dlBsSvdtreyc/8xDz1AySq79R/J2/VKl3JKoj3cjeHX2ddb1gwLYs2MPG7dtdDyOjObWHetGxrkbQ9vZxdm6vzsZjHSbPTWVmGLobPVOWvI+cH2+dhezRliwxRrks89+dtXxdU3rwH9DyNAoww6Juf6Tn/zJiq9/7pOi44rbbm2ZUqZumZcMRroJAsr25vWEirAv7GoNX4v7WqhIppJ1U8bgRjq4i1pyme5Sr2Y2FhQ3HzeOwUMj4uZWTFevBYqH4oCadPDRpVGMjFGWEtff3M/ook4HV81cZg5K1duLpWZTzKbcpeZalgX++hlAIa/7LjUls9SQWGiUDFeLNNnXvJ5PTNjv3nQr1Byit7O6UAhqhIrLY0IkTM5Vv4e1RkTNswqhImUI4WrXhl2rjj+560lmCjPLnj8aNbStE6mhOwYql3JNj04zm5p1vWkseUo161iB5U3/zKJzcbutu43+nvo+DaNXRnnrPee10bKNYL2Fk0yJnV9y/ryNtkR5YPcDNc+RhoJuTHqvTYosy7PHzlY9pzsuBJPpRffZTW0bxGfv5SdeXnX88V2Pgx/XzxjNLdyI6ezfur/iyzIzLpFJuBomTx6/XVtEHx8W5aVuSi07ezvrCngg5oabdPBl76lwbaHiykURxT5+xrlv2omzJxg6V7sNt8ykfPWtVx2PA/U793XFhXn9XMp916frSSF27Fy3c9Xxje1CQNLd+9QylxF/s2oZFR3RjlXnOaWR7CkpvF2fdS54yTLNevN9dHhUSXC8Eve1UGFj1zX3ArEhc9ODWRp21fOokKqwG8OfkxdEfWo6UV3RHegdAFYism5oG2wrq2MFmL48zdjCmBITP80KW/dtpTXcWjWdK+aLUfK7qwNbTC+CWbtzDNzIPnBZJmF56pvMwg13cMu5UHHy7EmwwO+tvUjbtXXX8vtySrg5zP6d+2ueIw18ZUTICRevCfFlcbr6NaQRqds2qAA9m3toC7URDq5eQHUGOilYBS5NqDHo1QjMqJjj/e2VN/fp2TSWYbkS1UB81us9m2T2gZuFRrQlyuYNm+ue58Vd3fqyUFHHJFsGBtw49KcL6bqCbluzmINuhIrxWbF5rCUo9bSKsoGZpPvFoNy89MRWlyI8f0DUNI+nxl2PoVnh2owQoloClT+z54+Lbl9HzzmPfIIo86qXPSXLKNzMi4XMQkPP9cXZRa7PON8k5Uoi+6NepqQMDMg0dScUzSJ+6pTIBcJguRN0k5kkeGt7T8m57la4Ajh4/CAArd7VRq6ffvLTAPjba//Mmtvj0IlDAGQTldez2Xlx/PAZd6WCebu+J5RcH7oJjnf0CGFF+rNUY35qfnm+qub+Fipsu67iBDfq2j2QKzj7JZ88J8SDU0dr94uWRn9uoqzyAyfTQCvx+AOim0Mg5s4cDSDtSbOjvzziF7EiYMLZa9UjQJrbJ22nq3YBAGHEQwBXAtH1ObFwiAVqCxWtsVYwRYtap3iCHno7amcfgBAq3NzkssXscvpnLbZtFDWmbky30oV03Z7SrVGxKHCT4i4XQ/JhU4nHDjwGwOZd9TeI9ZhMTdIdLVfN54fFPeftk+7rZTUrDI0PEfVG8ZqVVXLZ8/7q1FVX43hCHnZsqm3Au5zt50JEX8osNeRR4bPduYPL9NJ6rRFVCBUzCzMc/aD25lHOTzceHzIjqiVcXXzpaxf1v/6o+43F9976Hn7LT9C7erPZExEbpFMjtdcymtvje298DxCmmZVoCYm/u9ss2L7BvuUuNNWQ61A38+LQkUPLPky1GLs6xvS88wygvQf2ArBjc+37lwwCunnelsz6mWcquhZNJYQPWa22klKoUNHh593TwiR7XfNqg/ZtPWItdD3lvrxEs8KFa6KEVnoK3Yq/JO7f54Zrt/usx879Ozmw+0DNc+Q61E3AbC4pAiW3PituRfq/lSz1hpr3t1CB3dDC6cG9wn8hZznbKC2kxM2k3ualIy6UKTeLNKmwytSwSsgNqArH4Guz1wiWyj+gMm3s1NWP54JmbnGOP3jlD5Rf9+zwWaihCyxvXiadb14S6QQA7U21Ha5ffEaYODo1mrVtm5JZ4rEHH6t77qb1m9i2e5ujceCGuVedHujAcoaVvPk6YW5xjiPvHal5zrousShYN1i5e0sjzCZFlkRHU+UUQlj5PLgxS5IcPHqQxevl94ytvaKN2sWJj2eXn3Q2zenh08rr9g8ePrgcXalEe0zMz9Fp5yV2RatIkSK7t+6ueZ7c1LuZF8Njw5w8Ur8jhc/wuTKvzhQb6zjwxCNPALB+U2UPkHqUSiXwUdc41+/zC2NB58bqyxlRcmFZCSlU9G921wYVYGhqCCrs6SJFkT3yV2/+lesx7kXmMnNr0s1sLjsH+eod6GTgSfrWOCVVSNV151dRltiIoTS4939bzlaus7aWv1c3GRUNZ38WTTIl50KFNL6W5T6VCAfDeCwPoebaP3cjXE9ex8gYZa3be2I9GBi88eEbrse4F8mX8vzw8g+Vb6xnUiLAtL6z8nOnr03cx6UfnVNShRTRQO3OfXLP6cYU/9WDr4rnrVH7eSu7X7nxf6vGfS9UNGLuJW+CTlVSecOvZ/izZ/sewJ1j8GJWbCS6WqoLFZPXxI3w1bfd1dFZlsVMeoax8+WmS1t7xObl3Jg7VfBe5P2z79Pz/+3hb7/zt/kXf/QvlF57aHyIufHqm4WuJvF3l21MnRBrFZuSF556oeZ5MuXZaaQwX8pjU79tL0BrU6urtqG5Uq6hMi9Zg3ryrLMWf8VSEXzU9d3oaBYPiGhL7QdJLWTv62p+JSDavwEcPumy4wCQKCYw0+W/w13rRbnMlenaLS7vR+aSczT9chO7/2A3n/rVTym9dtJKLkdXKqFirstISr1NhRTW3GwqLI9FwFM/i89v+F3VrT/8+MM0R2tvxmDleew0U0suuOQCrBbxSJzd+2uLQbWQmZK1fDd8Hh9Bb3DZ3MwNi/aiyIq8hd0Du6EE1xLOO5Pdq9i2zY//tx9n63/ayuP/4nGl117ML2Lmqz+felpEBH16yd3mZW5pjqnRqZrnyE29XEs6oWgU8Rn1hYqg11078A+OfQCstPuuhiwNcVN+1UiJnHwv2ZLzMlWZ6fzoA4/WPK891s66Tc4DHZK5whyBXPl92e/xY6QMPjj/gesx7jVs2+ZL3/oSL/3RS/zEf/oJpdeez4h7eX9HZUFZCs5yfeeUoWtDdee6XDt6w869DbLFxoKA8jk5t+jeV+VW7muhwuv3smVgS93zjn1wDIALVy44GkcuBuu1UFLhGLyYXwQL2pqqp4NLg72ZJXe1rCPTI+CFrmi5KLJnQIgusivIx4n/8M5/IB/N413y8m+O/RtXTvm3UvAUiHqqb24/8/xnAAi3Ou+4Imu8I/7atdfDF4cBOH/lvKNxZG3q8SP1Da7SC2lGJ5xHjvNWvqEyL7l5cRpNksZ89TYvUvwcn3a+yZSZL7W6fsiozIVhZ/cuiW3bFANF2gLl95WdG3aCDWOL7tsi3mt8/dzXKUVK+JZ8vLr0qqgvVkSaNEG7egSvt1WUTLmpUx4eHwbg1Ie1M99kCmlbd/XnSj1sj91QRHLj+o1E484FvFwp15B4kF4Q9+XTF5x1SZKlV7VqySVhX9jVc90fEYLV+q7a2R/FVJHvv/59x+NIst4scU+87LjX48XMmsxk18YU7W7mG2e/wbuj7xLLx3jPfI+Lo+oyK1KlFL5S9Y29nOtu1myWZZG388xO1PYrki02t+7c6nisklmq2/kK3Pu/XbsuBLNosPYclG1FN2yq3XmvGrZtYwbM5WBiLZpCTYSbna+/CobIJpNtYqsRC8SUZEWnSBG2K7/fYCHIbPHjZ5z7lR9+hd879nt0m918Z/47/N4Pfk/ZtRPZBOQp8/qSLPuPuOzoNZ+aZ2G69jpWBrQ3bnfeeSdn5eoKhXBTppaL7I1q3NdChWmarOuur0jK2hunNXtSqKhn+FPKiijSG+85T7Xac2AP0UC0Ztprd6vY2MiNjlPOj4oNam9zucfA7oHdYEPOvzbmKXcrlm3x7tK7/Ni2H+Pvb/v7FJoK/O73f1fZ9Yv+Ik2+6pk58WAcgPmsczVWtiqaHK3dKcLKiejq1Hxt1bYa0gSwkaym69euLy9KnLBj746GjPzcmm7Jn6meyGMaopb1ncPvOBoHYO/Doj53Q3f1xVdTuAlK7su8JuYmwA9dkXJRMugPYmZMptLOPgf3KrZt85sf/CYPdD/APz/wz7EiFv/iT9RlUOXNfE1RUnoNrd/qrHQBVjbb9bL95Mbf6Wbbsizw1U/RBlFv7gnWFxWrcfrCaXLJ+s8d+bwdulbbyb8astVhvfRaEJ153j/6vqNxADrXiciX3ERWJe++bt2yLIqhIu3ByqV/gUKAhaL6xebdzj/4o39Am9HGb7zwG2DCr/75ryq7dsbK4Leqb+wHegYAiHY4F/ASyQSY9bt5yfIi2+eu010j3bxC3pDwuXIYzMkWslAS5VW1kF3pIvHaP3s1ClYBC4utg/XFm62DW+kb7HM0DqyIx3a29u9/amSK19993fE4kqyZJeapHERtooklw32G1r3Gr7/y65CD7//N74MNf/juHyq7dt7M4y1WX/P6vD6MvEHWdteKuOQp1c0A8pgegt6gKxE9W8o2lK0sS8WbWuu3Lb5d7muholgqUszW94OQmRCLaWeLfZlKL1XdashN0tSc8wV/nnzN2jZQp9hdui5c/te3lS+Ug/4g3bFumtfVT8G9n/jeqe9xbeEaX9j9BX7h078AwPsTzheoN5PJZSCwIkZUIrsgbm7vHHW+AR6bEpFxn1U7dVN+Xp0a7Mnvq7epB5EOXjSde7dYHovmSP3PojzHadqrFCoa2bwYRWO5xtYJ6WIar+mtufkzTROjYLju8HPm2hkA+uKV72ED7QN0bqrt+ny/8e7Zdzk5dZJPtH+Cf/4z/xwjY/Dt899Wdv2ir1jVXA9W7gNu7uPS+6A5VHtuzE2Kz/Vrb7/maJxkJgkGNVvuSbx4XS2cro1fI7VQvxxNllE4TQeXZTCD6+qXauZTeVcdU6THTL17pbfkddUdCWByYRK8sKGtsgAaIUISdZlD9wKJZIJxzzjrM+v5uRd+Du+Sl29d+Zay67f0trB1ffVNcGdzJ6Zh0tpT2yC2FtKksZ5JthQYzl92likJEIwF2bqx/qb+uaeeA3Dc5SdbaswkW27YnGYwyrW/DM7Uwm321LGzx8SYs7XXIGbeJFV0btArCbeHefmZlyu+1upvJe//eHXusyyLi/ZFerO97N24l8hChCPztT3Hbocte7awfWB7zXP62vvYeWBnzXPqYXsbK6supou8/vbrjsfJ2/nlEuNayHWqm7lRjftaqCgUC1w4XT8lWhqJOU0H7+oTUciBvoGa5zVHmsF25w5+5vIZrEztm2lrrBUsXNeyDk8PA7Cxq3LaUF+sj/Hkx6uN2X/47/8BgBf6X2DLui3s7NjJfNRdrZlEGmS2haunX4c9YiNwddy5maZMzarnmr8sVDhsbSQzlOqlbcIN0y3TeX38tfFrJOfrL66Xa1mzzhbist520/pNdc91W8t6/NxxvJYXw6hdH2gW3S9oZLZEpQ4/ANv7tpMy3S+a7iX+5M0/AeDB9gfxerxsi20j365mUWfbNmbI5NG91euUo14xb15//3XH40ixsJ7BntuuH1KQ27VtV91zjx46SiqXwradRXTzdr4hk2wpVMhSt9tFpnfv37W/7rluW65+54ffAcDO1f6d+G2/60hc2hYLyc+++NmKrz+w9QEinc4i0/cqv//D3wcffGbnZzBNk+2e7cyGZ4UnkQLsgM2OweqdKwzDoDnQvGyg7ASZPSXncjXCfvG5lt3qHOGt34kDVjriOH0OZkvZhtLOPaYHSvDekfccjTM6JcpOz5w4U/fcS2cucfxs/XLWashM51qd+wCCRpC84e55kyvmWMwvsq6lcmZ5e6gdO2iTzbu7p9xL/Pnbf04pWuKlgZcAeKDpAZaal1wZ1N/MfHa+ZrARoDnQ7Cozrlgqgh+ivvpraztvu+rw09nXSV9X/QwimaF99qL6TpD3tVCBUd/0DlbSYp22cJERm3rqlorWRpeuXWJhpvYH3DRN/PiJtdd+YNWjc1DcSB/c/mDF12eHZzl49KCrMe41Ts2dwrfoo7dFlMM81f8U74y8o2ZBc+Pj86lnqpv2qahblzfIWm0vwX1rIxmlqLdwAgh6gq6M/EYmRpgcq13KAtDfLQyO+gacpW4GY6JMrJFaVo/lcSVUXLp6iUKyfncEb8lLznZXguVvEam1Lz7yYsXXw6Xwx85M880rb0IefuqJnwLgrz/x1xnNjSqJGKQLaUqUakZewoEwFGB4YtjxOFJ4kC0JqyFFS6fZB9IcU7b/rUXYF3bV9rhgFxoqJ2ttEj+TU6FC/i4a8cPw2e46mciggjThrUaAgOvNy0xabGjbw5VLP/Zv3s9CacGxkHQv8hfH/gIs+Huf/HsAvLTnJfDDhSl33j+S2dRszdIPgKXpJb7/hnP/EZntVy97yuvxQsF5wMyyLNKFdEPp4LOTQnhxmulg+Ay8jZpcFG60KXeANM5tJFOSgvMOgbCydqs310NmiKLH3bry4pjwWcnMVN5z/NRLPwUGJPIJV+PcS3zj0DcA+Lsv/F0AfmLvT4AJX33zq0quf/LiSWZHawuOi9OLHD1Tu+11LeRcr1fSCaLTnZt1aLQlWjcID5BPi+eSG1+2atwVQoVhGC8bhnHeMIxLhmH8HxVef84wjAXDMI7d+O+XG712wFtfqOjvEZsXpw79339VPFysfP2NllE0XLU2ytk5/NQ3MeqKd9G9oboJXyOkDbGQXN9euUY6UAiQMZ3/LPciU74p+ljZ5LZn2lnILfCdD77j+tqJXAKAvtbqm+ieNvf9tWWvcVnXWY2u1ht+BQ7b7vnC4hvl/KqFW3fwklFqyIVc/sxO6+hkyUgjKXcey+MqypotZRsyCD2w6wA79tePbtViKiUyKjojlaM8E5cmmM/Pky98fNJEh/JDtKZal+ujD3QfoGSXePWMu25KAONz4mFu5Otky+RNYaDskLYeIUZuHaidpi0XzU6FCrnQN0qNu4NLD4jbpWgUG9q8yO4GTsuvDr4vRPgrF+oLdH7TXelaKp+CQv1a/L6OPoJN9Q1La/HaIVHek56pLBRFiJAv5UWJyMeEU4lThBZDbOgS5TA/89zPAHA+4bw8QlIsFVnMLXLhRG3Rw1vykraci6Bd/eJ5/eLTlcXmmzGKhuNN/VJ6CRub44frZxVMXxddTEYnnRll79q/q6HsRXCXwbiQEuupRrM/3XQtkmuIWt28QJTRlbzuWmeeHhZGwoWFyiKqzLSQz/+PA8emjmFkDJ7YKdpX//Vn/zoAoX73rWBBrM1zC7WFrGwiy9Si89+5XCt/+oVP1z3Xa7nL9kukEg2tQ+PhOOA8sFmLOy5UGIbhAX4T+DSwE/hZwzAqFe8ctG17/43//mVjF29sQyFvhB3dtRXOasiFUL1UehDvJxCtL55Uo2AUCFJ/odIUaHJtunXs4jGinih+T+XFU1uoDStkKUuPvNs5fOEwVsTiga4Hlo/taBMbxLfPve36+icunADASlUXvIL+IBRwtXkxA2La11P05eZm4zZnjsFtXWKTtGtr/XTwZ594Fnw4juLdlrkXKx1Jbpd3D78LwND5+gZ9G/s3sm6j8/ZiWTvbUG1gLBBzXeb1Vz/6KwCa/ZWjcX1NfWCueFnc78wtzpFpyrCzeeVRtN4rBNv/+v3/6vr6p4ZEF46xodqdVLxFL6mS85KbcFyIAvUc5t2WJZ4dEume50/V39hJHwbZQed2aVSUlEZijzzxiKNx5IKrkahVS6TFlUFouphuqAXcQ3seItDkfP0AMHRd3LuqZVRMDE0AcPSi84jfvUamKcOWppUOcbs7d2Ng8OaFN11fe3x2HExoDdVeHwbsABmcB37k3K3nUQHuNvUymttIppHc+Esh83bJFDINGfTCjcixQ/8WmRrfFKw/10OekKugSjKfBLt+oGiwdxAjWP+eUIsrU0JkrRZs5Mbt/r2Tzkpm7kUimyI8NvjYckOCDW0baA21cnZGTclC0Vck5qs9B0NGiILpPAOvUU8jEGb2boSKS1cvcfZE/d9NU1jMHRkIVckdFyqAR4BLtm1ftm07D/w/wOdUXbyRm6ncvDiNJqULaSgKN9d6DPQNON74ARQ9RYJmfaHi2qVrvPGu8+4iAB+c+YD8XPUPeFe0C0x3qcn3En/+3p8D8KndK6UZz+19DoDjo85rFiWnLonNS61+6yAiL24cu7ft3obH8BAL16llvTF3nG5epIDXyByUD22nUR7bY+M362ca+Tw+sODtD5wJS7JbSL0OPwC9Hb3LWSVOyNt5fHb9758Zm+HiiLtWetcXr4uWWoHKfytpvHd2RH394d3I8WvHwYRHBlY2uQe2HMDIGJybOef6+tfnhVDW2VQ7quazfa7MEydmxaazXttQ0zTx2l6a25yZI8uIZCOb+kjghlDh0A+jf2O/EDYbwI3xnfSxaWSuP/HwEzS3OzeWzpQyDdXiNwWa3Hf4WRSfic29lbskDbQPACtm2vc7U6kpMp4Mf/vlv718LOKP4F308rXXv+b6+iPTIwC0hmsLFSEjRB7nGwrpm7A0X3+j4LE8jssXljtfBepvkuTG32mU9eS5k3W7k0k8loe85ez3J9+fNNavRdgXdiVU7Ni7g7A3LEpwavD4gcexDItc0XmZycis+OxV85mLIP6Gxy4dczzGvUShVODU1CmeGHxi+ZhhGHTQwfc/dN/2uVgqQkB4UNQi7A1T9DoP8J6/IgICE9cm6p7b1txGqNl5tohlWg0FAZfNqx36v9XibhAq+oCRm74evXHsVh43DOO4YRjfNQyjfoj2Bg/ureyvcDOphNiIvfL6K41edhXZYrahaAiI1lFuapxLnhIhT/0Pnd/ykzPc1a0vWUsEreoL3L5m8Wc6P+Y+PfJeINckfp8/+fhPLh9b17EOM2VyeeGy6+vPJEXt8Lr22lH4wd5Btu5x3gM9VUgR8UfqmjRKQcypY/CP3vgRAFNj9VPcZNeB6YVpR2NZHqvuZgzEQ4mic0HkdoSKUqbE9LyznwdE9lQjveqXZpYcGwFLFvILeHLVI8KDnaLzweUJ95/ze4Eln/g7/8wnf2bV8XAuzGTefUr8REIsMHriPTXPi/ljrqJqb74nIsKNPJ9aoi30b6xfplWJ21no79wsslScinjZYnbZELAehXSBY6ePORpHBi7kAqwWEV/EsRcGQGtXK62R+hmZxz84TqqQcpXFOJOegRL0tpW3HQfY3C0EjI+LJ83xCbHB39O12neo0+5kxnTeyUUyNiuypjpitTMYw54wBY/zKOvlEXFvNgv1l/VbB7eyfW/tzgTVWDbJbsDPYTnK6rAd+PziPJnFxrJMBvoGGNg84Gicjl7xt9m+qf7vZH33evBCvuhMFLF8VkOCblPghsjjQpi8vigE8S29Wyq+vn2d+HnHErUz++4XfvDhD8iVcvSaq+99xozB1fRV0WbbBaPTo2BAS6j2MyPmi2H7nYtdI5Niy1xI179f7N+5n/ae2tk7tWh0bS0rCkoed+VKlbgbhIpKK6hb/4IfAhts294H/Abw36tezDC+aBjGYcMwDgNs6K3cgutmZC2r04VGrpRrqDYXYOTyCIdPHHY0DkCoKdRQDWLQDFIwnD/0AHJmjohRXTXfNSj0osWS+pqku5FJa5L+pn66WrpWHY/lY0wU6iub9ZhLi816f0ftzYLbqNrB9w+SW6ovYgX9QSg5Fw9kClgjbUMnRsTvb3LW2SbQG/Iut0Krh1E0HKe9yhKLeuaEIMpDrl2/5mgcgPWb1vPMY8/UPU9FLWuylCRQqq6ab+kRC52rs2qcse92Ls2JaPLm1tVR53aznUWv+/vd9JKYU9U2i5LHDzxO1/qumufUQqaItjfVX6hE/BHH2VO3UyaxZVB8lvzh+iJcJabnpxkdbqzmPbuUZWRipP6JFZDrAbk+qMX5U+dd1ea29bQ1ZFgmgxQTc86fN/PZecysuZz6fCvb1glD1JE5Z7+3e40v/9mXARgIDaw63h/ppxApuPblkX403fHanmE7BnfgiznPwJPeB43M9XgkTtFwJnZJoaKREhN5P3CaDl40ig2VeQF0tnY6Fj8DEfHsW9dVv1Tz0QOiU5PTNcTFqxfrehMBnD4q/CVOXTzlaByAuewcWDDYU7nF8oauDVCCyeTHw4/mO0eEl9ym8Grfkx3tO7BDNmeuuittlb4+tXzm4IZo6b3R1tsBshNfI+vQsC/sSkRvtA2q3Gvv2tdwHkHD3A1CxShw885sHbDKNtS27UXbtpM3/v0dwGcYRsW7sW3bv23b9kO2bT8EkE3Wv5lIJchpN46Ovo6GIqwApWzJ8YfGsi3SxXRDEZ6wJ+xa2cp788st8irx5L4nAfA2NejKfI9zePgwG2PlKXQ7OndQjLv36UhkE1CsvzCeHp3mw9MfOh5nZmEGK9ugclxw3hd5eaHfwNyQtawyrfR2KFpFilaxoXkB7upzZZRVdhSoRdAMupqDyUKyoY4pUV8U/LiKBqRJE7KrP4z2b94PQO/W2hvr+4U//s4f4y14y+rK10fXU4wUHS8wJDJ7qhFRcinvvOYzVWjMpBFgcmSS1956zdE4t5NpJLsFODXTzBQzzE82VjbiJh28vVssMerVkgMUMgVs0yaddXavXMotEfXXj1DHQ3EAJuadCxVG1CDmqX5f2dq3FSyYSLoX3+8FTs+cxkybbO5ZLUpuatsEHjhy8Yir6zd3CaF+39Z9Nc97YMcD5Mhh2c7u41KoqOc9BbA0t+S4xXkkLoJX2zfXzz7Yu3Mv4HzzUjJKDWUVAhQzRSbnnG24ZaeCRjqZLJfEOlzHnxk6Q2IqUfc8mVExteDcdHHbA9vojHVWLTMxTRMzYzKXu/11173IyesnwYLn9z2/6viDG0Tm/WsnnT3/JP4m8Vl96emXap4nTTCdmudKoaJe5z6AU0dPOZ7rxVIRfI15PUovGTddLatxNwgVHwBbDMMYNAzDD3wB+ObNJxiG0W3cyFM3DOMRxPtuaJVzdaj+HygcDIPlQqjo6aC3s7EFvN/wO1aypfnY7PX6P7qKKKvlt4j741Vflx0CPg5qbLFU5PzseRJDibLX/tpzf42MkWEu4+5mv5hfxMgbdUsy8kt5V+1Jc3auIRdfcLepT+fFTbgRk1m5IXfS71nOi6nxxh7objYvnb3iM98Rr78YDHqDWF7n4sF0YprJkfpzqynQBKYQoJzia/LR315909wabSXkDZG01dcf3o1cS17DnypfIL/8yMvClycx7Or6gztEhEt2GajG8PlhYcbnkEwx03BZollybkbXu0E8/wbXVY7c3czoFZENceSEww2gt7FuXuJU50Zi3f0iAt5IRoUUGZwIrQBHTx3lzLH60byWsBBjJxPOn7nt69s5sP1A1df9Pj9xf5y+rc5aON9rXC9cpylXngm0u283AIcuHnJ1fSMk5t/G3treZCFPCBvbcWaOzJ5q5Nk0NTrF2LSzdP9gVKSBN9KNQ3pUOPXDKJmlhrynAIYvDjM8OuxonENHxd84vVB/43jqqMhwkAbCt0uj3lPtMSGQuhEqptPTdIRrfx6CxSBJPh7P9eGlYbwpL02R1fP9wEZxPzw9etrV9RPZBADxYLzmedLDwmnDA3mPaI3WX1sbRcPxnlOu4ffu2Fv3XJ/pAxve+eAdR2PV4o4LFbZtF4FfAL4PnAX+1Lbt04ZhfMkwjC/dOO3zwCnDMI4Dvw58wW6wPUBDfZEBis7bmC1mFhsyuAR3rY2uz4l6s+nx+qn4WzdsxQgYjrsopPIp8MGLT1QvM2kJtoANX//u1x2NcS9x5MIR8MPOjvKGNDI9/MK0u57rex7ew6a++g//kCfkqhVeow9KAE/J43jzki6Km1wjC32ZIurEa2FqXjzIG/HCAFjfs571m2p3QaiGrGVtpJwl7A3TaAv4SuSsHHMT9Tc+srbdTbsrwvDUgaeqvmwYBjEzxtELH49OAAueBdrN8kj6s3uEieNI0l1avOW3CPvCVc1LJYVUgaJZdJwtkyllMIuNPea9eCnYzsoFo3HxnO1qq1+m0hwWc8fJhiydTYPZWIQHhBmp00XaYmaRoDeIadT//Un39ZlFZ2Jh0Sw2ZFi2PNcTzuf6THqmascPSX9rPxnPx6P1eCqYottfXpbx/AMi6mo1u6tbvzQqysia/LXLok5/KDZJl8ec+QDl7TyUIBpa2xab8nnbSPaBlRe/uxNnTzgaywyYDT1rQbQIdvozyeyIllj9rExZfuVUlMwbeQJG/bkujZZnlpwHID489yGZudrz+JkHn/nYiJLT9jQtpfK/8aPbRDnP6JKzNrqSNw6JBgbp2dqC19SImEPHzh1zNI4s66/X4hZurEMdVpRJgXHrYH1PPMMwoLBi4K2SOy5UgCjnsG17q23bm2zb/tUbx75i2/ZXbvz7P9m2vcu27X22bT9m23bDkk0j5l4gFhpd65zVAh8+dpiLZxtz3Q95QlgeZw8+GTFtpIXSQ3sewjZsx2n781kRpd7YXT0K4Pf6MbIGMxn3hlN3O6+efBWARzaWt7rLT4uI3V+8+heuxljILdR1BgeIeCKusmXyRh4/jUUpYsEYwabGRLhbaetqw2N78HjqZ29IoWIxffubF5mF0UirJoDu9m6CMWc/03xqnpA31NDmJeQLgQdH6eDpbBq8jf1ML7/wMoDjtsdFq0gim6i7eUlNpTh+yX13m7udZCZJMVJkfbRczBqMi4yBg6cPuhrj3PA5QtTfbMf8MTDddcjobW8w2w+/Y18j2e63kc22LA9x4g4ufw+NtiwMeAKOn7c/euNH5JKNRYJlQMTp5qXkKTUU7NjUL4RsT9h5K9RLY5e4eq52pmmoFOL86P1vkj08MYwdstkYL1/nPDD4AAYGCTvhaoyDhw+CDc3B2htuWdbjNFtm38P7Gi5BDnqCWKazefHB0Q8AmB6rHzALeMT94NJVZx1kgtEgzzxe36cJ3Ikvt5P9KYVWp/fkolEkaNSf63ITOpt0ViIHwjMhM1tbqOiKdn0ssqJLVolcNMe6ULkPSWtTK52RTnp3uittvTop7qv15rq3JCJYVyeclWTs2LsDaCyDMewLO16HziXF88zONxbwduP/Vou7QqhYSxox9wJRh9rZV1+dqkSj7vwgWhaaQWe/9tklccNqDtVXmGUq6nza2c30/IhYpJSStW/8/ryfhYK7jgP3Ah9eFZ4Qz+15ruy1PRuEW/jFKXctIs9cPkNqpn7dY9QfxfbbjrNl/BE/bU31a9tAuGD3DzrrBNC3oW/5oV6Ph/Y9BMCmHfUzSm5FtkZsNHuqmHVey/rawdfILjV2I37swGOAs7RXaWAa89cXWuU5Tg1WL4yITKCLJ2p/fqNESRnOTZnuFd498y6YsK1jW9lr3dFuKMAPDv3A1RjHzh0jOVN/oy7v9ddnrzsaJ9gUpKe9dmcRScAIOM4+kOmejZSULQsVDtqBSyGzEe8WgKcfe5p1g/UN8iqRLWUbNsmWv2OnKe6W1xKRrzrs2SqeNU3tja1rbiVfyFP0FQkUawtKU8NTDE0MORrjXuL8jFjnPLu7vN2t3+OnK9TFB0MfuBpjIbcAOeq2o3SbLZPKp4j4GhPr3ZQlSmPMRjIl5cbfacAsU8w0LEoGPUFsj7M1kXx/jfxMy0JFytnauuQpNdRFYaBnAIBoa4NZ4RUoeAs1feYAEmMJxhJjrjte3O2ML41je23+7k/93Yqvb2jewNUFd2bhjRridzaLvaY01b5dpOl1I/NdBrvk/vF2uDQsBMaLZxrb25glk1zJXbfJitdVfsW7DNkeqR4BM7C84bldSkapYWfixx58jJJZcrTJlApuI5u/U0dEHZ1Tx+DjF0TktF7aWMgKsWQ5N3u7V7g8fxkKsHewvFZr27ptUIBrC847PIBQvxen6m82u1u6weO8X3G8I84jD5RnhlQi4nPeCSCVTzWcoi0/005Sz2W5iDTkrMfwhWGGrjpbhOesHGapsdtmf7d4WDlRmOVitZGfSZaHHD3jrCxDthxtCdROe232NpP3uXPAvxe4uiQWK09uf7LsNdM08WV8TGVdlNkgTLT8Vn1xW7Y5c2qeODk/iVFobLO9vmc9oSZn/dZl2eTtbF6cmNGFm8Rm/qXnapuVLZ/vCzveJOWsHJ5SY5kLUpRs6WzM0PdmLMsC34pJXy2kKCkXxLfLyPQImNAWri1Ut/nbKAadlxzdK8xYIhv0xx//8YqvZ8YzvH3qbVdjLBWW8BTqf46kMZ7TVP/DJw+TTjT2WZfp4E7WobfTtld2DssWbv8ZmM1nKVpFLpxurKQ26A1ie50JFZlCBgr1xSRY6bSwkHG2X4i2Rnnq0epllpL+TrF+aOttLKhUiZKvVLfkqLRYwjKt5Ta69yvnZ4Uoub29sglsaa7E++fedzXGXEZ0WanXzaunRQjbTrNlDh46iGmZeMz69xXZjcOJB+Nyh58GKxM8lsexWF+L+16oaKS2BmDkygjvHn7X0Rgls9RQzRmsKGBO/DBupyVNW0Tc3Jwa8VyfFxG8WgZ7ADEzRtajPtXnbqN1UysbmjZUbOm2vHnJuNu8FL1FIt76CumLTwnfEKfeEalC45GXS2cvceq8M7Hr1YOvNuwbUcgIgcLJWDLK2qhQ4aaWNVvKNmxEKjMvJudvP3tDzvV6KYQAZkF8Jq9edxYNuDYtBLbeltoP1/ZQO1bIEk7Q9zHZsPi7ffqxT1d8PWJFSFgJV2PkjFxD6b+ybCNZcCZKnr98nisXrjR07r6d+/BFnBWzyoV+tZaXN9PZKqJJ/RtvP1NLPjeD3sZKt64NXWNqztl9OW/lG6rDhxWRwYkokilkRAbPYHkGz61kF8Vn83uvfu+2x4EbQgXQHq1d5tUZ6QSfu+4i9wLHR49jYLCxpXKJa5u3jZTPXRZZqpTCX6ovSnY0Cf8jp5uXidmJhrP9PvHMJ8CEfOn2hedlP4cGu2xRFF45t4sso8qmGvuZHj3wKHhx1DVl666tDa8fZABC+vLcLplShq54/TLziC+CgcFcypkomUgmwA+twdrlLH3Nwp/i3LVzjsa5V/jTH/0pAF2+yr97Y8FggQVX4uxCbgEjb9QVvLpaxHtwaoo/MTOBnWtMlHt438MAeIK3Xy4ohYpGKxPC/jDekPoukPe9UNFIazEAr+3cSMwyreVavHqcPHoSwFFv9627hOgi+zjXwq06f31RCBUbOmu70m/v346nyXm97L3CZH6Svf3VnW8jpQjzlrNUQInlt+qq37DStsppqv/0wjRnjzfmWG3lLMc1Z3krj8du7LMhI5cXrty+IenGbWKR+cTDTzR0fsAMOK7Pzdv5hoWKsSsiQjF07fazN9p7xH3rk899su65spbV6YJmdE4YSPW31d44dke7wYSh8fs7JfzCzAUivghdkcoLmhazhbTPWZRekjfzRMz6YuFTD4vIW7wr7micotlYPTS467eeLWUb7i4iozNNrbdfviDvD+PXGuuEsjC74Pz+RR5vg264E6NiQ+/E8Vy+v/0799c9t6dVROJkK8rbRUZNO2K1OwH0xcXm5ew1Z50N7hX+9Ed/iifpqSp8dYW6KIVKrsTZjJ0hYNdfH27ZsAWAlu7bz8oB0c2rUZNsWX7lJGAm/RwaLR81S6ajLluym1cjmUYAfZ3iM+skchyIBhouU5W+AE5KxTO5DPlSnvmp+mtFwzCwszbfe82ZKDk6I57r0pSzGvK5f/G6u9Llu53jV49DEbZ2Vw5eD7QMgM/dPc8T8RAy6mcl9rXdMC9tzDGgjHQp3bBJ9nI7XQeZ0TJbudG5sWvrruX1uErue6Gi0YiIDx9FnD2M/BE/2zbWj4YAyw8SJ6Zb8oPWSJRVqvNOhYqZpPi+TT21PQOePvA0GTKOlPlK/PGHf8z+r+zn83/6+TXpx+sEy7K4MH2BFqovIHb27cTb6lxJTCQT4K3f1ghgZEiIXMfOHrvtcYqlokiPbFCTc2P+mrcbFypam5yng8uauEY9KoKeoKufqdHNi9yQOWm5KlvNNWKmKaMzTtX56wkhSg50DdQ87+WnhWmnqvKP3/r2b9H0y0381Nd+ionk3RO5/dorX4N5qrYJ7gq737yUfCVivsb9R5ZyzsrrGq2HBjj87mEyxQwl6/azjbKlbMMlUaZhEjADjtzBr0+Lz2o22Zj4EPKGRJTVQZSsvbt9efNTd5wbnQCctAiW87YhI9JoHErOReqcIe6Vm3prP9c3tIkAxYVxd52sJN96/1sE//cg7f97O5dmnRkrrgUz1gyxQvV5uK55HXjcRZs7+jvYu61+e7/1XcK8N9LSWLbjrRSMQsOZvTPXxed0fOb2Wx8PbBnAwGiouwjA+t71HHi0ejvcatyuSXZqQawdnKytRydGaXT5L7NR5TP6dpAlndevNeY55Cl6SBWdicdGWDy/fuITP1HzvM3domvd8PSwo3Fu5bsffJe2/1cbgf89wPcPf1/JNVUwlh7Dl/bh81YW87Z1iz3ckUsO22YDfZv62D5QubTkZpoiTfhMH5t3bXY0Ts7K4bUaW4eePy1KXmQL3tth2Y8mHG/ofDellrXQQsUNfIbzNmYls8SOzTsaOleagDkxNjl6StSgl7L1F5LSrMWp4c9cZg4KKxvIanREhCAyseh+o/H+2ff5W9/4W0zOTfKNs9/guX/3nOtrquDstbPk7BzJkeoPphcefIFFFilazj5DUv1uDdV3nZbRmbGZ268pnFsUD/GPwnSrQKHhCI8b063T50Vbt9RiYw/0oMd5LWt7bzsbempnGUmkCu2k5erxM8IjZnGmAc+SVtFaz2nNbKhVbLI29tRWwuWCRkWXn1NXTvHzB3+eklXie5e+x9/75t+7a+rhE0aC5lJ1MfjlJ14GD0ynnBlh2baNETJ49tFyA79bSc6Je87r777uaCzLYzXsEyPNHOU94nbYuHVjQ61JJfl03lGppWxp2nAqqi8Mpujkcrs0tTaxaX1j5r7y/uUk0+H0RXH/OnPsTN1zTdPEKBiOS4Gau8Tn+uE9D9c875kHRaeF5t7GImm1SGaSfO7PPkfelyfdnOZv/NnfcJSevxak/Wk6fdUjzoPtInp+8upJx2PkzFxdYQgg6hMb//HZ2xcPQHSTaNTUfW5SzPGxydtfQ8RaY4R8oYbKvEDMQSdBJ+kZFwk0tla5ekmUPo5P3f7v78TZE8xONLYmlxmV3/3hd297nGWT7AbNgL0lL+mSu859LcHaGTpb+0SGwXzeXUYwCEH4Z/7kZ5gPzVPwF/jZ7/+s4yw91czb8zRb1e9n23qEUHH+uvNuR4lsoqFgI0AsEHMcgMjZObx2Y0KFFPqcrEN7B0Tp6aYNjT0Hr1y8wrlL6kuI7nuhopF2QwB+w1nder6Yp2AVGo4cywVWIpm47bEuXhOpWTJ6U4uB3gHAeRrhjgM76G4u7y1+K1dOifrnd47ffsrrrfzt3/vb2IbNn372T3nKeIpDhUN859B3XF/XLe+eEwvqXb27qp7T19SHZVsMzw47GsMbFTedz37ys3XPdZMtIx+UjWYfSNMtJ5vIolFs2GRWmm45WdDI0gor19h7fPiBhx0biYWbwmxc31hqm1ShnWRUDI8Pi380kPnSGe8EG8cta9t62zANc1nwqEbYFhvZ90+7M5wC+Cf/7Z9gh2z+8OU/5B8f+Md86+K3+Ndf/9eur+uWfCFPPpJnXbh6p4h9g/sAGE8621Ak80ksLDZ01Re8ZMvC63O33/VDmjQ2Kkq6cQcPxoK0xxsrswTRxsyJO7g0EL4toQJnrQSXMksNZ0/Jen0nnUxkinsj3bwAzKJJuuhs85LIJoD6mXtSlFwouu/o9Yt/8ItYUYtf2f8r/M5P/Q5HJ47yJyf+xPV13TI1P4UdtlnfVN6GWPLCQy8A4Ik7L2+dSc5gpes/m8K+MFjw+juvOxrHCBgNta6H/z977x0m2XXXeX/urVydc57ununJeTQa5SxLsmRbBoEDrzFml8VmWb/kNfDCsg+LAb8v7BJ2jTELLJhkYzBOkoMkK4yk0Ywm5+kJnbunY3WoXHXv+8fp05O66p5zqoU9Zr7Po0dS96061VV1z/mF7+/7vZIomzSyRiZGlAsiALOTs5w8d1J7HclwbqxRG7GQBQ2TvymDOvuzMloJrhmVfmpO7K2qn1PADZB0zJjFrx0SIrCpWHH22ZbuLQC0rzdzR7oav/OPv8N8zTwfaPgA3/jIN5jJzfBnh/6s5OddCSTDSZqChYvpWzrF+zCZMm/EHD17lMFetbH+1GyKV958xWgdX8RHRUit2CXjUJNCRaRC5JpesaFEeiH9thSmvu8LFZGQWjdpbfdaymv0xXEk1fPIW0eUri/F2kgGQQ3VxedLAdrqBWW1qsGsIzKbnaWh3HudroYuAC5evmi0jkQqk+KsfZbOZCf3bb2Pz37ks5CDX/7nXy7peVcCh/sEk+X2nsJdqLGzglHy8qGXjdaQAaRX9RtK89fWPSg7mjrAhmRG/7CsqqtaUhxWQtZsZlZujKoe8quaRWCayunPrs8l55SdAGTyIulzOpDsiPoK7+TP7/NTEapgwzZvyuFymIpPURWqwraKHwe1QVH03X9Kn0J4NRzH4TtT36FipoJn7n2GTzz4Caykxaff/HRJz7sSOHDuAPhhfX3hUb5quxoQDDAT9I+Lzl961jtRl5oEsyn9ICOTz4APdm/brXT9EttvTn9f0RH3AnN18KVChaKbl7wHTYK08wPnOX5IrZMutbDiaYPkZXEfry1Xa6rUV9QbOwF89fmvAng6zjRExdlf6r0O8LkznyMwF+BX3/erfHDrB2miiZ/+3E+X/Lyl4rVTIpFb31j4Xt+8SjQnYvmY0RqpTIqUk2LgnLcjmG3bkDEXzi2rKePhex9WunapYWZQRD9w+ADz0+pn2vz0PGOT+ozbhhbxHdyzS82hTO5fJu59OTenzP60bVvEKgZNFVkEVi1KBt0gGcts1LJ3SDQ2qwLF1wr4AtRGahmPlyYGD/C/3/rf2Ambz/7UZ3lsw2Pcv+p+PvmdT5LKfHcF98diY7hhl3WNhc0Vtq3ZhoVFc49aUr4cEm4CK6Wm1eQknaURe120draye7vauV5TIc5AE7bf4GVRdFEtTIZ9YWP9t2L4/i5UaDRM13WvwxfSr5rLebjyoJ5icCCqr64ez8Yhj9JsYMQfwbZsLsf0HQcATl48SW7ee4xBdl4Gpkqz5vz01z+NG3F535b3AbBx1UbWJNdw3HfciH2ykjg7Lqhgd28qLNa4ukl02S+OmxVs3jrxFgCJGe9OWXON2EhNNAkyiENPfg+9cNdtdwGCaqaLcEWYDT3qyXNTXRO771LbfK+GFPdSVSFPzIvrTbqsAyMDnDii5kwiHYfWbFSjzV0NeaioCpZVhCqM59afe+k55ie8A8/ulm5w4PK82Z4i8cW9XyRdlebdnYI9VB4pZ5dvFyPlI5y4ZOYws1J4/Yxghu3o3FHwmlq/SChfOWLWDTnbL/aT6RHvEQvJljH5bGXXfXW7GgNIBvomM96nz59m8JK6QLTP8RntKXlLsIZUbFABHrrvIQDKqvTn/h3bUdb3kPdptFpN+O9qyGRRxc0LYHXbaiob9IVIYVF7yrkyGloIAV8AK2nx1qm3jNaRmFiYYL56nseaH8Pv82NbNneE7mC+Yv67zpac94k976EdDxW8pqmsCQuL/afNCjaD4+KeUBnphNI0CeIZdTcv2TCLJWLa66SdtLKgNIAfP1lLX6heNi1UR9eWChUGRcmslVVmf4JghJmwmmTMoTrzv7ptNZX1Zvf6xIJgz3Y1d3le6867vPDmC0brSOScHLH6GD+49QeXcpQ97GEyM8kff/WPS3ruUjGaFIzE/+ud/1fBa/y2n8ayRkYX9NmLEk7AWdKV8kLACRhbeS5kFpRzTlkAl2OTOth/SOx7AdTujZAdMtZ/K4ZbhYpFWHlrKeHRgUyio0G1AGXjGqFlYaIYnMgmsLJq1TrLsnCTLi/sNdt8hiaHiI3GPK9b3yG6ESOzZjRoib/Z/zeQhV987y8u/ezf7/n3EITf/9Lvl/TcpWJgfgA7bhdNGte3ifdhcErfzQWgd1BUv1XUwSVbxhfVL6yV14rNTVoWeWFJMdiAzhXPxJU3OLmWiUK/1LWQlWMv9J3rA2B4XH8+1/GpJy9y7MwO6m+zcnZR2lh5IT4d541DZvbKCSdBIO/9Ofl9fuykXRI1EmDv0F4Afu6pn1v62a8/9evgg9/+0m+X9NylIh4S3/MHthbWj9jUuQnyMDhrdq9L6+emKu/PdqnLaiDcNhETgWo2oZYkSNcBkyK6zpgXgA8fWUc/edm0fROgbjsukxwTppbrc5XdvPw+P2F/mO513drrSPaU6phq1B811p6ay8xhpS0lfYFANsBMtrS59VcGXgELfvUDv7r0s9/84d8EB377a9/dez1mxQC4d8u9Ba8J+AJYcYu9R/carSGtn6VdvBd8eZ+RlWcqkyKdTytbEcuimElSr+N8BYtj1eiPJb55SDDWRofUEkfJEjH5m/JWXmucxZc3Y4TJ/UHFuQ9g89rN+MvMRNqnElPgXIkXi8GZd5ac/kyxb2gfsVSM9+1839LPPvGDn4AM/MWbf1HSc5eKizOigVjIhljCmXX49r5vG62xkFyAIFSHqpWuD1khY7bMwOgA50+riRK31AlWZnW92uu6GjK2Vm0MhP3m+m/F8H1dqCik7rocjh08RjwT157Fn14Q3SdVcRw5B2yS+GWtrLKyOohZVtPqfNaXpcznXZ1vr2+HHCXTxjItGTZVbbpmHvHj7/44VtriW0PfKum5S0Xj+saiHVYQDBCA4Tn95BeuuKy013vPCTZUNWBh0blWY6xiEfJ7p1qNPX1MWDVJwTcdjE+Pc3j/YfXXNhtfEsbUQTqfBledDi5nWU2YOq7fVdKIgSt0ORPL1bydB1c9ecnFc0zMmYk7JkkSdtWKL6FsiFguZrSOxLB/mO7qbnavu8Keefed78Y/7+fFwRdLeu5SkQglCPlC7Fyzs+A1fp8fO2Ubi4pKlltLTYvS9RE7QqhSLWG+GhcGhXaLFJnzwqa1oggQqVT7fl8NHSE/EEURKdSlA0m3jgTUXuNgnygmne7Vt5xz/a5yURLMFc/rW8XYiNSV8sKZo2c4cc6MeTSXncOXVUsyw/kwC47ZGILE109/nbJAGbe3XimMb1+znerZag4umKvrrwQOXjxIxB9ZGnMphFA2xHTOzPpZ2sF6WURKBNwAKUe/WC/dJNLzasnzzi1if9u6c6v2Whk3oyzkBxC0zfTfJmNif1VtdmzbJJxVOnv046L6lnp2bi2851+Pusq6JQtxHcgilOqYV8SOGI39AcymZ7HSFj7b+36vsCtI+kpz2fvk5z+J5Vo8uvrRpZ/VV9XTmerkrH32uzr+8bfPCk2clojHmbsAlxNmjNH+y+KcrY2qfbZhK2zENAJIkyYXVxPub64TDOzmVfojLYlsArIoC+c21TYZa9oVw/d1oULlBpWIBCJgQyKtF2jMxQWdpjyslvjFYyJR/OaL+rY9W2/bqqxCDqUpBqva59m2TVWgiuq2aqN1QGgFnJs9x7t3XiskWR4p50d2/wjnfeeNLPNWCgPzA2xp21L0msqySqyUxUTCLFmcTohAqKPeeyTDsiwqQ5VGdPBX9gm6+mi/WvVcBuomdHACFPSnXw4LMwsMXR7SXub2u27XUiGXQqK6XclcPgcB9SRJslGOnj6qtQ7All1bKAuWKf9NQTdIGjMaYcbKKHl/A0SJEnfNxZIcx2Fv/17uXXVtF9O2be5rvo+Zmhkj7ZCVwvHh43RXd3vqdYSyIWOhwYl5sUcseal7oKuli44etVGtqzE5JwJ9KcjpBWmPaTK37tiOkr2mRGtjK8Govon8voP7AJQ7urmUCOZ0rVAz2Qz41e91EA4tL76qX2irrBMF1tZ6tcJNxI6Q85m5SyWchKc+hUS5XU7KLu1e/NvX/pbKWCUB37XJ5t2Nd5OqSnHg7IGSnr8UfGv/t3CmnII2xBKVVDKPmTr/EnuqWo0Z19PRQ2OHPttWFipUBfZkY82kYZYjpywyC4LVZNJllXo0qtpTUifG8quxjq9G3s4r338Aq1pWGRUqjp8Vmjf5pFo8e/TAUWYTs0aJXz6UV25A1ARryAXN7bYBDgwfIDQboiZyLbP1Bzf9IG7E5S+//ZclPX8pODdxDitl0VxdPFmvCdSQDpjFUVJnzss9TaKxutGIFS1FsmV86QV5hplopaVyKayc+v107x0irjMRyi6G7+tChc7NLT903YSsolZs+BvWqM3iLwnsGdjSxDNx5U44iOq8SfKSzqYhBFVhNcGfNc1r8FeZ0dMAvn7o62SdLDvqd9zwu3evezfTyWn2D5cu6mWCufgcg7ODRFPem0JjWSPV7dVG68RSMcipjy+kZlM8/+rz2uvI77cqA2hJ/FVTzyGdSYNPfb4UwO/6yarYXFyHZC6plVBIiuhcQq/QI20bVQ+IYCAIOTPLVd17PWSFjKvzWX+Wcr/aWo/e+Sh1nWZCfgDPH36e8cQ45dM3rvdLT/8SGTfDy31mgrQrgZeOvcTMBe/vetSNsoBZt3kyLgoIKkVJMNcfkYU41UB/bFAk86+++ar2Wo5Pr1CRS+SWhKh1MDIhRgwrInoJmW6QJpkbm9cVdnq6AVmzER2ZZCq7swTKjB1+orVRz2BdojpQTSZoRk0GYbOZqcywsfxG6/aPPfIxAF4aesn4+UtFzIpR7VZ7XlcTqCEdNAu8m7vEe717s5r20uq21dgR/bB8SSRb0Q1HHrPS8l4HTR1NS+wrFTz6wKNLxTgdSFeNqjK1OFS6fvX292qvNZeYYz6mvkeEfWGjEZMzF4V1o2qhtSJYAT79WAVg1bpVbOkp3mCTqI/U44ZdIxtnELnWdHiaVf4bHXR+5l0/Aw787f7vntPPWGaMSMo7RmyKNOFEHBG/akI6992/536l6+/bc5/RWM98Yh5sdVa0bQnxV5PmeCqf0mLxlzJqWQzf14WKXFa9QrhkYzavl5BJmqyqYFl95aI6uEEl+0TvCabH1AspQTe4JJ6og6EJ0dW+vjJaCDXBGgamzcU0P/fi5wDYUHFjseeBjgfAhV/5i18xfv5S8MbpN8ACd9q7I7ChfQPoa7YBoqvty/qUO+ikzZwAlkQaK9SSzSWLTU3RLVkQ0Skg+PEvWZLp4MjJI2Ti6t9zmeToBhqyiLJt4zblx1hZy2jTfvPImyRn1R8XsSPkbLOOiK/Mx4YutUJrR00H44lxI2tXgK++JVwHHlz74A2/e7DrQcK+MP/7lf9t9NylwnEcUpEUrWHvztoDux+gpt3Q+nmnSNw6m9UoyoPnBzlwVL/zLJkRqoWKUlxqwhVhdu9QF8I9f+Y8w5f1x+RS2RTk1KmoMnGbT+r9TRlX7CeqDQgwdzJ56fWXwIGgT5HpECiHoBm9NlobZdemXUrXPnHfExDBmM341Te/Chbc3X2jCPW79ryL9sp29k3tM3ruUiHv9Zaw9/iVTOJyef39NWOL75HKSCeI88LEHliyp1TdJGS8K8fDdOAL+WhrUmODgUheTBwydEWynYy4H06c0R+LSmQTyvoeAGeOn+HIySPa60jnPsn+8IJ0ZzOxp46lYsoxvHTv659QGxO8Hq+feh034nJby203/K6zqZPbGm5jvtmMlbQSmLPnqLG834u2yjaw4dTAKe01VK2fJSpDlSxkFrRjKVnY1mlkWTnLSP9t9YbVtDaoM41OHxcjlpeG1O8lFXxfFyos1CkrpnPrEzOCxms7am9lNByFvJkH80RsgoUZ9Yrnus51VDXq25NaEfG+PfnQk0rXXzpxiVN9+je2xNGJo/gWfOxYs+OG3zVXNVM+W85bsdLUx01x4LxIELZ3bve8tjpQzeC0mcDeuu3rWNOuPtZj6q8tmTyqB6UMEnQVgyUDQ2qyqCBgBchZ+sHg0NgQ6QX1BGHbBlFo6FitR6eXc7aqQn4Adt42OiAuT18ms6BefGmoasAK61Ne07k0WbLs2apmAZecSpLKpRib0bebAzg4dBDy8OTtN+4tkUCEyqlK/uXUv6z4jKMKjl06BkHoqevxvLa7sZup1JRRwSaRT1AeLCfoVxx9SGM0wieLi8q2l4tFdBMbs4ybob1JLRkDMbduog6eyutRUWU3ViYIqlgaf9HYjgIEyLr6rKZ4Ng4Z9eJLRagCbLNxvFgqpiz21tXQhYvLdNJMn+GFU0LI+z173nPD7yzL4vHVj/PNc98kkTIbTy0F54bPQRC6a7zFTx+75zHxfhu8DycuiKRZZYwWoPdEr5FTm3TQURVfluJ4Jmy/6flprcbApfOXSOaS2nt6pEI0OVR1mmSsotsENGF/Bq2gUawiGVdyr/WCLDxdntH/Tpy6eIqRi2oi9089+BSA8fjHl978EgBPbHti2d+/b+f7ODZ+zFjDrRRkshmy0SxtUe/i2oZ2UZgemNFvvH7rFaGlNzuu1gA7e+wsLq72Zyu/QzoFBDtvGzXMgmVB5VwBWDqbJft4pXCrULGILesFRSpYrjc3u++Q6AhMX9b4YLIYzWHnrBwhS51eu757PXZY/yOWlcGGiuIiUxK1oVry4bxxcjHmjFGbK3wY7a7eTbwqvuQL/a+JY0PHALhjnbdK86Xjl+ib7DNaJ5aKKVdiQbiDmCgGy0JFQ5XaZ9vWKDb3SJWewJ6cSd3YcyPttxBCvhCurZ/4ZZwMPld91q+hRvztVkAvsZf0Wp3pFNsxK1ToCpY9dPdDoK+3yFRc/E2qgXRmWnznTvWbFSYvLFwgvBAuaLH8UPtD5CpyfOOtbxg9fyl47dRrAGzv8C5K5mfzJHNJxmf1RYSPnD1CIKfhhuOLGmkSdK3rAmBdl1phTSYEuoF+KpMi5+RIzKonPRFfxKhQkc6nsfLq9610atKdWz/fLxTVzx4/q/yYgBswtmHUodduWycKrQtZfZr26MwoJ95S6zjn50Vh1tQy+NjlY1hJi9vW3thlBaibqSOej/Pn3/pzo+cvBW+cFg5JG1u8z6d1reL+MdGfOnD8AOTVtSPKA+W4AVc7lmrtFEnLHTvV3CT8Pj9kzBpmk7OT9J5Sj8Xmp0XMMRvXYzD2bBAFY1XHAVmo0C2+yIKfqnMfCD0fE4FQKU4YDKjlGTVR8TeZnDPxfJzcgtq50VAmYiJTUfxz8+fAgffe9d5lf//IqkcA+K0v/JbR85eCCxMXwA87O73FUh+/53EAgtX6+kljs6J501ylNlrny4uYVZctE6oQgd69txd2K7phLUO238j4CPmU+vdc6r+Z2B4Xw61CxSKkSGUgomfNtiT4o7iZgugy1zTp04bzvjxhW12c0O/4iSVj2uscOXsEgPSs2he7MdoIgSuUJB2kM2lS5Sk6o4Vp0B+680NgwR89+0faz18qLk5fhCzLsj2uR2NZI4TN3CSOnDnC1LA65TNsh40KFZV1lViuVTBRvB7dbaLj1NKh5lAg4QuJTViHOv3QvQ8Z2fZm0CtUyELDxcGLWuuc6hXJ+YWz6nTZns4eNm5TL9ZIZKyMlotCRbCCrJMlndM7jI71ikLcmaNnlK7vrBf36bkRfScTgCn/FE1W4a7fx5/4OACfffGzRs9fCg71HwLgznV3el4bHxcB/ok+/STuTN8ZEjPqwXTUH8Xx6yf1vrC4Jxqr1e4p2TnR1VmQWhM690XYH0ZDj28J/ohfSwtjdYcYydywVX0fgiuMClWRbIDm+maiVerJjkQyn1wKWlWwdb1watAtiszF5yCgXpTMz4kA9eh5fTFgALfJZUPVhoJMkY8/9XHIf3dm13MVIoF7x23v8Lw2kBUx4eFefT2HucwcVkbNDhYWCxoGmgTyntVhMFp5y6hh5vpcLZHspbFqTZ2rZC5J2B/2FDuVKI+Ug4v2mMlSoUJRewpEocKk0JrIJbQYYVvWiQaqTE514AQdKoNq2iDOvPhbnnv1Oe11AOxmm81Nm6ksW369nW078S34+PKpLxs9fymYyIoC4w8+/IOe10oHIJOCjWz6dDaqjXTKIpQuO1U2EnTudZ/jW2Jd6eDcpXMMXVIXuF8aq9YsSnpBuVBhWdY7LMv6M8uydiz+/0+u6Ct5G6C6wQFLFE9piaQKSSlVpaeBsItpWaWX+IEQLFO1RgQ4dfgU8+l57er8mUsiabEzal+Plirxt5wZVEt2rsZ3jn4H/LC9pXAX80cf/lGspMVz58w20VIwmh4llAgpBRqtlaKrcbJf32JzOj6tXBgCaGto02b/ALR3t1MZrlQOnKTAm27yIgN9XXVwE3paztVTIZdOAEdP6QXgUtNCdQ4YRJfHpPOSs3KENCgSF84sWlGO6c2YjkwLamhjhVoy29MsulyXxvVnEGeSM+TL8zy44cGC19yz+R6Cs0FeHdMXdCwVgcYANjZ3bbzL89pVdUI07PyImpf51Ui4CUKO+mdbEazADep3Wc8PiNemSmkOB8P48GkXJWVhVidwigQi4EPbsm79lvWsXqWmB7W0DvrJi0wUdQoV2zdtXxLX1kHaTeN31Pcvyaocn9MLpgfGBZ1Z1T6vq7ELgP5J/bl1x3UYTA/yxK7lqeAA7Q3tVM9VczRhVggpBZM5Eeft7vHWVfGnxGdz4JS+TsxCbgF/Vv2zlQLmI1NqlH2JvW/uBSARUy+A+vI+7WKXdBzQGZOQY9W6o0rf2fsdsgn112fbQjRQl8EoCyg6M/8RvxkjbNedu+hoUh85Xd+1HtBnescWYuBX10voqBWv6dJlM22BUxOn2NhQuCFj2zbr7fWMRkaXnBL/tdA7Jdg/q2u8z40KW+zfX35Bv6AiBfFVm9a1ZWIfnpjVY2q9eeRNAIYvqY/RtNS3UNekL4KuazsuNaFMhGaLQYdR8R+BXwI+ZFnWw8COFX0lbwPKy9Q3nqE+UTXSVUGWNDNVwR8QlVvdmVkAghqqzgixFmwD3Q1N+7xVtYtB+6h+0L4QFe/DBx/9YMFrgoEg2yu2M1k9ieP+686u1/XU8dDOh5Su7axb7DYP63ebc/6csvMCwF0778KO6hOi4tm4nm7Eoof5c8/rFYnkfXT+tPp3YvDSoBEbxQ24SzaqKjCluMvNV9VxACA+E6d/RD/Qt0LWkuOKCmRRcXRKj0Yo7fNaatSS07WtawEYnNHXYjk5IQp473vwfUWv2xreynTFtJErRCmI2TG6a7qFjpAH1jQLBt7FcT1WDggP9LCl/n3taukC+wp7TxUHjx8EV69TWBGuoLZJvegOVxIQnX3l9h23A/ojkKlcSkugVwZZMpFThdTk0Tlvo/6o0cx/c0czna1qXTiAgV5RcNAVWB2cEPdsXZlawLq+TSRJwzH9ufJTw6dI5pKsriyeHNzTeA+pqhT7Tv3rimq+cfYNqgPVSsnp+nbz9yHuxJXtYOGKlbBul1UWNnSS7bVda9l+m/eY29WYS8yBpbenyNek22WdS8zhZvVGQWsqath2m7rYNVyxB77rdu8CtcT6NeuxQ7a2RlEim1iix6tAFiV1vw9LRcmI2l7e2dQJjhmTYDY+y/nJ82RHiheVntn6DAThM9/4jPYapeAvv/yX4EB7ubeGUn1lPWRhaFqdRSAxm5nFztjKTUApaD8xp1eoGJ8Rn5EOu76ns4fKen3nnbydJ2ir718t9SKO9IfNXSCXg06mM+G6bsx13V8EHgNuX9FX8jbA71N/s5YsCzVFA2VgosOouHTuEq+9+ZrWOnknj+tzefyhx5UfY6oYPJUQFKaOBrXK7+5NoithYlF6elKoxN6xuvhs5c8+9bPM5mc5Ovav131xXZeLMxfZ0KBGG17dKIKyi5f1kxcn6ChTckEUoebT89qFm+dffp6pUfUREyn+qhuAS5V9naR+ZmLGyPWjo7uDe/bco3y9vFd1/ya5N6i6KABcHrrM0GX9Q6+iroIH7npA+XpJI7w8qyfMJLuyLbVqhYoNHeJemEzqFxH2XxQWwxvqit9Pv/jeXwQ/vDH2hvYapeDo4FHay9QEIde1ibn1oRn9zzbry1Jmqyf1d98mXBN0xXPlPLSykxDCdm9Ji0URch5Vh33Q0SzOFumuoYojJ44w3K+eMIaDYRGAz+gF4HL/0ikWHj5wmLEpfZHZUEWIrtYu5esbKgU9eXpBr0M9PC3et6ZKNcHFnjbBnhpf0E9evvya6Ei6E8UTuY8+/FEA/vibf6y9RinYe2Iv2Qm1bv2a1jXgwOUFfUHDFClCrjp7avc2EUvpUv1l40t1zAtEsUFXo0K64ukUKqTlum5jIONklEXqJcpCZbg+veKBjDmaatXuCxAjGQ4OWUePkXLq/CkWptULzpIh88q+V7TWmU6IvaGjUS2G9/v82EmbqZS+48zzh58HG1ZFbrQmvRr/6an/BDn4/MHPa69RCgYXBvHH/eIs8IBt2/jSPqbT+mKQZXVlVIXUz4tVzYvvl+ZUj2yY6eScIStk5OaVt/XkBqRtcVuXuiuQCnR2ga/L/3Bd95eBv17RV/I2IJ9Vp1wvqYNrdq2613bjx68sjgPgd/1LVoeqkAeKqtc6XKnO66pIzyRnwIHmWjVRmC3dYo4uH9KnuD+7/1nqfHWenYDHe0SB5v/s/T/aa5ji9OBp4tk4vnm1+eHbNgjRsPIW9YAdFhkvAXWaHsCJQydwcRmb1guMU04KO6fJxMjp+yLLpF4n0I/4I2CjrQKfzCW1qKjRUBQcfTr4kh6NRqHCVHQrnolr3evS2UHa1KlCsqc66tUCmmg4Sl2kjrU71mqtA/D55z8POWivKF4M+IFdP0BZoIznzv/rjXo5jsOZ8TNMnVML1DZ2CJrr6Jy+bVw+kBcWk4qoDC1abGb0Ao1ELqF9r0+NTrF3vyb7IK4/JpGcF/eeLmtmLjmn5fADQE6fudHULpIWqV2lgiDBJRFhHUzNT2Fl1cdUpRDy1IJeUiEZeKpWxOFgGCtpGRUlpd7Lw9seLnrdU3ueoiXcwmzTylKFvTAXmKPBVhOU9vv82Cnb6H1o7mzmzh3emjcSq9tEs0NXk0bGh7WV6snL1NjUku6SMhbD3Dt2qYl2Atx3530ANLWpFwJgUSTb0dCeArKJLL2X9ETXB0YE+yAeUy+kSKFr3eRveHyYuUn1ZmhzjYjBdbXmwtUiuXzoTjU2MEAwF2Q2q38fvnJaFFHu3VBc3LGxppGWdAt9gT7tNUrBlDNFZU6dTRDKhZjL64+n1LXVsW6VuiPc1rVCa6ipQ+++mE2Jz0jVOQbg2KFjnLukz/R2/XpsZVnANGEWFoNnFGNZVq9lWf8M7LAs62nLsroAXNf91y2BGyCTUe/WyNEN3ZGM8ppyrQANBB1VdzZwYExspv3n1WnkNWXib9KdgYrn4lgZS5mRIgVozgzpa1ScGDmBM+l9KDeXNxOJRfir1/5K6XljCzE++9xnOTOm/5okXj0h5uQrsmqsAEmL17V4kl1wVfo9QMQWibluoSLtprXcJADsnL5zhTzAZQFQBZLSrTvLOjoxqnVf2LZtVHxpXy0S7K62LuXHhOwQeZ9eoSLv5Iln40u6EyqQNMLJeb1guq5NPK672dumT6KxrJHLcf3u4mB8kFA85FnUDflDbC3byuf2fU5JlyGXz/Gnz/4pe0/oJdhX48LIBQjDmhq1xDQajlITqmHDbj2RRsd1IAzvfPCdyo/pPSkC7/1H92utlcqntNwkQAgw67IcGttFF/e2rcu7OyyHvvN94t9DfVpr5dCbmQUzD/nyanGmtzSo78nRQBR8+oXW/tF+zp1QDyKbqkVgq5u8RGtFECkDZBWsbV3Lhtv0vuMAZ6fOYqUsNq4qLiRs2zY/uPUH+U7fd5SKSY7j8Pcv/T3PHTAvYs7GZ8mX5emsUB+3CWaDxLIx7bXmc/O016nb9kpR1b6xPq114hlhcavDIl6YWWAiphcb5i1xlkk3MBXIJoLueZtxNUWygdnJWS70q5+bAGcvCmef6XH1uOPYISFCrTvWmbWyWvuXZDrOpfUSZ+ncp9P8aog24KvUe78Bjg4fBRce3fGo57W//MwvM21Pc2Ha+zNyHIev7PsKf/PC32i/pquRCCVoDqk1XQHKKCOOvhvOTHKGmoi6BIB0ApJOfKqQ9uE6hYqwHTbSVAlEA9xxm3pRMj4r3rcXX31Re61iUIli/hQYA6aAdwInLMs6blnWb1qWpWeRUQCWZT1hWdZZy7LOW5b1y8v83rIs648Wf3/MsqxdKs9rW+pBmuyS6tLTRidHtRO/kBVa2vB11gHILKgHkds3iPnDaI2eEvnm3Zvpau5Svj4SiEAaXnjjBa11AOLBOI0BNbrizoqdzFbNcnawuGXcl1//Mk2/0cRH93+ULZ/dwmfeMpuJO9wndBZu71Gbcgr7w5T7yzk1oNmlWKR+Pf6A+liPFETTnV3MWlmC6AX6Jhab8bS4j6qj1cqPkTPuujoVqVyKuWm9g7y2opYtO7doPSZaKe4jHXptxB/RpqJOzYpOqc69vkTx1NRXjdZGCfqCWgWlbCzLgZP6wnLT1jS1rlrHrzvfzYJ/gWcPPFv0urfOvUXlL1bysQMf475/uo9f+tovab8ugFdOiq7Qljb170RTRZO2ZeFceg4XV9nCDK4I7OnOsqbclJZII4hOoW6hQurY6lCn5Zy2ruhW3s4T0Aw7bMcmnddjYcjzViepkKxA3caArkh2S51IXmaTeu+dLIjrJC8m33GA4fQwZakypbGj+5vvJ5FN8L++/r+KXtd/uZ/an6/lR17+EZ589kk2/NIGI0v0vSf3ggUbm9TdmHZv3M2qjcWp7cthKj5FYlq9cBWfFuemrv5IsCKoXcALWkFyll5TZWxSxBuSEaWCiVHx/Tl0/JDWWuU15VoMEQAfPm22skz8dJiSMsnUdTLJ2bkl3QkVRMNRyOk3UF98XSSKOt+9e3beQ7hOvXsu0T/fj2/Bp/RZPbn2SQC+dOJLRa8bnxln1S+u4ulvPs2P7v1R2n6+jYWkvq5f31gfbsSlu1q9EdNR24Fdoa//duTMEc4eVbez9ufFwfnsi8VjnOsRqRRnRVON+nkb8Ue0WVp5J0/GydDWoF6UlBIKUkx/paDyaXzIdd3/6Lru/3Rd92PAvcCLwBzw30t9AZZl+YD/hSiCbAI+aFnWpusueyewdvGfnwT+ROW5dQoVzXUicOxeq/6FBnjryFvEJmJajzHpssp5VB0q/Zp20R20w3o3XSwV0wpmAPxpP9MZvU74yNQIbtSlq6pL6fr/9PB/Ahs++U+fLHjNsYvHeOZLz5Dz5fippp/iHd3v4Ke+/lO82Ktf4Ts7cRZcuGeTuv5BZjrDK4f05glNqt915aITrjvWk7NyWvZ+IJL6umY9xWDp697WpLHJRRcp7pp0StevZ5cGQjQQzTKr1JrQocJF/BHcgF6hQnqm64hube7ZDEBrd6vWWsNTw1QGKrUcktJTacYW9ApkmWyGdFmajjK1EZOfeefPAPAH3/yDgtcMTQxx72fuJRlJ8pGaj/Duznfzewd/j3848Q9arw3g0CURRN+xVr174M67HDxzUGudC8OikzQ3rl5Yq68QnZOpeT2q/5oNa1jXrU5FBSGeq8v2kza/uaR60lMRFoG+rg2jYzva+1fEHyFcrrc/vPGW0EdxMurBnXQ30NX4cAOu1uhaY3UjFpb2vf7sd0RAHEb9vUhNpzjVp1l4B+aCczT51ALpR3sehSz81RuF2ZKpTIqtv7OV2cpZnok+w/bUds6Wn+W/v64fgr55Tqjm39atzgDqqO3Qnt+PLcTIkWN8UF3jY4kts6j7oorV61drJRSw2DDTHEs8e0kkYqMDGiNvi9vC6ITemFxTW9PSzLsqAm5Au1AhRzpl/KECuX/pFirydl4rfgCwshYLOb0kfWhSxCoyTlRBY7TRqCjpVDm0RdS+ez21PUSTUT71pU8Vve7RP3yU4YphHrEe4RHrEUaqRvjBP/S2F70e56eFmPu9G4uPpVyNR+58hFwopy2UmvPniFjq+3htRS04MBPX+w51re3CZ/moiKrrv0X8EW07cNlEWIipf/eW9N8y/8qjH8CsZVlLMrqu6x4B7nRd9/cA9QyuMPYA513Xvei6bgb4B+Dp6655GvhrV2AfUG1ZlicnU6dQITuKkvKpirST1qanrVm1hlC5XrAlCxU6HWpZuR0c11PoP3r2KPMTesliOB9mPq/3mNdOCUHRjc1qnY333/9+AnMBvt739WV/7zgOj/zxI+RDef7myb/h0x/7NF98/xcpd8p516ffRS6v1z0YmB/AF/dRVa4xvpCPMO/ovQ+vH3odgNhYTPkxS4rB83oHS6QqQmeLOuUVxKhDfYs6zQygqk68Zw3VanPAAA/fJ+aZq+urlR+Ty+fAr2eXBiKp0qWI7jsklOl1XAcevvdh8EE2rx48ybl9HRvUiqAZjfCV/a9oJc0AtaFasiG9YHDf6X3gh42Navf6HRvvoGqmildnXy3YNX34/32YdEWa39v9e/zl//2XfOnDX2JH0w4+/i8f1+6+nL58Gly4b8t9yo+Jj8cZiumJaZ4bFBT/VEydoSQZPLqaBI7PWdIzUIVJl/XkWeHmImmfKpAiu7ri1b6Qj7oqvaJpT1cPq9erW5qCmUj2mg7RGNBJ/lKZFPj13Bp8to/yYDllNeoaNrA4KpK7Im6ogvh4XDtBT2aTOGUOj9+uxhCsraylPdHOCU4UvG9/59XfYb5mno+1fIwv/tIXOfTJQzzR8wS/tfe3lma2VRHtEMy4x3Y/pvyY9EyawWm9OKrvch+gbgcLV7qkun9TPBvX+g6BKLjr0sFNRLJlc03X4lxXewogYAW0BbllY0THuc+0c+wGXC32FIhCdcdqdUtTuCKmuapBnQXUd6qPufSctn1oKprisdvV76X11nomyyfpv7z82MznT3ye49Zxfnz1j/P8f3me5//L8zxQ9QAvZl7k4oyeUP2UI/auJ+96UvkxjWWNpHIpre+r4zi4IZeqoIZTm21DBhayevfFQmaB8mC5VnPJZCzx8rRoguqMVZdHysER+lgrCZVM/qPAX1qW9eeWZX3csqz/CcjdTZNovCzagKtPgKHFn+lecwN0ChV+24/P8jE8rmdBlSWrPfqxdcNWbdEtWXXT2UzTc4Lu+vpbr2utNT43rkUZAyi3yklYeo85OiAcPFQ7G7Ztc0f5HUxXTXPw4o2dzN/86m8yWT3JD1X9EB98UNidlgXL+EDjB0hWJ/kf//I/tF7fnG+OyryepU+FXUHSpzeLeWlMeFdXBtXXkqJb/qjedy8QDbB9o54lWcQf0aYeyk1Ol30AerOsckxEp3gAYh61t09PdMvERUEmOjp/k+ycS9ceFUjhzW++/E3lxwAk3AQBR49a0hBtgJDeiM6kK4ov79yjrs3wrq53kanM8LkXPnfD77585sv0lvfyYOBBfuEHfwEQCdwP1/4wk/lJPv5nH1deB6B6dTX1wXplD3SAmmCNth7NyLSwEWyqUqdtmmoSDI0PkZrVG9nasHqDVqEQrtCSdd47GejLxEcVwbIgd++5W+sxEX9Eez4+kU2Asyi8q4jtm8S+qtOEGI+JbruOtStAxBdheFIvVpnLzmGn9diVdeE63LBLJqs+DtQX6wP0mIg/sfsncCMuv/kPv3nD7w6PHua3X/9t3rf5fXz6Y58GxB78Ww/9FrPpWT7+Ob17fXBhkKpQFR116snfwugCGSvD9Jw6a1R2tRvK1YuFUjxRt1Dx5uE39VgOLN6DmqxC2WXVse1dGqtO641Vn71wlhNHTmg9JmAFtMeqZfdXZ/+SxRfd0TV/xM87H1U/A0GMeoWr9FgYsVQMcnp/U4VPFJ/ODqmPL8wmZxmPj7OmVl10+Ocf/Xnwwy/89S/c8LvDFw7zsa99jDva7uCzP/rZpZ//7b/7WyzL4o/f1JNGPD58HIDVNeqF6v7TIjE/cFp9/GpydhJ8eqxoAF/ORzynd1+88OoLJGb1ci3JTNKRNpBacTrMXqn/lsrqxR2/9uKvFX9erydwXfcMgvXwDaAROA+8y7KsMgT7oVQsVxa6PotXuUZcaFk/aVnWW5ZlvYVesZh8Ks+bh97UekzW1S9UBO0gyVySvKO+oUo6m06HWrp26B56OV+OMp9e4FTlryIT0JttrukWRZfH96hrM/zPj/xP/D4/f9f7d9f8fGhuiD84/QfsbtjN3//831/zu//vx/4/rKTFH772h1qvL9AY4L0PvFfrMTXBGrJBvW6zZEXoVL83dAuBs7oWve5iPBvXshYDOHX0FIdPHNZ6zGv7XwMHgn71WubooAi0Tp47qfwYmejozJfCIkXU1fucUrkUVk69ig0wfVls9qNT6kFk2hUFxtZ6dWp30B+ErP54QIoUEfSKPK2V4nWd6lenhI9nRUKmk7x88oOfxM7a/FXvtZTwywuX+Q9f/Q/sbN7JN3/l2sLML//QLxOcDfJPF/9JeR2AscwYW9vURQZBFGzcsMt8Qj3ZljoBrbXqn217gxDjK6/T65iOTo0y3KeXzPZ09miPCspChU4RfdM6ETh1r9MbtUxm9bus/Rf6OXpSz9Y6lUtBTq8oKYsNcuZdBZJ9sXvrbq3XFxuL8cYhPfvehdwC/pxerNJU3gQW9A6rF3UlU7IlrC5E+okf+gR23ObPjv7ZNT+PLcR46I8foiZYw5889SfXdBFva72N2lgtf3fu77TYkq+cfIVGf6NWR7KlSvwtpwdPKz9GFiUbK9U1jYKBoOiyarIP5lPzOCm9gPfRBx6FIFoUd8mA0rnXZbKsSwfPkdMWA75nzz00d6jr/wBs2yUI4+2N6qKna7uEcHptkzpbJpvPknWyS+xHVfjzfkan9YpQc5k5rIyltX911IjCXe+I+r3+7be+DcBsn3qO8aFHPkQ0FuVro1+75r7N5XM8+sePMhuf5S/e/Rf47St7VVtlG/fV3Mcf7f0jLQH5Lzz/BeyErcU2kuYA50fPKz+mf0IUN2rLNDVV8j6Seb0i+nx6HjRlpDavFaPBOmOdcqxJjjmpIuwLU1mv1+D9o2f/qOjvlb7FruvmXdf9R9d1f9113T9wXXfKdd2467q/pfVqlscQcHVpux0YMbhGvtbPuq6723Xd3aua9MSP7Ly+aGDWymqLex1+UyR90pNaBZK6KgUyVSBphLqKwflgnsqA3hft7u13Y5VbQtVeERdmLlATrqGhQr34sr17Oz+8+Yf57KHPcnpEBA2pTIqn/vwpsk6Wf/jAP9ygfF1dXs0u3y6Gy4c9hTglEtkEowujyi4AEjJ50aHPTSVEctnV1KX8GCnmpPPZ5vI5EtkEb73xlvJjQIwQ6dLBk9kkmqOiZJPiATqzrIGouPfk2Igq/Pi1Z/HTTlo7cJoYEUUoHaZWY5sIbPfs2KO1lpW1tGmEGTtD1NYrXHU1dAEwMDWg/Jh9Z/cRsAO0Vqgn6J1NnfzSg7/ESxMvcXJcFK8cx2H3f93NTGKGv/6Bvybou7YQZts2j9Q9wnzNvJYzwImRE9TbeuNNLZUieTkzqO4sND4vCjaqdrAg7CgtrCV3DVXkfXltmrGbdbU1YmQCopO81FWKAqsvpD42mUglyLt5Th5VL2SC2Fd0u7mpvH5RsveUCPClvoXSa1vcg3RsUEGInqZcvVgl4SQIunok2NZqcb/qJC/f2P8NABoC6ud6OBjmBxp+gFhNjGfPXhGXe/iTDzMbmuXjqz5ObeTGJOB9695HvjzPZ55VF8w+M36G9KieuKpM4s6PqCcvozPiHNNx8wKR7PRs7tF6TM7KaYtkRwNRHNchk1fPepZEsjUaA5JVaIf0zk7Hp69HUxWtIu3ofbayWKjj3ifHZ8uq1Rt6l2dEkVq3eDxwfoATvXrMklBViAq/XoK5ql7kS5fGLyk/5q2LIpbc3LJZa60fW/9jpKvS/Oz/+dmlnz39qaeZrpnmg7UfZFPTjdokP7DqB3ACDr/9xd9WXmc8O05ZWq/purpR5Fp9E33Kj0k6otiwqVtPU6W+ol67AZFy9EWypTyBzqiSZMzqFioaaxtZtVov9844xfcgfWnTRViW9QnTx16HA8Bay7K6LcsKAh8AvnLdNV8BPrzo/nEnMOu6rr6BvQcsx/J8w65HY2sjm9fp3aSy86IjuiUr7JLirYJwMAxZmM+oB57JdBKCV5TmVbG9Zzt5N78kDKmCb731LcoyepsIwG89/FukUinu+n/v4rkDz7HhVzZwbO4Yv7LlVwpS0H7ukZ8DH54iPhLfOfId8R96Ojc8dLvwrZ5MqdtEzqRmIAuVZerFIUnX//q3l9frWA7y+6bzHYJF8VdN0a1UPoWV1wv0JZ1UilupIJkVB4Tu6EfQCmrPsqbyKW1fd/k36RQll+51TTq4P+/Xrs7nAjnK/XoH5ZP3i3nPimb1A+z5g89DTG8cD+Dn7/p56iJ1PPTph/jKG19h56/uZKhiiMeDj7OlcXmHjt/+wG+DC7/33O8prTE0McS8M8/8gF6CvqpWHMYXxtS1TuT+2NGgXqiwLIuKUIU2M871u0T9ekWok0dOao9jyHlUHT0HFreTiwPqM8eSippP6+1FQSuoTQdfvW419VV6hSuZvOnQwWV30E3rjYKG3NAS80oVVc1VWjbEAKvqxHdcR5/h4vRFyMCmVXpB+9/+3N/SWdXJR5/9KF9762s88puPcDh8mG3Jbfz6B3992cf8xvt/AzLw6Vc/rbTGQnKBXFmOVeV6gXRXYxegl8R1bxLv9Z6tegXnuoo6rLDe2Znz5QjbeuMBfb19gJ7F+botQpx3dYc6lV5qymzapvd9cH0uIb9eoWJ8ZFzrrAU4ff40PnzXdPC9ELRFUUiOuKpAsirnpzX136ywdqOoqbNpiXWrip5mURzTuddPjoiisQ5TEuCP/sMfsS6yjn+Y+ge+fe7bfOD3PsCzmWdpn23ncz9z46gnwEff+VHsuM0XT39ReZ35wDwNfj2dprWtgi0zNK2uP2VHRVxz+xY1h0CJTT2bqG3WY2Fk3AwBV685Lu2vT/Wqs2CloK/OmBeYjVp65RfKUaNlWV+46p9/BH5C65UUgOu6OeA/Ad8ETgNfcF33pGVZH7Ms62OLlz0LXESMnfwZ8B9XYu3r4cv7tKuxdsimvUmdMgZXZn5k4KWCV998Vayn2dG1szbxrHo3aXhKVHvry/WCtIgjEkWdzsvA3IB2IQDEvNm/b/r3zFbO8uSzT9Jf2c/jvsf5tfcUnnP64IMfpNauZaBcrQv8+hmh69Ea0VNW37Za0Ain0+qfrR21CbmanYOyKnD0ilDSM11n5gwg5Atpi26ZsA+k6raOHsa5S2ID7r+g52cetIPaxZfudd2satULcE1Et+S9Pjepx4Ty5/1LlX0VuK6LHbHZuXGn1jpN5YKpdTmuHqRNu9NUOXrFTxDCVv9l039hwpng6W89zbHIMXakdvCVT1xfy76CHWt2UDZbxrHEMaU1XjgibJV3tO/Qem1PPfgUAJWt6gf5lt1bsC2b1jq9fSU+Hecb3/mG8vW5fA6C+sWuaCAK/kWRR0Vs27WNgB0QtHVFSLbC0VPqIxmyw6M7uha09O/1aFVUW7RTMkp0Cj0nzopOqW6XNWSFtBlhvjIfW3r0LJkfu0eI5DV1q2uqjKZGCSVCWrRzgJA/xL984F+YT8/z7q+/mxfdF+mY7eDN3yw8jttc20x7sp2znFWyKn3j1Btgw4ZGvSRubcti8jKjnrxIdpuOHg0AGbg0rF4QAcE+0HWTSM6Js2J8Rt2VxA6Kz1SHUWFbNiFfaKmpoALHcSCAtpvX2NCYthXx6fOntYuf6QWxxt439yo/ZnJONK90tKdA6NHkfHqFChPnvg2rFu8JjSPjUuwSVsqiu0WvAOr3+fnKv/sKZcEyHvv7x/h8/PPUxmo5/BuHC+4bwUCQrb6tjJaPMjK1LKH+GkzPTeOUO3RW6InHr+9YD8DovHovXDIlayLqrEIQIui6jPesldW2Il5qmGm41HR0i2bKrq27tNYa7hvmlTf0nA8du/jerXOSzLmu+77Ff34YeF7rlRSB67rPuq67znXdNa7rfnLxZ59xXfczi//tuq7704u/3+q6rh53XRE+16c9tz6zMLO0aalCUml05sllNbamTO9GaKppomtdl/oDFs+Fdz3yLq11YiMxAPaf3K90fSabIVuWpb1Mr8gj8Zn/+Bm+/OSX+UD5B/ire/6Kb/xa8SDetm1+bM+P8erIq0rOCMeGRJJz/5b7tV5X2eIuf+KSOlWvfW07PW16VE/btrEyltYsaykHpa74a8bJaLvhSOcdHUbF2JToBulYIwLcveduGlr0Ku2BaEDLuxquiG7p2M3JLo1uQam+op5otXoSl8gmyJNn29pt3hdfhbqwSOCee1V9tCIVTtEU1AzYF/Hxd32cve/fyzPRZ/izO/6Mg5886JkE/dxTP8dUZIqJuLcrzhu9gqp/7wZ1CzOAlgpB6R6Pqwf6M8kZqsPV2kmcL+cjkVef8ZbOMeUBve+QLAJoWWz69YsHMtHRSV5ksS8a1Fsr5At5BkLXY2RiBDejt+fJQoWORoUUya4t1+uqRWz95GU6Pq2tPdVYJsaNtL7j1gw16MUpEjuad/Dah17jR6t+lE9t/hR9v9cnmKFF8Pjqx3HKHJ477L0fvXFO3Ou7uvSC753rRDF37Y61yo/Zf1zEQhUBPer0xOAEpy+qa2GAsKDXtSeVcaiMC1QgGwO6RZF8Oi90qxSRyqbAgq7WLq11pA1jNqcex6fyKeycpsjs4uiaiTihjAlUUeYvwwno7V9Hzx7l4ik9h4z2+nYCdoDq1mrlx4xlxoik9NisEuvr13PwJw/yyT2f5D93/mcu//5lTxbbR+74CPjhj7/mLaq595QoIm1o0itKVpdXE3AChGvVv+PfevlbgJ5zH8DJQyc5c0l9dBQgUhmhpU5vnMwkDpXNSV1moZW3tIuFjn/lChWfvO7//x+tV3IToKezh1Vr9DqmM/Mz9J7Wcw+Q1k46qvnxTByyaHWtQBQq/GXqlDZJTdatxq5uElTA/km1zvaBcwfAB2vr1A/+6/GeO9/D3//C3/PhRz+sdP1jXY+RyWf47POf9bz23PQ5rITFmla92WEWc4nXj6g7rcwkZ7QrsQB2ztayAZIBSU1Ub631q9dri261d7drM40kdVynKGJilwaCXpty9Ga8R6dGySb0CpnSTliHDi4LabrWkts2bKOmWf2zHYmJroSu60dFuAIy6mJTl0Yv4YZduqq7tNa5Gvdsvocv/tIX+YknfkIpyX/vpvfi4vKN894shBNjJ8CBB7Y9oPWaakPi+/r8G+o1+zePvYmb0EuAQYi/6mgSyHvowXse1FpHio7psP3OXTqnrUezJLCnsX/NJUQBQLeA11TXhC+sVzQ9efYkI/3eXburIfcvHUaYLL7oFip2bt5JpFo9QXAch+nkNKcOqVN/AaEL4cIL+15QXicdSWsJaV6Pze2b+euf/Wv+8w/9Z6V7/dc+IJiURxPe7JzjQ8IF4L5N6jbEIPa8aCCqVbA5eeEkZCES1EvkdNkyruuSt/PcvVvPDUcWKuR9pYJjp4+Bg/ZIhpN2mIypF0Rkw3DXNr2CkhwB1Ymt0/k0tqNXqJD3ug5bWRYlZUygivJgOQRQYgxJZKyMtnCuZVk0lDVweUGdKWnX2drspKtRH63nV9/5q3zqI5+6QVtuOfzkEz+JP+/nRMa7ERgjBsAjOx/Rfl2r6lZpjbZOxsV3W2ekE8S97pWkX49oTZRdW/TuC1mo0LnXpSuek9Z7fQE3oD2q5A8V/+w9707Lsnoty/pnhEbE05ZldQG4rqseydwkaKprIhDR9GsKoK1Cvr5bUIu0up+5hLa4F4CVsRgaV6crvnlM0CznxvXoSOvaxOzi8IwahXXf2X0AbOvQ6+aWgrvb74YM/OUrf+l57Wh2lMq0HvMAYH27+GxH5tSD3IOnDjJ8QY/6C/pU/0CZ+G6v616ntc7WDcINQadKGq2K0lKvF6x2tgqK3ubt6povUoVcd45ucnRSexb/4sBFBi6oC0gC7NiyA4BN29XncyVLprFaTzyxIlShNQokBboGzur9TQCBdEB5vOn106Jot6lZb0a5FOxs2UkkH+G//t1/9by2b6GPwEJAeIBroDpaDRk9J4CB8QHSs3rdBoCgGyTjqusnyQKALgNICsrpFCrOXDhDfFZPrNK2bcjq2ZhJVkRLo96+cudtd2IFNWf+yWmLZMv3uqFVvcA4mxQFTC19D2DtqrWkUf8ejcfGwdZvQAR8AaykpWxZOB4fhyA8/cDTWuuUgq76LnY27+S5896MipYtLZQFytjUqb8XhbIhXj38qvL1c9k57Iy+DFzYDpO11QsVyVwSF1dbe6oqsthl1RhLNHHDAbAdW2usOpEV+5dubC2ZXToU94yb0daeCvgDkNVjhMm/qa5Cb6Rsz/Y9YOuxN5ygo2V3LzE7MstzL6sxJXNOjhl3hsduf0x7HVNEw1Ge3vI0h+YPeTbOxvKCbfvwNj2hdRBMsrEFde2W6YQ4L1c16jW6ywPluAFXqwgVz8S173V5vuiw/aT7Xj6lNxYVsAJa+m95J+95vcpu86fAGDAFvBM4YVnWccuyftOyNE/y73Gk42mteb1UJgU+/c20p1PQ/Muq1L9syXxSe+YfYOjiEGf71H2RLw4LuljY0qP2rWsXya/qzX0pJmYw71x/p9Y6paCyrJKmRBNn88XnWV3XJVWZoqdKbxwDELPnOZQo5xLxfBwrpV+EaqpporqpWvn6aJU4xDet0QvSAotm6zpuAJOxSe1KrOyG6Bz+ckxE6luoYnRwlCxZrQMib+eXRLRUIYNBHXGhhcwC5CAS0ttXTh0+pTXbLFXpdezzJMK5MHOO4qFXLf71xJ1PaK9jCtuyaU+2c8m+5Km3ULm6UnvsQ8KX8TGTUQ+KkyQJu3p7K4j9OGOrFyoujYjvga5w2/ZNwlUqVK7eMU07ae1AHwRFVMdlS1oB3rb1Nq11Iv4ImXxGyw48Z+WW9j1VSJaITqFCBo6NVXr3oJMSbg2JtBojZWBcFCPronpJEkAwG2Qmq/Ydl+f67tV6dqulYoNvA3v79tJ/uTijs3e6l7V1a7UTbYBMLKMlnBvPxQnk9EPkqC9K3q/+Xe0fFX/ziSN6zhDS6l6ngJDMJ40aZj7Hp1Vo7b0kurmHD+jZoktNHh1GhcmYKgidHR1G2JoNgp2r6+bV0yHi0HhOrVARW4hBQL8oCeJcX0CNEXZh4gI5J8fqGnVh1ZXAU2ufYmR+hJdOv1T0ulfPvkpTtMmIrdx/qp83jqq7N82mZyGjH7NVhCrAp/d9nZqf0r4vZBNQx7pXMgN1i+hBK0jOVi9UqIx6q+zWH3Jd9z+6rvs/Xdf9GHAv8CIwB/x35VdzE6DvXB8DI+rdRdl10nUckJ0anTngYFlQW8EdFmdZNb40E/MiwW6v06Pth4NhrKTFZEKN3lexqgK/7eeuTXdprVMqHmx/kFxFjhcOF6ayXo5fJuvL8uEn1UZKroZt2/hSPqZT6h3JfDCvPccKsLZzrZZfsdRE0Z0vPfqWoNT2DfcpP+bcpXNcOqcnCBbyhcCF1w+oj83IXEJX+E52XnQOCMfWt0uTlPgjp44oPyRSFdFOkkBQ7vI+9QBXFipaa/SEHQHK7XKStlrxZSQp2EW3deslmKXi6Y1P44Zd/uwbf1bwmryT52LsIru7zBKrcC7MXF69S5Gx9O1gAVa3r9Zi4F0YEAlVbDymtU53mxBF07ESzJLF7+rRjEEkSlt3blW+3tTh59ghoTc0PaexJ9t5bcEy27KJ+CNLFG8VdK8X73dbo56+wMXToqEwNKHGlhycFEr+OlbgEmVOmXLy8vwhMQbVHFYPiFcC97XcBzb84df+sOh1r557lZqsmX5GOeUkLPXENOEkCDp63yG40mVVhRTJDqF3Nt22TezHnT3qYoPpvL5INujrv8lZet17/eEHRPe8ql5dB2Ljto1LBVod1FTUaL13ckxEV+BYOgJJnTovDI6Le90kQa/wVZD2qRWuvrr3qwDM9euxr0vF7TXCWeN3/+l3i1734vEXyY3ojSBIVPoqyfjVC2vz2Xl8Gf1il3RXHJ1W+2zTmTT49RvJzbViP66oVc8zJINHt1DR0dJBpEL9vpU6c8WgsuPMWpa1xM93XfcIcKfrur8H6HnSfI8jaAe13A2kDVJFSC/JjF2OAbB3v7picNe6Ljas1p8F063OSwpTZ5OeUi6Iua72DWoFjouxi3RVd+Gz9W/uUvCxR4WRzJ+++KcFrzk9IajcmxrMqOrBXFA5eclkMxCC6lC19jplgbIl6rAKXnr9JQBiEzGtdeQsqw4dPG/ntanTlmVBTm3jkli3STB51nXpjbPIQoXO32SirC7ZVuf71fQcALrWdi0dLDqoCFZAENJZtUBDFiVba/ULFc3lzThRtb3y5eMvU+4r17Y8LhU/8+6fgTz87f6/LXjNKydfIZ1P02jps0oAokRJoJ68mNjBAmzfsF3LsnB6QXyvdbUPZLd0dFJd8TzrZrXt0mBRV0bjYbKAqeuQIW2SdfevoE8/yUzNp/jOq99Rvj5YJtbQFdirjlQD6taSsiip7UABVPmqSPnUmC8vHX0JgO5qPReAUvHj7/hxrJTFV09/teA1F0YuELfjRObMxP+q/FVkAurJS9pKaycUAPfdcR8EBLVeBZPzojkk2XuqkGegHElQQdpJG7EPKiOVS991FcgGghxFU15nUSg8lVNnaqWdtPboKAiRwfIa9df3xkHRoXdSekzToYuiGHnqgpq+zFxWxJ5rO/T13+rCdeTCOSWm6bFBUQD+12RFA2zp2kIkFuGNqcKMh1w+R6IswaqI3iiGRG24FifiCPcsBdS01hgxU9d3iVFxVf2p8Zhg/OvqNMl7XSe2lvuCFLlXxfZN2wlE1Q92lWahSqHio8BfWpb155ZlfdyyrP8JyG+x/kn+PQxdG0Z/RHSRbt+p551bUyEqnTruBguZBe1KLCwqBmuItcykZsDRn48H6GzoVO44PH/wefguqJw8uP1BAnMB9k8Xdif5k3/+EwBag/oJHMCOdTtoWaM2Ry2pqrVRvYQC4MTBE1pjPbKo0VCp11WThQqdWVYj9gEiUdLRwjDtssp7SWeW1fW72mNeUh1cJxiMZ+NLooY6qAyJYEs1eZECUO0N+s47737o3eQCOaVget/ZfThTesHZSqC9oZ3quWqOxguL7H3pjS8B0BHQE8GSqAvXkQ+rFYJd18UJOdSE9Ttd0UBUya1IQnYkdQsVl4eEkNqRk0eUH5O1stpFSYBMIsPFAXVlehnQ6Ar5mdDBy2vKtUdMQNiH64yzXBq+RMgOYVt6XWopiDw+qzaqGq0Vgaquww8IO+J8NK8kpjwwP4Adt6mt1D/PSkE4GKY93c5F+2LB5OJrB74GwF2rzVicdeE6nLCjPC7Y3N3MI3frC/l1NIq9SPV+N3WTSM2L7+nrb6kzGDds3cDaLv0EeNumbbR3qZ8zxtpTY+JMk0KAKhgYHWBqTMPlaBF23tZK/AbGBFtbN8msKxcxhCxIeUGK59+9U09cFUQDggAMTXoztXqneiEPt6/Ty39WArsrdzNfNc+FkeVHsV45/goEYFuzmQZeU3kT2EIIXAXR2ig97fqj4rs2C1FMO6y2/0/MiuaSbnM85BNnpo6dbiKXgIy+Hk00ENUadVbJKzxfgeu6Z4A9wDeARuA88C7LssqAf1B+NTcBwr4wrk+dcie92dsb9QJ9KaajE3ieOHuC/l41R42rUR4sh+Bi514BTsDBl/UZzXD60356R9QOiBlmCCa+O3Wuf3f/v2OyfLJg1f3Q6CGshMWGVjM14zXNa5QZFdNJEWSsbtGf84v6o1pFKOnXrFuEksGCVqHC5yxtjjrQnVt/dZ8QN9Odm5WdGtVCheMKX/e7btMLcv0+P2T1ChWvH3id0QH1jraE7KipFiraegTdvKupS3utpvImXFylUa85e45a6183cZF4fM3jpKpTDMYGl/39/oH9kIen9jxl9PzvfvjdWGWWUhKXyglNo3e/493a6xx58whZJ8tcXG1fkS4z9ZV61mLSNlQmCiroWN3BHbvu0FoHYPrytBbTKJ4WVFTdDk9ZaLFQobF/5chpuxYB+PI+LTehg8cPkllQ79JLyAKUaqHCXy6SF5Mu6zOPP4Prc5WEeieyE5Rn9IusK4En1jyBU+bwDy8tH5a+ek6cFU/e9qTR8zeWN4IPBieW30uuRywVo65MXxMkOSuCfNWxHjlqpGtdLwX5dNhTjs9Z2iN0EPFHtJIXKXStW6iIx8QeMTCqPsI9GZtkYlRdU0xi+NIwx04dU39ti1R6XbvH+gpxvRzd9cJMctFdxECj4ra1ojirojU3HB8mEA9oOxGuBD5814eLjnq9cFyMdt+7zkx7qq1KxEZnh9UagRPzE0ZMSdmQmkmoxaHSuU8yh1RhEoduv2279tgHwP7X95PIJJQLuiqOeErZqOu6edd1/9F13V93XfcPXNedcl037rrubym9kpsE0oNZ9Q0enRAbfGpBz+bQtMuaS+jPW0nLKukk4IU1m9fQ1dylvQ7A5KVJRhe8Dz1pV/ivTQ+VeM+m95DMJXm1f3kF7yFniPpMvVGxBsBdcBmOqdGT7ahY44E9etaIsDjLGlQvrMnvgO5BKQMTHYtN1+cS9uvTXn2Oj4yjHrhL8Vvd5OX+u+4HoKFFjV0imRu6s+Qgiii6YppyLlUHUnRL1Q3AF/VRFijTFoACmBoQQdPrx4p34zLZDNloltaoGTupVPw/7xMu2t+6+K1lf39+4TyR+Yi244dEY1kj6XxaKYmbSS0mFAazw5ItozrLOpsyK1TUlIvXpiOcm3bSS4/Tgd/1a82ty/1LN1GSHUzV/ctxHBLZBPE5PScTELP4OqKByVwSX16fSi+TF9Uua/+4aHKYOAE0l4sxNJXkZSGwQL1f7zu3Uvi5d/8cuPDaxGvL/v7ExAmspMWONTuMnv+H3vlDAEpjMLl8jpnEDNMj+rTRiSGRNF8YUhPu9EdFEWpVsx7NXcahOm4S/SP9LMyoM4Elzp06x/k+9aJkRY3oGK9q0fubZGFDx9Erb+eN2J8BAmQ1fJnj2ThkULLhvBrSplxV++a5l4RrR2wsprUOwP27RFyUsL1zkyl3ikpHfz9ZCXz4kQ9jJS2+dvZry/7+lfOvgAPvueM9Rs+/c91OAGUdrjP9Zzh7VJ3dLDF0QRQjX3nzFbUHLBIXe1bpszd049C8ndcevYLFPNpSvwdVLFPNMrHvU9x5251gQ9ZR23xOXxBaBpIuq4rySDk4egdE3s5rz8cDdLV0AZDIqxVFZlIzRpVYgJbyFgjB5Gzx4EnaFW5uVrehXEncv+p+bMfmv3zuv9zwu/GZcdIVaTZWbTR+/on+CTJkmJr1roCXkryUB8vBh3KX1fSgXLNKqFXXNKq9Rtd1sYIWu7fpCxRGAhGCUfUKvbRL0/2bZLKjqnguK9nzM3ouCiAoojrK6lkrS8jSD5x2bxXvd7BC7f27MHyBMlt/nAygJii+C+eGzxW97vD5w+CHnjr9g3UlsKVxC20VbXz+4Odv+J3jOEyHpmn363fOJaaHRCJytLfweInE8fPHAZgcUksur4Zky1yeUTtrtu8W4nCdLXpaQ7KDosP2m4xNGlGn/ZZfy289kRFnmG5RpK1JFBftoFq4s5BcwMXlwhl1hweJgBvQKlSk3JSRY8rW9UKEtLVLrQD44usvAos6NppITIj3/ZWDxYPp2fgs+bI8qyrM5sJLxcZVG7mj/Q4OLyyviH/Zd5madI1xA6KpTOh7jMe9WSxj02O4lsv8hP55UVumx5ZpahevS1fDTLrUSJFHFQxfHtaOdwFyyZzWSGd9iyh2re7QY5pK9y+dsWrX5xqxP4NWUGv/SubMHFMkA1YyJbwwuSDOl5ZaPRtngJYK8Zi+qT7Pa+1amz09eg4mK4VgIMg7ut/BXOPcsm5OVrtFd1k3jTVm2lO3b1ocZ1HUr877zQTxZRFKakp5QQpqb9ugP9KiO5Z49uJZMnF9tt+S/puieHV9s3dh+1ah4iq0NopDX1WIR1aCdGcDbdsm5AvRsVp9LtrxO0auH9m4KLpIJWAvvHXiraWKvi46asTfc+xScTrcwUsHAdi1epfROqWiPFRO9Ww1h+YO3fC7f3r9n8CG+9fcb/z8zRWiA6XiPf/Nl78JwPy4fkCjqxjcsqpFez4SrlgbqSoGp/NpXFy62rq011q/Zv2SjZcKZKFCF7HJGCA2YxWMjAvnisGLavfR1ejp7GHHnh3K1+fsnFGhQiYhspvuhQMnDjA7rs6SuRprWwSFvH+y+DjavnP7ANjStsVonVJhWRYVlyv49sVv32BTeqz/GG7UZXujvuK7RDgvisenB097XntxROgxWGn9YFVXk0COH0h9GVXIQoUcs1DBQnqB0UH9UaUgQfKWutCz3H+kxpMqpKJ/XZMaDV+Og+l61YPYK+ua1en+aSdtJETaWidiFSuk9l2aTc1CWmg56KIuJP6eU4PFxfxGk6NgwY888SPaa6wUnlz7JPuH93Pp8rWz5bOpWWbDs/z0u3/a+LnduGC5vXTgJc9r5XiIyeiHHA2WxXEvSKaRroaZbduQ0WP2mlh0A4RsPf03OXqmy8qUzEppragC1+8aNQGDtp4NoxWytJ2E4EqzcfV6taKNFMRf1aBfMAxlRdzxL9/+l6LXxVIxFpwFHt75sPYaK4WP3P0RplJTvDXy1jU/d1yHo1NHeWzTY8bP3RAVBYT+Ke9x+1w+ByGoCumLhTdViyKj6uiH1Jkz0Sv05X1aDbOLgxeZndSPD+WopWrxRUVk91ah4iosxMTmpmobKumxsoqrg6polbKFkuOI+XiTwGl8UAS2Zy6eUbo+loqRX1APHq/G6gaxkXoFNFN58f7eu9lsfmwlcF/zfWSqMrx45MVrfn4xI5KJZ+5+xvi522tFh/b8qDfVcTRmrsa+qUe4kqhS/asaqoxEUuXhKm3QvCDFvdIL6puiRCQQWRqzUEEqnzKyS0vPi9d2cVBNzE8mL7qJH4gKs24waBI4jQ0IavYLrxa23r0aSTdJyNEviABs6BDdu6FY8TnqaJsorr7rnncZrbMSePeGd0MY/vc3//c1Pz8cE53XT7z/E8bP3d0oxte8CjZQmh2sTF4m5tTuwWOnjxEgoO2qJMfCVIuF8mzSFZkFEejrFCq61nQB+mNe8rWpNiDk/hUN6jcGejp7iFSpvxdZy8wxJWIvugkNqtHp57Jz+LJmDlubVolzZmC6+Nz/hWnBQNnc+t1hSgKst9bj4vKpf/rUNT9/Y+gNXFwe6NIfsZSoj4h74/SAd1FyaErsiw3l+nawjVXijJ6OqwX6zz0vqP75pH7cFiCgxWA0HZMI+UO4fvVxxudfFja38Vm98SvJtlKluOedvNi/NMW4YbH4YqsXX9ZtWWdE2Zd6NHZELc6JpWKQu8KY0UF3czfk8BzhPtwnzs72MnM2Yql4vOdxLCw+9c/X3usvnXiJufQcm6vM96HqUDW48NUXC7sISQyOD4IFtRF9PQfJelFtLr302ksAjPSNaK/V3txO+2r1z8vUzUvqbqiKV49MeP8ttwoVV2HggjiIh8bURIxk1ddEXChIUJnGm8wkwQet9foBrtzkVGdZc/4c5T6zee31bcJq58Ll4pTZUEuIhmgDbfX68/4rhU+8RyQnn/ratZvc4fnDbG7YbDzHCtBZLxgIfRN9ntdOJUTRxkTQcNv6RfqXYpwxMTthZJeWTQhWzitvqM3RDV0W98/Fs+qK/hL95/s5cfaE8vWRiohRkiSLi6qz+EuFioh+oWJmfIZTvWrWYiBmjnUFeuHK3LpqdT5NmohlZtXX0dABOW8adN9sHz7Lx4ZmM2HalcD//a7/G3Lw56//+TU/f7HvRRqiDdzWoe/uINHTIgLPoWnvM0PawbbV6e97G7rF+yepn14423fWSNMoHAwTsAOEK9T2iUQ6AfYVuqcO7t5z9xLFWwXJXJKwP6ztkCHZHi+//rLS9UvWiAbsM5/rU5q5lWjpbGHHph3a60jV9zePvKl0fTwfJ5DTDzoB1ratBQdG54snL1/Z+xXgu5u8PHPPM9gJm2fPP3vNzz/195/Cci1ubzV3KFjXLiywx+a9tTpGpkXw3VytbzO91GVV1CSQItmSRq6D1oZW1m1Wt/Z2fWbsg6g/CgF1/TdZ2NcV85OjIrv2qLF15TjK4w8/rrUOwM4tO4lWqe978UzcqBNuWzZhO0zvgJpQ/VxmDitjGY042baNL+VjMlU8X/j6618HwIrpswNXCrWRWspnyvnmpW9e8/M/f16c82tC6szc6xEOhrFSFpNJ77ypFPaUtKGfSymKZC8yKkxELlsbWpXPdTB38+rpEjGRHVL7/h08etDzmluFiqsghUNU1cGlxoSu2jLAxMgE+w8Xtsi8GpLGe+8efQaCTF5UaThO0DES3AK4c7PwU25ZV3w27uLMRVbX6LtcrCTu2nQX5TPlvDJ1Jfkej43zSv8rPNHzREnPvaZZbJAqyctMcgZyGNm5RXwiyZSWRV44cPQAgxf0Rxd0RbdkR9Ik0M/EM1q089UbVtPV3qW9jiwuqs6ySiE+XbVlgPmp+SXRTxU4foc7d+l7k8tDT1pTeiHry1LmM9OosG2biBMBj4d/++C3qfPVEfCZJUkrgfaGdtribRx1ji6NfziOwxcOfIFuurEs82BrfbsozqokLxML4j7taNC3Ql3XKZIJ1UJFMm8m0giCQdU/quYwJdmHJmy/2opaLSrqt77zLaOZWZkcqDqZyPPfREjsxKETS4VaFeTtPC31+rPk4WAYsiiJuMIie8o1Y0/5fX58CR+XE8UbK/t790MG2qu/e4UKv8/PBjYwGB1csv4G2D+9n+hs1Gj/liiPlCsnL5INYVKokKLIG7arFXfjmTjkIBrWLxZGA1EtjQrTMYmWBvEdlzozXpCsSt2ETDIjVFmZ8jqT70VXaxdZS11M89jpY0usR11k5jMcOnHjqPJyqGysNNI8kwhnw8RysaLXnB4TrKK7NppZ/a4U7qq/i0R1gjdOvbH0s28OfJPAXIAndpcWxwczQWLZmOd1+aBgMm3foD9C6vf5CbgBGtrUioyyoCFZV1rIqLOiQThfmRQqNq0VDLxopdp+pBLv3ypUXAVddfANW8RBsqpVfxbM7/qVRbfkQSIpNTqQX2iV6nxsIQYBM1sjgJaqFoK+IFPp4qMzr558lYVBfeXolcbTq58mVZ3i9QEh7vk/vvw/yDpZ2pOlBVo71u4AoHuLt6vJXHYOO212G0rF4H2H9yldn7WyBFXpF1dBUghVxxdkoK9rLQb6dPBkNmlE25Rz7qqzrHJP0NWjAT3RrUw+Q87JGSV+kkYoO2xeyAVzRpZaEps6N1G7qnggeXL0JPlJs1GylcSHd3wYN+ryP772PwD4zLOfIRPKsDlcGk29trIWO2eT8Xvv5RlbXNPZqCdwCRD1iUP/ckyNhZfKm4k0AiTnkhw6phYUy6KknEvVweTopJY6fyKbQENkfwmSPaVaAJXiXru3G4gB+yJaltGTc5MkYupjYVfDylrKSWZdWx0bV5sLRFfb1eQixfewkdQI4WTYWKxypfArj/0KBOATfyNYk19782skqhM82vRoyc/tz/iJZWKe13VvEmf/XTv0EznJgs2gFh8mcgkjkUYQQvCqDTNp0f3wffq6BHftFu+DqstPMpuEvL6mihTFPHjMu0sLMDwu3NlMNHYy8QypXEpoFCgglogtjZzqwpf3KQviVzVVsabNnE1QYVV4un70zfZhJS1WNX53hHMlfv29vw4O/MLf/wIA/Zf7maqYYmdkZ8n7UMSJsOB4x4dOUOz329eaaV3VVdRR3VStdK0UudZ17gO4cOYCvX1qrBxYHPMy0EqTGjaS/eEFlQborULFVZC0btVChRUUh4PJ6IeONduJc4IK33tS/Usm0VQjaISxZMzz2suzIgg26fjBonCdVcG+k4UT50QqQSacoQbziu9K4U8++ifUhGv41OufwnEc/tfh/4W9YPMTj/1ESc9bW1ZL0BdUCmiitVHjwpC0HlRly2StrNF8qa4H8xL7wLRQYasntoeOHWLgorpnuoScZVX9m7rWdgFXhPl0ELTVCxUycDp2UN2fXaIyWgl5NccGx3WwQhb33HaP9joSTeVNXF4onDg7jkMinKAlqN8xXmn86g//Ko2hRr44+UUc1+F3X/xdrJTF737od0t+7s76TtrWeY9z9GzpoSxQZtT5lHa1L+xV0x9Ju2YijSCCYsni84K0ETRJXkYGRsiSVaaDp520UfFlyd1AkREmZ+mbavV1gyKBiBbFfTY5y8B5/f0LwJ/zKycvuUCO9avWG60D8NDuh4g0Fy8Iz1qz1Ljf/XP9Q498iEgswpcvf5lkNsl/++p/Awd+832/WfJzV9gVZEPecVssFQPM3LyCviB+/Bw/d1zp+mQuiZ0zC+VzyZwy00hqvJhYEcvxTFXtiGQuaSSS7bN9kIOBEbV7anhCnLdzk+rjWhLnTgnHK1VNu5ydM4q/APyOX3lPnkpMURM2vw+3r96Or7r4Pns5c5loWv8cW2ncu+VeWuZa2Jfdx8D4AD/7f34WfPCT9/1kyc9dYVeQ9Hl/X6Vwb4VffywYoNxfrjyaL4VzTQoVITtE3qceW9e31HP/3fqmAv3nBZNt31tqDVSVGPxWoeIq6Howy+qUrjIxiC6rKm1M0nVMFIM7m0X3bv1W7yDFDYkA7dF7zDsPqckUJ/oKawzsO7MPbFhXrz4X+XahIlTBz975s3zl7Fdo+4U25mvmeX/L+4V9bAmwLIuoG2X/Ke9ORW1rLRu6zOb3dRWDc74cYVv/uwrCg1nV2qgU9kHYF8b1qYtuLWQWjETEmusEJff2uxRnlhfdT01mA8N2WFnxfDw2vvQYXdi2mGWtafYOUubSc7i4rG1fq72OxPDZYU5cKnyvXxi5AGG+62NeIGjbv//k73No9BBrf30tgxWD3GbfZmxfdjUayhqULAtnUjPGlFxdtkwWM/YUgM/xkXHUurky8TC51yUTSlXTIeNkjAoVS0VJRdp533CfWC9haM1mL2p3eEAKkZroe4BIXpKOWuI3tTBlLKYJ0FbRxtBc4ZGWXD5HOpqmNaqvo/V24A+e/ANSZSke/rOH2W/vp2O+g22r9S39rseDtz9IbYf3GfDqgVcBMztYEMKYJ3rVtJpqmmqMmmUgtNKyijQlOb44MarvCnfy2EkAei+pNdua25uNWFoA5FCOVST700R7So6USVaZF/K+/JIIri6CbpC0q8bGOHr2KGeOqInnL4cHdjxA3I0XTSDnfHPUWvqx0NuB33nyd3BDLj/8zz/M1xJfoy5Wx4+/48dLft7ta7cTqPIu9r/4hhDkt1JmrKaRvhFee+s1pWsbWhsIuAHRPNRE2BfWEn9N5pNUR6u115F7kWoerTKmdatQcRW2bhDe5N1rvSn7IGbOyKIt7gWi6KBKcZ9aEBVbSQnUQWWkEtuyyfm8y9PSp7mU+bZKKlmwC9Ol3uwV4l/bV5lbAq4kfuXeX6F7oZux6jHaZtv47E99dkWeNz2d5lSft4DiTGrGuPotCxUqbBkAx+cs6Vrooqa8RtlOt71bjM5sXq9Pq2+saVxiKqkgT95oejSfjgAApoRJREFUji7oC+KzfModnrOXFm1MDajn5aFy3IBa8WVqXtzrprPUTdVN1LV6izpJASgnqX5wXY+IEyEbLNwR33tqL/Ddsya9Hj+y9Uf4yKaPcNF/kfq5er70s19akeedHphm/0nvouTet/aSmDKj+UfDUcipjyp1r+/m7tvvNlpLZyzxfL9wnZgZVyuWXg2ZoM/Mqz0262bxox+gSf2fmka1ffbkOZFUzU3pd1nleKbKLPD0/DRYZiOdAJvWbKJrXZfndZlshng+zoVTxUWui2Hy4iQLmQWGJpYvVpwePA0B6KnVdzV4O/CT7/hJfu2+X+PIzBGa/E3s/eW9K/K8DVG1ouSFkQuQxiihAPDlfCRyantFfWs9Xa1dRuvosP3GJoW+gkmhwu+K90E1qW9obaChWl8cFMDO29qFChP2pxS0Vf2bHL8jREUNELEiZCy1PTkXKG2ks6VMFMXPji1v3Z5zcjiVznfVmvRq/Ng7foxPv+vTHJk8QkdtB3s/sXdFxs/2bNpDwk2QyRd/3yfi4n7oblLLG6+HThGqvrXeuCgZ9oW1xhLnk/NcHlIbNb0aS4UKBWYvwLpN6zxj+FuFiqsgRQNRzHtS+ZTxbODmdZupalDrQsnN1ES007IswlaY0xe9LbVe2v8SANMjahvvcmgKN5GJZAomL8cHBZ3xrg3fXREeiYAvwPlPnefMvzvD0H8fKplNIRF1o8TxphofO3eMs0eXPxC80FKn12X1R/1s22DWVWqobqCiVq3rINV+5diRDu7eczeOz8F11RJ7U193y7KwHZtDx9Vm8aUTiYkV6mMPPYYvrNbNnJwTFECTSjaIpEeFYXPygkjGxgfURT6vR1NZE/jg0tilZX9/bEiMr9zRc4fxGisJ27L5yx/+S45++CijvzdKe8PKiP5ZSYt5x/tQnpifILdgwGeW62QtFnJqhYqF7IJxsStAQLnLKtkH8ZiejSBcsf+UjjpeqKyrNGLA+H1+gr4gHd1qhVYpsGtiOy6bHSrja5I9JRMeXTTXNis1IGRR0sQ+T6LWLx57+MLhZX8fs2IAfOQ9HzFeY6Xx3x7+b8x8Yob+X+1fsVn68UvjTMYnyWSLJy+zmVn8GbMiBYA/r86WWUgvGBe7QlZIedRS6pyZrCX131TZU7PxWSMGMYDt2MoivaWwP6VVucr+5bouBDGyhwfYs30P9W3edH/HcXBDLlVB/b9HYnZQvCfffvPby/5+aG6IvJvn3s364v5vF37q9p8i8asJLv7MxRVzGKsKiPdwcLq4AP1McgYyUFVu9p6HrJByEWpmYca42BUNRMGPUmydyWbIW3kmRvSLktI+XLWpEq4Ie7KnbhUqroKTEcm1quBIKp/CypsVKla3r1YuiEgV/6VCiibSc2mleUfZLSmFUdFZ1QlBuDi6vDVlKprCdmx29uw0XmOlYds26zvM53eXQ4WvgrTP+7DMBXJELbONpzxSjg8fbV3e8/E5J0fWzbJhtdkm7nN8ys4VFwfFZ2+S1MtZVq8qtoRjO8Zzn7lkjv4RNXcDOd9ucg9GA1Hx/ue9kz8ZDJpWzQd6B3jtgDeNcGRm0T6vSl+VXqKtWnzvTg8uXwStXSOSm++VzovEttXbjDudy6E2VIsTdjx1CdJW2vheB70u69jUGONDZkWoLRu2KO0pcMVJwyTQl9RpVZet2qZaNvSY7V8Rf0RZj0YGWFIDSAfrusVIo9S5KIbJWVGUNC0opefSjEx6e9CXYp8nsa5F/F0nBpcfR7gwI9gaPXXfG4wKibA/TMhvdj4sB1/KBxb0DhePERecBYJ5s0QbRJc15aqxAg4eP8jpo96NqOXQWNuIP6K2F5bEPlgcrVDVw3jj4BsMXtJ3KANRaEVxyknSzk32L/k+SDvjYkjn02DBg/c8qL0OCOeqhOO9f12euQx2aTH89i7Bdj4zuvz4yBtnhMNGc8g8dng74LPNR9uWw0iv2Fu92JKzmVl8GfO1I3ZEqeAM8OqbrzI2aOYcs3v7bvCpxdaSJSSbCTqoq1h0CVQUrx4YHfDMFW4VKq6CmxHBxcmzJ5WuNxX3Asil1EWMQhXioG1rUAser4cv7yOZ967OS/u8VQ3m3Yd1TSKg2X9u+ZvbrXFZ37h+RROF70XUhGrIhYpvPtlcFkLmLisA1ZFqymu9OxwyyLCyZoW1wYuDHDl5ROnawydE103eTzo4cVQEwmNTapuxP+KnqU6fuQF6FFGZ5EhhPh0MXBDCXpdnvGl0wTIR3Ha26DtDgJg5VqnOS+Hc1lrzmfKNbcJF4Gjf0WV/f37mPG0VbUY2jzcTGssbwXclISyErD+75N5hgpa6Fpo71YLDRC7BzJj+OAZAS32L8qjSUqGiTD/Qf+CeB4ArLhteSGaTS4VMXczPzPPt7yzfIbweslBhokcjGZYqAnsVdSJ5u+d2M0HboYtDjM96F6OGp4RgYEOFGZUeYFunYOL1ji2foP/j8/+I5Vp0VJoJcd8saK8RLKxzw+eKXpcgQdQ1v9d1uqw5O2fMPrh7990EomodM8mGMNnPZVKvGvNm3ezSuIguNq/fzMZtag438rpdW3dpr7Nzi2i21bd4719SBNGU+ZKcTRJLxjyL4dKSt75Mv8gqsatHvBd9033L/v4bb34DgGq32niNmwFdDV0AXLy8fNNVYj4/TyBnbr8e9UeVRS5LEcnubhOjKSrjzku240F9nZj6avHda+5Qi1WOnjzK3HTxfeFWoeIq6KqDm4p7AZw5foZUPqWkDi5n/k2Tl4AbUKIRTidEFa2zyWwdgKcffBqgoEL4mYkzrK9fWfbC9yIaog0QhKnZwgHr4PggWKVVvyN2hNFpb2ut/jFxgJ09YTZmokMHL4V9IB3ZVOngvrCPO3aZjRb4XHXRwEQ2ARmMZh8lLV6FkVLXIt6zjWvMrATDVpis7f05TcyJomRbnVnxE+DujUIDYdZa3iXphUMvEEmZJZY3E1orRbHn3FDx5CUfzC/RSU2wqmkVkSrv9zOXzwmRRoNuCEBiNrHU7ffCfEqMvJg4AcguZjqvRtM+d+kcRw4c0V4HRFFSdZ1S9q++3j4Ajp3xdu2Rc8nNtWadybJAmdLMsWRPtVSbu+/sWLMDKJy8nBw9iW/Bt6Lshe9FdNSJQsyl8eXH3SSckEN1qNp4nXt230Nbt9renLfzxtpT0UCURDahRAcvZUyitVHskeFyNZHonJUz0p4CwZ5S1Z6SDQgTQduWenE/qWhq9faLAt+F02Y6MSMXR8iT92RvpG2xp2zt2Wq0DkBlWSV23GZ4YXjZ3/dO9kIebl+vKER+k6KnWbDDBqeKNyAaVjWwrt3cHGDL2i34omp5ZJascaEiHRffDZUiuoy/TQoV5eFyLCzlBkTG9c6jbxUqroLsoKhSRNdtWcfGHrOEIhqIgqWmjFpqNTbshklb3kFaLB2DDCXpNKxvEkWI/tkbKfWZbIYz42eYOqtm53Qz4z2PvAegqE5F/3jp1e/JkUn2HfK2AZqYFYlpVdgsUQpa6qJb8az4m03YB9GQCBhU6JSu65bUZfU5PmXRwFTOfMxLzqCrFF+kAJHJAQEQ9alV56cS4h40tSIGkbwEfUGsmuXfl9H0KNaM2Xt2M0EGKZPJwsn9fHIeglcSHRMEnIBSB316blGkMWC2j/ed61O23JNnpUmhYmZC3A+qo5aOzzFOXnTu9S27tmBhGWlUyCROjmsWw/kBIUSamldjdV2PimAFBCGdKX6217eL82XHhh1G64BIXsLZMNmy5Yugk84kFXkzrY2bCWua1gDQP1l8ZDBYHeTJB580Xqeuoo54Tq1h5vjNRbJPHD5B3s2zkPSeJ1+/RcR2u7fv1l5nbZdwl2pdpcbgy5ETIxwGGB0c5ewFtYbMW0ffAsBJ64tKy8f0jfR5Xjs2LRiipjay1ZFqAEamPEa9FutAuzbpM0SueZpsmKns8mdAf7yfQDxAKPD9XZSU4+DDs8sXbCTywTzrVpkXKrau20oOtdHgrJUlZJm9733n+sS/F3WlikHGqlKHRQeWZRH2h5VFZrNuFp/7PVyosCyr1rKsb1uW1bv472WjHcuy+izLOm5Z1hHLst56u15PNBwFR80uBcR8fE2FWTdcJiIqnavnXnwO8sKpwAQRO6LUZQ1WBolYpXVA6yJ1BAjwzX3fvOF3e0/uBR+sqV5T0ho3AzpqRUJSTCE8Y4vAedPqTcbrBJyA0iyrTDxMRRpDtrroVjKbhKyZ4rkU3ZqNL9+lvxrziXlcXI4eXH70wAtBK6hs17Rt97alDoou5Hyuysb93AvPAZCeV+v+Xo+oP0re7/059WztwcKird6cUWFbNp1VnVyYvrFLNDY9hhN16KrsMn7+mwUP3v4gAJH6wnvnbFZ8n0tJXi6curDUmSsGWcwwCTJAzPWraCwA3HbHbQBGrgOJWVHkuDRUvDst4fgcwj4ze2Wfq16owC8aCSbsKSl4LbvPxXDqvHCFis/oC5ECVIVEUWRspviYnBMQe1wpTEmA3Wt2Y9cv/54kQgmaAmYjeDcTZPKSsAo3s7L5LHPpOeqi5pogM2MzS8LKXnADrrHFrRxVUolDUzkRZ5hoVMhmgirTIW/njcdZFmYWlJ2EZNJm0hiQ+5fKSKx08zKNv2qiYl8ZmS5eqBiNCXZtKWKaIHQqylqXf0+mmKLOMf9u3yxoq2uDXPEYHmBsdoxgzlyPJuCIgtx03Ds+zNk5Y002ed9OL3iv07JKxLoP3fuQ0Vqp+RQvv/6y0rUqY17fbUbFLwMvuK67Fnhh8f8L4SHXdXe4rqtfztVB7sqG7IXB0UHmp9QsWK6HZEeoJC/zqXljbQGA+/fcT3VTted1Ld0trG5dbbwOiGqaNWtxbOBG6uurp4S3+J41e0pa42aALyUqhK8dLSxs6CsX1+zebP6VDlpqmgRyczIVadQqVOSSxm44S4UKhUBf3jsmop0Ae3buoWeTmvhb3sobJ35VERE0SKHMYpDz8Q1VZvPkm9ZswgpZnlTerJ2lKlxVslbM3MAcz+177oaf7z0p7AA3t+hb1N5saIiKz6pYQCMZLPVRc/ZUxKcmuiW7IabsqWggCoHFERIPLFGnDcZMJGNBumx4wo8xe8rv+sm6aqNrZy6eMd5TJLNEhSkp9zhTkWy5r4xOFR/9O9MvRPFKTV7W1Kzh/PT5G35+euA0bsRlfe33/0jn2ra1WFg0ry48rnN+RLxHl/v0rf0kJkcmyVgZz3swlU2BD9Z3m7338ryViXQxHDstYrpsQt+jOzEn9glVnZiKmgrWrTbrUgetoHKsssQIM2g4Lt3rCjaMMv4yYZ4B1JeLc8OrKPmtV78FQHzKrPgpcffGuxnPjuO41zZyUpkU6fI0XeVdJT3/zQDbtqkN1dLUXbgA6zgOM6kZLp1SK7YvhzPHxP58fvDGvfV6RKujxve6LFSoMHvlfWHqSGXn1Z13slbWkz313S5UPA381eJ//xXw3u/eSxGoq6xj++7tSteOTo4yOuitD7AcZNKjUqhI5pPGlDGAltoWJVu7meRMScKOEpVuJTPujTfDkcEjADy87XvLBeDtQJVPBIWHe5e3cwMYnlkUOYuai5yFrTBZyztwkAdlbbmZRd32TduJVqklI5u2b6Kp1qy7JmdZVeY+5YZrOosfCUSU2VO9fb3GFG2ZiKjMyMezcXDNxmYAdmzcgYu7NH5TCCcunCCQNxeAkqi1akmGbnwPXz/3OgC7V7+9deXvBVQHqwH4l2/9S8FrvrP/OwDERmPG65T51TQJpO314w89brZOYNGNQ2H86uDxg1iuRcDW/y7JMQmVQkUilQCfuGdN0NrYSk2DWpJw+vzppW6pLpaSl5R38jKXEgJiJu4iAPffcT8Akeri78nrh18HxzzolJg+P83I/MgNY0EH+g4AcPfau0t6/psBPttHfbSeiURh2z7pCOJLmzsByM9KWtgWgmQobN+oFrPesI602FRgIFwYEMw5E102KbarktSDsDiXDjq6CNrqTMlkzpz9Kc91FXeDJee+CrOipNwjpLZUIUzFxb1ZKnuqI9pBKpe6weXnUuwS+OCHH/rhkp7/ZkFXYxf5SOGi18jUCPigNlqC9XOZeOzlmHdh0/E7bF5r1vyR561KE/DkOWEoMTvpfe1y0LEIblvVxrZN24o/n9GrWDk0ua47CrD470Imwy7wLcuyDlqW9ZNv5wsqD5Xj+NQ2ubydN6bhSMXg8hrvOeJUPmUs2gkwNzFHIpsgmS6elB04foCBcwPG60i0hlpJRpM3CIWemz6HlbJW3Ar0exGbO8VmMjJbmKr35Re+DJQW0KhqEjR1iMLBxtVmmiqrO1Yri2laQctIcAtg20axYTW1eRc6ZCLl5cFcCMN9w8r2pJeGLjF9WW3m7nrcvkOITnWt7fK8Np6JG4t2AkuuEpMLxam8Jy+cZGFCsZNdBJ1VnbgR94bZ2d7ZXnDgqT1PlbzG9zoqIhWQLj7Leumy6LiUUpQsD5ZDEE8BZikGaapzIh+nolPRN9SHm3GxLH0GlY7fuuzw9HSa2V+uW72Oqnq1PakUN6/2JiF83bHGW4tEFjNM2VMtdYKem3KKF1Dn0nNYact4T5HorBDJz6snXr3m5/Nh8Xf8yDt+pKTnv1mQnk7zzdduHG2VGJgQMVRrjbmjkmRDebFlZpMikTDVqFgqVKiw/Ra10mor9ZMyqf+m2hhIZBLGrMyQL6Qcw5fC/lwqVCiI71shsUZrndl3Ys82wUJu72kvet10chpcShrpBGBx6//6vq9f8+Oz00L7497195b2/DcJyikv6vrRd7kPWHT+MoRsHkoduUJwHId4Jm7shiPHjqR7TzH0DfUBwp3SBH7HryxU7/pdT+e+t71QYVnW85ZlnVjmn6c1nuYe13V3Ae8EftqyrPuLrPeTlmW9ZVnWWxMTxT/45ZCJZ+i9pC7uFfKZFSpWtSxagCo0olJuCr9jTtGeHBZJy9DEUPF1SJVksyOxuXEzBOHA2QPX/Dxfn6cr2lXy898MqKmogTRcjheukk7EJ8CB1S3m4zbbN24nVOn9HQyWixk6U4vbbCJLOp8WlqoeuDR0yYgeClc6pioBjawMS/qqLuam5pQo2rCotmwo7iU71CoivaWyp3qPi73r2NnirgMpN0XILV0Ma2OzKHxdn7z4Wn1sbNxozAy52RBIB5jOFC5kjc6KhKOUe70iVAGWd5f16Bmh2TI7YdYNuXuP6Iz7I95nTiqfMh6TkIUKlfsib4li7PZNZp3jkB1S9nXPuBnjYFAmL2VV3kUimfiZFipycRFEnuk7U/S6+dw8vqx5MVxCsqP2n7/WevzkxEkqQ5W0VZSYHN0ksJM2U8nCRbzhaVGwLEU4V3ZovbqsUufk+KHjRut0NInXqKJJI89kE9vecDAMebVz3XEcEtkERw+ZaU9Vl1UrxdUg/m4vIb9CKAuXgaO2f61aI+L9dV1mLJGmapHIeRUlZ9OzWGmr5JHOB7YI6+hD/Yeu+flX3/gqAOvrvv+bjQBD54boHSmcD8pCRVOluT5PfYVgy0zOF28uzSzM4OJy/KDZvb5hzQYAVvWs8rxWsv2k5pIufK5PedRyam6KhZnizYq3vVDhuu6jrutuWeafLwOXLctqAVj897IRmOu6I4v/Hge+BBQUOXBd97Ou6+52XXd3Q4N+ABCbjC1R3Lzg+l3jSnY+JQKvofHixQOAyrpKGqtLqNgtHnrST73gawrkKfebO35I3NVzFwCv975+5bmdPIPZQd5z+3tKfv6bBYF0gJlM4U7FVHIKK1XaobK+az0pN+WpSSDtScO2mRjd2ZOikq7SZe3t62ViRL9ICDA+IrYAFSEeOyi2r45ms4Aw7Asrd15ylrlXfXJeBGevH3zd40qoba411hEBaKwU+8RYrPgsa9pOlyycC/Dg5gcBeOnUS9f8/NjlY2xtMrdIu9kQzUeZcwp3Kibi4n5Y02IuJLx7q0gUvcRzpQq9m1YTxLweslOvwqBKO2njQsWqZhEw3X6Xt82dZF2YMhgP7z/MxcHCnbGroSLuVQhSQ2PwcnFLOxACvUE7SFnEjPmSmhPfg5O9J4tel3ASBB1zsTeJezeLLurJkWvX+8J3vkBkPmLEqrkZUWFXkPIVvgdlUbKrqct4DZkgeHVZ5eiw6ZkhC391zd4jCYlsAvKLRQcTKOq/LSQXwBLC0CZ46N6HwI+S5eqWnVtY3WFWPLZtm2ggyqbt3mLopTr3hRD7nlcDYi47tyJFyW3d2yAN56autdx+4cQL+BZ8xvpHNxtqQ7Xkw/mCLEbp/tPV0GW8hhzr8RK5lM4xpt+hxhoRG/rC3t8PWdSvrqg2Wqu7vZuGNrX8e2Z+ZsnWuxC+26MfXwF+bPG/fwz48vUXWJZVZllWhfxv4DHgxPXXrRRURbccxwG/UEg3gaSRHz3lXTWubqxm01pzZ4i6cnEIFRPiyeVzuCF3RTQqPvDwBwBwG64cFAf7DpLIJtjeZNYRuxkRcSLErcJdvNncLMFsiQFkBhzX8ZyJ3ndQWJiaqubLzVGlUFES+2CRdq7i+iFnzo27rL6QsrtBKWNeUpF9ZNzDWgyob61f6nKZoKlKVPa9ChVZX3ZFipKP7XoMn+tjvuzK9290epRLsUv4p0rr6txMqLQrSfoKdwtlUTISMi8OresU3bgMxSmVkmlkqn0QnxV71sCo9xhgKWMSUltGpcsqk/Fjh4oH6oUQ9KnPrWetrLENqmVZkEHJMjpL1ng8B6CxSgSeXmrxKTdFGMPk8iqsaV2DlbQ4PXV66WeO4zDtn6Y6U13y898sqAnWkA0VjhHTtpjNLqUo+eBdDwLQ0VP8LFgSaYyW5j6nwgrIOBnjMQkQ52BNk/frXNKeMnQyiQQiuLhk8t7U80Q2YSzQC2J0RkVP61svC5FL0/hLFgaOni2eL9S319NWWzqzybZtoskow6lrm5sjjNCYM2+a3mxoLGsEv4hplkNVq/hcbt/kXWwvBHmuN3YUf18lu8rUOUYW3y8MejfiZWHNVFOls62TaKXa/ev6XEL+4rH1d7tQ8bvAOyzL6gXesfj/WJbValnWs4vXNAF7Lcs6CuwHvu667jferhfkx0/O8p7LyeQzYMPD95kJQ+qog8czceMqGqh1WQfHB8GCmrDZgXc1GsobaCxr5NTEqaWffe7bnwOgbN48MLvZ8Nhdj9HQXbiquOAsEHZLCyDPnxRKwQNjxZOKhcyCEFSLmAmqyfEKFcXgUtgHsjOkMvcphcRMBfaku4HXzD8IK2LTQoXc7FX+prnkXEmBU0ut6IZPzHvMOwYdKgP6NnPXIxwMs711OxP2lfW++qagh66OluYgdDOhp6UHimzR/ko/ZXZpe59MEkYmixe85Nx6fZVZoWJqVBQjz/d7q5A7Psc4qffbfmzX5vCJwoLDErJwWR42OwfDPnXL1VWrV3HHzjuM1gGw8pZS5/jk+ZO4GTPWC0BHg0hiZxLF9+SGVQ3ctvk243WuRk+0h1TNlb/t+cPP40Zc9rR9/zt5SbSUt0AIxmeWH8HqWN9B0BekqcacDi4LD17ik1JbwtRNQjIfv7P3O57X3nbnbZ6z5MXQWNtIW6d3Ei1ZIqYi2efPiH2r0OdzNY6dPsbkqJoN7LLIqCV+0wvTkIWA32yvLI+UQ1bozRRDoDLA2o61Rmtcjwa7gVggtvT/fWN9ZCuzbKndsiLPfzOgtUpoipwZXH68TjKrelrMtJPgip5IuLJ4LiDZVaZFSRmTHz7ufd5KIUyTMS8QsUosHvO8znEcCHi7eX1XCxWu6065rvuI67prF/89vfjzEdd1n1z874uu625f/Gez67qffDtfU8AKkMO7UJHKiy+o6QepY23U29/LkQNHjNaBK13WYslLLBUDWLFNrjxZzlf3fXXp/98ceBNy8K4971qR578Z0FzezNhC4eJQWUMZ69rMZhYlqiPVgPcsazxbmkjjkkuNggdzKewDqWmQyHh3eOR4yFCf9/jUcpD2iCrsjcr6Sh6890GjdaT1mZcTB8Bbx96i94SaRs5yaKsTh97UQmHmSzafhSA8eu+jxutcjS0NWzg4dHDp/798WBDjnrn7mRV5/psBj931GFk7W7AYVddRx5bVpQV4Y/1iLzly+kjR62Qwa6p9oKMOvm7zOnZt3WW0DoCTcZaEu4pBvhZpsaaLsD8MigSftJs2TvxAWLPJ+KAYevt6ScyYuYvAlQB3Jlm8UJF0k3Q2luYCIPH+e9/PSG5kqQP/hTe+AMAze/7t3OubVgl2a99U37K/n0hM0BBtKGkUJp8Uo8FvnXir6HWyKGna+ZT3k0pSkcgmjFkOIJIRFeaGFMk21Z6S7lzTc96xytTslLHDDwhXhFO9pzyvS+QSWNnSRqPsrM1Ctvgs/+XZy0Qt88/oarzvnveRL88zPCdYFZ/f+3kAHt7w/e/aJ7GqVownnhs5t+zvj104RsAKUBE0d1SSjx24XLzZODknCmqmzn3yTFOJQ3ft2YWFtaQjpYtTR08pMTLlmNf3dKHiexGqHsyjk4IKZFqNlaJbKornjt8hbJl33m/bIropa7cULkK4YdHZuee2e4zXuRo1qRrGfeNLVe1TiVOUz5cTDa/MJnozYH5sntn0bEGbv0wgw+6Npdk3ylnW8dni3YNELlGSSKMsVKhYFuZ95oUKWfhTCWgkG8k0oHnHA+8AFIXEcklzyp3PD1k1invWyhqzUeCKLVlDR+EkdTYtgltZ1CgVc+fmmEpPceKSmMg7MHGA4FyQHWt2rMjz3wxoKRdMltH55Smik4lJ6qNmDAcJVdEtyQg0LVRIVtNc0lsdvNTkxcpbSra98l43LVRE/BGwF21OPTAxM8HUmPeIWyH48j4la7a0mzbWwoBFrYD0lSZDIUzFp8jMqymwe2F3627ybp5Xel8BYG//XqyUxVN3fP+7+0g8cc8TAKQDy3/GL+x7gfSUmjVfIch4r7e/eNFaakt0tpgVouR5q9IwO376OAvT5k5R/Rf6efWNVz2vC5WL2GHzejMbRukCplJ8KYX9CYJOn3a9P+tUPoUvX5p2hC/nI54vnmT2X+7n3LHlk2pdvO/O9wHw2uBrALzeJzS23n/v+1fk+W8G3LND5EPRxuXPuNePvo4z75RUlAz4ApCFV/cXvzcqG8TZt6nHTAbA5/NBRi22lue66d+l6ryjOuZ1q1BxHe678z4a27xnsEYmBP3WtFAh54dV6OBuwF1yDjBaq1ysVawaK7syKzH6AfDM9mfAD5/5xmc4cekE8eo4d9Sa02lvRrjzIgE+PXD6ht9lc1mmk9NUB6tLWkNWV2W1tRBS+dKcY5ZEt1q8OzflNeXce4eZfVU0HMVyLarrqz2vXUiJ77Np1VdWcb027lw+RyqX4vKwt891Ifhdv5KLQt7OGwv0gkgyA3aAaE3hjf/CsKCqpmLeXV8VPLVdJCl/8s0/IZFKMBGdYJ2/NKbQzYbxS6JQ+O1931729ycvnqTvVF9Ja8jCg5eV4NZdWwn7wwQDZgG47LyoFCouDlxkpM9be6UQ7Lya37p8Laa2x+vXCJV6pQJoep6xoeIaL8Wgmrxk3AwBtzSXrdbaVjbfVjihm4vPkXEzjF4sbnOpilV+0WH87Nc+K56/eo7VwdUluwzcTFgqSi4UKEqmJrETpYXWzbXNAMymirOaqhrE/dDeWNy2shB04tCRyZEl/RoT+Bw1J4BARNwTpiKXOjpXeTtfUqEi4AaURIeT+WRJ8RdAwAmQdAo3OxzHwQk5VAVXRuhyR/MOQlaIv3j+LwCYqZthY91Gulu6V+T5bwZsXSUEwWed5b9Lc/k5QrnS3dOsrEU8V/zeClWIdVa3mY/UWnlraWS6GA4eO4iTVtN0Wg4RXwTX590AlIL499xRvEF+q1BxHaqiVUodHlmtlZ1mXUiK+/otxW1+FpIL4KMk0a3ygOg4Hzh+oOA133hJyH5Mj3jT5VTw0Sc+Cln4l2P/wh8++4cA/Pi9P74iz32zoLNOdDlODdxIDTw3dA4Xl/NHvefAi0F2Wafmi3cAO9d10tXaZbxOW6PovvtC3l2BVD5FQ7VZN9eyLMpCZXSu8e4QyeDKVPF84IKgpl0cKO4GICmkE8NmTiYALfUtrN/qbemV9+WNBbdAvH/lgXIGJwu7Dkg7w/kJNWtWL3zkHR/BXrD50tkv8fy55yEI79n2b8fdB67c6xcu3ziv7DgO2VCWqFsam6y5RiQvXpoE8WxpmkY6XdbZ5Cxz094FjULwOT4lv3XZOV7V6m2tthw2rxPJvLQ5LQq/ueMAQE9nDx2rvQVxS2VPAdSV1bGQL9yAkPZ50vmrVOzs2UlgLsALIy9wZOwIo7lRPv7Oj6/Ic98sKF8Uo/nCs19Y9vfpQJpqf3VJa9RW1ILjfQ9KkT/T+12OJaoU8EpxwwEIoJbUT8TEOWsq3Cl1bFRG10oZUwUIWSGylvffVFZTVtI4GcBtm29j9abCSer0/DT4Vq7Z6Lf9RKejvNT/EoOzg+wd2MsHt35wRZ77ZkFdtA6/5efguYPL/j5OnDJK193z5X0kcsXvweEJMYJTSiNLdSxx6PIQmbg5Cy/sDyvpv8n9QDqSFMKtQsV1uDx8WakSKwsVpuJe0trIyypGjk5UhMxnoCLBCOTg9MUbO/tL68yLdVpqWozXuRq1lbXULdRxNH+U1/KvUeuv5YMP/tva5DZ3iOD4zMiNQjznR0SBoqWqtPdb0sCaO5uLXmeH7SXbQRNI0TevubN0Nk0mn1lytTFB2B9WqvrK4EoGW7pIx0VBUto+FYIsAklKqQnKgmVq7Cm/W1KSBLAwscDeA3sL/n40JoJbmfiWCr/Pz1b/VkbLR/mvr/5X6qP1/PIP/fKKPPfNgk0d4j7sn+q/4Xe9w73gg7bK0kZt5Ofl1WV988ibpOfMqeeSRr55hzf12rGdkgprASugNGpZ2ygSbVNHHOlC5MUSSaQS4DMX6AVobWhVsoDL2TlCVmnduMxchpMXCtuTXhq7BEBTpbkI4vV4vP5x5mrmeO+fvpeIP8KHt394xZ77ZkBnQyfkYWj2Rm2kXD6HE3Goj5Q25mXbNmRgPlO8UPHiay8Ky1BD9znbtvE7fqrqvbvwOStnLJwLi/e6QqFQiv0N9w97XLk8ZJNERWvOCprP4YOwS87Z3us0tDWwea3ZKItEY2Ujc5nC+5csStaVmemVLIcnVj1BuirNjv+6AxeXp3ueXrHnvhlgWzbunMurR5cfy0j701T5Smew+PN+Uk7xAsIrb4pxOytjPmbS2dLJhq0bPK8rxc0LFkc5rMVGexEMj4t73KvZcatQcR0uD18m43pXkuTMrCkVFQRtzEsxOOWKL+/aztJELq2MxXy28KE3lRDJ2KpGs47VcviDd/8BVsTi9Mxp/uKZvzAWcrxZsWP1DgAuTt7Ysb80LgLIVXWlvd9S+d2OFH9vRydHySW8D9RCkIJTXgr90r50ZMCcDh6biPH8y897XieTF1NBW+mA4lWYnJkXHexSutQTwxMcOFKY0QTCZpYgbFjtfZAUQ8AJkHAKV+cvz4oRlraaldGoAPj1p34dHDg8eZjfeOA3Siqs3oxY174OHBiZv/F7f6JfaHd01pYmaNhY3YiFxeoNxamfY1NjJXVDpA6Eip2n4y+tULF983Y2bfeeuZX3YMhnltifOipYbacvFC7Ww5URulJGLTPxzFJXuBga2hp48O4HjdcBiI3FGJooLCY8OCWYVSt5r//Bj/0BZKCfflbPr6YmsjId3JsFtm3jS/qYSN34GZ8fOQ82tFSU3vDx5X2eVsTxbBwrY5U0I19dXk1Ht3cBsFQ9B1X9N2m1bhpb794udL/aury/88GyIA/d85DROgD33H6PkuXqQmahpPgBRAOiGFNycEL8rqHCjM26HP7iP/0Fwdkg09XTtM22sa1t24o9982CSC5CLBe74eeO45AP56kNl85WC7rBpVyvECS7qpQGU015DSjUGjNupiT21PbNYlTca6xTspnHh4tr7P3bGSxURMQfAVd0VooJP0paWSmFivhMnGPTxX3hpUfzzs07jdcB8Of8xN3CHd2Z5AxYK9dlBfjQIx9izbo1DM8P8/SGf1uVWIC1bWshBzP5G6navWNCJGt9m/c4QDHIsZ7ewV4o4kDXP9rvuREWg6pLjRyTKOVQtnM2Kbxfa3tXO/4RvxCVM4BMyLy6rFLwx5Q9BZBNZIkRK3qNZIhs21BaMBByQ6Sswu/fxIIIsFvrWkta52o8c+8zHG09yv7J/Xxk90dW7HlvFgQDQXwJH5fdG3VMpGJ4T5O5hRkIMazyYDn+aPFjO+2k8VvmR3vQF8TC4tT5U3Cfx8V+iLjm7IOIP6IkMvvi3hfFf3izrJeFqhiwtEY0FegFuHT2EkOWtxNRPBs3FuiVKPOVMUlhfaLhadGxaqtduULFmtY1fPU9X2VgYoAfefBHVux5byaEc2FibuyGnw/FxOde6rkOsL5rPRvrNxa9Jp6LY5fYb4wGokpOAK7fLclRorO9k/l573GypUKFqfbUIhvKa19xXbdkMeDG6kZSl7xjlbOXzpIZyEAJOpTTI9Ms2IU71IFKkYHu3lyaQPvVCAfD/NP7/4lvH/s2v/9rv79iz3szocquYoIbi5Jz6Tnww6O3le6etnHNRmLZWNFr5jPzYFGSIUFqPkX/3I2sz+uRcTP4SygP9KzqgeN4jnrJ2Fs2DQvhVqHiOkQCEcgIunexL8Sm7ZugF3ZuNS8g+B2/Z/Io7adKpYMHnSAJCndZZ9OzWJa14qyHuzruWtHnu5lg2zZrGtbQ3HZj8advug+4wrowRXmwHBx449Ab8N7C1+XsHGHMO5/SpSaeLh7QrESg73O9O0kguhRetkbFoFqoWNKj8dhMiyFgBTyLL7L4WercesSOMEVhzRJZqFjTsqakda7HttXb2Lb6317HRaK1vJVg+MbPLh0UXYVta0p/b0KEuDRyqeg1GTIEXfPvkGVZuBnX03YvlUmBD6pC5sX60YFRpjLeDhsy6TBlT8l73Wtuvbxa7FuP3PeI0ToAYV8Yx/Jmo8wl50rSvQGo8FcUpdOvWr8K+uC2TUWq2AZ41x3/dmzGl0MllUzby4w3LhJxHr/n8dLXCFV6jn4k88mSipIAlwcv88LAC0XjB4DaploeWmfOPtiybgtnT5/1vE6OSJoWKmbGRWNh38F9RRtksmjZe7oXDP+s2ESMhcwCjuMUjZ2zVrYkKj0gmEt50QyqrbxxH3SCYs9Z31l6kexqvOuOd/2bvt/rQ/UMWzeOIU0kxN69cVXxYqIKulq6ODxWnK0cz8ZLYk4BjA2NKTUBraBVUgMinxZn0vTcNK0VhRtiqoWKf1tcfAVI0UpJNS2EVE582KVQnFXUwfcd2gfA+dOliS6G3TBpq/BalY2VVIVXRi34Fq6grbKNobkbu2tVHVWECNHeYKbWLWHbthjr8QhonIBTUrFryU43U3zmTLIPTEVmQdwXKuNX3/7Ot4nHzFXI66vEHLEXxb2zR1D277/zfuO1ggSXbCML4WyfCOJOHi48c66CMl8ZOX/htTbv3kzEH1k22LkFc9y9+W6y0Rs7COF6USDc1bOr5DXmJuc4dOJQ0WuydrYkO2sQQnbyjCsEeY8+er95R2luem5pzyiGZC4JeYydTCTz0asoKbVxSmFKRvwRHH/xPWUhuYBjOcauYRJV4SoICW2E5RB3xP64kqMftwDrW9fDMk65YwtC76iprHRNkOnRaU70nih6TcpNEXRKK2z7HJ/SeVsq+yDkCymxp2QzxFR8Uo6HjU8Xp5NPzop7L71grucz2j+Ki+vJ1FoJ7am6qIjBBiaW1wm7OCJo9OX+0kZMbuFatJa3QghGpq4d6zx8XhQWVsL1w025ns59iXwCX660YlfICnnGoQDt3e3ctdu8yXzhjJA0OHupeGFSOvd52Y7fKlRch2hQbCZeG8/RU0cBSrJwCbpBz86x7ObWlZcmkPPoPY/S3F14rKO6uZqettKoybdwI+IjcQ723qgYnA1n6a5fGZsnO2cXtTZyHAcCpc1dl0fKIe9tY1aqGw6oq4OnnTRW3rzCvGmtmI1fu6m4/oscySjlbwrZIc/5XMlGqYqUVjDctWkXgYrCg4gz6ZmloOcWVg7tle0Mzg7eoHQ9PDdMZaiyJOcmiYATIOl6BPshSh4p8OV9nuJe8r4oJXkJ2kElLYxkLmk89gFXurNehYrz/aIhMD1uLgYc8UfAX1zxXGpYlDq3XhOuAQuGJ5cXHjx46iA2dsnr3MK1ePLuJ0lb6RuEbf/pm/8EQIVdukbPwvSCp5tXfVs9azpKY8apNgbmk/Nc6i3O5iqGA28cYCFdvNEB0L1OxEVNtWbFHukC5hWrrAT7Uz52YrYwMyqTzUCw9Htdak8UKlS8vP9lAAK50iyPb+FaPHHPEwDM5K4tqL98WLzfkaw580DiwqkLTMeLnzkdazpoayit4ByyvONQKL0oKWPluUTx81YWKrzYU7cKFdfhkfsF5bO+pbhq84UBUTEK2ubVbJXqlrSiM3U2kKgvq2c6WfhGmIhPrJit0S1cgS/hI+FL3BC0nh09S32wNGVwCX/OTyJfeKxnPjkP9hU9C1OUh8o9FYOlLd/dt99tvE5bYxsVtd6BXsbJlK5MjLc12/EzxwFYiHkHWYXQUN3g6QQgg1JTu1WJjd0bSTkpcs7ye8vBUwcpMgV2C4boP9pPOp/m9MC1go1fev5LpKfMu3ZXI+SGPMcFI9URHrnHfHQBRJfVUwhrUHTw+s73Ga8TskM4Pu9CRTqfxs6bhytdbV0ANLQWF5q7NCwSMSkebIJoIAp2ccVzmdhUhot3krzw5CNPAuCGlvesP3LuCCQomTJ8C9eiq7oLgPOT1zJdh2JDkIPm6tK1viJ2hJyveHzoi/rEPHgJCFjejYFEKoFruyzMmJ+BEX8E7EVnnSKQ41emrKbq8mrAu1CxpD1VQqFCMqqLdcPl70otVDRXie+UtKS9HjK+lwLrt7Ay2Nq5FYCx+LXucBenxPm3e23pmiDlwXIIFmbGAQTKAqUXKnwhpcbAyMQIfb19xussCdV7jFpu2iGaheu61xW97lah4jrISpAXRU1ugpISb4Lbd9xOQ1vxwEl2gBoqS1PynR6eZiYxU/BGOHr2KOeOnCtpjVu4ER1VHeCHs0PXUqBODZ5i5Ky5M8bVCLrBol1W2RktpXgAgp5lh4tvGTK5KSXZ3rx+s1qhws3gc80LFW5WBPevvfla0etkQuaml08GVHDfnvs8RRBn4otFybLSCoaBvOiojMWWt13tu9xHfNJ8ZOYWlkdPo0gYDl24djRjzplbka4LiOQlaxdOKlzXZS49R2WotATY5/rIOMW7rNI6O5swpzqEfWGlQkVrZ2tJo0oywKuqK578yMCqFEaKpMwWG+uUyUup7KmGchEXxFKxZX8/n5vHn70lRbbSSF0WZ+o/f+efr/n55eRlAonAimh9lfnLPEeIphem8edL+3xDeFtsSvZBKV1W+Vj5XIUwfHkYv+XHZ5ud7VLHxiuGl/d6KUxJSVkvxnyRLJLV7cXdmrzw4J0PAtDWs3yyGkvFIGU+HncLy6M1KjQWXjzy4jU/H5obwkpZNNeWXpSUBa+x6eVjNhAFqlKsSQEiPu+xRBAMxlKKkqqjllLLyasoeatQcR2mxsSG4zVbk8gmwIFoyHzjbqlrIU3xrtVcarFQUVVaoSIxlcC13IIU0VwwR1XglkbFSmNNg6BlXj3+kcvnyEfyNEVWxtt+2/pttHYXFqxJ5sWB3dFUYqU9cyVpLwQpwJec955FLYSIP0Ii493RzLrZkiyUZJBR7HCAK4GG6cwsiIp5PBsXFqQFsDTmVVHaWMbgOWFTduLi8vPNaV+acusWFXylsaVjCwAnBq9935P+5Ip4rQNEfVGyvsKFgen5afJunr6zfSWts2PTDk/2lByPLCXQr4hUKNmlVTdUG1PBgSUL1fFY8bl1GViVUmhtbxS6Q8UYKbIoWRktraCUjIl99siZI8v+Pu7ECTul6ZXcwo3YtVrozZwduzZOnHanqcivjDVzebAcN+gWHSEanx3nzNEzJa3T2dpJWVXxsTR5r5cyvqY6Vv3m4TfJpcyt1KPhKJZjESovrh0gWSSl7Cuy0CjdzpaDFRLJ5e3bbzdeB64UJWeSy2v6zGdvFSXfDnTWdEIeXjry0jU/H8+ME0qVrk8BUB2pBgqzZQDOD5yn71xfSes8cPcD+MI+XNej6RYorSgpzzXp4FMIp86LfMHLYeRWoeI6yARrYGT5OTCJVC4FOUqqnM9PzXtSYyTjoqmmtKRWzrddGrtxxjCRSuCGXeoit+bWVxq3rxGH08FLVwoVp/pPgQ/aq0oT0pToaOwo2mXtG+0DIBsvYcgbmLk8s7SxFEJvn7BddVLm2i1vvfEWw+PLF9SuRk1jDa2N5hab0VAUHHX2VCmFijPHRTApZ9OXQ32rGAXqbi9Nu6S1WrwnhWZZs4EslYHSEqRbuBFSLLN3vHfpZ7l8jlwkR2O4cUXWuHvX3YSrCieeshDtJM3vPxAdDi+hZ+lI5SWEVQzvePAdYEM2X3xvmpqbKok9FVishrzyxitFr5OBVSn3uowhxqYKF0DbukVX9MG7HjReB8BKiyTobP/yjZWUnSrJUvIWlsfGVRshC30zfdf8PBFM0BhcmXu9tqwW7CsF7OvhOM6KaB9s3bCVYHnxLvxK6jkU+nskSh3zArF/9WwsPhLT3CE64bu3m1P3794tWKrtqwvHctLSvdTPSbq2vX749WV/H3fiS2zKW1g5hINh/HE/Q/FrRfHnmKNyOUVdA8hCxeXYjfbmEnlfnqivtL28obqBvJsn6xQ+bxeSC+ArTdNubafQfevoLt4cPXNexMVeRZFbhYrrIIMur0pQxs1g50p7+4YuDZF200Xnkuqa6/DbfiFmWAKaK8WmvFzycmFU6G00lq/MAXsLV/DgtgcBGMteCVqPXDwCXGFblIrsfJbLs4U3uJPnhYvEzKi3un4xBNyAZ/IiD+VSAv2wL4zr9x6zqKqrYm13cSHMYrBtG3JXlP4LYSXGvOys2CuKdXTluEtHY2nMl/Y6ETQNTd3oNpPL53BD7i09mrcB69vXQxb6Y1d8yt888yb4YUNDcXaCKrpbuknkE+Sd5QWxxmbEPlPq+ND05Wn6R4v7rcsieykOGTJA8boHj5w4Qn+vt/97IZRHhI2zlx6NvNdNbVABRvrFSJ/UsVoOcp+UAaop5L1+eW75/T/ry1Luu8WeWmnYtk0wEWQ0daUDOpeaw426bO/cviJrPPXIUwAFWbfjsXGwKHnMK+wPezIY5X1TilbautViDt0XKl5wXIlCRTQQ9bzXV0IMWLIfiwkPv3HwDQDOnyrNua++XDQyzvQvz6Bp6GxgU9emkta4heVRma9kyrl2vCfcFOaJO59Ykee/Y8cdAJTXFt6r8/58yc4x05dFwVE63iyHlRB6bqgRjfFIRfGR12Q2CQ5EQsWvu1WouA6VZWLTl2qkhbDzjp10tJSWUEhxw2K0sYm5CaL+aMliWK21oss6PH1jp/r8iNhAW6paSlrjFm5EfVU9bRVtBFuudCyO9gvHGEkVLxUDvQNLI0LLYWJObDxNVaWxcgIEyFrFO5/SWqyUpD4aiEKguLCQXCtkl0a9s3IWqbyHDePirL4U6TKBpIiOzxYuVEjaX8Rfmp5BZ6OwUx2dvZFGODgxCDbUR1dGyPUWrsC2bVpDrfibr9AYhxKiWPTAtgdWZI3MgvguFipMyo5MXVlp7LiJkYmiwQywpC3RUG0+ligFuwbHBotel7Ny+C1zWvNSUdKDPXXbnbcBsKpllfFaS3TwhcLn+sETgmEnP09TdDcL9tXEwvJMrVB1iMfvf7ykNW5heVS4FcTc2NL/D86J7/DT9z+9Is9fHa4GYDa9POtWnhel2soffOOgKLIUoYNLcflSLLo3rBHFWq+RjIxbmkg2QGw8xqv7Xi16zev7BTNhZty8gSP1eU6cK2wjK8e8SnViCgfDkC6sR5O0k6zvWF/SGrewPJqCTSRCVwpfC5kFYukYG9s2rsjzdzaLmC3vW74BIdlTpbAcAC4PifhgZLKwPp4cf6yvMo8Rg5bIdwbG1CYTvHCrUHEd5GbixahIZpMlVWLhymxvsS7ry6+/zMK0uaiJhOy8LOf8kQuKb8qOdTtKXucWbsS6unX0Tl2hg/uafVhYPLF7ZaqxlaFKCMB8Yvnv7OSCSDiaa0oT/VFxqYlnV6hQgfcs64XBCxw9cNR4HRDsjVBZ8cBp1x27iAaiJY15ya5zseTv5TeE3VWpVfM1LYKpMz5/476SC4jP7+nHViaYvoVrcf+m+xl3r7zvM5YIUh/fvTLJ4uglkZycH1y+OyeLkvWVpRWiVES3ejYIavXmdZuN10nPi26xFOYshJyVWwp+TKFSlFzqsgbN70Gpb1GM4t47IM6DkFVaobW1rhXyMJm4cV9J5VIkcglaa8zH426hMLav2o5b4y4l+OcmhBh5d83K2I5PjYgO7sGTN9qbwxX2VKkJsHSpiacKCyyvBPtAzqF7jX6UKpIN4KQdTyE/uedEAuaNATcjPvuzFwtr2slCRSksLQlf1sdcdvm/a3R2lEDm1ujH24Guqi7ciMvAuEi83zr3FsCKaVRYWdGILnSuxxZiYENFsDT9Gzl+NTNfuDgXqRL3w0P3PGS8jtSOO3D4QNHrUvkUVs67CX+rUHEd5GaSzhenuJ84e4LZyeL6El6Q1mTFrI2S+SS+fGmbNsDtW4RWwupNNyoPW2Xii7Jr/a6S17mFGxEfjLP//P6l/x9MDdJZ3VlSMn81JH24kFCq9GduqS2NMROyvT2YV0JkVgp2Tc0V95B3fM6SSJ4pOts6PWdZS/WUBqgtF/vK1ELhvymRSUCudNXujoYObGza1t6oDj6VFOs3la+MkOstXIu1VWvpi/UtzXQfGTxC2B+mtWJlkkVJ/x2dWV50K4Po0LfXl6Z/E/VHPcevZPJSCgNI2phJq8BCyFv5kgsVdt72LFQcOn4I27Xx2+bsDUkHL8aokAy4UovHtm3jS/mYz99YpO4dFsWQ1HTxv/kWzPDMvc+QdJNLTIq/e/bvAKh0VmZuXeoNXBq9UVcMIFwpzr5dm0uL21TO28PHDwMwPlK8oFgMkj21//D+otetWrOKns7SLFf9+Mm4xdlKCxnRACylgCALwsUYrVLLp76idBZjIBcgnr+xoDQXnyPpJBnu9db2ugV9fOCxDwAwmRO52jcPfhMQIyErAcmsk0y765HIi7P2zp13lrSOlDaQxbPlIMcfSxHOlexjr/GrtJPGdrzLELcKFdehs1VQcHbu2Vn0utHJ0ZLsW+CqLmuRQkXaTZfkbCAhZ9KXY1QMTIoq4S0xzbcHDb4G8uH8UsCx7/w+OsIr53VdExWf7cj08nQuqRJdavJy9+13U1lffGO+/e7bqQhXlMQ+kLoTXuwN1+cS9pdWqFCZZT104hDpheKFSy9IJ4BiDgfxXHypsl4KbNumLlqHE7qxI77v6D4AcvPmquq3UBjxfnHIP3fgOQC+/MqXcadcbGtljlppU13IerZttShObd9Y2px8WbAMApDJFg72JbU6ny5evCwGGTh5dVkdn0PIV1r3qrmumY7VxffdS0OXSrIhBmisElpPM4nCwaDUqGisLl0XavPqzfRsuzGxO3bhGAC52Vv3+tuBbY3bAHj5jGDCXZi+AFnY0L4yejSyiCVZUjdgsW7X01FaUl8W8i5UDI2LEbZSRjJU9d/8YT9NdSWOqbqBpaJtIayESLZ045NFj+UgCxWljMhJRIiQ8d34d50dEoyOpopbDYi3A7d1ipHAExNixOeNS2+AA0/fuTLM1I56cS5NJ5YvbiccEaOu7TDXZIOrztsibOUjp44AV7SWTGDbNmS9tad27N6hJB5/q1BxHWTnVG5ihZCzcktK4qaQisHS2WM5pN00Abd0OlfIH8Lv+Hl5/8s3/O7Zl54FoMK/MrZat3AtdraLotdzB58jk83QN99HYsDbflMVsstaSDF4w/YN+CxfydTD5trmoqJRsDIjUVvXbwVEwFII+XwegqVRUUEI2h46dqjoNcOXh5co6qbYvkEkjo3thROTRC6BL1c6ewogyv/f3ntHyXVdd7rfuZWrcw5ohAaIDCIRgWAUg5gkK1CkTQ+tsZL15CCNnqQ3lsZLY3vNePw8frJlz5M8DvLII3nG9nOQLUuMkihRDCBBAiBAoJEbQOecK9d5f5y+3WhUVaOBewoNgPtbi4voW7fuuWjccM7ev/3bUY6dz5WjHmk3XVtKHG+1jkJ+7lpvarhfOv4SYEo/qrV3ya+L6zPTN5Y/szmWMJk9rwZ7rpHWfEF0VzrtRXruButHpkbm3S9SFmHTWm+ePo01jZRUzn/dxzNxVMZbsNB1PF+zaU3BfSaSE5D0rp4C4zfTP5W7mD3dZ1pJr6hb4XkMIZeVpUad+j+f/Z8AnIqdomSyxFOQ/kLcct2Byfz34Llek2AKZL3ND8tCl1Y1zagCPJSUuVnWS/m/9Q33kZz05t0SVMFLJjrcBIWXeVFlaSVk518vVDWYQIhXRSvAA7c/QN2K3PXCiS6jnlpSmauiFLyzrnYdIUL85bN/CcCx0WMEx4OefBwuxDVQz5dIhtnOfSrp7d3kvqvne9+6/hVelfwqrYwHxTwkdZLS8KVNOyVQcRE+x4dP+9h3cN+8+6VJE1DeXhBu5mU+iVpKpTzXsbroKc2Z3lwZ4WBsEBJQFpVARTH4hXf9AgDf2f8dfvr2TyEAmxrsGGkC7Nm+B4Dqpvwv3JSToiJc4XkCNTYwxlRqal6Ty0NthzxPMlyDzPla9870dfdoLpSOpWeym4VI6ITnmll34Tdf5iWWjeHP2OmDPtQ5xIFjB3K2d4+ZkoGbmr1l4YT83LftPsjC/s79dPR3kChNsLIst9zuSmmqMpPdwfH82c/nX3wegLDypjR68B7jqaGChSdGbpmXl45U7kQvfQlHrbRKc9Myb9esSqt52wODkaJ6naBVl5jncCFjNICkSnrubOAy2j3KkTO5baPPDZqF7Oomb1k4IT/NNc34x/20DbcxEZtgrHSMNeHCwanLZWmdWbwUUua8ut+o46aGvSU91rYaA0YVKnyvuyoIL4EKtyTqUt4RHT0dnDmRv9xlodRX1V/StDNSFsHJOp6ChW7meD5VZn1LPY5yqCjxZnoKUF9ST99kbpC6vb8dgOW1yz2PIeTic3xEhiPs6zLrwn5fP43KW9nehYSDYUjCaDz/nPfNoyaZNtIz4mkctxXvfOXO7rzbi9IITKllIjt/gu9k+0nGBud/HoAEKvKSjWcv2Zot42Q8dxxwF3RHTx8tuE9lfeVMhsYrgXSA8XTuomwkOYI/aWeBJOSydulawqNh3hh8g3949R8AuHPtndaOv6TGRNELtTF7+9TbM+0xvdBxxsg/55OInu0+y9Sot4nT8SPGlOyNQ/nr9cB4twCsv8mb63JQBS+5SErqpGdVU3rKjPHMC88U3KdxeSOtS+wYsZWoEuIqN5rdM9EDKe9lQEJ+SiOllI+Wc3DiIF9/6uvgg8e2P2bt+OtXmut91cb8rY17R3ohw4KyFPPhZl5cc9x8xFIxSOMpALp1w1YAWtcUvu7TmTSJTIJ03FsJw5njZ3j7xNvz7pPIeg9Khv1hHJx53+sbt29k5RI7AazEUILRVO4Et2vUZMbWL7PjTC/kUpepo0f18A8//QcIwN2r7HT3gWlD6ixkAvkDXm5WtKHKm9x/42pjhjvfwt4N5nspX3CVCxOJ+RUVWSfreW69Y8uOmXbfhbhp/U2eWiu7NFQ3sP3Wwj4hI1MjlARKPHfuAxjuGGYkPsJEbO7v8Pyg8UlpbbAzfxByWVu6lsmySdo62siUZdhQZbcVrC/pYzyVP2k207mv0tu97l7v8yXH3UCiG1i8Uprqmi7p/9bZ28lw/6W77kigIg9OxplZCBUk4F12nomZF9DRk4UnNL6wbybi7ZWojjJB7ktiPDtOKGNHtSHkZ3fDbsarxvnb43+Lb8LHL97/i9aO7Uo/3zr+Vt7P2063MTHgvXOM6xjcP1o4K5nUSc+eKm4d3XyKCrc1opeOAwBBJ3hJg9CUSnlWT7mZqPnktb6oj9ZmOxONMn8ZSX/uy2gwPog/7rcmTxZyubvhbmKVMf5i/19AEj7x4CesHbuuzCwUkir/RGM8NY5KKs//voM9Jhh5vP14wX1imdiCHLvnw32HzpeRdNt3H32r8HtyIQRVkIya/17P+rIE8VaOoZQiG89y8GjhjkTjiXHPDu4uNZEadFgTT84NTA7EBiDpfSErFOaeZfeQLk/zp4f+FIAn737S2rEdx6G2tJabNuaf7LveU8vqr7yVLjBjSD0wXrjMywmb54kXRUVjtclANy+f31jYhh/NQrynplJTnjp+uJSHyplIFZ5fPf/j55kcnr+UfKFkJ8y8x/WkcHGNs7fc5M2bSCjMnSvvBB987l8/B8CnH/+01eO3NrXmbXYAs5373HKwKyUTN++/w8cKt9N1g5JeS8VrymsIROefNy/UQmFRZ6tKqceVUm8rpbJKqR3z7PeQUuqYUuqkUuqLxT4vX9Z3ya4fZdVl3HfXfZ7GcY143Pq/fIzGRq1JRCv9lcR9uVnWKaYoQWrWi8kXPvgFUqQYrBhkZ3gnfp89BUtUmcn+G0fyKxBiOkZIew9EuV1qBkcLKypSpDwHKtyo73wSUdd8z+tYISdE1pm/DSMB7yUm5dFyyM5f+tE/1m9F+QJQEazIa6YZ88eIZr0FWIX5+dKjXwKgv7Kf7dXbPZVGXEzIH8KPn0MnDuX9fDI9acXnZGrETPLbu9oLn0tpyHPXndRUCoCXXnup4D5ucM9Ly1AwQclL1a2v3rCaHVsLTkUWjC/tmzfZcejYIYZ7Lp1JWgh1JXWg4HT36Tnb125fy/K65VYyuUJ+vvKLX4EEvDL+Cutr17Njtfdr50IqQhWMJEbyfjYcH4b0rPfDldJ33pQS/HTvTwvus3bTWiL+CAH/lQfsy6Nm/lBZVznvftqvPT9X3nrjrZnOS4X4ySs/YaRvxNM4ALHRGIeO538egynptNG5D6ClyixUT3bNbWM5pabwKR+NlfbKEYS5fP4Dn8eZcHiq9yk21W3iwdV2Wo67NFU1kXDyrztdk80ltd48SNwgfNvptoL7+MLmWvVq/pqaStHZO38XmrSTXpC1wWKn1Q4DjwI/KbSDUsoHfA14GNgA/LxSyq7m5iJ8WR8JPX+gwkbLQvdCcA3QLiabzTKWGKPtQOGL6nJoLGskG83O9P12CdQE2HbT/F1OBG+8Z/V7+K/3/1daK1r544/8sdVjuxmVQkY8SZW04nNSEZnuUjNP5iVFynMbQbc2bjxW2DviUJuZGBx7u3D/8oXQUN0w82AuRN2SOu7e403S6zgOJOeX0nf0dXDi8AlP47jURGogQE5Nfu2KWu7b7S3AKszPnrV7+Ozuz/L4hsf5+s993frxM1MZDh7Ln62PZez4nLjtdOdrY9a6tpWVLd7KF9wSle7B/O1WgZkFh5d2aQBhJzyjxCqEjfc6GCMyt6VcPvrH+meCQV5pqjC+JSe75y5eeid7pQ1xkWmsbuSjaz/KqspVfPfnv2v9+GN9Y7z8xsv5P0uO4SS9T+FdlcRIbKTgPhPJCc/3n1KKiC9C73B+028wc14CeO7m5WQctF/P66c1Hh8nm7hEkmIBTAxMzHRFyUc8G8eftZOYco1xT/fODUoePHmQcl+5te5SQi6N1Y385rbfRKUUv7HrN/A5doJPLumJNGe68nuzjMZHQc+qkq6UmnJTzjGf+evqDcZqwOtY3ee6OX6msCITTJnXQoKSi3pVa62Paq0vtdLYBZzUWp/WWieBvwHs9IQpQNgXnreHfDqTJp6O036y3dM47gui0EUzMDoAjncHd5dH3/0o2qfnBEZSmRRjmTH2bNxjZQwhP0op/q/b/y9Of/Y0O1fttHrsYCAIcRiJj+T9POVLEXW8T75dpcN85QtZX9ZaoGK+Wla3LMQNnlwpt95y6yUDFZPJSc+KCgAn7TCVLrw4yQaylAbsZN/fvefdAAyl5gaveiZ6aCyVrEux+cOH/pC/e/zv2N2y2/qx/Wk/k+n874xQeWjGzNELbqBivrahk8nJGZPYKx5nWl46n0zbPQe39OxKCfsvHag403GGzvb5s0ALIaADxHVhx/OFZpIWwvI6Y6DXOzZ3AXjwxEESg966FQmX5hv/9huc+MwJVlXn943xQnoyzeBkfgXj8rXLZ/ypvOAmzOZT9r70+ktWAmvx8fi8yg1Xybxnh7f5qPu+dsvG8pHUSfx4DyCEVIikU7jm34bHlcuqRnONuUa5Lm+2vUls8BLl6oJn/uO/+Y+MfGmEJ3Y8Yf3YvWd76RjMH/C6adNNlAZKPSuxK0srQc8fqJhMTRL0BfE73sYKqMAlFYxZ/3UQqFggS4DzF/zcMb2taOzauovWtYVrxd2OA+ND83cLuBTBQBCSheXgXUPGDKsyUulpHBd3gdIz0TOz7Uy/ieBVB+210BOuPv6Uv6ART8afocTvfaG9e7tZdLWsLFwn17i0kXvvvNfTOI215jqdr5Wnm+mtLKn0NFYkECGWjuWojC5kaHyI9hPtnsYBE1Qpq8lfl55MJSGI54Wfy80rTIvXvqlZh/DJ2CQDUwMMn7cjORcWh2A2ONNX/WKqm6vZtsG7Os7NvMy3eHnj0BucP3W+4OcLIRwMQ3r+QMXYlAmsezUI3bZpG/7I/JOv8fi45/c6QFAH5zUsy/gyRH12SrDu22MUUjVL55qf9cf6iQ3I4qXYKKWKVl4TUZGCi+BsMGslUFFfad6z83W/GhwfnPFU84KTcYhnCgfw3HaGzXXz+1hcipKQme8U6o4E0537LAQQwk6YtFN4QWZL0QqwtsX41Y2m5z6XxxmXks6rRHmJncTxxZQFygoa52YCGWpKvJlbwsK61Lzw0gtk496VRgvxhAqWBHngngcueayiByqUUs8rpQ7n+W+hqoh8b4CCqwql1CeVUvuUUvv6++dvRVaIkmDJvP+QrnTNa4YHjE/F1l1b837WPWTksFVRb21iXNxJywv7XpjZ9uLBFwEYOFNYzi9c+wQyASazuVFSrTX+Ej/333G/5zFcF+D5JuA2pNPuxKmmofCD2fWv8OrafXi/MRUaHs+/eE9n0mR8Gc+dTABWtqykcVl+NUPPsAkeuj3tvVLpqwTgtbbXZrYdOWdaGPridiWLwtUlTDhvRxcwdevVEe9BZ9c/ab734ERywsqEhjTE0oUX1BV15h6/ed3NnoZZ2bKStE6TzhZeVGR9C8vwXIqdW3aydNXSwuMEslZUWgB1UfNv1Tsxq6hIZ9Jkw1lqI1dufigsPiW+EtK+/Nfr2d6zqIT3AEl1WTXo+f2TEjrh2Q8KTFl1PFs4UDEwauahE8PezL/dufl8PhU2TLIBor7ovK2Iy2vKrXXzWla/jKAvyLL1cw1UY4EYNQHvC1lh8agIVUAIUulUzmfHzx63UuYF4KScgopMgKGJIXSicOJuoVzKqD6TzZDIJGa87+aj6IEKrfX9WutNef775wUeogO48I3fAnTNM96faa13aK131NVdmRnIuVPnaO9sL/i5257Rq+wcjFqi0EXTN2KyoTWldh5AtWEzaTlyfrbn+vFuU0O0ttlOZxFhcdi+fjvL1+X20I6n46SyKRqrvMv93YzKfC3+hseHZ9qYXimuE/d8pp1uX3dXon7FTM8BC5WzuNJRG4uK0mBpwcmgG/ysitgJStaFzLPvxf0vzmxr6zBeN8trpNf69UypU1rQdOtc3zlOHT7leQx3Yr1lZ2EX+bST9txGEIyhbbCkcLlYIGwWE8uavHU3SEyZ35mr0MiH9msiPu+dAOoq6gqWfmSyGQhCVYmde72+pB6lFf/8wuyU6lTXKfAhHhXXOWWBMjLB/JP9M91n6DpVcCq8YBzHIaRCNC1vKrhPUicJam8lnWDMr+dLdJzrNiUN506fK7jPQljRvAJgXul5uCxMQ7X3+6M0UIoOFl7Y+aK+mRawXlFKUV9ST//kbBJ2IjZBNpqlucSbCkVYXKoj1aCgoz93/nz0zFGGuuY3h10orUta2ba7sOoynonjy3pPZl3KE8rtHthzrqfgPi7XQ+nH68BqpVSrUioIPAH8SzEHnByenDeT5JoJLiQSdCkSYwkOn8jfKqakxiyONq/d7HkcgPVLTT/188Ozct0zA6b04+bl3rJVwuLSVNXEeDpXuuk+9Mb6C0/OF8z0/KLtVH5z12w2S4oUI/0jnoZxlANpeOHlFwru09hiAi9LmwpnLReCW2pRKPPiPkxtqKeOHz7O62+9nvczJ2IexTs223GNX96wHFLQOT5bb3+i2xh13tQwf29r4drmvtvuo6QuN3AWT8bJBrMEs94XFK4qaj7z16w/a2VRv7Rx6YyBVz66+s1iTKe8ZXlOHjFmk4WM79KZNASw0rJwtH+0oGmg+zt96J6HPI8DEPAFcCYdTvTOGvHuO7EPgLUNkoC4nllSswSCkEznLu7TgTSlfjulgtWl1fN240irtGfvKTDeLfMFKtxSDa9JwG2bzEKspLJwgqGsuoztN2/3NA7Aex94L/iN31s+RmIj1sq8ABJDCX70+o9mfj5w6gAoWF4lCYjrGbe043x/bjllQiUIK+9KPzDr1kupp2wEKm7dcSuRssLv0r5hk4gf7rt0KfJityf9oFKqA9gDfE8p9cz09mal1PcBtNZp4NeAZ4CjwN9prQundC0Q8UfI+gtHgtwghiuP9cJY/xhne87m/cwXMRfLTUvtLCxWNa+CDHSPzzqsd451QhbWL19vZQxhcZganKJjIHcCfqLDTF5HewvXmi+U2gqjyClUyzo0PgSOHZ8FlVbzy8FrzUSmocpbRqQkbCYyru/MxbjqqbKw95IMf9ZfMMPj1riuarFjyOY4Dv64n/74bObl7KB5zqxrWWdlDGFxaKluYTQxajLzF3C21/z71kQt1LIqB3/Wz2sHXiu4T9afteJ9Ew1E500MvHnoTQDPrQTde7hQUNJVWthQOvSe6y0Y5HEnibb8aACi6ShD6dm/1/F+o5TcvNxOkkNYHN59hzFFHk3MfX9ns1l0UFMetFMvH3bC9I4U7sbhL/HPmL97YfWK1TS0FH5nu8pGryWdbqB1vueKrQ4/rtn9eDJ3XpRMJZlMT3J4X/5k5JWgJhQ9k7NZ6HSJmTv8zF0/Y20M4epzz557AIhU5y7u0760tWDX2MAYR04eKfi5LfPXxppG4tl4Qf+3gTGT8F/I3Hqxu378k9a6RWsd0lo3aK0fnN7epbV+5IL9vq+1XqO1XqW1/p1in1c0EIXAdKukPDQtMxK523fe7nmssAqTVPkjzO7E01Ykze/z48QcBuOzkvq+qT58Uz7PbrLC4jLQMcBEeiLnmj3bb66h5irvskA3MFcoUOFmEG0ojVRazWu65Y4V8XvLfrqeEIXaMLqLDRtByYgvUrjeeDpY6aTtPZKj6SgjmZGZn4eyQ5CFLSsLy/mFa5+pITP5Pj8wN/PS3tsOQF2Z92sVIBPPcLY7fxA9k81AAJbUeTfz6z7bzev78yuNYLb7T0WJt8WL+1wqZLDnylTvv9u7n09psBQCRuVyMW1njCKt87T37iIuVU4VE77ZLFnFMvO7enDXg9bGEK4+tVETHBiMzb1m+0b6wGevVLDnXA9739xb8PPSqlL23OK9M9zy5uX4o4XnmrZMss+dMqUjL776YsF9BkcHObgvf5vny6H3vJmL5Gst6frMVYYrPY/j0hBqIBaeTeK4QYv1SyTZeD3TUmNM6vOZ4mcCGWvqqbH+sZnrMh/hsvCMH52ncYbGyOossWT+hKMblLzmAxXXKtFAFFThWlY3I+K1rzRAxCm8eHnp9ZcAUEl7jtIVTgWZktlMXE1rDSvrV1o7vrA4VEeqwT+rAHDpGDIqi6U13kokYNrtOFPYdMvNyNjwbvFlffMGKn7yyk8gC0GfNzlqS6N5Oahg/nususF4YNy5+05P44CpZc0G8gc/9x0yUm0rJTrTVDgVTPlmM0qly0pZVbOKaFjcwa9nJvrM/Xf8/Nwe5W5rs8ZyO+1nfRlfQVVTPB0HBXfsusPzOOlYesZzJh9uoMJtW3yluEqJQoEKN/tqI8vqBkDzlX+4pSfZhAUj0mkawg2ko2lTvgK0j7RTHiq3tpAVFoeB8ybr+ON9P56z/VyfWYjbUE+BKclI6MKtbCdTk1bmu9lEdt725m7bca+qJnfx4x4v5zyyWbRf42S9L4Hio2aecq4n11fDVbnaMsQHaK1shbDxKAH40ZumDKS5VDwqrmdcY9y3jr81Z3smk7GunprPu6WmqcZKSZQbLOwfyd/U4nLUUxKoyIPbmq3QA/WVN14BjJeFV0oDpWT8+c2SRuIjADRVFzY5ulwe2vUQ2arZCdJAZoCtK7ZaO76wOLj1be197XO294yYaPuK+hVWxlFJxUQqf6DCbWVow/zVn/XPO3GKpWOQnm635IEt6426oFCHEVdRYWOSVh4qN/XGqVwF1fCUedbYUG64PHjbgwSqAzPSu5NDJ7mpWvwprncaK0wg4mJFRcpnaqRXLy3s93A5zOfQb7N8IaACpFT++m6AqaQJIFSV2QlUFFJPnWg3ZXLuBMsLFWEz+XINsS+kd9QEL+rLC7dfvlzWNK4B/+zz/6lXniIUCxWtbaZwdagOm0C5q5Zy8ZcaVcKdO70H0AFCKlRQ2ZvNZhmLjXH04FHP4xw7dIyewcLmeavWm9LHTWs2eRrHDWqOxfMH/ofGh0DZeX65853+sdwFmZu5tmWID7Cu0ZRuvnz0ZQD2HtkLCbvBEOHq40ubUv8Dxw7M2T6ZmgQH7rv9PivjhH3hgslxdzwb8133GIXW0W4CojJaecljSaAiD/fdYS6IQj3XXYNCr7JzmHUMzldmMp4Yh7Tdvr1ratZwduQssVSM0clRzgyfYWnEe7ZdWFzqy8yk1820uPRNmInyyiY7qpmW+paCnQDqlphF9r133Ot5nOVNy+etZY2lY6i090m4a5wXS+XPHL9+wEjSB7q9t+9du9wY2w1O5mZ0R6ZGALtByfVL1jOVnmI4Pkw2m2X/2f1MdXpvsyosLkuqTbmFq6BwKW8w74lb1t9iZZz5sqxHT5tFS9uh/Ma6l0NIheZtY+YqHarLvHX4cRc/bunmxbgLqFSscNBkobiTr3x1/32j5pncVGXvXn/s3Y8BMKJHAOgY78AZk+nd9c7KRvPe7h6dK9WezJgAemuTnbaXIRUqmGUdmxozKwXvtwURfwTtL2yK65ZfucnCK8UNVBRSarlKJxvtwF2ZfL5AhXv/15bZaxO8a/UuAM6Nm7leX6KPUNx79yVhcVndbBIMvWNz3xnDcbPQX1bnreuVS4m/ZF4Pxo7eDt4+4N0GsiQ0v//bqnUmKHnbztsueSx5k+XhUo7n7sOvvtJ7RuQ9978HfJDM5kazx1PjVss+ANK9aTSaZ15/hufefI4sWdLdhaNrwvVBY6XJsnYNzW1XtmnnJvyOn+YaO7LAikhFwXa6bpa1LOj95b9iyQrC5YW9WRLZBL6Md2fi3g7zUvjRSz/K+3nXgPl92nA8371lNwAJchd/o3GjRrEZqGgOmH/z7+79Lqe6TpEJZKjWHtu5CovO8jrj7t4zOjczORQzZoq25P4RXwQKeGq5SoGw490/KeTMH6hYvWE1PuWbMb69Uppqzb3lhPNPe1yZuI3StXtuN8ZobvD2QgYmTNBzSY13fw+XZRVmEntu1Cxe4pE49SF7ig1hcVjVZCbzfeNzlTlH202g0Jfy/g4Ecx9nfPnvQfdet6E+iAQi8/q/uR3Fgnh737qBDjdrezFuNy8b93pdubnHhyZyTXrdzn0bb7LTnhTg/luMh46/1iRSB9UgVVrUFNc79VX1kIL+qbkBr0NnDpk/FPaWvyxKgiUQLHwPpp00KuV93el2yiukqHATECWBS7/XJVCRh44zJlP19vH8USV3QWYjUOHKtcYSuRK1yfTkjBzIFuvrjOHOS20v8ZOjPwHgznV25IPC4nH3zrsBaFndMmf7UGyImkiN5xIJl6nhKY6cyu8YvPeAMeOyURLlpJ2C7vwwHaiw0EKpNGwepoX8aMZiZrsNcyFXDp5PUTGeHIcMlEctqqcq1gDwr6//Kz9529zrNy+RNsTXOysaVgDQOz438/JPT/8TAGV+74FCgNt23EbLqpa8n7mTcq+mdwANNQ34woXvZX/UT1mozHMZg+tkfrrjdN7PZwIVHjsOwKzUO5+fT9pvEgMttfl/t1dCY9gEqr/53W+aTk8hWF4h7Qqvd2oraiEFA1NzFX37DhtPo2zMjs/JzetuLpgYGBg1Y9swyS4JlIAqnGV9q83U53uVnrsllFX1+RfwbpetlUu8K00bq8y9F8vmriSDZSbgYqscD8w8oipcxZmRM/QM9ZAsT7KuUjp53Qj44j6Gk3MX9m+2ma5XmbHCwfzL4Wfe/TPgQCKTmzCLJ+MQmO1k4wXXJ6bQ3HrfW+YZlpws3K7YRQIVedBJI03rHszvjDqZnIQ0hIPes0mDXWbRcvL8yZzPlt20jBVNKzyPcSH3bDGZnre63uJg10HIwv3bvLucC4uLa6B3sTv4a4dfsxaJBRjtG6WzP79bvdshwEaW9dihY7R3txf8fMmKJSxt9F6y5EpEC2Ve3A4nNlqznTpyCoCX33g557NVG1ZRFiqzFlAC2LpqKyqmONx/mDfPmJfd7jW7rR1fWBxam1pRKDbtnFvHPRwbhiREQt5LEsHIogu2Ip4OVFSXeFfo7LllT0GVA8CZzjP4s967UrmBzdcP5u8w4pZf2Qi+ZKbMpHL/0f05n61cvxKFYmm9vZLL5qpmAmMBXu9+nW+98C0A7t8g7/XrHcdxiBAhUDFX2jQwaYIHy2rtyMHXrlhLkvwLhoHx6UBFxEKgYjoAcbHpt8tkahIyeFZPRcNRQr4QDUvzl49GK41qevsm76aB61aaIMG6zbnBArdM3FbHBhc1ovjHF/6Rp958ChTctvLS8nnh2ieUCTGWmbuw7xwy8+2VDXbKt11lVL4gurvmtRGo2LXNlCg1L8+v5m7vbAeMZ8alkEBFHtyJyuhkfsdgX8RnZeIEs47B+VobqYhiSa09eShAc00zzqTDyZGTnB47jX/CT2VppdUxhKtPfYlR91zsDt7e205s0F6kIuyECxrfucZVNpRGEV9kpl4173mUh1lS7/3ecAMVrmHfxbgBDBsml655nlujfiHZYHbGZ8QWjuNQEa/gfOo8L5x5AZJw16a7rI4hXH38Pj+V4UoTmLiAsdQYvqQ9BV7nqU46B/IHJUcmRwA7SqPSYCnxdNy0PM3DwSMHGRvw3g3HfS5NJvMrvtzaea/18QChrKkZf/tUripzJD5igpLK7vRrqVpKb7CXt0beQmUVH77nw1aPLywOa1rWULtsbqC8d6IXsvY8KkhBKpvK20ow65j38LJG70GRHZt3AKCD+X0qplJTYKkSuTRYOlNSeTFuANZGOYtb6ppPFf2jV0xJaVh5T95cSFO2id5gL/0hUybw0Yc+avX4wuJw25bbWLZu7n3WM25KPFcvsaPK6Tlvjneq41TuZ8PmMxslUe57tFBZpxsoWcj7VgIVeXDdwd0uBhezZtOamXpXr7gmO/mMeLoGushTzu6ZhlQDZ3xn6Ax20qTt1cQLi0ckEIEEvHV6bmujuBMnquy1o4z4IgVrWd1AhSuF9DTOJUy3BkYGZpRPXnAfkoX8aPxRP2isBPPc34tbo34hJzpO4E/bCX5eyPLIciajk5yLnmO1Wm3VmFdYPJyEw95De+dsm8hMEEgXMJW4AqZGpgpmWUNlZiHeUu+9fOHIAVNKlq+VJ0BCJ6wkBsLBMKQLt1deuc5krDbctMHzWEvrjFpiaCq3fO1Hr/6I9Lh9X6jdzbvRUc1Lky+xZ/keqsvFj+ZGoDZam1P6MRAbwIk5+H123hnHDh0DZj2ZLqSyvhKAW272btK7YskKYDb4cTGxTAwnbWdZMtI/wvM/fj7vZz948QcA9Jwr3IFkoYT8IZysw09f/2nOZ6PxUch4NwK+mMe3PA5B+K8v/ldqIjWsql1l9fjC4tBc2cxAbO693jfZB5nZd4pXEmNmUem2yb4Qt8vXiuYV3seZNOMcbz+e93M3YbCQe0MCFXlwf3FuffrFTCQnrERiAeorTJanfzw3UNHe087Z42etjHMh//5d/x4d1eiI5vcf+33rxxcWh0AikFPflvQnrdWsg3EMLtROdyI5YXwWLCyGS4OlEMjfyhPg1LlTnGzLLZe6XKKhKEorqury17Ku3rCa0lCplZIM1zwvn0fF0faj9J/L32/aCz+37ecgCBNM8Fs/91vWjy8sDvHhOKe652ZEpvQUYW0vc1ceKgc/jE3mvgeblpsA98oW73JUNwiRr5UnmECF6y/hFZVSprVxHmyaATfVNEGWHNULmKREdsqOt8CFfGDHBwAYiA9w5zLxnbpRONt2ljeOvjFn20h6hGDau8Gzi+s/ke8edO+LhZjeXYpMwswdCpVVxzNxKybZAP6MP69vBMyWedkKIOiEzrvwG08aQ3ybJZ0An37vpwEYTA2yu263tCG+QZjqn6JrpGuO0eVQfAgn7li7htxEfL7keLjCzB9u3Xqr53ESEyZQ0XYyf2ewqfQUJFnQ38t+Cu8GwJWIqlD+m/+1/a8xhZ02fw2VpoYun2Nwxp+hRHt/OVzMv3vfv+Ov+/6aynAlP3fbz1k/vrA4RDIRxphdVGSzWbKhLJXZSmtjlAZKQZljX/yA0UGNL25nklESLIGkmTi11OVmbdO+NBHtvRbfcRxKQiW0tObPDE+mJq1M0ICZv0c+OWrKSRXFuftLP/sl4s/G+V/H/hfvWf0e68cXFodyyhly5r4zgtVBlgfsGShWhCtgCjoHO3OCj+7ixUbAvjxSDuPQP5I/UJdSKUqwcw86aafgu/tHLxuZttv1ywt+nx+VVIzq3Hs9pmNWughdzGN3PMb9P76fQF2AT2z/hPXjC4tDOBMm6ZsbsG9e3cwa/xprY1REKmA4f6Di2R8/C2DKrzxWW3a1G8XG28ff5p619+R8vmHLBirGvcvOAfzaX7C9sqv+dDt2eMWX8jFBrlJrIj2BT9k1xAeoLq9m49RGehI9/Pmv/bn14wuLw2TfJGmVpm+kj8Zqo8Bds3UNviF715BbrplvzTmeNCVRNoL1roVCIf837dML7lokgYo8uLKXVevzy6lGpkZQ2Ilguu0I3QvEJZ1Jo0OaSl1pZZwLUUrx44/82HqNrLC4lDll9DM72R8aHwI/1Pi911y7vOfd7+GlH75EPBMn6syd0K/bvI6uM7nS0Sth+6bt/Oub/1rQDyPryxLFTklLxB+ZaZV0MT997aeMZ/IbCl4ulaWV+LSP6ubcLE7Kn6JM21O+XMhvP/Db/Na7f0uyLjcQNcEaepxZ2bLWmpg/xt3b77Y2RlW0Cqage6ib9cvWz/nse89/D/TCjLAuRWW0Epg17buYtEoTIuR5HIBlTctYU51/gdcz1AMKfI6dSWGhxUtSJSnHfgmW4zg89+XnrB9XWFyqwlVoNMlUkmDABLiGk8Pc3GSvg5Nripsvy+qqfevKvC/q3Y46boedi0mStGJmCxAiVLB0zaafFkAwG2SS3PLRWDZGoFCPZ48c/r3DRTmusHg0ljfCEBzvOD4TqBhKDNFUYa9Ef75AhVsS1d/ZDx4taVy10mQif1n1pu2bGDpbuLPfhchKNQ+uM3Ehx/OUShFSdiZOq1pMMGTTLXMd3LsGu8CBmqi9ReaFRANRwn67Bj/C4lIdrCYdnq19djOHjz70qLUx3Bab+e6N8cS4tZKo1cuNcVBa5a/l1gFN1G8nUDHcP8xzL+Sf4A9PDJON25NpV5dUz9T8umSzWXRIUx4snn+EBCluLBpLG9FhPdPmbyQ2wlRqiuay/A7bV4IbRM+nAJpITCxYtnkpXCnq4Hj+TgBVjVXs2rrL8zhgTHF1oICRX3oKJ2VvSrTxpo1svGVjzvaUL0WJz75SUrgxaSxrBAfazhsJdTabpXO001q7QpgtQe4by1VUjMRGAGPE7hXXvNo1472YM51nGB+0kxgIESLl5E90TCQnQGPNxyVChFie9moNyxqstEAV3hm0VBnV7ame2bLO4+ePkxiyZ1boqvhdP4oLGZww72Ab3byqyqaN6gskASeTkwtWL0qgIg+OcvClffzwpR/m/TztpK0FKkK+EAEnkOMY3N7TDkBdqR1pmnDj86GHPkQ2lCWZMVmEzjHj2L+k3F7nmIFOk/XM5xi87619M+12veIaZfYM5ZpdTcQmwG/aJ9rASTsks/kzL7aM/FzKgmU5k8Gh8SHwQVXEfumHcGOytNIYa719znSVeOXwKwC0H263Nsbdtxp1RnVj7qRlKj1lzfTO7SbghPIfL6mTNNfaCcAkJ5Kc6zmX97OpzJS1+ngw9/NIfCRnu4ooK4bDwjuD1Q0maL//lGl12zXYRZo0o535VQlXwuY1mwGoW5I73xxLjEHWjp+D2+a7kFF990C3yeZaYOXSlTNtSC+murGaAAFrZqRV4SrIk/dTESWBCmHBLK8zpZtn+2e9CQfjg4z1eO965eK2012/ZX3OZ8NTxlPJVXN4wTWgLxSoOPD2AYZ6RFHhCZ3QeWVwYNqt2JC8gsl0+tI+Xtz34pztvjIzYbrjljusjCPc+DSVmQxo36RZCD/9ytMARFP2un7ERk3W4GxPrsnr0MQQyYn8C/7LpeO0MaY6dOxQzmdTafPg27llp5WxfNpHUuc/76RKWgtKAvS09/Di63Pv9ams+fvcc2tuza4g5OOxBx8DQJUZpczRjqMArKyzNyl261QvLksEu4v6TWuMmjDfIgmMTHtyJL989HLpPts907/9YuLZuNWg5GjvKG3tc43EsjpLJpDh3j33WhtHuLHZuca850Yxi/uj58y9vqTCXgJiab0JfKpIrvJuPDmOStgxhHSzua5K42IyToaQY+d9e/Oam/FF8j+j6lvqrbRWdrn/9vuJVOd6ZvWN9uHPSIW9sDBWNRqFfc+ESdBNxafQYU1NxN616qqe86mi3YS5q6b0gt/nJ+QLsX3X9ryfD4wOEBvLb3Z7MRKoKIAv4yOWyf9LdMIODVUN1sbKTmRp722fs81dvKxqlrZDwsKIDxop1963TdvCN0+9CUBrjaVe60B1qcmqDIzl1pOnVMpav3B3nOHJXNd8V7Lmlk15xa/9pHR+iajNvxNASIeI67mSu7GUeTmsaFxhbRzhxsZVSXWNG0+YU31G4bS+JTdLcqXERsz77yd7f5L7WTZGIGun9tqdOOVrGzoRmyBDhnMn86sgLpeQEyLt5C8nC5QGrPSPdxnvG89pTzqRnCCrs1SGK62NI9zY3L7pdvOH6crAE90nAFhea884tyxggpInO3I7aZXVllkr6VzaYAIihfzfMr4MEZ93k2ww/jmFWhGPxkaNMbglqiJVDMeG0XpuWVn3aDdn3j5jbRzhxmb3+t0oFE1rTaDALfdqKLW33gz5Qiit8rbTHU+MQxrKonbUyiXBElIUnlsv1FRaAhUFCGQDeWt4AAjCnbvttf8KZUJMZudmjN4+YyS9NtvNCTc20axRThw+Y0yWOsY6IGmv/zJAbZmRbuarJ0/70oQdO9erW8uaz3TLbW1myzsiSJCkyq+o8Jf4aaqyZ2QUdsIknbljHTtretjrWP7aeUG4mKqAuT+efsmops4NmYX8zSvsGey5LQs7+nPb7pXWlNJcbaccIzVpJjJP/fCpnM/cTiC2yrwiToSML39tf8PSBm7ZdIuVccAs/jKBuWMdazf3+qkjuaVzgpCP2mgtYX+YM0NmwXumz/zfzb7aoCxUBhpefvPlnM/ql9bT2mwn2VEWLsNRDk44/9JD+zURv51AxYHXDhBLx/K2OP/xKz+m80ynlXEAOk92ktEZ4y03zURsAkJYzYYLNzaRYITmsmbOjJh7fO9xk3Tc0LzB2hhKKYjDud7c4H95Xbm1OTxAJp7hyIkjeT+7nCSgBCoKENCBvK2Nkpkk6WzaWstCgKiKElNz1Rt7D5oLNJix38ZMuDHZ0roFgLZuE4XtS/QRjAWt9vCuqzDy7MHJ3EBFxpexZnDpyjLzBSrePmGCeG6rM68sb1pOSVX++9kX9XH7ztutjAMQdaKkfXMzugfaDgAQHykQGBWEi2iubIbMrEdF90Q3JO0Y3s2MMR2IyGemGa2OsnntZivjuM+UfHXr/aMmUOEGTbwSCUTI+vMHOG2aAcO08XAI4snZ+/pcv5kcRpSdxZhw46OUIjuS5R+e+wcAOkZM4HBty1prY/h9fkgWkIPHxygP2bn/lFJEnEhej6t0Jg1BO+2BYVapla/laoIEAW2vG4dKmJKZC5XRJ7uMOqW+1E5nEeGdQSgW4odvGn/EI11mkb/zJjtlzi6+lI/xdO693rCswYo/hcvU6BSnzuUPymf8C1dPSaCiALXltQTLcoMErhFX26G2nM+ulDJfGSn/XHnMwJSR1oscXFgo227aBkloGzDX5qgepSxrt+WlW/I0mc6tGVchNbPo8Ip7HLeN2IXMOBOX2nHs3rpuK4HS3EmL1pqJ5IS1SRpARbCCTHBulrV3rBeAlpoWa+MINzZ+nx9fzEdfzEzCy5rKqAnVWA1K1lbUQhZGE7kBhJH4iLX7ojxaDtn8pR9uiZmtQEWJvwQCpnPCxbR3tXPy7Vzp+5XimuN2DsxmbjsGzSKzsVLMNIWFE01HGcmOANC4oZGIP8KmFZvm/9Jl4kv5mEjl3oOvHnjV6n0RG43x5uE3c7bH0yag98C7HrAyjlvG1TOca8idYuGy84VQX2aCER0Ds+qzU91mgWaztaTwDmAYumImCVe7uhaF4u4t9tqOg2mn69oLXIjNoCSAP+snkS3QsSQENaULUxtJoKIAu7bsoqI+t17VlXaFtD2DvdrSWrLhuROn4dgwJKGixF7NrHBj4/f5iUxF6Iibl2UqkqIhYq+2DWDtcpPF2bh1btu9ZCZJ1pflvjvuszLOkjpTg9+6Nldy6vpW2ApUlAZLc7ruAPQO96LRtB20F5S8Zd0tEJzbW9pVpyyr89i4WnhHEU1FGUibhXy2NMuGpfbkoTDdejSZP4DQOdjJW3vfsjrOZCo3+OkGKiqjlVbGumvPXeDMLoouJOWk0Al75Vdux66uoVnl17kBk+hY2SCdAISFU+2rZipgFhZtg22sq11nrWOFiz/jz7t4STkpgtreot6f8ef1f3NNst12xV5xW6m7qqwLSamUVZPs5iqjPnMDkTCrnlpSbc/0VLjxaSltIVOSYSI2wemR0ywpX0I0aM8QH/J7pQG8uPdF2o+1WxunUGVCVmfJ+rO8+653L+g4EqgoQFmwLK8MrnvY1Mfb6DPr8r773of2a2Kp2Yf3aGoUX9JeqzThnUFjoJGpyBSJdIJkKMnPPvizVo9fGixFoXIW9m4bvqqwnUlGZUklAKHS3MnEyJQZy2115pX9r+5nPDFupKcX4AYlbUpEd23aBZiWUy5DMWO45zqvC8JCWB5azlh0jHQmzVvdb7G6erX1McIqjC869z2UTCUhONsVxAZO2iGWzl28NC0z2cjd23dbGcd1M3cXRS6u7NxmSecj9z4CQEnN7DE7R4y6YnWz/X8r4calMdpIJpohmUry8vGXKUvYVUqCybLGsrn3YMafocRn777wa3/eRdL53vMADHTnGnVfCe4cYnAsf5lqxLFXfuWWyfWMzKo3KppMoGTnBruyfeHGZnXtalCwt20vP3zzh4Sn7PsUVkXyt9NNqARB7AUlwypMQuUGKiaTJimxUO8pCVQUoO2tNvpGc2vb3G115XYk7gA1USN/cRcsABPpCQJpewsk4Z3Bhx/+MLFQjGODxrRtWYXdLL2jHALZAD95fW4ngLeOm+zq+ZPnrYzjc3yEnBBnOnMds13fCludd8rD5aCMguJCekfMz5WRSivjAFQEzOSlvb99ZttIfAQSEA6Kca6wcG5puQVC8KfP/imjqVHip+17nKxqWcWKtSvmbHNLGdzSBhtURiupqMtVDyYxRnj1lXbqvCeGjTrEXRS5DIyaxZEt005gprPHhe91VWpq2de0rLE2jnDjc3PjzeDAN5//JmPOGP4R+y0vN63eRFNrbplCNpC12iEjqIN5s6ztXe0ATAzm79RxuaxfaToghSty36vB0iCrV9gLFrY2GuVn0jdr3Jn0mz9L5z7hcrh5qTHEfv3k63TFuyC38Z1n3nXruyivzy3xSDtpq13uwk44b5etM11mXn/2+NkFHUcCFQVw0g7ar3Mcg/vHjIysvtyeQc5Qp5nIvHH0jZltS9cu5ebV9hzchXcGa2vXotF89lufBWBzlR3DuwvJTua20z3bZx44EexlKZKTSfa9tS9n+8r1RjZtS4HgBiK6h7rnbHdNuBZaR7cQhs6be/2F11+Y2bZqyyqrreaEdwa/8uivAPC/2/43AA/e/KD1McpD5Tnqqc7B6UBF1F6gonVJK/Utue/UY2dMwDUTy9+p43IZ7jazvuPnjs/Z7tax2/LCAAgkTaLhh3t/OLOtuqWa6ki1BCWFy+Kj934UgL898bcAbF2y1foYyxqWkXLmeqVNxacgYDeAF1ZhUiq3ZaGbBHSNtL2yZoUJBkbKc+ckaSfN1vVbrYwDsH6FCYosuWm2zONIuzFCrA7bU18LNz63rzfm7YeHDpMtybKs3H5JcGW4ckYFfSFpX9pae2CA++64j+qm3OvfTXYstHPfogYqlFKPK6XeVkpllVI75tmvXSl1SCl1QCmVu3IpAq6hyMVGPCpiMiLLG+0tLMJZM2lxXYIBJrOTLK0VKbhweVSmKwF4YfgFfOM+ti3bZn2MQCaQ007XlTzaNInzpX05Em0AX8RI0V1pp1eqo+ZBevG9PjBusqy2Jk4wW5veMTRbyzqYGGRpldzrwuWxqX4TjnJ4aewlyMAH9nzA+hidpzt58+25xnduoKK21E7pFZiSsnylloeOHQKw5h3hKiEvlGjDrD+Gzff6kgqzaHn77Nsz2/qm+qgvkS4AwuWxe91ullUs44fDJuh11/q7rI+RnkznqIhHYiPArDeVDXZu2Untktxnh5sEtKVWdtssuspIl1gyRiqbstqGsSRQgt/xG2+5aX765k8hCeGABCWFhbNjzQ4212/m/+v9/wB49/qF+ThcDueOn2MyNWkCkReQDWQp9dtTT1WXVOf1f3N9YxZqobDYiorDwKPATy61I3CP1nqr1rpgQMMmrhHPxXLwxmVmIbaudZ21sdyAROfQXHfw1Ghu1FkQ5uP+TfdTMlKCDmpWO6utdgFwiRAhpufWsvaOmvtkSY094yh/xp+3ZvbkuZOEnBA+x46Hi6uYuHhCw7Q9hs3OO67ku3tsVr1x5OwR9Lg9Ez/hnUE0EKUiad5TkfEI5SX21AAuOqZzOgE4EfNMcaXVNmh7qy2vesrt+mOrm1BDhSkX6xubuyCLVJgs0p7te6yMA7C0bimkoWd8Nijyg1d+QH97rrmfIFyKLbWm/bh/3M+7txdn8XJxK+KkMoriXVt2WRtnSe2SvKUfbjevhko7JZ2xETN3+PErP56z/VSn6cZx5M0jVsYB03bViTs8/ZOnZ7aNJkfxJ+yX6Ag3Pk9ufpKkTuIf9fOFR79g/fg6buabF3apSaQTEIQNK+2Zcg90DhBLx+a06IbLTwIuaqBCa31Ua31sMc+hEK7L+MWLF7dVm80WLq0Npr6tZ8xMaOLJOGPpMYY7ilCcJNzQBANBvvnoNyEO/3bHvy3KGFEVJelcVBI1YSbfLbX2WmwGdTCv6dabh98kNWEviOcuuELlc407XSn6xtUbc75zpSytWwoZ6J+cXaz0x/oZ78rNJgvCpfizB/+MPek9fHHXF4ty/LJAbuvsUIW5T2yWJgYJ5q1ldTuO2PKjaaoyNfiD43MN9lw1h02Ju+M4+OI+BhKz5oCTTBLOSIZVuHzujt5N2XAZz/zCM0TDdrsAwHRyLgATsdnA5NCkKVW0aZw7OTI5Y4h9Ia56o7HKjirT9bW5uMW5qwirKbGnlARwYg7d47MJiPHMOMGMPWNC4Z3DB1d/EFLwvrr3We/uA1BbYhRN5wdmvZrcUpA9W+wF60d6zTG7B+eWVbtBydqyhakyr5dwnwaeVUpp4E+11n92pQdKpVJ0dHQQj89vPPbkLU/ySPIR6kJ1HD16dGb7bt9unnrgKdpPtKOUutLTmEMoG+KpB54iTJijR4+SSCV46qGnKHFK5oxdbMLhMC0tLQQCYuJ5PfPYnY+RuT1TFDUFmFKJ3uzcAJ4TdWAcVjSssDZOWIUZJ3cBH8vEcCzGWF11lJtVdXElazaDko7j4MQdhrSZAI5MjKDDmgbHbhtZ4Z3BY3c+xmN3Pla041eGKtFKk81mZ54nrnqqPGjvvoj4IqTJDVSMJcZAQWnEjhy1uca487stgV1+steIOnvO9UBuR+QrJpwOM6pns9SpYIoKLS3Hhcvn849+ns8/+vmiHb8iXAFTcL7/POuXmeD9q/tfBeDUkVNgKdHacaqDFCniyfgcr5bNOzbDc7BmmR2j2aYaE5S8uBbfbRdcV2bPEB+gTJcxxmxQZIopq55dwjuH1fWraf90u0lsFYG6sjronxtAcBPltjr3wXTCP2HKqlubZl+s2m8UHc21zQs6TtEDFUqp54F8IdLf0Fr/8wIPc7vWukspVQ88p5Rq01rnLRdRSn0S+CTAsmW5JiQdHR2UlZWxYsWKeQMN44lxjg0eY3XN6jkLlWxHlhgxNrTY7Vkf64xR5itjbeNa+kf7SU+maQo1WZXSz4fWmsHBQTo6OmhttThTExaFYgUpAB5+18O0vdqG1nrmHlqyagmhgRCVpZXWxtmxaQeHhg/lbI9n4/gtPrpcR/OL63O/9/z3AAhk7QbuWqpbqC8z2R63ft2tZxeEa4naaC0kzOJleYPxb3j2x88CkJmyY3AJEPVHyZJrrDWeHDeyakvPs5XNxiNm4y1zVVJuzaxNM02AqkAV444JtiZSCXRYU4s9bw9BsEV1tBqmjKm0G6hwvVxsdrkrD5VDwpRVu88UMEFJhaI0ZCcoGQ6GIQljeq6iwv071VfY9Yqp9lcz6MwGQBO+BHXabjBEeOdw4b1hG/fa7x6ZDVS8vP9lAM62nQVLHvxV0SoYzq1MWLZ6GRxfePlo0Us/tNb3a6035flvoUEKtNZd0//vA/4JKFgwp7X+M631Dq31jrq63IdEPB6npqbmkmoInzL175ns3MlYVmdR2o6S4kLCgTD+oFl8xVNG7REJXr1orFKKmpqaSypNBKEqXEUyk2QqNWvEMxIfsdquEIyx3cVeGAAJnSCo7Ukq3QXXcy8+N2f7aGwUMlBRYjcDurp5NZmwGbOtow2AFbUrrI4hCDZwW+v1js1ONFzDOJvZnpJACQQhm50brNi4fSPLGuy5nkeCEUK+EFOZuSZiAxOmPMNm6RrAw3c+TLjWZI1PdJ4AhZhpCtckbjDiwrr17lGzkHHLk23gBgPdrlouew/uJaADOMressSX9DGWnBuo6B83QUm3DMwWjSWNZCNZpuJTZt1QDvftvM/qGIJgAzcIEmd2vecqjZZU20uauf5vFycBL7fUcrHNNC+JUqpEKVXm/hl4AGPC6eWYl9wnkzYLibHxuQ+5fFkfGwR9QRIZYzCUSJv/R0JXVzZmq5RFuLHpPmMmL8fOzdrLPP/T5xnvt+uzkBhL5K1lTaokQewFKlyJ6MW1rOOpcVTKXjbXJaqjnB80tYGneo2x102NN1kdQxBscO+t95o/XFASP5oYhZS9cgyYzqw45Nzvk5lJ67XkgWyAA0cPzNk2OGUyoTZL1wAaSxvpn+onk80wGDNj3LxK2o4L1x533WI6iZQ1zi4eXDn4Tc323k+u/9vFi5fTnafJTNpTaQE0VTfRsGJuWWVloxnfVomJy8ZlG0HBqb5TdI13kdZpdq22Z0IqCLbYum4rAM2ts6UX7r2+rM5eYsD1oBiemuu3+PyLz4M2SsqFsNjtST+olOoA9gDfU0o9M729WSn1/endGoCfKqUOAq8B39NaP53/iPZwDUzS2bl1s1mdxdH2f23ZZJZY0mSPQ5EQCiVtjYRrEidprv8zPWdmto0mRlFxu4GujlMdpEkzMjEyZ3vjska237zd2jilkVJIkdNGaSo9hZO2f693Heuic6yTdCbNsg3mpXDntjutjyMIXqmJmCCBu5AHmEhN4KTs3he7N+8GTGDiQtra24iP2FX5JUYTHGuf6+E9HBuGFFZL1wCGzg2R1Vnazrcx6Td/t3t33Gt1DEGwwapGo54az8wmHPon+yEz6+1iA7cloVtu5TKVmcKfsVuN3trYSqBsbulmtMosjpbV21uQAbznzvcAMKEmePmokdFXOwtrvygIV5PKcCUw17+lb9wEDlsb7amnbrvlNgBWrV81Z3vfaB8kF16ivthdP/5Ja92itQ5prRu01g9Ob+/SWj8y/efTWust0/9t1Fr/ztU4t6DfZGwvLv1w/A4Bv32zSQcHrTTJdJJUNkXQFxSFg3BN0lhpLGdcqRhAXMWJKLsKoMpIJTBXigoQ0zHrJkMqpXLaMBZj4gSwtm4tBGBv2156JnpQKJor7E0EBcEW8WETJPj+C9+f2TaeHsefsntfuMacbvcgl46BDoZ77Ha/CmQDTGXnln5Eq6NEHfudFCIZ80x8++zbHOw8CMDamrXWxxEEr1SHzKL6jbY3ZrZVNldS5iuzqircvc0EJRuXzbWui2fjBLTduXVIh+genttx4Hz/eRzlUBq0pwgDWFJmJPOd45386M0fAVCWsdctRRBsURIoAQ1P/3g25z84NQhZaKmzV/5YETZl0xcnASfTk5eVBLzmSz8WC5/PBzpXUeH4HKIRbxOa8+fPc88997B+/Xo2btzIH/3RHxH2G/XEZHySydgkKitBCuHaZEmVeSFfaMSTdJLWJ/rVUTNxuri1Uf94P8nRZL6vXDH+tD+nbr2sroyGCvvdOHa27gTgJ2//hO+//H3KVBl+53ppwCS8k3DrVbuGZ4OS5U3ltNbbNVxub2sHZrsMuKR9aaI+u8+VkA6RIDFnW+3SWlY0rrA6DsDaZhOUOHj2IN9+6tuouDIGpYJwjVEZqYQMvHb4tZlt4eqwVX8KmG01nNBz78EECUI6lO8rV8zpI6c52XFyzrYfvfIjdExbTwSWY4Kt/+tf/xcnBk4AsHvdbqtjCIINfI4PFVN0DnfObKtZWkOJU4LP8dkbJ2OOtXf/3jnbY5nYZSUBJVAxH1nI6LmKiozOzBhtXil+v5+vfOUrHD16lFdffZWvfe1rnDt9DoCpxBTJTJJsujheGILgFddwrm9stsY0E8hQ5rebPXCNeFyXboCxyTFSpOhu7y70tSuiubaZhqVzgxLh6jBb1261Og7Au25+FwBvnH2DQ/2HCA3bnZwJgi1WNKwADQNTAzPbMpEMW27aYnUcNyB44b0OxXmuRJwISWduoHM4Nmy1LZvLe3e9FzS8cvoVupJdlMRLRCkpXJPMtM6OD81s6xrpoipo974IZIxq4uCxg3O2ZwKZBdesL5SyQBmZwNw5/ERqAl/K3mLMZXn9ckjD+dHznB8/jzPpWC8lEwRbhFIhhlOzasVIVcR6l8mqqHl2XBwsjOs4/qwEKqzgd/w4/rm/onQmTWwqtxPB5dDU1MT27abGvqysjPXr1zM8YC6Yg4cP8kuP/xKPP/g4v//7v89NNxU2MTp69Ch33XUXmzdvvuS+gmAL13Au6TOT/azOQhjrGUnXhfzC1kbn+kxAryZq12CvtbmVUMXcgMHg1OBMjb5NNrduhgQc6jtEvDzO6rLV1scQBBsEA0FUQjEcn53QdI91UxmotDpOc7UpfXId+cG8awkypz24DaJOlLRvrlLylYOvcObomQLfuHIaqxsJjgU5OnKUscAYDT77Ci1BsEUwHWQsPSvTPnDiAKcPn7Y6RqnPlFzsb9s/Z3tNcw3vvvPdVseqCFVAaPpZMs1kdnImWGITx3EITYZon2qnP9VPSbLE+hiCYItoNsoEs+XOXcNd1pMCJZESSM12+XAJlYVmEpEL4R2vN37Xu96Vs+1nf/Zn+ZVf+RXIwEd/9qNEAybKq7VmIjXB448/zhf/zy8yMDDAY489Nue7L7zwwmWN397ezv79+7nrjrs4OnKUz/3a5/jyV77Mu3e9m9/80m+yadOmvN9Lp9M8+eSTfOMb32Dbtm388i//csF9BcEmS+uX4nf8LFltoq99k31opXno9oesjrPz5p1wAJasmo3ynus3gYraUrvy6RJVQttI25xtnUOdvD38Nrzf6lA4jsOamjV0TnVCFm5bepvdAQTBIv6kn1FGARiZGGE8Nc7pt05bvS/culi3TShA12AXKKgMVdobCHjgXQ/wrUPfmrMt6SQJ6+KYV6+KruKUc4qsL8sq36pLf0EQFomojjKhZxcv6UCaCuy2515avxT0XINeMHXstoOSVZEqiENHf8dMIiWu44QojopxXWgdB30HcdIOy1J2zToFwSYVvgrOq/MzP79x5A1KsB9cUyk155kCUN1UzcqqlQs+higq5sHv+NHomZ+z2pRj2DIWmpiY4EMf+hBf/epXqaio4PUfvM7qDatZu3EtNeU1bNiwgS1btnD69Gk+/vGPzwmK/OM//iNbtmxh27ZtADP7fuc73+GXfumXeP/738+zzz5r5TwF4UIc5dBc1kznuKlv6xwz/28us2sI2VhlzLaSzMq0XQPP+vJ6q2OdPnya0z2zmaOhsSEIQFXIvhwcYNfKXUxmTReAn9nxM0UZQxBsUFtSS7jKLOKPnjsKQHO53XvdNccdjl1gnDm9lnj4noetjlVbUst4cnyOUXYmmKEsUBzju48/8vEZ9dmWJXZLZgTBJqVOKQmf8Y6IJ+PosKY6bLdzhd/nRyUUI4mRmW3pTJqx+BhdZ7oKf/EKqC0xCQ1XiQkmKGnb+NvlA5s+AAHIRrJ88We+WJQxBMEGKxtWoks0Wps1btKXpNSxazAL4Ev7cvzfBmOXp1Z+xysqLqWA+JO//RN2tOwAYGh8iNPjp2kIGvlmbW3tZSsoXFKpFB/60Id48sknefTRRwHoONHBmo1rCGQD+Bwfhw8f5qGHHmLlypV84xvfmBOoeOutt9i6devMz+6+H/jAB/jABz7A8PAwX/jCF3jggQeu6PwEYT6S/Ume7X4WPgjf+cF3AJjsnYT19sZwJxOHThyCrWaba+rXVNVkbyCgOlyNVpp0Jo3f5+dU9ykA6krrrI7j8rlbP8e33/o2akpxx6Y7ijKGINhg27pt9EwY74jjnccBWFZtN1tYGiklQIDallmllNs6ze3FbouhblOD3z3UTUttC8lUEkJQqSutjuPiKqYaM438h8f/Q1HGEAQb3L/nfv7+xN8DcLr7NCioj9pNCgD4Uj7G9awcvG+kDxRMjUzN863LZ9fmXXzjR9/AKZlNLpbVlrGpqjjq4089/Cn+0x//J5aULuETd32iKGMIgg0euuMhfvDcDxhLjFERriAdTFOu7SqaAMKESfvnllp2D3dz8vDJBasyRVExDz7lA8VsxCllsiJu69IrRWvNxz/+cdavX8/nPve5me2N9Y30nemjubyZAwcO8O1vf5stW/JnYGpqajh+3Ewa8+37n//zf+ZXf/VXPZ2nIBTCH/MzlDYT/tMDRongOtzbwm1ttP/obC3r8rXLAdi5aafVsepK6sCB831GCnem19SrN5Y3zve1K2Zb0zZ6P9PLgf/jgNXWb4Jgm8aSRrrGTIDwVK8J4K1sWLhsc6HUldVRVjurajh0/BAAk0OTVseZGDAy1NNd5rnlZlvdLkO22bN0D4d/+TAdv9Uh5nrCNc2KuhWMJcdIZpKc7DYGeE0VdpMCAMFMcEZRCNNlXkyXalhkzbI1AHPMcxNOgg2tG6yO49JY3cjX3vs1/sej/8Nq9wRBsE1jqZnb9k72crb3LIRgaflS6+Pctu22mTJxgMGxQbRfE9ELVzXJDHke/I4f1AVGPNPPnUjIm2zspZde4lvf+hY//OEP2bp1K1u3buX73/8+H/7whzl+5DiP3P8If/mXf8mKFStYuTL/hPDDH/4w+/btY+fOnXP21Vrz67/+6zz88MMzhp2CYJv6cD2pcIpsNsv5kfOg4eYVN1sdIxqOQmpuD+bJjJncNFXanTy5AYmTXWZydn7ABCzc9ozFoL6qns0rNxft+IJgg562HnomexgaG+LckFnUr1myxvo4pf7SOS2Pj509BkB2ym4HrKXVZjJ2otu0EBxNGv+NYi1eADbWb5SFi3DNkxpNAeY9qMMmQbdjww7r4+zctJMV61fM/Nw5YMpHq0rsBirCmJK1U50mwJpMJRlPjONPF09M/qkdn+K+lfcV7fiCYIPBs8Yj5pmXnmHvMdM+dE29/fd6bbR2jh/N6W6TILgcnzkJVMyD3zEPs0TK1Owpn2krFgl6C1TccccdaK156623OHDgAAcOHOCRRx4hHA6zd+9eXn/9dZYuXcoHP/hBAAYHB/nUpz7F/v37+d3f/V2Agvv+t//233j++ef5+7//e/77f//vns5TEAqxpHwJBOF8/3l6p3pxphzCQftmdE7KYSI1a8Tz5pE3gWk3b4ssqTIBiTN9RknhLzP3/sbWjVbHEYTrjWXlpszj1bZXqV5qVAebVtiXTned7uKVN1+Z+dk11myqthuUXNVgDC1P95kJUzZoAiG7N++2Oo4gXG/EB+MA7D+xn0mfSQpsX2M/4dVQ0TATIITZ9+6yGrslZZlJ40Pz8psvA9B2vg2NpuNYh9VxBOF6o6XKGFif7jtNLGQ6Wd6z/R7r4/Sf7Z8xwQc423cWgKbyhb/X3/EeFfMR8AUgA8m0kY0lM+b/bgDDNn/4h3/I3/zN3xAIBLj99tv5gz/4A8CUeVwcdCi072c+8xk+85nPFOX8BMGltaYVuuDNk28ynB6eyVzYxp/yM85sLevB4wdBQThgd7wdG3fAMQhXm+OGqoyT38aVEqgQ3tlsXrYZ+mDfqX1kKjOUh8qpKLEbKATjSTPJrBx8aNKUlrXUtFgdZ22LKVE7P2hUU33jfYB92bkgXG/sumkXnIO9J/eSHc6iUNxUbb/t/UT/BB0Ds8GCwZjJuK5stFtS5pr0DkyaoOeRc0cA+x47gnC9sWGZURCeGzpHK60A7F5jP1ifGkuR8qeIJWJEQpEZtfLl+MxJoGIewqEwJEErI4EbHTcRYKVUUcb78pe/zJe//GXr+wqCbba0boEu6I/3E6gJ0KpaizJOJBuZE6gYS47hKPtCsHVL1wGQDpoyr85hI0W9HGdiQbgR2b1mN+yDI11H6BnuoTZk19zSJepEGWFk5me3A4jbutQW65cZx9+BuFm8PPui6Y411DkEsn4R3sHcv+1+eB4Odh2k/Vg7PuUj7LefhBjuGmbKmSKbzeI4Dk03NcFx2LN5j9VxWmpbIA09yWkz4G7j63ZTo/3giyBcT6xeshoypmvfG6feIOKLUBu1/26vK6mDSTjVfYpNKzaRCRqV05qlCy8zkdKPeYiGowA4PvNryugMShcnSCEI1xP37rgXAF+Vj2QoyZ1b7izKOHdtv4v61lnX8Yn0BIF0wPo4tRHzgG471wbA93/0fUhCyF+cfuuCcL2weeVmSMOpoVO8dPolUudTRRmn1F9KOjDrDj6WGoMU1g0oK0oqqAhVsGqzKQFxfTfWL7XYskgQrkMqSyvxT/g5PXaa/mw/VZniqIyqI9XgQM+wCSD0T/YD9hMDjuPgj/npj5vjtw+0A7BuyTqr4wjC9Ybf5yc8HubU5Cme3/c8maFMUZLwbonH6R5TalneaDqLbF2zdcHHkEDFPLglHm7pR1ZncbT8ygShuawZn/LxdNvTDEwNsLLKfhcAgOW1yxmMzxrxTOkpgtpb1518RAPGuPOF114AjMGeLynmd4Lg9/mp8dUwVjpGuizNzbV2TXNdyoPl6KCeMa9euWUlK+uK81xpLG2kd7IXgPNj5yEFq5pXFWUsQbieqM5WM6AGiEVjtITtqplcXCO9Mz3Gm+K5l54jkAmYcmvLRNNRRjIjAHSOGKXkhuXFM84VhOuFrfVbmaycZFgPU6Htl3PCrCG9603hGmtWRxbeZUtW3fPgUz7QMDxmJKhZlTXbBOEdTtAXpDHeONNzfX2wONnI5EiS4fgwEzFjqJlQCSJ4M7PNh+M4+BI+hhPmXh/PjBNM2w+ICML1yM7VOzmeNLLp+9YXx9H+1k23gm/WM6JnoofGsuK0B04Np3j18KsA9MX6CMQC0iZYEIAn7nuCeHkcgrCurjjKg4byBoAZn4pzg+fAbhfiGXZt2EV5i8niNq5uJOpEqa0oTvmaIFxPfOyBjxEjRqwyRn2w/tJfuAJc35mR5AgA33nmO5CeTg4uEHkzz4PP8UEWUlkjddVKS6BCEKa5o+YOAHzjPh655ZGijDHRawIUbedNSUbN0hru3XNvUcYKpoOMZUwr1FE1SgXFiTALwvXGB9Z+YObPj93+WFHGuO3m2wBmZNoHThwg1h8ryljJ4SS9E0ZRMZwdpjRTWpRxBOF6Y8uSLTN/3tFqvzUpzLYX7xwyCofx7DjhTHEMuTcv30x/oh+tNTFfjKVVS4syjiBcb+xumTXP/NW7frU4Y9xsxmhaae754cQwTuLyQg8SqLgEPnykdZqszoIDkZD9bK4gXI988QNfhCxs9G8sWjbSbaF0ousEmWyG7oluVtYURw4e1VEmmCCbzZKIJmiONBdlHEG43vilW36JwEQA/7ifZfXFcZysC9cB0NZpgpLDqWFSQ8Xxw6gKVpEKmmMHagNsXCbdfQQB4H1r38enbvkUd3M3n3r4U0UZ466ddwGwdI0JGsSdOCWqpChjRTNR4uk4HYMdHD1/lBJdnHEE4XpjXY1RTJWOlPLL7/nlooxREzW+MwNTxrx6Ij1x2Wpl6fpxCfz4SagEqYyZ1JRFyxb5jATh2mDrqq388S1/zCM7iqOmAFhZvxLOwune0xw9f5SMzqDHdFHGag43c8g5xNnhsxCAu9fcXZRxBOF6w1EOA781wNjUWNHG8E0ZteLTLz3Nw+seRkc09ao4ctT6aD1aa4YnhhnLjnH3VrnXBQGgNlrLn7z3T+C9xRtjedVyADrGTOlH0p8sWo38WKd5Zu07to9jncdo1MUpJxOE642gP8gb/+YN1rQsvAPH5RINRHEyDs+8+AxfvOOLTOkpQvryTOpFUXEJgr4g+GA0ZlqTRgKiqBAEl0+/79NFNaG7qcm0ETs/eJ7X2l4DwD9ZnPjq+297P4Tglc5XAHhg5wNFGUcQrkfKS8qttwq9kM2tmwE4P3Keo+eOArCkfElRxlpSYY77vTe/R0ZnaIzK4kUQrhbVkWoCOsD3X/4+Wmt0RNNSXZxny9qmtQAc6ThCKpwqWntlQbge2b56O6WR4pY+qpiaKfOa8k1R7pRf1vclUHEJ3H/A/jFTNxt0xGBPEK4Wa1vMJKNrrIujnWbxsnFpcWTa9202JoF//5YxCG2taC3KOIIg5FJeUo6KKXome2jrMOUfy2uWF2WsezcYn5tvvPQNAAZODRRlHEEQclFK4Yw5vN3xNiPxEbSjeeRdxVFmblq2CYAfHvshBGFF1YqijCMIQn5C6RBD6SHS2TSZsgxbV2y9rO9LoOISlEdN5CdOHJVRBP3FC1R87GMfo76+nk2bNlk/9vnz57nnnntYv349Gzdu5I/+6I+sjyEItmmuaSbkC7HulnWc7D8JwLZV24oy1tpqExT57rHvQhaWlBYnmysIQn6CySCDyUG6xrsAWN28uijjPHHPE4T9YQ5lDwGwYam0KxSEq0m5LmeEkZk2wXXRuqKMs3XVVsjAC2MvAPD4rseLMo4gCPmpdWoZ9Y1yfvQ8WZXlfXe877K+L4GKSxDymVoarTT+Ilt6fOQjH+Hpp5++5H4vvPACH/nIRy7r2H6/n6985SscPXqUV199la997WscOXLkCs9UEK4OjuPQUNpA13iXqWdNwU3NNxVlrIbSBkhC2p/GP+kvuhxOEIS5lGZLGWec2uVGnn3PjnuKMk7IH+KWplsYTA/iTDk8srN4PjuCIORSF6wjHorzP5/6nwCUJYvj/1ZeUk7jeCPZsiwqrvjQ7R8qyjiCIOSntayVdGmaV0+bluCrqi6vXFwCFZcg4AsQyppgRUAFrB33r/7qr7jlllvYvHkzd955JwB33XUX1dXVRTl2U1MT27dvB6CsrIz169fT2dnpeSxBKDY1mRqe2v8UQ+khArFA0TqMOI5DZMp40NwSvqUoYwiCUJid63cSrY/OmOzVlxTHTBPA6TTPkduCt0lQUhCuMkvLlqIjmufangMNt6++vWhj/cb7fwOAu1fcTTAg5duCcDXZ0boDFHz1X78KQDQRvazvL2rXD6XU7wM/AySBU8BHtdYjefZ7CPgjwAf8hdb6/7Yx/mef/iwHeg5ccj+tNbFkjJA/hM/nm3ffrY1b+epDX513n/HxcX7v936PAwcOEAwGGRkZWfhJX4KFHLu9vZ39+/eze/fu3AMIwjVG+Xg5Q84QS5Yv4bbobUUd6++e+DvO9J7h0+/7dFHHEQQhl51rdvLci8/x9We/Tn2onpD/8tzBL4df2PELvP7c63z9175etDEEQcjP6vrVPNP9DIcShwjEA9RVFqf0A+Bjt3+Mr739NT6x5xNFG0MQhPz8mwf+DV/5s69wPHscspdfvr3YiorngE1a683AceBLF++glPIBXwMeBjYAP6+UuqoFpUopoqHoJYMUC8Xn8xGLxfj85z/Pvn37qKysXND3du/ezdatW/nEJz7Bv/zLv7B161a2bt3KM888s+BjT0xM8KEPfYivfvWrlJdfnvOqICwG71r9LnDgUP8h1tasLepY7939XglSCMIicd+K+8joDAPhAZoTzUUd65MPf5LYH8S4eeXNRR1HEIRcnnjoCQASZQnqdPGCFGBaJB791aM8ufnJoo4jCEIua2pM+9MRZ4TgVPCyVU2LqqjQWj97wY+vAo/l2W0XcFJrfRpAKfU3wPsBzwYLl1I+FItoNMrhw4f57ne/yyc/+Uk+8YlP8Cu/8iuX/N7evXsB41HxzW9+k29+85uXdexUKsWHPvQhnnzySR599FGrfydBKBaP3fYYv33ytwH46OaPLvLZCIJQLPa07IEJoBQe2SC+EYJwo7KtaRt10Tr6p/pZGl262KcjCEKRKA2W4qQcsoHsFQUlF1tRcSEfA57Ks30JcP6Cnzumt123nDhxgpKSEp544gne+973Eo/Hi35srTUf//jHWb9+PZ/73OesjScIxWZTq+mC40w63Lr81kU+G0EQikUwEKRhqAEy8MkHPrnYpyMIQpGIBqL8xYN/AcATO55Y5LMRBKGYfLj+w9yWuY2nP33phhEXU3RFhVLqeaAxz0e/obX+5+l9fgNIA3+d7xB5tul5xvsk8EmAZcuWXfb5Xg1+53d+h1deeYWSkhI2btzIn//5nwPw8z//87zwwgsMDAzQ0tLCb//2b/Pxj3/cyrFfeuklvvWtb3HzzTezdetWAP7Lf/kvPPKIZK2Ea5/9v7Cf2vLaxT4NQRCKzCv/+RV+cPAHLG9YvtinIghCEXnf5veRWJ8Qg0tBuMH55me+ecXfVVoXXPNfFZRSvwh8CrhPaz2V5/M9wG9prR+c/vlLAFrr373UsXfs2KH37ds3Z9vRo0dZv369jVO/IZHfjyAIgiAIgiAIglBslFJvaK135PtsUUs/prt5/DrwvnxBimleB1YrpVqVUkHgCeBfrtY5CoIgCIIgCIIgCIJw9Vhsj4r/FygDnlNKHVBK/XcApVSzUur7AFrrNPBrwDPAUeDvtNZvL9YJC4IgCIIgCIIgCIJQPBa768dNBbZ3AY9c8PP3ge9frfMSBEEQBEEQBEEQBGFxWGxFxaKw2L4c1yryexEEQRAEQRAEQRAWm3dcoCIcDjM4OCiL8ovQWjM4OEg4HF7sUxEEQRAEQRAEQRDewSxq6cdi0NLSQkdHB/39/Yt9Ktcc4XCYlpaWxT4NQRAEQRAEQRAE4R3MOy5QEQgEaG1tXezTEARBEARBEARBEAQhD++40g9BEARBEARBEARBEK5dJFAhCIIgCIIgCIIgCMI1gwQqBEEQBEEQBEEQBEG4ZlA3cvcLpdQ4cGyxz0N4R1ILDCz2SQjvWOT6ExYTuf6ExUSuP2ExketPWEyux+tvuda6Lt8HN7qZ5jGt9Y7FPgnhnYdSap9ce8JiIdefsJjI9ScsJnL9CYuJXH/CYnKjXX9S+iEIgiAIgiAIgiAIwjWDBCoEQRAEQRAEQRAEQbhmuNEDFX+22CcgvGORa09YTOT6ExYTuf6ExUSuP2ExketPWExuqOvvhjbTFARBEARBEARBEATh+uJGV1QIgiAIgiAIgiAIgnAdcUMGKpRSDymljimlTiqlvrjY5yPc2CilliqlfqSUOqqUelsp9e+mt1crpZ5TSp2Y/n/VYp+rcGOilPIppfYrpf51+me59oSrhlKqUin190qptunn4B65BoWrgVLq/5x+7x5WSv1vpVRYrj2hWCil/lIp1aeUOnzBtoLXm1LqS9NrkWNKqQcX56yFG4UC19/vT79731JK/ZNSqvKCz6776++GC1QopXzA14CHgQ3AzyulNizuWQk3OGng81rr9cCtwK9OX3NfBH6gtV4N/GD6Z0EoBv8OOHrBz3LtCVeTPwKe1lqvA7ZgrkW5BoWiopRaAnwG2KG13gT4gCeQa08oHt8EHrpoW97rbXoe+ASwcfo7X59eowjClfJNcq+/54BNWuvNwHHgS3DjXH83XKAC2AWc1Fqf1longb8B3r/I5yTcwGitu7XWb07/eRwzSV+Cue7+anq3vwI+sCgnKNzQKKVagPcAf3HBZrn2hKuCUqocuAv4BoDWOqm1HkGuQeHq4AciSik/EAW6kGtPKBJa658AQxdtLnS9vR/4G611Qmt9BjiJWaMIwhWR7/rTWj+rtU5P//gq0DL95xvi+rsRAxVLgPMX/NwxvU0Qio5SagWwDdgLNGitu8EEM4D6RTw14cblq8C/B7IXbJNrT7harAT6gf8xXX70F0qpEuQaFIqM1roT+H+Ac0A3MKq1fha59oSrS6HrTdYjwtXmY8BT03++Ia6/GzFQofJsk9YmQtFRSpUC/wB8Vms9ttjnI9z4KKXeC/Rprd9Y7HMR3rH4ge3An2ittwGTiNReuApMewG8H2gFmoESpdQvLO5ZCcIMsh4RrhpKqd/AlKL/tbspz27X3fV3IwYqOoClF/zcgpECCkLRUEoFMEGKv9Za/+P05l6lVNP0501A32Kdn3DDcjvwPqVUO6bM7V6l1LeRa0+4enQAHVrrvdM//z0mcCHXoFBs7gfOaK37tdYp4B+B25BrT7i6FLreZD0iXBWUUr8IvBd4UmvtBiNuiOvvRgxUvA6sVkq1KqWCGCORf1nkcxJuYJRSClOffVRr/QcXfPQvwC9O//kXgX++2ucm3Nhorb+ktW7RWq/APOt+qLX+BeTaE64SWuse4LxSau30pvuAI8g1KBSfc8CtSqno9Hv4PoxHlFx7wtWk0PX2L8ATSqmQUqoVWA28tgjnJ9zAKKUeAn4deJ/WeuqCj26I60/NBl5uHJRSj2Dqtn3AX2qtf2dxz0i4kVFK3QG8CBxi1ifgP2B8Kv4OWIaZUD2utb7YhEkQrKCUehfwBa31e5VSNci1J1wllFJbMWauQeA08FFMIkSuQaGoKKV+G/g5jOR5P/AJoBS59oQioJT638C7gFqgF/hN4DsUuN6m5fgfw1yfn9VaP5V7VEFYGAWuvy8BIWBwerdXtdafmt7/ur/+bshAhSAIgiAIgiAIgiAI1yc3YumHIAiCIAiCIAiCIAjXKRKoEARBEARBEARBEAThmkECFYIgCIIgCIIgCIIgXDNIoEIQBEEQBEEQBEEQhGsGCVQIgiAIgiAIgiAIgnDNIIEKQRAEQRAEQRAEQRCuGSRQIQiCIAiCIAiCIAjCNYMEKgRBEARBWHSUUi1KqZ/Ls32FUiqmlDowz3cjSqkDSqmkUqq2qCcqCIIgCELRkUCFIAiCIAjXAvcB2wt8dkprvbXQF7XWsenPu4pwXoIgCIIgXGUkUCEIgiAIwqKilLoD+APgsWllROs8+5Yopb6nlDqolDqcT4UhCIIgCML1jX+xT0AQBEEQhHc2WuufKqVeB76gtT58id0fArq01u8BUEpVFP0EBUEQBEG4qoiiQhAEQRCEa4G1wLEF7HcIuF8p9XtKqTu11qNFPi9BEARBEK4yEqgQBEEQBGFRUUrVAKNa69Sl9tVaHwduwQQsflcp9R+LfX6CIAiCIFxdpPRDEARBEITFppUFGmEqpZqBIa31t5VSE8BHinligiAIgiBcfSRQIQiCIAjCYtMG1CqlDgOf1Fq/PM++NwO/r5TKAingl6/GCQqCIAiCcPWQQIUgCIIgCIuK1noC2LXAfZ8BninuGQmCIAiCsJiIR4UgCIIgCNcyGaBCKXWg0A5Kqcj05wEge5XOSxAEQRCEIqG01ot9DoIgCIIgCIIgCIIgCIAoKgRBEARBEARBEARBuIaQQIUgCIIgCIIgCIIgCNcMEqgQBEEQBEEQBEEQBOGaQQIVgiAIgiAIgiAIgiBcM0igQhAEQRAEQRAEQRCEawYJVAiCIAiCIAiCIAiCcM0ggQpBEARBEARBEARBEK4ZJFAhCIIgCIIgCIIgCMI1w/8Pi508a3mGQecAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABccAAAHCCAYAAAAq6HGDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d5ij2XXe+SKjgAqonFPnnp6O05MjORQpJlGktEuu7IeyZWlFLymtSdOyKSusTUm0oimKK1OBFEXJkiktg4aaISf35NCpOueunBOqCoUc9o+D8wFVhfChB/eiaub8nqefqQa+GpyuAu5373vOeY8llUqlIAiCIAiCIAiCIAiCIAiCIAjvIKyVDkAQBEEQBEEQBEEQBEEQBEEQdCPiuCAIgiAIgiAIgiAIgiAIgvCOQ8RxQRAEQRAEQRAEQRAEQRAE4R2HiOOCIAiCIAiCIAiCIAiCIAjCOw4RxwVBEARBEARBEARBEARBEIR3HCKOC4IgCIIgCIIgCIIgCIIgCO84RBwXBEEQBEEQBEEQBEEQBEEQ3nHYKx3AViCZTGJiYgI1NTWwWCyVDkcQBEEQBEEQBEEQBEEQBEHIQSqVwsrKCjo6OmC1Fq4NF3HcBBMTE+ju7q50GIIgCIIgCIIgCIIgCIIgCIIJRkdH0dXVVfAaEcdNUFNTA4B+oLW1tRWORhAEQRAEQRAEQRAEQRAEQcjF8vIyuru7DU23ECKOm4CtVGpra0UcFwRBEARBEARBEARBEARB2OSYsceWgZyCIAiCIAiCIAiCIAiCIAjCOw4RxwVBEARBEARBEARBEARBEIR3HCKOC4IgCIIgCIIgCIIgCIIgCO84RBwXBEEQBEEQBEEQBEEQBEEQ3nGIOC4IgiAIgiAIgiAIgiAIgiC84xBxXBAEQRAEQRAEQRAEQRAEQXjHIeK4IAiCIAiCIAiCIAiCIAiC8I5DxHFBEARBEARBEARBEARBEAThHYeI44IgCIIgCIIgCIIgCIIgCMI7DhHHBUEQBEEQBEEQBEEQBEEQhHccW0oc/9KXvoQ777wTNTU1aGlpwU/+5E/iypUrRb/vhRdewB133AG3241t27bha1/7moZoBUEQBEEQBEEQBEEQBEEQhM3KlhLHX3jhBXz605/G66+/jqeffhrxeBzvfe97sbq6mvd7BgcH8YEPfAAPPvggTp8+jV/91V/FL//yL+M73/mOxsgFQRAEQRAEQRAEQRAEQRCEzYQllUqlKh3ErTI7O4uWlha88MILeOihh3Je8x//43/EY489hkuXLhmPfepTn8KZM2fw2muvmXqd5eVl1NXVYWlpCbW1tWWJXRAEQRAEQRAEQRAEQRAEQSgvpWi5W6pyfD1LS0sAgIaGhrzXvPbaa3jve9+75rH3ve99OHHiBGKxWM7viUQiWF5eXvNHEARBEARBEN6JxBNxJJPJSochCIIgCIIgCGVny4rjqVQKn/vc5/DAAw/g9ttvz3vd1NQUWltb1zzW2tqKeDyOubm5nN/zpS99CXV1dcaf7u5uUzFFE1Fs4UJ8QRCELcFrF1/DHb96B46dOVbpUARBEN72/PE//TEc/9WBj/3exyodiiAIwtuewcVB3PUXd+HPT/55pUMRBEF4x7BlxfHPfOYzOHv2LP7+7/++6LUWi2XN31nAXv8484UvfAFLS0vGn9HR0YL//6vzV/ETf/8T8Py2B5/8/idN/gsEQRCEW+EXv/WLOOU6hXd9/11YWF6odDiCIAhva37n8d8BrMBzq89JEYggCIJiPvGdT+D4xHH84j//YqVDEQRBeMewJcXxX/qlX8Jjjz2G559/Hl1dXQWvbWtrw9TU1JrHZmZmYLfb0djYmPN7XC4Xamtr1/wpxL9/7N/jB1d/gEQqge9d+p4cHARBEBRyNXrV+PrdX3p3BSMRBEF4+7NQS0nIFfsKzk6frXA0giAIb19OXD2BN8ffNP4+tThV4GpBEAShXGwpcTyVSuEzn/kMvvvd7+K5555Df39/0e+599578fTTT6957KmnnsLRo0fhcDjKEtfzZ583vl6NreLC8IWy/H8FQRCEtSSTSUSdUePvZ2xnxAdXEARBEa9ceAXxmrjx9+9d/l4FoxEEQXh785lvfWbN3//hxX+oUCSCIAjvLLaUOP7pT38af/u3f4u/+7u/Q01NDaampjA1NYVQKGRc84UvfAGf/GTG2uRTn/oUhoeH8bnPfQ6XLl3CN77xDXz961/H5z//+bLFFXQF1/z92LljZft/C4IgVJoro1fw2OuPVToMAMDZwbNIVWV15ziA2eBs5QISBEEoM4FQAG9ceqPSYQAAvnnsm/RFetn92rGvVSwWQRCEtzsXVtcW2T1z8ZkKRSIIgvDOYkuJ4//jf/wPLC0t4ZFHHkF7e7vx59vf/rZxzeTkJEZGRoy/9/f344knnsCxY8dw6NAhfPGLX8RXvvIV/NRP/VRZYhqbHTOEmprFGgDAicETZfl/C4IgbAbu+sO78JEffgR/8+zfVDoUHB8+DgBwBVzoqOkAAIwsjRT6FkEQhC3F7b92O+759j34+pNfr3QoeH6QuiP3BPcAAKYt0xiZkTVXEIS3D+emz+G/v/bfEYgGKh0KQnYq+mv3twMAzs6JlZUgCG8fPvg7H8TOz+/EzOJMpUPZwJYSx1OpVM4//+pf/Svjmm9+85s4duzYmu97+OGHcerUKUQiEQwODuJTn/pU2WJ65eIrAABL0IJ+N9m8XJq5VLb/vyAIQiW5NnYNy/XLgBX4r4/910qHg2X3MgDgQ3d+CD11PQBEHBcE4e3DcwPPYbhmGLAAf/r0n1Y6HIwmaSj9/3H4/wDC9Ni5oXMVjEgQBKF8/N4rv4cDXzuAzz31OfzV6b+qaCzhaBgJTwIA8IHtHwAATGCikiEJgiCUjUAogCdiT+B6zXXs/i+7EY6GKx3SGraUOL4ZOXnzJADAE/VgV+MuAMDo6mglQxIEQSgb33j2G8bXN9w3Kn4TOz97HgCwv2U/nEEnAOCHr/6wkiEJgiCUjf/wD/8BsNDX3t3eygYDIF5FfuN3bL8DzgituZfHLlcyJEEQhLIwsTiB//TMfzL+/uSZJysYDXB+6DypM0ngsx/6LAAgVhuTbh1BEN4WPHkys8b66/34l3/8LysYzUZEHH+LXJy6CABosjbhSO8RAMC8Zb6SIQmCIJSNJy9nbmIpTwpff7aybf5np6i9dH/rfoSmqPWUk5SCIAhbmYXlBZxKnTL+fmb+DJKpyg0cDsfDSDrp9e+9/V54kh4AwI2ZGxWLSRAEoVw8c/IZpJCZY/PixRcrGA1wZvAMAMAWtGFf3z5YgpQpff3y65UMSxAEoSw8f+H5NX9f8i5VKJLciDj+Fhn0DwIAurxdeGjfQwCAaHUU0Vi0kmEJgiCUhVkvDbv0JqiC8ULyQqHLlXNqmISjhkQD+ur7AADToekKRiQIglAenjz1JOAGLCELPA4PliPLuDxXuSrtmVXyg3TanKivqofP5gMAjCxKFaMgCFuf00On6Yv0sT3grqzn+OVxWu+rYlUAAGeMunUGpwcrFpMgCEK5ODVG53hnkta2qGdzaaYijr9F3O1uAMD9t92Pu/fcDcQB2IBTN08V/kZBEIRNjj/sx3hiHADwqz/2qwCAG4uVqxj0B/yAi77ubezF7tbdAIAlbK6ssyAIwq1wcZS6EasiVdhbuxcA8FdPV84DdyowBQBo9bbCYrGgyd0EAJhcmaxYTIIgCOXi0hTNCesMdQIpIFWVwqWRys0O67ytEwDw8OGHAQA72nYAADwtnorFJAiCUC5GwlRccdB9EAAw5B+qYDQbEXH8LbJso+FwH7jnA7Db7NjdQmJN0BmsZFiCIAhvmYGpAaSQQr+vH0c7jgIAJlYqNxjo+sR1+iIJ9Lb2Yn/vfgBAyBWqWEyCIAjlIuSktayjugO2KRsA4J8H/rli8Tz16lMAgJg/RnHVdAAA5iJzFYtJEAShXAwtDQEAdtTtgD1gBwA8e+bZisXDe+xdbTTH7PZttwMAEq5ExWISBEEoF84uqhj/P9/9fwIAxpbGEIpsnnO8iONvgUQyYWQ7ttVvAwC0VLcAAOaD4jsuCMLWZnh+GADQ6+uFN0m2Klcnr1YsnhuTVLVuDVthtVpx1667AFClz9ySiDWCIGxtXE3UGvPj9/447um9BwAwEa1cQvLqOK33yWXyHX/Xne8CALTtaKtYTIIgCOViJkbWUXua98CX8AEAXr9ROX/vseUxAEBXbRcAoMVLusLs6mzFYhIEQSgHK5EVw5L6w7d9GIgDSSRx4uqJCkeWQcTxt8DU0hTiyTgAoK2aDgqNnkYAwHxIxHFBELY233v6ewCA4QvD6KimisGoLYrFlcWKxDM8S2K9I+YAAPS09AAReu741eMViUkQBKFcjK1khJEdrdROH7JVrqJmfJlstXwOHwDg8PbDAAB/wl+hiARBEMrHsoM6wA/1HUJPVQ8A4NJM5WxVXj77Mn2xQv+pSpH3+Pmh8xWKSBAEoTxcnCXrwLbqNrTWtMIRpPP8iesijr8tOH8jfaOKAA4b/XLnRqh68cmXnqxUWAY/+8c/i4d+8yEkk8lKhyIIwhaE/WbrbHXobe0FqLMeZ26eqUg8o/OjAICqJB0WrFYrXGGqtBwYHKhITIIgCOViaGEIQFocbydxPOaMVSye2SBVKza7mwEA7TXtACprr8X8yRt/gm+d+lalwxAEYYsSCAWQ8JBdyb2778XeFprzMBKq3MDhyVWa58ADOcevUILyzfNvViwmAIgn4uj4bAfaPtuGaGxzDdATBGFr8N0XvgsA8IaoG702UQsAOD++eZJ/Io6/BUbnSKixR+3GY9ElumEMzwxXJCbmR2d+hG/5v4WXrC/hb579m4rGIgjC1mQuTMm+Vm8rrFYr7CFa6y6MXKhIPJPLdGiotlYbj925+04AQMeujorEBNABa+fnd6Lqc1Xw/TsfJuYrLxwJgrD1eO3CawCApbEl7OnaQw+6gaXVygwdXoguAADaaqg7stXTCgAIRAOY8c9UJCaAqo9++Ue/jJ/9wc/iz574s4rFIQjC1mXYPwxYAXvKjv39+/Ghez4EAHC3uysSTzwRR7yKOtIP9B0AAHTW04DOAAIViYn5u+f/DpO+SUz7pvGXT/5lRWMRBGFrcmX0CgAgtkhFH81OKry4Pne9YjGtR8Txt8DYPLW/OhNO47HGKrJVWYpV5iADAKlUCr9z6neMvz9+5vGKxSIIwtaFW+e7fOR96El4AABXpyrjO84DidpqM363nY10cPCH/ZUICQDw1X/+Kq7XXEe4Loyl+iW8Nv1axWIRBGFrkkwmEXPTgWFPxx7q1knPYLs8crkiMa0kqbe/p4HsBuqq6oB00eCZG5XpIAKA4+MZG61ffuaX4Q/4KxaLIAhbk7FVOsfvbtkNq9WKA9tJkA4iWJF4roxeAewAUsDBbQcBAH3NfQCAsDVckZiYv3rlr4yvv/HqNyoYiSAIWxXuRmSrvp5a2luOB8YrFdIGRBx/C0wtkeWAO5XJMLfU0OCMlcRKRWICgBeGX8BLIy8Zfz81dapisQiCsHVZxSoAoK+pDwDgs/kAAEPzQxWJp307tfR/4OEPGI/Vu+sBAIvhyvigA8CJobVeaVfnKze0VBCErcnQ1BCQrrU4suMIrFYrrCHapl8Zv1KRmNjvvL+533jMESYbwUtjlfPlPTl50vg6WhfFF7/9xYrFIgjC1oQHw/XX0/rW5GkCACyGFo2ZYjq5PkHVk5awBdVV1CG5o43steIu/fFks9C4YHx9JnpGLFsFQSiZhTCtI1xMvKt5FwBgLj5XsZjWI+L4W2AmQC2lXqvXeKy9jsSbSmWdAeDc9DkAgN1CFgijydGKxSIIwtYl6qQSQd6cN7uo/Wl8pTIZ3rkg3Tz5AAMASzPUpfPaQOWqtdeL4ZfnK1PlKQjC1uX0jdMAAEvIAl+1DwAM3/GatpqKxJSootL1XR27jMe4g+j6dOXaYH848EMAgCVlAQCcn9w8fpWCIGwNLgyTRWCdtQ4A0FDVAABIIWV0h+tkYpEs+Wwxm/HYrq702usCFpYXcn2bcqYCUzg7f5b+EgfiNXF895XvViQWQRC2Luys0VpNFn37e/YDAAKOytpGZSPi+FtgPjgPAKh11BqPdTZQi3/UWrlhFf/fM/8fAOCQ8xDFUhvF+NzmaVcQBGHzE41FkXRTZcjebhpSxMPYZsOzFYmJ27HWiONTdKO9PlY5oWYiTAeandgJAHjm9DMVi0UQhK3JhVESatyRTDfittZtAAB/zK89nmAsiKSD7gF377vbeLzWSnve0cXKFF5EY1FcD9B637VMll8jy5UboCcIwtbkpRPUZX3z/E0AgN1qhyVMCbeLgxe1xzPlp450ZzJj19rd3G3Ya10Zq0wH0dM3ngYAHO04ipYAdcj/7St/W5FYBEHYugRSJIJ3+GhOGM8Ns1RbkEqlKhZXNiKOvwW4jd/n8hmP9TSTd07cWbn2pxvzNwAA3dZu2AI2wAL8w0v/ULF4BEHYeowtjtEdIgXs7t4NAPjJd/8kAKDv9r6KxPTGuTcAAHMjmfarJi8J5YFE5bLOfrsfAHBnDd3kJ2IT0nIqCEJJXJ8hwbcGmSrxVi9V10yvTmuPZzpAr+m2u1HnrjMer3FQfIuhylhZ/ejEj8h+Jgo82vcoAGAmWrnhoIIgbE2Wo8sAgAZPg/GYPUpd10MzQ9rjmVmhdSzbrjXbXuv6ZGWKQJ49/SwAoN/Vj4/c9xEAQPft3RWJRRCErUvYRrMTeppIL93RmbaNQhyheKhicWUj4vhboKmLRJn9O/Ybj21royqflCuFSCxSkbj8KT8AYHfrbrQlaHDdwMxARWIRBGFrwoPYWqpb4HbSRn1nG1VGTwQmKhJTxBYxYmJ4zkMoVZmb6sLyAhLVVNbzf3/g/waSAFzA2cGzFYlHEIStybB/GADQ6Gg0HkuuUJLttbP6baNmVkmoafW2wmKxGI9zt+RyZFl7TADwxOknKI7VWhzsoaF1K7bKzfkRBGFrEkhSUUWLN7OndCVdAIDRef2dMXsO7gEA3HfHfWse76qnDhl7rV17TADw+oXXAQDzQ/PY170PADAd0p+wFQRha8PFw/0tNOeh2lkNm4VspCpVcLEeEcffAq56uoHefSDTbsoVlrBkMtK6CTrJ7/xA7wH87Pt/FgBQ1VlVkVgEQdiaTAWovbOtus14rLOGbKPGl8e1tz8lk0nD5mV7+3bj8TYfxRexViYZeXXuKmChNtiju47CEaBhdc+dfa4i8QiCsDVx+qiVfldnxt97cYwOC2dunNEez8snXwYArM6vrnmcq8hXYpURpE9PkDd7r7sX9+y+BwCQqEkgmZJuHUEQzMPzwXgfCQAe0EyFCb/+IhDWDdrq2tY8vqeHRPOoozKWrQtx8jrv9nWjszZ9DqjQ7CFBELYm8WQcKTdpB3fuS9upWCyGA8fo3OaYkSji+FtgIUQ3Cx7gAQAOmwN1Ljo4zIfm9ce0vICUh954d+26C10+yjaz0CUIgmCG4QWqYswWx5vc1C0Tiocw7ddbNTI8PWzcsbLFI57zELdXxspqPEwHhEPdh2C1WlGfrAcAHL95vCLxCIKwNWnupoHHD9/1sPFYZx2tbysJ/UL0yAz5eMcCsTWP33/H/QCA/r392mMCgPkw7a07azpxdPdR2Cw2JC1J2ecKglASPB+ss77TeKzGRrZR0yv6K6P9YT8AoL6qfs3jXNnOc3d0EwBV2G9r3oaqOBXbnR+WIciCIJiHZzVaYFnTAb4yQ/tbtk6tNCKOvwUm/ZMAgBp7zZrHGz3UEstvAp28cSX9xooC/W39xjTYSvhVCoKwdfn+098HAAyeGzQeq3HXGIOBRqb1DkC7PpH2WowAtd7MEOSuJkoAJl2VqRq8Mk8DknY3UtdQj4d81C7O6h/mJAjC1oXn2GQLI71NvQCAoDWoPZ75VdrDVmFt5+GOrrRHZIUSkksJGsLcXtsOu9WO7jryvh1cHCz0bYIgCGuIO2gN627O+GfXu2j9rUSB2xtn6Ay/MLGw5nFXnDrVLwxd0B4TAISd5BO8p3MPGuxUELicWkYikahIPIIgbD3mgjQvrKGqATarzXicBxDzQOJKI+L4W2BsbgwAEJhdOwguvEA3kRdPvKg9poHBAQCAK+SC1WpFZIGsBgauDWiPRRCErQsn1Hx2n/GY1WqFJULes2PzY1rjGZwh4YOHJTG9LSQewU6dM7o5OXgSANDjTQ8XaSDhaDZSmQofQRC2JgurtH7VuzPi+PY2spCqRDv9YpDEeo/Ns+Zxn9sHAFiKLOkOCQCwCrJ56W2ktb/P1wcAuDgpCUlBEMwRjUWNFn/2vwWAxioqcPNH/NpjGpyifW5gbq2ucPPiTQDAGwP6KyuD4aDRkb6/bz8ObjsIpADYgCtjV7THIwjC1uTVM6/SF+tqPbgAY2pJxPEtTTyR8c3pa+lb81x0iQ4xRqWjRoaXyAqhNkWVla1eqhwP28LaPYIFQdi6LERIqMlufQIAe5zE6cmFSa3xDM/R2uZKuNY83tnUaQzzCKb0V1e+fJp8eUcvkVdah68DQEbAEQRBMMPAlQEAwMi1TFcOW0gl3UlEY3oF8qUwid9eu3ftE+nxDmy7opuaNurWvPfAvQCAqUt0oPqHp/6hIvEIgrD1WAwtAuk5w/3tGXH8ngM0x6BtW1uub1NKMEl72KbqpjWP85yHYEL/Hvfc4Dn6IgHs7NwJj9sDa4jkIxk8LwiCWS6NXAIAxPxrrfqqrdUAgNnVzVFUJuL4LTI6M5rzpgpkfsmV8Ctr2k431I+9+2MAgNt6bqMnnMDU4ubIyAiCUJi5pTkEw/o3wdkYm3Tv2k06tz9NL+ld32JWuplmV1UCVM1eyUpGHujEovij9z4KoDIHK0EQti4xO61x7b5247E93TSIDVbg2vg1rfHwcLga51rrQPYgnw/otx1IpVJYjFJF+97uvQCA9ir6eY0ub45hToIgbH6WY5n1rbqq2nj80K5DAIC4S79tVMRCmceW2rVFKb4qH4DMvlwn50fIW9wWssFuo+IYV5SKVC6NX9IejyAIpRMIBbQXWKyHhxx7LWsLLmqdVNDL3YqVRsTxW2RwOu1tGMWamyoA1DnTAzkr4DnOleP99STYtzW0AenPwsVhaTkVhM3O2Ztn0fo7rWj7T5UVV0OpEACgubp5zeOuFG2KZ1ZmtMbTu5Na6O85cs+G59ijlz17dRKx0mGmu5E8K9kjeC40pz0WQRBKJxwN4yP/7SP45Jc/WbEYkskkUk7q7utuyvjfup1uWMJUiTE8M6w1ptU4db9w8pHpaKBEYMqVQjKpd9aDP+xHLEnifLOX7k3bm8h6Zja2OaqOBEHITyQewe+89Dt4bOCxisaxEKLuyIaqhjWPN3moIIT9cXUSs9Ha1uZbu/9v8FKMkVREe0zuZjcAYGfrTuOxWpCYdWPmhvZ4BEEojVcuvIKaL9Zg23/cVtE4ZgKkG9Q56tY87nP5AAD+qF9zRLkRcfwWGZ2lChVb1LbhuQY33cQqIdSML48DgDGgCADsEcr0Xp24qj0eQRBK4zN//RkkPUms1K/guYHnKhZH1EpZtebateK4x0r+s7qrBpcjVOXDGeZs4itU4XPiwgmtMQFA3EmvzfZaLNgshhYRT1ZmYJ0gCOaYWZxB16904bHIY/ibpb/BzcmbFYljYWUBSI9T6G7pXvNcq4/s8aqbqtd/m1KMbp2qtd06Pc00XwFW6nLSCbfleqweuO0k2rD3eMgS0hqLIAil848X/xH/+bn/jI/800fw4G8+WLE42Pq02rZ2Xa2xUafMpF+vdSAAJBw04LKrsWvN47wPj1r0V376434AWZ3oABod5Ms+4q+MtZYgCOb50ve+BLiA8bpxfOuZb1UsDi4aY52UafTQerISW9EeUy5EHL9FRudJHHfGnRuea/DQL301od9z9vTl0wCApcmMvYA7TgeImzOVOfQJgmCO5dVlvBx+2fj715/7esViidtI2G2ta13zeLWdDhJcdaMLQxx3bRTHV2bohnrxpt7umGA4aMye2NZGGXm2fUkhVTGhTRAEc3z6Lz+N+fpMou9mqDKf2aHpIfoiCbTVr60abKmjFvtwKqw1pu37qCL7g+/54JrHm+qagHTB+MisXnHk5BUagJztWdnZ0AkAiNor2zIsCEJxjo8fN75+2foynj39bEXiePkk7bUnb6wVwZ0JOtevJlcRjupbc+OJOFIu2k92NeUWx3lfrpOJFbJC6KjuMB5rq6Z71HRQv32sIAilcXw+s+Z+7ezXKhYHV4a3eNfaRt2+43YAQH1H/fpvqQgijt8inFF2p9wbnmNvMN0HGQBYiZNI5LF4jMdqrJQFH10QP0ZB2Mz8yl//ijEVHgCOjR6rWCxWD90e+tr71jz+ngfeAwA4cOcBrfE8eexJAMDls5c3POe1kn/ZbEBvW70hfqeA/jaysnLYHLCEyAbh8ujGWAVB2Dycnz2/5u+nJ09XJA7uRrRELLBa127NOSHICUJd8EDO9bYqVqsVlgitcRMLE1pjGpodAgBUJaqMx3pbqHI84UxojUUQhNIZmB5Y8/dj549VJA6eC8b7R6a/rR9Ib8NvTOizDZmYnzBmmfW09Kx5jruHuLJcJ69ffB1AxmccAD700IcAAL2392qPRxAE8wTDQcx4MjaobwTewNjyWEViCSQDAIC22rUFIHfdfhcAwFHr0B5TLkQcv0VqW+mwsq1jo39PvZcyHzFLbMNzquHDQXdzpi23yUX+aSupzdGuIAhCbiacJDT0JGhjvNSwhERS/2Y4kUwYLfV7+/euea69noaf8bA2XbBQY0tstLKqdlSmmv3mNInjlrAFLmfm4GCPkT+CMZtCEIRNyWSUCh06nVR9fHqqMuL45CLFwWtHNtFlqog+c/mM1ph4wHGdu27Dc7Y4rcOTC3qtB0YXKYnAg+8BoL+VEpNwUveVIAibk0QygdeHSGytCVHh1umxyqy5PBes1rG2GzF7zsONKX3iOAvfTqsTvmrfmue2d1EXj8VtQSqVWv+tSjlzg+47S+OZjvTbushiZSo4pTUWQRBK46+f/WvACVhCFuxv2Y9kKlmxIhC2hWquWWvXynMfKmFHnQsRx2+R2ia6mR7cfXDDc48+8CgAoGdnz4bnVBIIBYC0ywv73wLAx973MQBA957uHN8lCMJmIeyibpNf/8lfR52rDqvJVZycPKk9jpVoJpFW51o3OCNdReiP+DVGBAQTwTWvn40xzCPs1xcQMsnIxqrGNY+7E9RRNDZfmey8IAjmWHHSWvdQw0MAgMdPPl6ROOIOapdf7+8NANMjVOF49upZrTGNzpAQHV7a2AXpSFCFz/SS3rb66QC9ns/hMx7rbuk2Kj11D4oWBME8L557kQSSOHC7g1rpbyxWZqgjCzG59pScpNRpG8XJSLZmzYYL3pJIIhTXO1th1UoWsduaM8WAPFtnPqR39pAgCKXxjyf+EQDQGe3EzkYaqjvkH6pILF3byS7q4XseXvM4zxLT3f2dDxHHbxEWj2pcNRueY1uVbIFJB0NTQ/RFau1Ap1YvtWNNBSTDKwibGb5hba/fjru77gYAXJi5oD2OhVWqwHbZXHDZXWueW5qmDfzA5QGtMbFNVb1no3jEgpLuYR6pKlJkdnXvWvO410JtuuP+ca3xCIJgnrHZMSS9ZJ79s3f8LABg2bmMmUX9AquvzQcAOLTn0IbnvHZaT7h7RgfJZNLoHqpxbNzn7unbAwBo623b8JxKeKBTc1Wm8shusxsDnSLWiNZ4BEEwzxMnnwAAVAWqcKjzEIBM945ulmPUZdJU1bThOUeSkn9zK/oGDnNxRy6x3uvwwpL2XNF5HwCAmI3uA92NGV3BHqfkwcyyJCMFYTPj6Ka17F88+C8wf4OSWd/6QWWGcrI1YGP12oIypPN9K7EVRGOVnx0j4vgtMjFP9gf25MYW2BonHSRWIprF8ZkhAORZ6bBnfHuMwRmrMjhDEDYr8UQcQ4tDAICe2h60VlFS6/zI+QLfpYaTF9NDzwIbraG4xX9qUW+yjduxNtxUATR56XCzmtQ7BHkuSAenJs/aw1WdnartucpREITNx8VpGuDrirnwvqPvg3XVCliA77/+fe2xsDDCA32z4aoanZ7jCysLQNrBqqOxY8PzfW19AICkM6ktJgBYjFK1Z1vNWlGe23KlklEQNi+vDb0GAOi2d+Pu7VQAwt07umH/25aalg3POVPUhr0Q0GfVd/w8Dc2LLG1M8FksFiNJyvqDLrhDMvs+wFY0cUtcrKwEYROzmKA90z1770GDjfZJk8HKJCQNq751Hek8swvIzN+pJCKO3yIvv0lTri+c3ljVmQzTYYGrL3XBLfy26FpP3vACVVwOXBvQGo8gCOY5P3QesVQMSALt3nYMnR0CADz56pPaY2Hh2xbb6O/d5iNRImrTm93lKsam2o1VPo1eEsx1D0G+PnEdAFBjW1tZyQKXCDWCsHmZT9Hn867tNAyoMUbryLFLx7THMhegRFuuqkEeyBmIB7TFMzaXtoRKAW0NG6vD2Ydct5VVAPQz6K5faxPI1laTS5U59AmCUJxrK9cAAAdaDuBdB98FAEh6k/CH/NpjCaXLFdvqNq5vbgtZ4y0E9Z3jLw/RAPfAbO51PuSneM9f01cwE46GDbvW7qbMmtvV3GVYWY3M6LOeEQShNMZXqIO5s6YTu1t3AwAWU/q9vcPRMIIxskddX1jscXuAtKQwND2kObKNiDh+i4SSdJPKNaiIDzIpaworQX0Z8blVOly5kmttEFo8lBUP2/QKR4IgmOfEtRMAAFvQBo/bg6468uaaj+oXWGeWqFXSmXRueK69gQZyJux6B4UmbPR6zbXNG567/+j9AICeHXrnPDz72rMAgKsDV9c83uKlNdcf9WuNRxAE81ydp8/trkayRWpx0ud2bEn/rIAfPPMDAMCFkxsLLtiqj+cu6MCoTowCNuvGJGlsmZKVOoUaAPB1+gAA9x28b83jNy/ScOQfHvuh1ngEQTDPMqjK+GD3QfS09Bi2n5XwHa9poqKG23fcvuG5fTv2AQC6tnVpi2c+QHt9j9WT83l7Qr+VSbbwnW3XarfZYYmQzYtOX3ZBEMwTiUUwuUIFAy1VLTjUdwgAEHLqnVsAAJPzmcKFXPaoXNi7GdYTEcdvkUiS2p740JJNa32r8fXkgr4qlu6ddON64I4H1jze05wWjJzpLLAgCJuOsyM0bM0bo9bJ7c00nZ4PEzrhoRiulGvDc12NdFhIuVJIJjW21KdDydXiz2uu7spxFr/X26q878H3AQB2HNihNR5BEMwzMDYAICOON3so8TYb0j8UiOcl1Ng3+ns3eKkVlosydFCoewgAxm5QAuH05dPaYgKA5TjdD/f27l3zeLW1GsDmGegkCMJGok4qD9zZToPheO3lRKVOUi4qfd7Tv2fDc7v7qMLSVbNxD6wKHhBaba/O+TwXq8wu61vjDIuDCOB2utc8x/cGGTwvCJuTc4PnkEKKOtJr2nHXLuqSTHlSmFvSN08BACYW0gUXMaC6auMa54zT+jaxqNc2Khcijt8iEaTFcY9vw3NupxtIW/VOLejz5eUbKw+nYzqbOo2vR2cq7+UjCMJGrs1Su2mjjdrD93TShj3s0J/Q4gqWKmvVhud6WtLJNisw7dfjqZ1IJpC0kxC/d9veDc/zYGTdcx5WEvR6rTWtax7vbyH/tIWwXmstQRDM89TJpwAAqyM0q6C9hrpi/DG/9lhWExQDW0RlwzMVIhZ9wyanl2htdyQcOZ/nfWYgps/qJZlKGr7r6+1n2Jd9PihWVoKwGYnGoki6aR+3p4v2t/21tFc6Pnhcezy8X+Q5YdkYe8qovj0lx1PtyC2Ouywk1Ou0bHXWkmDVVJ1jaGn63jC5KFZWgrAZOTd0DgBgC9ngdDjR29qLtHyJN668oTUWLriwxCw5n+diPN57VpItJ46/+OKL+PCHP4yOjg5YLBZ8//vfL3j9sWPHYLFYNvy5fPnyW4qD/W8bqhtyPm+N0Y9W5y95IUQ3zAb32piyvXwkwysIm5ORZWol6qymZNb+vv0AgGRVUnvHB/vIem3eDc811DQAaUcVXcm27ANKroNMKkIVQDqHJwFAEGRz0FG/tpq92ZuuQA1KFaMgbFY48birlaoXuxuo+y5o1WdfwgRT9JrNNRtto44eOErPdW18ThXsAZzLWgsAGjzpavaUvmr2ueU5qoICUONYex/gfe9SdElbPIIgmGc+NA9YAQss2NND4vjQuSEAwJOv6J2tE41HEYrT2uWxb7QxSYVpnbkxps/uJRine0C1M7c4XmWhYpXFoD6/YE7Itte3b3jOnaJKcp02L4IgmOfyBGmd7hh9Vq1WK9xh+vr0Tb1df1xMZ4/bcz7Pyb+lUOX3cFtOHF9dXcXBgwfx1a9+taTvu3LlCiYnJ40/O3fufEtxxK1xAEBjzcYqHwCwxandSGf70zOvPAMAmBzcmMVlsV73lGtBEMwxG6W1YlvDNgDAbb23kQhtpWGdOlkK081pvQAB0M2VvQZ1Jdu4WtBlc8Fl39jmysM9YpYY4om4lpgAIGKjg0NP41qvc3eSNh+TS5N6rWcEQTBFMpk0qhh3tJP90Qcf+iAAoKEnd9GDSliEyDUcrre1FwAQhr4k6a79lDB44M4Hcj7fVEOVhDqtrAYnBumLBFDlWNvVxNX1bLsiCMLmYiZIImqztxkuB+3jeD7LUkyvIJLtf5urQ/LGJRLFT1/QJyCxbRZXra/Ha6diFZ1DkPm1cg2KZm90sbIShM3JzVmaxVJnycxHbHHRmruQ1FtMNrdMNi6OZO5uxP4O6iKqb9voR66bLSeOv//978dv/dZv4WMf+1hJ39fS0oK2tjbjj82W20fRLNzi31yXu5KHxZr5FX0tnuzTkwxsFGMccXozTvn12bwIgmCeJQsdDvZ10iAgu80OW4jWKW6N0kVVPR0WelpzD7jsbSOxpqFDj4h05vIZAEAylFto5iGhADDj11fFEneQEG/MdUjDHuQJS0K7r5sgCMUZnR0F0tvA3d3kL9tVT/MUpgPTSKVSWuOJ22ktWd+FAgB1LjrYcNJSB0sReq1cc3UAoKWWDlhRa1RXSIZnpSVqgdW69vjC1lbBpP6qf0EQijO9SpWDPIQTADrqaL0LJPXZMwFZlqdxoNZbu+F5HhinszMmnKREY617YzwA4HWQOM7FIjo4d43OHsngxr33A0cpcbrn0EbPdkEQKs/YMhWwNTkztkg/8eBPAABcLfrmKQDAXIDOws5U7m7EA3sOAAAa2vQXp6xny4njt8rhw4fR3t6ORx99FM8//3zBayORCJaXl9f8WY+1in50fW19Of8fTtAvf3FVX/sTby5yeYO5LVTJyEOfBEHYXFh9tKbct+8+47GOGjo4RN36BAgAaOuj6sVH7nkk5/PN1ZQU1OXHyION2T5lPb5qH5Deu+sSx4PhIJCeT7Stbdua51p8LUY8Y3NiZSUIm40rY1foi0h6/UBGtAnFQ1q9ZgEg4SCvquxEH8OVjaF4iNYdDbAQz17e6+HKce6i1AEXd+QaEspt/2GrDJ0XhM3IS6dfAgBYgxnpgQe86/7ccot/Pv9bFscjKX1zHnbuo472h+55KOfz+3eS1WJ738Z7hCpOXDgBIHdHOheF8LwMQRA2FzMhOg+zlgAAPXX0uR1d1juDcCFIleqsR66HO2YCUb2J0ly87cXx9vZ2/Pmf/zm+853v4Lvf/S52796NRx99FC+++GLe7/nSl76Euro64093d/ea56OJKBJp093u1u5c/wvcdwcJXPsO7yvTv6Q43HKbqy33viMUT++uXm3xCIJgjkg8YrSn7+vLrBl37rkTABB36xMggIwwwhWL6+EWS13tnWxPlW84nNVqNeYqTC/qmfOQXcXJtgfZ8ViidOjiISSCIGwebk5Tu6k9mvE/9Dq9Rtff6av62ulTqRTS9RToaNpYOV7rygjU43PjWmJ68U3aI08M5rbia6ih6h7uotSBcR/I0Za7s4uEJXtNbj9LQRAqy8krJwEAK5OZxGNfcx8AIOrQWwAys0SiEVugroeTfzxfTAcsxLfWt+Z8/tCeQwAAb8PGWUCq4D1+LovFejclEBbD+ooABUEwz2KcPpu9DZkzKnc285xCXRy88yAA4OF7H875vAtUyc7FcJXkbS+O7969G7/wC7+AI0eO4N5778Wf/umf4oMf/CD+4A/+IO/3fOELX8DS0pLxZ3R0bXaFJ0oD+b3BuBVVZ/sTt7d2NORoy3Wn23IjlTO6H54exi/92S9pHy4oCJud+RDZL1ktVuOzCgAd1fRZHl/RI4gwiyG6oWbHks3yDK1rrw+8riUeHrTpSOUWxwHAGqfbGfuaqSaSHvldZa+C27kxE85zHiYXK3ujF1sXQdjI8OwwAMCVWNdami6CuzByQVsswVgQSBcw5rKyyh6qPj6v517AInx4Kfd+bUcP+bTbPfrE6NkVEsddqY3twHfsuQMAEHfqTSQLgmCOmVUSpBtdmVld29u3AwBS7pTWeTFzK7Qv4mToeiohjnPFZL6BnJwk1WmvxRpGrkKZwBzFe+rSKW3xrGdifgLffuHbFXt9QdjM+Hp8AIB3H3238djoVdI0Xzr5ktZYuBszl7sFAJw/RbPVXn7zZW0x5eNtL47n4p577sG1a9fyPu9yuVBbW7vmTzZ8U3Xb3LBbc99Ya5wkmutszWX/W25Ty8bn8gHQO8hjPff+zr346tRX8dHf+2jFYhCEzcjQzBAAoM5ZB6slsyw3u8m+5MKoPqEGAAYuDQAARq/lbrtamCKx+vrodS3xLKwWbscC9M954ENDdlVnNlzlrnMo83oe/n8eRvN/b8bP/cnPVSwGQdiUpIvvOus61zxcFScLk8HpQW2h8D7RAgs8Dk/OazjZpqsTJZQgr9186xtXN8ZSMcSTekStQveBhiqqZA/HwwjF9PkEZ/P41cfxb/7p3+Dn/t+fy3gaC4IAAJiL0Nm5tTpTGb2riwb/wkoFVLowCi7yDIdr8dFMBZ2dMeOz6YTkcu6EJO9xJ+Zzd/OoYCVO9yauEs8mMEvi+NDUkLZ41nPf79yHTxz7BP7VV/5VxWIQhM3KbITOnwf7DxqPNXooOclD4HVR7Mxc4ybdlGcvVJJ3pDh++vRptLffumfX+WuU3Yis5H9jTQ5TteCrJ1695dcphXgijpSb/Hh7mzdapwxfo03HMy8/oyWe9VyeuIxJH/1MfjT5o4rEIAiblTfPvQkAWJ1Z6903don8ql8e0JtJ5eFwXD2zniobCUi6vMH8IT+9btp7Nxd8cOBDj2q49ctjyy1m8dCRSonjH/3dj+JFy4uABXhy9smKxCAIm5WaVtqI33/4/jWPV1uoam90UZ8fI3cjVjurYbHk9sC1J2h9m17SYxvFLf58YFlPdnXjalSP5+xikDqacq25ta5a2CxkkTC9oudntJ5PP/FpfGPgG/irub/Co7/7aEViEITNynKCxBEefAwA1VXVxl5pIaKvzZ/XEm7lX0+rjwT8lDOFZFKPQB6I0H46Gc79emxxdWXoipZ4gMyA4wbvxiF5rXX0M9ItsjHBcBDDbtI2/nryrzFwY6AicQjCZiQQDRhn9GzP8e5msoPW3WX3xsAbAICZ0dxzweqr9M95yMeWE8cDgQAGBgYwMDAAABgcHMTAwABGRkYAkCXKJz/5SeP6L3/5y/j+97+Pa9eu4cKFC/jCF76A73znO/jMZz5zyzFwZaItkdurDAAC8/SGHJkeueXXKYXx+XGjLTfXkNDkKt1sdR2s1vN3V/4u825rAb7z8ncqEocgbEbGF6hixJVcu1Hn+QFhi95MatJB6wUPOVuP10Fll6sxPaIIt5HmE6IB4PadtwMA+vf0a4np9dNkKTM9kntNdVnod8nVjjpJJpP4vv/7xt+Xq5a1VXcKwlZgdpWSVs2e5jWP1ztpgz6xoq8678Q5GnoW8ueveOYKx5llPQOHoynycamrym2t5bQ5YQPtgXVVSffvpbX96O1HNzxnsViQDNJ968zlM1riyWYuOIfhpUzl683oTe0xCMJmJmglobW/ee0erbuBxJqITZ8o0tBOYu+2rm05nzfsrWzUjaKaVCqFlIMK3Jp9zTmvaamlavaYTZ/VSyhF96SWmpYNz3XUk+AWs+uLJ5tvPP0NY1YH3MDHv/bxisQhCJuRwSnqfrTDvqaYYVsrrXkpVwrRmL5ZD6yHrs7n1g3qvbT3jlr0zp/IxZYTx0+cOIHDhw/j8OHDAIDPfe5zOHz4MH7jN34DADA5OWkI5QAQjUbx+c9/HgcOHMCDDz6Il19+GY8//jg+9rGP3XIMLI5zJU8uuG0gmAje8uuUAotZbrsbdd6NhxnOyKzG9U+VTqaS+ItTfwEAcMboTvZHT/2R9jgEYbMyuURVyF7L2kE7LE7zPAEdBMNBY8PZ2diZ8xq+0QbjetY3Lu7JVb3CGG3+Fj0b9fkA3Qe46mk9PAR576G9WuLJ5uT1k4AbQArwODwIRAM4M6VfMBKEzcqYn7pyWrxrD/3NVSRMzAX1efXzntISz101DmR8tnXZRvEBxefx5b2GKxxvjusRgi1u+vns6tmV83kerleJIpDnLz8PAHBa6X4QrgkjENLTWSUIW4Gok9aUnW071zze7NW/5tY10zmZiyrW01yXEagDMfWf40AogHSuES11G4VoIFPNrtPqhc8eXCWeDZ8PEo6EtniyeW36NQCAdZWkrMGkPis0QdjsXBy8CABIBpNrOhL729LJSYteK6twipKMLIKvp6Gazve6zvCF2HLi+COPPEIZ1nV/vvnNbwIAvvnNb+LYsWPG9b/yK7+C69evIxQKYWFhAS+99BI+8IEPvKUYzAyH42qbUFKP92ExLx82wA9Bvxfj5MokpgJTsFls+PmenwcAnAyc1B6HIGxWZgJUDVhjX9vCXonN5/RiRlhob8xdOc6DiMMJPRXtO/fRYep9j7wv7zUs2OuyelkIFvZBb6unqn9d94Bsnj+XFmpWnHik7xEAwDPXKmOpJQibkeffoM/ItTNr58+019Catxhf1BbLwgqtJfmGwwEZSyled1STsNI9x+f15b2GhyBz/KrhgfL5BkVzwYquBEI2f/nEXwIAula7YAlbABvwxPEntMchCJuR1dAqUlVUGb23Z23BgM/hAwDcmLyhLR62suK97HqsFquxp+RrVZK972a/8/U01pBXMFeY66CmmX4+B/cc3PBcT0u6ut4FhKP6fYKHrEMAgF+675cAAPHqOKLxyledCsJmgDvS7bG1+0pvlRdIN+nonK3D9kuN3sacz7ONa8JWmWRbNltOHN8MGF5lltxeZQBQ79HrncMDnXgQ6Hr4TReBfi+fJ16nA0JNsgYfv4faniKeiDYfN0HY7CyESFyoc6499Pc00+Yz5UohntBjizHjT7ftJ8gPMhe1bkrCcSZYNcvRwsk/APDP+AFkhomqxvBBt+X2Qa9z0e+SE5c6OX7zOACgIdmApgCt/V/5/le0xyEIm5UgqOulw9ex5vGeBlpzQxZ9SS3eU+brQgEyViLb9ua2ASg3fEDhap5c2JJU6qhLjL46chUAEF/NfS/kn9/cir4KVObCAg3N3lO7B7Uhuk89c04SkoIAZPzEbRYbdnTsWPPcjXMkij/18lPa4hmfSwtHhRKSFtrbjc6qnz8xs5Ted8eBKlfuPWVTXXoGkC3d4akB9hzf1r7xvtPbmplvprMCFaCExRtj5GH87x75d/A4PEhZU2usrQThncyknzrS19u1AoAtSnu3kVk91s9ApiK8qTb3LDPu1knYRRzfkiyFqHolX8UgkDlQ6PLOOX6GxJCVudwZ7jYfVTHq9Cpjjl+j2Cx+C47uOgoLLIADmFjW5+kpCJsZf9QPAGjyrL1p9LX20RfWzGZeNTxA0hLL3+LPrfbsS6uaYlU+ADA9SpU3l25c0hLTcphEb6/Nm/P5xSkSvE6cP6Elnmyu+68DAHq9vbivi+xdppx6fIEFYSsQsVOhQF9z35rHf/yhHwcANPfl9n1VgT/oB1C44KK/I90Km/+SslLTSGvtkduP5L2GhaXFVT1V9lcGaRDd9HDhOQ+cbNDJtJVieveed6PXTaLRqfFT2uMQhM3IYoQ+k42eRthtawVpn9MHAJgL6UtqvXLiFQDApdP594tLM3TW1zHDYG6J/u2F9t3ZFeWzS+oHvUfiEYTilCSud2+0QnA73UYF6siMPpENAK7MXUEilUCLtwV9vj7sbKDu0qvzV7XGIQiblell2pNwki+bWgcl8FdT+qyW43YqashnG9XdSrMnLC4LUil93TG5EHH8FuBKwHwVg0CmUjtu1VPtyUb34ZXclZwsjlciI3NtjtqWm53N8Lg96K6jD8DoivpsvCBsBVYSJP62VK+9afiqfUA6n6Vr8xm30JrltuZP/t1/5/0AgL5dfTpCMpJ/Q1eH8l5j+KDH9FTUsH1L9qCTbFgc1+XHm03jbmpb+xfv+xd4/9H3AwCSnqRxABOEdzLJZBJJN3WubW/fvuY5tqDjIcA64NcqtObyOrMa1XOY4dfhLqFcsLUgi/uq4bZc3l+vhwtWuKtHFzcmbiBeQ/fNj937MRzuoJlIN4MylFMQAGAxRPuhXCIre46zgK6DUIJE33wDh4HM+qajM4a7XayJ/LJMdVU1kD7CGx2eChmfp4IcCyx5C1PafWRD5m3KXSSiiu899z0AQHSWCnR2NdIcistzl7XGIQiblbkArSnVto1n1KO3USdiQ0f+zsByw7MReXbCerpbSBtMWVJGUq5SiDh+CzS0FZ5yDQDNtXrbA4zKozxlRZ1N5F2ccqW025mMrJCo11tD1TT9PqqAGvIPaY1DEDYr9R10YDi0+9CG56rtdGPT1fXha/EBAPo6+vJewxUs4aQeWxUWotnjNhdsKaVrCHIgTjHls3pha61KeI7zAeHO/jvR1dQFpAv8T16TWQ+CMDE/AaSLF3d37V7znM/tAwD4w35t1SvcGcO+4rkILNJ6c2XoivJ4ookoYkm63+RL/gGA00I2JktBPYmEuI0E6FzD4QDAayeBRmdiAwCePPUkAMC2YkN/ez8+cITmGsUb4xWvgBKEzcDpy6cBAPHAxoKx9loSWFeS6r29GbYELDRwmG2aePi6Stp76WdgdAjlwGKxwG1LJ1DzO3CVjSsjdK9JhVOwWnLvvTlRqWvfzVybpqK7qijdM4Nj9Prf+KdvaI1DEDYri2FKNnKVeDYNVaRjzoc0DXiPRY01i2eprcfrzCTYdM0Oy4eI47dAUwfdDI7uP5r3mkO3HQIAuOvyVwKVE8P/Ns/hak/fHvrCCgTjem9ic3HKXu1uoUNok51+fi+df0lrHIKwWeEqxjv23rHhOWPoTX7dpKwUq4jOfk7XDYyr2QsNh6txkzjOFUGqaeyg6uw9/XtyPl+pOQ8rkRWMr1DFz+7G3bBarXCGaFdyfuS81lgEYTNyZTwtMEezfFzTcAtqLBnD4oqeSkZXDRU1tDW25b1m7OYYAODSdfW2UVMLGQumKnv+Gw9Xauuaq8CDqfMNrOtq7gIAeOv1VjFemyKhxhun1/3w3R8GQGIfzxMRhHcyF26QJ//S9MbEFc994DkQOmDL03rvxkp2xuhE0dAZwxaFPHQzHw01JGrZ3DblMU0skPWpLZb/tbiiXMfQ0mxGl6jzvNlFhYidThLcJiJi1yoIAOCP+AHk7tZprKJ1Zj6oRxzP1h17WntyXmO1WOF10B6qEnNj1sRS0VffohQbfglkqgaDsSASSfXV48WsXrwOL2wWusHprqpZdVB77sFemnY9d53e9M+ffl5rHIKwWeHsLd+wsuEbG7elqoYF7+ws7nriQRKr55b13MB4OFyhKh9fFT2nawhybTNl43lQ3npYHI9a9fiyM4+/8TgAoBrVqK+i9051kpIZVybVV50KwmZncGoQAGCPbBzGVu+tB9LNdbqGFbE91UN3P5T3Gk7+RZLq17fphbSndwJwO/IXeBzYcwCAHnutZDKJlJOqsDsaOnJe88CdD9Dz/bmfV8XwAg2Bq7XSPaHKUWVUZk0GJrXGIgibEW7x91g9G57rbaau4ohNXyEBD4drrM4vRvN52h/2K4/HTFEKAEM80mGvxXYyjqQj7zWBBYpbhy97NlNBSuB21pAofteOuwAAyw49iVpB2Oz076UulAePPrjhuevnaC7VPz39T1piWY7S59Jpc6LKmb/gIuSn4rZzV85piSsfIo7fAjwIo5DnePYNbjWm/iZmCFr23IKWxWJBnZu81XTc6Jnl1WUkvCRs3bPnHgDAjiaaVD4TU++ZJgibnVg8ZgjfPpdvw/M88HFoekhLPE8+Ry3iV8/nH2zDg9giqYgWm6akjV6Dq2ZyYQwJ1TQEmROS+bwYufWfrQB08dqV1wAA1sXM7b3RQQfAoYUhrbEIwmYk4aQ9CSePsrHZbLBEaSja2NyYlnjMCCPsjRuF+vWNk56FhsMBwPZu8mt316jvkJzxzxgnlq6mrpzXGFWMUb1VjO4m+vfv7dprPNZSRdXtl8fFA1cQeI/LNoHZ9DRRJWHCpW8mFhdcsAVqLvg8raMzhsXl5bnCr8U+6NndPargQcu838/F/AQJ6BdvXFQeTzaLCYptWxPZ2z6y/xEAQLI6qeVnIwibnagt7cffvWvDcx4LJSm5ulw1vMctVFQMALYEFfHqmPNQCBHHb4E3Tr8BADh/Kn+LusvmgiWVPmDNqD9gBWLFD1exZcqUHz9/XHk8zOnB04AFQAy4rec2AMD+7v0AgBWr3gOMIGxGhqaGkAJVxPmcvg3Pc4b3udee0xIPd5YU2hAbbe1WYCWk/nOcstPPp5A43lBNz3FFkGq47SuflVVbPVkkJJ16ZzyMLdL9hqsYAWB7M4lYnKgUhHcy3PVx+47bcz7PbeTcVq4aM92IdR4Sx3Wsb/PLdDCxxAuL49xdpMNei4fDIZnfVoXnP+geyOloIMHq0bseNR6buUHFH0+9+pTWWARhM7IUoX1lnXPjAEzDZ9sJxBN6igkMi6a63GsJAFQ79NkHXr5JSbTZidmC143eJDuRN0+/qTymYrPMgMz+V7etyqqdig73dJCt4faO7bCE6H712qXXtMYiCJsRtnTjLrZsWmuoeGs1qWfAO69v3HWeD9YdxFZlC8IesoW8yiwWC1IxEnSm5tVnMbmaKN9wOACIr9KbcmRaT6swAITdNPTktvbbYLXS2+3oDrIhiHljiMX1CFmCsFm5OXWTvogA3qqNnR81DhJMdNmqmBkOly1OTC9OK40nFo8B6a7Oxtr8LbB33E5+7TwTQjWD42TNMD2S+9/f3kADluBMDyPRxHSA4ql3Zu5PH330owAAT/vGlmZBeKdhCDXujUINADgStODMLOnpbnvx9RcBAJfO5PcT5/0mz19QCVcM2pKFfW0jAdoL3xi9oTwm1me8dq+xl1zPpQH6+b1y/BX18WQxuULWKe017cZjPrsPADDqH9UaiyBsRpZjVBHNA4+z6W7uNr7mQi+VpFIpWFwkpPa29+a97sBuso3SYdPE+26PrfAezZmearcUUm+Paojj1vziuMdO8eoUxxPJBOJVdB881H/IeNwZpZ/N9anr2mIRhM3KyAxpfdbYxv1SWx0Vb4UsemZ0DU+Q9VxoufDr8RBk3oNWChHHb4GYlQTdQuI4AFjj9ONdWFE/kOe2w1SV/cH3fDDvNa4U3eBmlwtnpsvJkH8IALCtYZvx2B077wASAGzAwI0BbbEIwmZkeJZuGvZo7kpttlpZiuqZFcBVMrzpzYXT4QTSea0Zv1oBaTGQuUk21+VvgW1roJt9OBlWGg+TsFPlUauvNefzfW19xtercT3ZeQCYC1HGvakqkyToqiUbgrFlPTYRgrCZmV2hPVCdK7c4znulmWU94jivWR5H/jWX95tsB6ASM+30ADB0ZQgAcOaSer9Z3ncXskEwrGc0WWsxQ/NDAIAWTyZp3OSm9XcqIC3+ghBM0EC2Ru/GAgeX3QWnjUQRHRYmwVjQ6NbkIb652LdzHwCguqGwD3g5YA/xQvtuICNUr4TVi9H8u3Bb89tmcbe6jqQGMzo/CtgBpIBD2w8Zj1clqaBnZE5fAaAgbFZ4llmuOcddjbTusfWKaow9ZarwntJlofVNxxDkQog4fgskrHQ44Tb+fFgT9OPNFndUwYJWvkooIPOm0zmQc2aVDpft1ZmKGrfTDXuQPiDHr+mzeBGEzcjoHFWWORPOnM83eGidWYnpqcwIxuhOWkioATIt96qHcrKligWWgpXjvEnX4TebTCaNSkajQnwdHpfHOPDp9MBditP63l6bicsQx5dEHBeEHz73QwDA2TfP5nzebSExgIfIqSZupSq4Bm/+PSWvfUm7epsmPpiwv20+jCGhGoYg8741X0IDyAjn/PPUBVcqBqczp9COGqo2nY9U1jtTEDYDwRR9Npqqc3f21Tqp63nKrz6ZxPsxCyzGgMtcsG2UjuGXXEDBr5kPFqp17Cn7d5PdzaHbDuW9hvfdwXgOBU4R8zFaU9tq2lBdlUlctHgpORm26ymQEYTNSjgaNs6ofa19G57vbqJuHZ6/oxrudCm2p+T1TadOmQsRx28BHg7n8/oKXsctqToyINzSlG84HJB50y2H9E1z/tFLPwIATA+ttR5wxymWodkhbbEIwmaEqxjdqdzVGU1eOkwEk3o2n6EEtT0Vml8AALa4nsEZPNDY4/DAYsnvgcu+iNFEFKthtYeZGf8MzVIA0NGYv+WWhRydN/pAihKlXfWZiiif1QeAqsoXVyrbriYIlWY5mh6mm8fjm4cg6/rcspjbWJM/+bejmwaZ26oKW52UA94jckFFPoxK7ZT66qNro9foiwI6vCGO2/WJ44FQAKkqSuDe3pfxsO9poCGDS8nKHvIEYTPQsY32SQ/c8UDO55em6XNy4twJ5bHMLtGe2+vwFtxTpqL6rFFDcdp3FxtY57bROUGHYO+qpvV/Z8/OvNewlSt3BuiAOyC56IN53wPvAwA09eqxVhSEzcrw9LDxdW/rRuuobW1pNwcXEAyr/+zyntJpyV0EyFTZqPtjOaxPp8yFiOO3AIvjxSrHuSVVhzh+dfgqAGBxOr/wwW86nVWM44vpIUrr7uP7+qhdraG78M9QEN7uzK+SuJzP47u1lmw7dHmDsTheKNEGZJJ/8wHF4ng0I44XIlvMVz2tfmI+PagvWXhIaCpMh6uLNy4qjSebiIPUo20tGSurrsYupMdS4NT1U9piEYTNCFfp5fK/BYD3PUKH7AN3HdASD1s0NdXkP9Q3+9LCbyqOWELtrJaDdx4EANx/1/0Fr6v3kNWLDhuTU+dp3ZoYyj8klYcgpxwp5fEw5wbP0RdxYEfHDuPxHa30dciu574tCJuZ1QStuT0tPTmf5/OyDtvPs1eoYyi4WFgUGr5GAhMPk1MJW2vVuvPPDQOAKjudE3SI46wVFCqU8Xl8AIBwSl+19uACzfvpru1e83irl85K3LEuCO9UhqaH6IsIuTWsp7Op0/hah30gF/ByV2Y+eDizr9WnOqSCiDheIslk0hgOV0gUAQBH+sKVkHoxmt94uYz3Ga+dqqF0TN5mVhIUV3aLPwDs6ydxPO7U2/4qCJsNrk7kasX1tNfTZ4c9V1XjrqWbV0dT4SFEe7bRlPjenfkHGpWDMxfJz3bVX/gw4K3yAunlZGpRrTjO/39L1JJ3OBwArC5QzFeGryiNJxtnPWXmH7rjIeMxq9UKR5juR+eGz2mLRRA2I9yFw+LuepqrSYj2h/1a4mHrqKa6/OJ4dvs/d9Oogq21uDI8H9w9qWNIKFcSFapmZ3EcjnRbsQYujlLi0xa2rbkX7Omk+2PMFUMqpU+sF4TNCK+l+RKSPOdhbkW9lRW/RrGZCnUeWv90rG9sTVVbVVgc5/uADhuTm2M3AQCRlfztOvfdcR8AoG9Xn/J4mH/44T8AAMYvj695vLWaxPHp1ekN3yMI7yTG5qm7whbN3WnocXvgtqeF6sLF3GXBEMdthcXxOw/eCQBo7co9y0sXIo6XSDQRNX5qLfUtBa/l9gEd7QFJB1Wzt9Tlj6naRdlfHTd6hqtdO+rXCm3NXjp8zgX1eHoKwmaluZs+C3u37c35/J4+OmQ76gp7dZWLjr50++tdudtfGR6OGYfa9WR6kTa6iVBxbzRLjFpkVc95mPZTTDx0OR86D3wAVROxcNblW9ty6k3Qoerq1FUtsQjCZiUMEk5ZBF8PCzhLEfWWGOFo2Ci4yDfcFwCcNidsoIOO6s4YXkOKWWtx96SOIaGBCBV1cAdkLtobM0UYk/OTymMCMn7jbBXIHNxO1fdwAv6QX0ssgrAZCUfDRhWyx5q7A5ArCheCC8rj8a/6AWS6H/PByT+eM6YSFpfvPXJvweu4KKW1W714dP7qeQDAyPX8Ay55oGnMoqd4BwAWI7S/92JtQdHMIFXAvnDiBW2xCMJmZHyBEkf5ZpkBGUskHUOQudOl0P4NyNhK6XS4yIWI4yXCvmAA0Fpf+OZ0352UUT149KDSmLKr2QvF9MH3fBAAsO/IPqXxZBO1U7ttb/Pa6lJHjAI+f/O8tlgEYTNS20Q3qMN7D+d8fk8vbYYjiGipQOPOkmLCiDGlXnEnCh9kik25BjJDkP0Bv8KIALuXYmn05vcIBvQe+IBMO6nb7t7w+6u20t+nl6WqRnhnE7FQJRx7VK9ndoxa+4+fUz8wfCGQWRvaGtryXmexWJAIk0gzOD6oNKY3Tr8BABgfHC94XVMtVbrrGBLK95lClUdetxfWJN0DdPnFD80NAQBqsbbis8XXYqzBM0Fp8xcqSzKp/jOaj9GZUePr+qrc3ToeG4nmi0H1M1HY/7bYcDidyT8Wl4t1bB7YQ1Zf9S25f47lhKvZfVW+vNfwGseVoTpYidNrNXrW7r+5cjxkEysrobKkUikM+Ycq1jU2vUTnvHyzzAC94vihuw4BAN51/7sKXuex031AV0FZPkQcLxFuN7Vb7XDYCt9Y671084okC0wQKgNzS3PGb9JoK82BLjGLSSaTSLhoU7Gtddua56Zv0gf39NXTWmIRhHx89i8/C9uv2PAL/+8vVOT1uTqRb1TrqXfTOpJIJbRkU82K4/4ZPwBg4NKA0njMTrkGYAgjquc8VDfQz2ZHz46C17GPvK7KwdfPvQ4AcMacGwZN1TmoRVi6dYRKcmPhBv7w1T/Ev/7Kv8aVUX12Q9nEbdTt0lqXu5ggHqDnp/zqB7Gx8OKwOlBdVXjN5eTfworaZNvIFFUKLs0VFpj7O8kf0upWf5TgvXe2vUwuGqtJMOEEpmrGlymB0ODcaLPYUUNC12RATxW7IOTip3//p2H7zzb8yl/9SkVef3QuLY5HqZ0/F9V2Wvt0dOtwN3ex4XA8IJltr1Ridt/tddL6p9paC8jMkuAK+lwkw5R04W5KHawm6d/eVrtW79jVsQsAkHAnKpoMEoTfe+X30P/H/fiTN/+kIq/ftZM6Og7tOZT3Gi4CeeE19Z0WPLS9kHUgAJw/RQWzb5x6Q3lMhRBxvERYqOHsRiF4E696cIbhr5ss/MbTLY7PLc0ZFe07O9dOu+6sp2EAuoYMCkIufv1vfh1fHv8ykt4knlh9oiIx8HBHZyr3Rr3KUQWXjew5ppbUizU3Rm8AAKZHC292Z8aoGk71sCKzBxkg4yG5FFR7wOJMe76EBqNzeBIAnB+mjUViaWOlEydZFsPqK7MEIR//5rF/g88//Xl8c/GbeNcfFa4iUYXNQ+30/e39OZ9vqSV7uqhV/aBJ3o8VG4AMALYExZ1dba6CcCJsKiaudE8gQZaDCmGP3WLiuM5qKADwtlE8+/v3b3iuyUX7cfYlFwTdJJNJfGfpO4Ab+P2R38e3nvmW9hjG5gr73wKZtUZHAchKmF6j2J7SmCvmBBIJtdXjM37aT8eDhW0KuUhkbkl9kQNbsHIFfU7Sy74OD3QmbKH7E89jYvb2pK0p7ZlzlSDoZmJ+Ar/59G8CIJFc9QD1XKSclNDb1rEt/0Xpz66OgZyczCu6f0vPXIhB/88sGxHHS+TcZRpmFlgsLjBPjlC1yMlzJ5XGxJ68iKHgcLipERLWzl4+qzQeZmhmiL6IU4tpNn3NfQAytiuCUAl+d+B3ja8nQhOYXNFf4XX6EnVP3Lx0M+810RX6nFy4dkF5POyvWGwwECcIVSfb2Gu20CA2hq1XVIvjXFHKleH50PUzYsYW6BC63osRAPpbSQjU5V0vCOsJxUJ4dfRV4+9T7inEE3qHcieSCUP03tO/J+c1bT4SfeN29bGxGFSsYhDIJP8WV9UmuMJJEh94Tk0+uIoRUJ8ADCWpkKKYYM/P6+rW8TTSGp89AJkZu0zr8VOvPKUlFkFYzw9e/4FRpAQAn37809pj4P2SPZG/m2N3z24AQH2bersQ3lO6rYWHw2UXm6nu1uH1kyux83HjMhWvaDkLpLuauBsnF0a3uh0IhvUI5KwbdDWsnavTVNdkCH6XRi5piUUQ1vNv/+LfImIlx4jxlXF87YWvaY/BTAGXG7T+6bCyYu10dmK24HWGOG4VcXxLwf633N5aiPnpeQDA0PiQwogy3jzWWOGYUhHKJHH1u2qsNRRPZ33nBtF+Wxtls6T9SagUw9PDiNXSArytjt6PP7r+I+1xRNO7uaaa/F0fXDE4u1z4xvJWSSaTxuRq9pPNB4s5qitGjINMkSnXAHDbztsAANt2F8iWl4HnX34eAHDu5LmC17F4pKuqZmKZqmXq7HUbnvux+38MANDQVaAKSBAU8ub4m4glY2ioagDiQMqdwtOnntYaQ3ZlYp1r4+cEADobqbONB52r5OU3XwYAzE/MF72WqwZVJ/+4BbbWXThB6rQ54bBQTEaRhiJ6tvcAAA7vyz2bgxm5SpYwT7+o5321ECLRLJeXMltZzYeK/24FQQVfffarAADnEm3sAtUBhCJ6O3bZ/5YHlOfi7kN3AwB8bT7l8TR30KyJ/q7cnUNMtjjOCUMVZO+7jWr1PLBdq44hoQkHvUahs0B7Q6Z62+hiV0zSRffl3pbeDc/ZI5SAuTZ5TUssgrCex+ceBwDURej+/2uP/Zr2GC7eoG61kD//Wq/T9nNshgoFlmYL712N9c2ifn0rhIjjJcKHEjPD4Vg84hZVVXT0ka/hzp6dBa/j1qi4VU+lFnvbNns3Dr3a1UXeYLDr9SoTBOb7r38fAGBfseOnd/80AODLT3xZexzsf8ut/Lngipv5FbWH7OXgsnFXWN/tsR5e37KHFKuAq1fMVFa2NVIVi9Wl9tbGLWJsm5KPh+6masLbDt2mNB5mNkjJk0b3xkofHl40HxShRqgMX/rbLwEAehI9qA2Q8PrdN7+rNYaFVRIzXTYXXPbcYk1XU7oizam+Gm4+kP48miiUYRsA1QUOhtesx1f02niI7l/XR6+rDAkOL4nwO3sL73ON6noN1VBApiq2xrGxot3n8gEA/GG/llgEYT03HdSR+PHej1P3nR24tqBXOJxdoX1JFfLvl3TaITV30pn04N6DBa+z2+zGHk+lGJ09QL6hdnOI48lk0ug4aK7LPbgaSHvIpyUF1QlSAFgJrRhxbWvfWATjjlMRzdDskPJYBGE9V0avIFFDn82/+uBfAQCWa5e1dVUw565S4VahoepeOxVvsXWpStgmpc6TuyCF4ed1JP8KIeJ4ifCgt1LEcZ74rAquhCpW5cPDRRJ2PW86FsebPBuzzs11zcZh8NqYZHgF/Ry7fAwA0Jxoxl4bedWdXT2LaEyv1Q9XZ7TW5x4OB2T8yFV7zWZvbouJ47zeqKyoAYD9R8jL9b3vem/Raz0OanHn4W2q4BbYYrMnOpoocanrRr8YJUGorXrjYGZeh0UcFyrF6XmykOqz9mGXhxLkr468Wuhbys6pi6cAALGV/Gp0V3OmXXt0dlRpPNyNmG/mRDZsLaX6MMNes8UOMgBgjesZEsoJyWJJUqMaSvFQZob3rzPDG307OSG5HNfjfy4I2SyFl3AzQuL47/+b38fhTuq6uDSv13KC9xxeW36/WR7Iqbo7Esjs37JtofLBe0qVtlHzy5k9WbHKcX4+aVfb1RSOhw2FqLu1u+C1lhgNf2ffdJUsxSgxbLPYMknsLFo8dG4JWWWemaCfZ88+CwCwBWz48D0fJpsfG/DKhVe0xsE2dD63L+811Q5ac3XMeYhZaL9drOCC1zcdQ5ALIeJ4iayE6E3E7a2FqHFTJYlycTxCMRXzYuTsr6433Y9eJIuK+dGNYozVaoUtQlYRN6ZuaIlHELI5N0uZ1d2+3fiZd/0MkADgAk5fP60thmQyaQzO6GjoyHsdiyKqq+Fml9IHkxjgdBQWa+qqSDhRvb4ZQrSj+BDkpTnaOF+6rvbwF0rQxqPY4YqHj+jyHF9J0L2grXajOB5eoCTGyNyIllgEIZt4Io5ZN60vH73jo3h4+8MAgMHooNY4JhdproQtnn84nNvpNrxLeZicKtg2yszA4QN7DgAA+ncXtgN4q3B3YYO3uAWTriGhU/NUoc32gPnw2Og+oWsgJye3uxo3CjXN1bTnXk3oGcgsCNlcX6BujlZvK1qrW7G/hQoNzs0UtoMrN7sOUCL0viP35b1m7Cats1eGriiPZ26ZCrccKH6O53V5ZlGd8GskFuPpe08BuMhN9Tk+2wqQXzMffC/VkdhgG6uGqgZYLJYNz7/n3vcAAJp6C9tCCoIK3rj+BgDAF/fBbrPDHaLP8yuX9YrjfC7nTpNcsGYYiKs/n3IHuM/rK3gdO1yIOL7FYCHazEHGMJZPqTWWf+3UawCA2bHCN6ZWX7oy1QGEo2qrPQFgcIYOvYnl3FWTPY3kIelqKD5oTxDKzWoNHVgf2P4AnA4n7KvUDfLmtTe1xTC3NGeswh2N+cVxt4VusKq9wbiChStBCsEZYG7BV4XZKdcAMDZIB6wLV9UOK2JxvFgVY2CBNh3XR9RaDjA8BKa1dmMXguHP6FzbxisIOnj29LNIuVNADPjpB34an3jgEwCAUG1IqfCwnpklei1nsvAejpOVda3Fq6ffCqXsKfs7SRR3VavdMzW00gHljgN3FL3WliJhZDmkVowen6P24Pmpwp0vfJ/QUQ0VDAeB9K+it3Wj/21bHSUpQxapYhT0c3bsLABge8N2AEBvFb1HHz/xuNY4eLhab9vGzwjDQ5A52aSSV49Tt9LZE2eLXjs/SevNwMUBZfFwYtESL77vNnzQFQ/A5PtSlb0KNmv+RDKQsbIyLMIUMrdKiQ3uylkP27hy57og6OTCDJ09u93UbdEIep8OjA5ojSNiobOgmWG6dk9xJ4y3CovjLH7no7UxfXa1A7FE5YZyijheIqVU+RjiuEXtL3hwgkTowHzh7E+2bYOO9qeFMN3wG6tyfzjZd5wnTwuCLqKJKOattJH7+Q/9PACgJkFZ1HOj+qpqJhZogCKShW1MqmzUKq66nT6coqSZ21p8+OWdB+8EkJl5oIo3T1Oy4uaVm0Wv1WWrEknSxqPaVVgc50r2yblJpfEw7X00HOmRex/Z8Fx3czeQ7sS9PqFHrBcE5sSNEwAAV9AFj9uDo7uOoipVBVgzFY46mAvQobnQcDgAqHOTKM4igSq4M8bMwGHuVFHZ4g9kEpJmPMe5i5K7KlWRtNHi1VhbuIqRxXHVszAAYHhm2Pg613C4zgYa7Bq1yR5X0M//evJ/AQBmr1DhlDdAn43zM+e1xsGJqhpn/u7m9nrau6ScKfK7VghXVRbbvwEZC1WVNk1srWVJFBfHs88JRqenAsZnKRnJhTmF2NVHZ/nO/k5l8TA/PPZDAMDMUG4No95NlbKLYT0zJwQhm/EwfW5ua6E5U73VtC+4tqjXPpi7/5pq8ndQvOcB6rLo2dmjPB6uBC/WhZKtU+rYw+VDxPESqWuiA1NX68YWyvXwwUK13ywf3or531ZXVZN1BNTeVBn2WWypzi36sQeuZHgF3VycvYhYMoZ6dz166ujG0OygioNrc/puYlx17ba4YbXmX4539OwAADS2F76xvFWa2ukzub1ne9Fr2xoo68z+tKrgltNEqPg6yuI4V3arIpqi31uxOQ/GEGSbniHIPPitpWbjmmu1WmEJ0+FraHpISzyCwFyaJKujulSmEnt3+24AwGJC30F2fpWSouxNnQ9uOVVdgVyKOB5eoeTljVF1VnTJVNJILpoZgszWBKqTCCkHHa6aagu3y3MCQfU9AABGZtIWVRHA5dyYbNnbR7NMHDXF7RsEodwMLQ8BADo9JFp+8OgHAQDxmjgm5ie0xXHpBq393EmXC57PAhuwtKp44DDv36oK79+ATPJvKagupuYOOnt0NBcvNKmuqoY1RWcFLtJQwcUbFwEAKwvF1/X2BkpsqPZBB4DJZSo0ccRzr6k3LtK98ZlXnlEeiyCsp6qH9pU/82M/AwC4rZVE8smongIphmcLttTlL7rjPa5qC7pEMmEM0S22f3Pb3bCAzqmqi9wKIeJ4iXT20SbjyP4jRa/la5o61HpfcZVPMXHcarUafj/e+uIWBW+VQJI2Qu117Tmfd8To03L2evHWNkEoJ1dnrwIAdjXuMnzrempJJB9dUTuAbQ3p83Sx4ZdH9tFa0tihVhw3O/QM0FelHYX5gwzHFEmo9UGvbaJY+rsKe/+yOM5VjypJpVKGOJ5vCAuvueI7LuhmcIE63FqcmbWuu5ZaT0eX9a25iyES4gsNhwOAxSm67viZ40rjcXqpC9Foly/A4BX6GZ65fEZZPEurS0iBhGhbsnA7PQA4LLSmBMLqfCvD0TCQ7vxtrm0ueG1nM+3Rq+oKJz/Kwdg82XjZorl/Tnt69wAAQgjRAVEQNDIdowHre1rofbizayesq3Tsf/Lkk9ri4GTe3Hj+QigWWIGMhZIquJub5+YUgrvElXZtpte2YsM4AcBisRjzzFC8gf2WYasXe6K45QKfF1QnSAFgNkCFfTW23F0INXZ6XOY8CLoJxUIY8g8BAO7sp87qB297EACQqtfroZ100JmTrVNyUeuic6zqz20oFkJa70Z3W5HhvhaLcY5XbdVXCBHHS8SYcm3C/5bbB8IJtf7e3HpgZmAd38R0DIhj/9uO+tzZ8PGrtAF6/dzrymMRhGy+/cNvAwBmb2Q6KHY1U2vgXFxfJ8NSmKpR6lyFN+m6qhh5XTAjjsdDVA29GFBb9cmV6XWe4gcZjlv1kFAWxw/ddqjgdZwl11FRM+OfQSJFAkw+4c+dpOrU8QW1h09BWE+0ipJcO1t2Go81u0joPHXjlLY4eM2tcRQeYL4yT2st29apYtc+uu88ct8jRa/l+4DKisH5pYxvbLW7+H1g9zaq/u/eVvjQ81bItgHMbrvNxQN3PQAA6Oov3t35VmFbNGcit0rFLf5ApqtHEHQRcNB+7khfppjLE6Nz4uWJy9riYP/bQsPh7DY7kF7WxufV7k8SFtonmdlTsji+Ela39+YCEzNneECPvdbiKu3ruXK+ENwRcPaK+kI3HsiZ78zEcx6iVrGyEvRydf4qUkih3l2PZg/tbT94N3Xr+FN+bZXQ8WTcqNTu6+jLex3PKVQ9BDl7uK+ZIrfgEl1/7orewdHZiDheIkshOlhVOYpXpejyh+T2UX69QugUx2M2ys63+3JXjjdX0+KhY1KuIGQzukSVinXIbLA+cN8HAAA13YVFk3LCFTLFfP3YA1z1rICnX3gaAHD9YnEP4FSMMuGqq7TZO82M/y2LOdw2qwqzSQSjGtQJxBNqrVWMFv8EMpVF6/BY6PA1tTSlNBZBWI+7jdawj7/v48Zj4xdp/Xv2+LPa4vDU02egp7WwzyKvubznU0UpwghXOqoUx1kUQQJwO4tbvezoJcuvmgZ1903jvpdM2wMWgAtXuAtKJW4f/Xx4eOt6HDYHqh0U7/iiJCQFffgDfiS8JALff9v9xuM1oM/p4JzapF82XKldaDgcANhi1IExtah2f2LsKdOd1IXg+4DKc/yVmyROrfrNvQbHpNIele8DZuarTQ6RZcT5a+q97JeidD9ucOeusue1OO7QY2UoCMw/Pv+PAID6RL3Rkd7oaURDFb1Xdc3Wya4EL2SrwpXjPDBZFbx2ehweWC3FZWdbgu4DPIuhEog4XiLPv/w8AOD4q8VbbXnydCQRQTSmTqwxhsOZqPZcmqEbi+pWYQBIuUg8y26Xy6apmoSjUKpypvvCO5OZMB22O2szA2SO9FN1zcTqhLYpyS+++SIAYOjKUMHrLg2QZ+ObA28qjYerwFPR4i1gxmANGxAMq8uI85RrMwcZ9gBnKxZVcBURD0rNR/bGZH55vsCVb52xOWrxt0Qsef3rjS4e9a5agrCGYT8NL+z1ZQYX9jeSLdFCfEFbHO39tB95+O6HC17Hn23VhQQs4prpRtQx5H0pkE4GmNQWdNhrzS2lu7miKDibA9BXlAIAnkb6tx/afSjvNaEF2t8eP69+zy0IzMsXXqZW9giwp3uP8XiTi85d48v6kjW8hys0HA4A6j1UWW6tUitNcCcf294VQsd94OI18veeHps2df3kMInRKs/xbCNjZiCnzqK7lTjtvbm4bj1dTdQxlHQmlQ92FYRszg9Tcig+v3bztL2eZnidGVNnh5cNe4i77W44bfmTW9yFp3oI8s2xmwAAS6z4wGEgY+cn4vgWgoVobm8tRPZhZ25ZnVUDV0nmqxbMJrREG/XRabUen4lkwhigtH/n/pzXtNSScMQtd4Kgi8UkicDbmrYZj7VWt8JlcyGZSmJseUxPHEGKo9hwOG5HjUDtZ4UFDq5MKURjbaYKSOX6xn7dZvwYec5DZ29nkSvfGlyxszBdWNRrqG1A2r4Xs361Q5AnF+nAZI/n94h89N5HAQCtfYWtCQShnETjUYyvkBjTW5cRx/d0kGizatPnD8pVNcX2cLx/U33gf+34awCAS+cuFb2Wu2diUCiOpwfPWRLmDjKxIMUyMqlujgH7hxeyZWBGrlMcF65dUBYPsxim+3e2fcp62HJFrKwEnbx5jQopqkJVaxJKbV6ynZgNqd2PZMPD4ZrrCs8L2NlDllveRrXZe5ubxJeu1uLWS2wb1d6Tu8irHAQidI8xU6UNAPYU7fFUDgk1xHETZ4EaJ91Ls+0TVBFM0Wu01eb2Uu5tSe8v7MDCir6kuyBMrJDNGicgmbGLpCc8fuxxLXEMTQ0BAFzYOCQ8m47GdLGUFVhcUWePOjRB8URWzOkXthStzyrXt2KIOF4iRpW2q3iVtq/aZwgjKqsG9xygA+a7HnhX0WtdFvqwqG4Vzp5+66vy5byGvcHYfkUQdBG00QaLxRkAsFqsaLSR4Pvc6ee0xMH+t8WGw3E7qur2JxbHXbbCN1Ug3d6eTjYr3YSanHINAJ0tnWu+RwXJZNL4/2cnCHJht9mNQcl2b/HBRm+FKT+1IjuT+Q9YTR76Gc6H1FaxC0I2b15+E8lUEpaEBS3eTDfFgb4DAIBYVUxblZchjjsLi+NcDafanmM1Tv9/FjwKwZWObAugAj6QWBPmjgdXzpMlwIkzJ5TFZHGRUN/sKyyuAZkiEZU/I4a7dQr517tB4pJYWQk6CVfRrKtt9dvWPP7o3ZQgb9+lTuzNJplMGoMji80L4ISlyq6PZCppzLHpbe8tcjVw++7bAQANrcWLM24V/vea2XcDgBPqfdB5vhHvXwvBekg4qXa+GgDYakg462/vz/l8R2OHcS4ZnhlWHo8gMLNhSji2V69dW+udlDyfXJnUEselm1RosbpQeB1t8bUYGuXE/ISyeLgj3cyAdyAz50Dl+lYMEcdLhCt2zFRpW61WcIGPSnGcB3KaqaoxfDTDasXxpQj9/wu1dbA3WMKRUBqLIGSTSCYQr6LNMYszTGSGkl8vn39ZSyycRGJf0nxwOyq3p6oiHKfNbZW9+EwFq9VqtN6rEsdjiRiQvp9u79le9HodLf7+gN+YvG1GsOd7hUqfYACYWSarIFcq/wGrsYrE/LmgvqGzgnDyxkkAgH3VDps1s0G+Y8cd9IUDuDZ+TUssx89SK/rVC1cLXsfiOM90UUU8vYiyn3gh6qtpj6dywO9ykO5JZg8yHietuSrXNxaPzFgHcgKBO45U8uyr5JV/4WT+KnWvhRLfsyv6KnUFwVZHn99H73x0zeOHth0CAPgTfi1xLKwsGEpDW33ual+GLUzmVtTtT0KxzHpuZs6DjhkGpXRsAoDDQuIRV5yroGc7zeQ4sOdAkSuzBkWn1HeBO+tIT7j/8P05n7darUb3JHfmCoIOlhKke/U0rJ1n01xFSf3ZoJ49AHdyO5KFq8TsNjvYgVTlnAf+HJopAAEyHTTLoeUiV6pjy4njL774Ij784Q+jo6MDFosF3//+94t+zwsvvIA77rgDbrcb27Ztw9e+9rVbfn32ejRzkAEyvuPzK+rE8Wyz+2Lw5iPbsF8FPLXaEsnfmsveYClXSvmwOkFgroxeAewAUsDBbQfXPNdgp4P1+JKeFuhAjDa3PBgjH9yOyu2pqggnSBx3281t0nl948xwuck+kJjx5E2E6eejspI9ewhSiy//sBNGlx/j/CrdYzzW/PeB4StUSfPS8ZeUxiII2VwYI/GwOrFW3Kz11sISpDVk4OaAlliMYWx5OtoY3uOprobjKsY6T/E95Y4eGn7pqjZXYXgrBMK0TnFrazF4XVYpjg9NDgEwOQuDu3kcUN6NEEjQz6rJmz9JWmMn4UgSkoJOplZJ7GirXitId9RQURJbAKgmWzAtVjl+7uQ5AMAzLz6jLJ7srmkzZ2ZrkmSSmcUZZTGxOG6mKAUAXFZa/1VW2Ht89LPZs21PkSszszDY4lUlXHhXX5W/GLCvrQ8A4K43d44RhHKwaqXP4/aWtYVc7bVUSb4Y15OsmQ/QWdCZKm7TxEOQZ5bUrW9ccGEmHiAjjqvWKQux5cTx1dVVHDx4EF/96ldNXT84OIgPfOADePDBB3H69Gn86q/+Kn75l38Z3/nOd27p9fkgU+spLGYxOqausn/4ynzxN5LXrsdHkz2P4qv5Re/etnRLmyXjbyYIqhldos+LK+Yia5AsGlwkjuvK8K4m6GZaTKgxRFin2gM/i+NmDg2A+vWNN/82i63gYBEmGqDNucp2LMNfPQ44HcVjiq1SQvXqUOFK1bfKYog2XtX2/NWVdS4S4KIW9YcYQWBuzN8AADQ5NoqIVVESBM6PnNcSizEcrkjXx6MPUMXlnoPFxYFyxGNGHG9tIHFJpQixex957O7bvc/U9V6XV3lMJ86SZcvYjeKzQAxfYxsQCKnd5/Iw+Zaa/ElSn8sHAPCH/UpjEYRshmaHANAsnWxaqui9OhecU/75AIBQkj4j1c5qqlQsgI7hl9eHr9MXMbJSLMbls5cBACfPnlQWE++7qxzmxHGnlfadwai6DkkuTDHTrcOJZJWDogEgmoga3a2FCop4BgTviQVBB1EX7YH2du1d8zhXkgdS6tdbAFhYpeIwtlEuBHersL2fCljfMztTob2Jkgm1DeZ0VhVsOXH8/e9/P37rt34LH/vYx0xd/7WvfQ09PT348pe/jL179+Lnf/7n8XM/93P4gz/4g1t6/YSVDjI+r8/U9TqmrrKAlIoVr6rxOukgo9J2AACml2nqdiH/21pPrVGhuhKrXIZIeGcRcVEly/6+jYNi+SCxGNWzqeLDdb2nsCWS0Y6qeHCG00Of16a64nYhANDd3g0AaO9W419pTLmOW2CxFB8QZwztVJhE4C4gs5O3F6fp93X55mUl8TAH76YuiPc+9N6817TW0ftb5jwIOuEqxnbvxnWC5z44mhQOCsgi6aB1oZg43lhDFciqh4wZA4eri3vactIykUqQ5ZQC2DrQjFgPZGyjYil1awq315o57GV382R3+aggYqW9BK+ruWioot/rckwKQAR9vHHhDQDA6KXRNY83VzcbdnjnBs8pj8PsjAcg42+tsiKauxy567EYte50VTTUJf9YHDfTHQkAblta0FJo9TI+Q92zPHC5EEduPwIAaOsubJvzVuEOIgDw2PIX8HBVOQ9MFgTVzC/PIz1eZIO2sK2F5j6Ebeo9+YFMd0yVtXiy7fadNFOhrVfdZ5fFce54KcbRA0cBAN3bupXFVIwtJ46XymuvvYb3vnetWPC+970PJ06cQCyWe9GPRCJYXl5e84dxekk86mzuNPX69qT6qdIpO4niZg5XvEEJp9R+SFlAKuR/CwA+tw+AVNUI+hhbpuqzrtqNk+q5/WkloSdZU99Cm7jdfbsLXtfWkLlxZQ+7LTfb91I72MP3PWzqem5h5zWo3MwsUKtXImLOTqaxLjMg0x/wqwjJsGwxO7COhyf5g2riYbjdtJBQ095A7++kU8/wQ0EAAH/MDwBor9kojt+7714AQMSp3q80noibHw6X3iup7rLjtZP9xAvBogigzsqKPXnNVjGyeKSyapAFNjOevFWuKkP8m1tSa2XCScaO+o681+zbThX4vnaf0lgEIZuIg9bTHW071jxutVphC1HR1oWR/F755eLqcLpjzoS2zFXKKhOSC4HS9m9sGaJyfdt5204AwF2H7zJ1fX8XDaNsajdXxHIrnL9KnVw3r94sem1Hc3p+mFWt7aMxNDAKuJ357wXDl8k+8AdP/0BpPILA+ON+AJTg62xaqw/u7KDPd9wd1zJ4ns+C7BRRCO7AUKkr8B7a7EwFLuJVmfwrxtteHJ+amkJr69pDUGtrK+LxOObmcm+cv/SlL6Gurs74092dyV5YXfQj29m309Tr799DGaQdt+0ocuWtEYvHgHTBleG1WIAff/ePAwAOHC0+ZOOtwP63xTJXLJ7fGL+hNB5BYAbnBwEAXTUbxfHuBvqsBy1qqwUZbz3dBPbv3ljFno3dZjeqSlQOY2NhxKytiuoBmOxVZvYgY1SOQ90QZHsVJTzNzp3gakfVw0U4wcgJx1zwnAc4gXBUTxWDIASStDnu9G0sKmjxZtr8VZMtlhYbDre6SBvzkakRZfEkkglj/2amW8dldwHpPOTk3KSSmM5cPAMAmBk350HJFoNsOagCPiSZ9eTlwU+qh6kmnCQGGetqDu45cA8AwOVT5xMvCNnEE3Ekq2ifuLtrY+FFVZw+R1cn1Vq9AcClG5cAAEszxQvEeLCjys/t4iolFdkSsBjcJa5S+LW5KZbuNnOVkodvPwwA6OjOn5R7q3AnECc/C8HnANVi1rSfOtKtscLnAVuUfp6zARmCLOiBZzh01HbAal37/tzXm7aoc6ydeaAKLiYwI47zmqtSHN9/hPSN++/MPUR3PbyeqLRHLcbbXhwHsKEdP5VK5Xyc+cIXvoClpSXjz+joqPF9LAKZFY9YsFZ1cMgWgAyvxQKwoKPa6J6FGq+t8IdzfoziP3HhhNJ4BIH57jPfBQCMXNgoevS19AEAog49nsy8meRMaSH4JrYSVffZDcVLqxoMLJLopcoyhAVltqcqhtvpNqoGVQ3l9LX4AADbureZiyld7aly8wEApy6eAgAsTuavKO1uzhy+xuf0DJ0VBGsNbTV3de7a8FxVKi3UjKsXaqYWyd4FybWJtJykCwVVHvgjiUy1fE97T9HrrVarEZeqyvEbI1SoMDdlLlmxq49+p3VN5pKFtwLbLJi1HWhrpMRHdUNxv9xbJRgOGl0IvS29ea/jFv+FkLoh0YKQzfWJ68bp/rae2zY8X2slwXNofkh5LFwoZWYYG1s0qRyCzBannEArRr2XPr8qxfFSdQVOEqqssDfmq1UVF8fZYlBlhzyQGRpYLLHBs3W4glYQVDMZoGKF9uqN3ZGt9a3G3mUurL4IpG9PHwDgroPFO1GuX6AZDCqHILN1IM/MKcaJ10gPfPbFZ5XFVIy3vTje1taGqampNY/NzMzAbrejsTF3pbXL5UJtbe2aPwBVVabSZTtmN+lGRlWRh5oxHA6Ar9pX9HpdnuNLYbop1TgK+8y50yZNsyuVyfDGE3raXITNw3KCRMrmqo3JpLv20c3EVmMzkmgq4c2kmUEVxs11Wd3N9dxl8qAcvDpo6vqpUVpbL167qCSelRAlAmwpc+I4kPGSVCWOlyrU6BgyBQDTS1RVEw/kT8R63B5DXBubLT7cThDKQlqjfPjoRrumietUcXP68mnlYbDQbU/aN1T3rKfVRxv5lEPdfSB7X2i2KprXN1VzbLh7iIe+FaOvsw9ApqtSBSwCmV1z2Z5BqXdx1rC39W3Ua2JJD0hmkVAQVHNxhPZjlpCF7vnraHTS2Xd8WX2CnO3kzMwLqHOTqBlJqbPY4oILR8rcjAtOorLAo4KRSSrUWfWbW6/4vKAqQQoAcSvtI30eX9Fr+Z4UQ4ysyxQxu0w6QaFZZkBmIKfMeRB08fhLjwMAInO51y6eZza9Oq08FruHEn+7ejcWo6wnEaakH1shq+BWO9J5FkMleNuL4/feey+efvrpNY899dRTOHr0KByO0gZATc5m2lgdFnPfOztJizmLTuVmfin9ho6i6CRwINMqe3VQbZUWDxosNFEaADxW+hBU4uDwP5/7n3D8hgP7/tM+7a8tVI4g6KDd4dvYktjTSNV7sWRMS9UBDwwz03I6MUgi0isnXlEWD0+Ct8NcVQ0feFSJENxWZTYeIEscD6gRx7kt1/SN3q6n5TRqpW6HNl9huwi2sqrEEOTHXn8M7s+5cf9vmWuvE7Y+0UTU6CRjC5VsuhrIkiJsVb8RrqojAbqY3ziQNdjRBiyvqjlkc5GC2+6GzWouAWhN0rZ9aVXN/Ym7h7L9zQuh2loLyFSScvdUMVhEV7nmsgdxlb2qoP/t6gLFMLeivmJsPZF4BH9/7u/xrv/yLvz2t39b++sLleH6JFUDOqO5RcQ2L+0RZkPqi5K4UMrMcDhOtKns+ODhcGYKUoCMOK4ySTo6Rd3pc5Pm1oiBEwMAgNdPvK4qJKNSnm1lCpE93FrlnIe5AP2/i3UhNHop+bOa0O9ZfOzMMTT8uwZ84Lc/gGhMTweyUHkujZJ9VGwh92yCVi/tOW/OFPfwf6twl3JJQ5AV7pUuXqdkLeuhxah20fqvMklajC0njgcCAQwMDGBgYAAAMDg4iIGBAYyMUOb1C1/4Aj75yU8a13/qU5/C8PAwPve5z+HSpUv4xje+ga9//ev4/Oc/X/JrG5WI8cLDILKZHqMs0bWhayW/nqmY0gKQ2cnbPHla9XC4fUdIcP7wez9c8LpqB30IsqtwdPFLj/0S4AQuey/jv/zdf9H++kJliNhpwe1t3tgK7bK7jBvK7Krag0MymSxpXgBvCBdW1bVnc3VMncekn7ZNrTgeCFO1tdkWWABob6K2tsa24j/TW4Hbz86dNJfw1NWtk3DQYYaHbuajv4OGOVU3qTuA5uK5gefw0e9+FJG6CF5LvIabi+o3iULlmQlQQt5utef0w+9pooSkDisrtpPjyuJCZAvo04tqqn340BAPmq+245ZyVXs4TpC67eb2uFwoEoyqW986+iiRXWw2BzNync4Dz738nLKY+ABarACkoyGdhHekrVg08oev/SF+5rs/g2M4hl8792uYWpgq/k3Clmdwjjr/PMncCfyWGkr8rcTVJ8j5c+KxFS8mOLLvCACgrlmdRVNtE31eO5rM+XUb19mBWELNUE4Wos3uu1k8Yl9wFZQyKLqhNmNRplIc58IUt6Xwvam5hrqCQ1A7cyIXn/rbT2GxfhE/jP8Qvb/SK53p7xDYLiXX0HkAGL5AQ2IfP/a48liGJocAAIlQcSsoPp9ydbcKBkfpfsR6aDG4CCKaqlxyacuJ4ydOnMDhw4dx+DANpPjc5z6Hw4cP4zd+4zcAAJOTk4ZQDgD9/f144okncOzYMRw6dAhf/OIX8ZWvfAU/9VM/VfJrcwuTWSEayFTfqHrjtffQB7GzJX9bZzbsn5a0ql2wuVKM/RbzUeukjQpXF+jiD7/7h1iszwjyXzz9RfgDfq0xCJUh4aIbxrbW3J7RVUmqcDl55aTSOJaDy8YKbGoYW7pKW2Vii8VxM9UiQMYyRNX6xp68Zjt1gMzPUlWbfyBCgj3/24tx3x33AQB27S/e4narJJNJpFx0mOlqzD8cDsjyY9S85v7C3/4Ckl56f6WQwp+d+DOtry9UhpdOvwQAsAQtsFo2fib72yhZk3KnkEio83UFMtZGZiqQ3U63YUHEXqflhoWEVNR8VSJbTKnyd+VWVrM2L9yWG0/FlYm/njoS1vZs32PuG9K/N1XdQ0DmPVHM6iXbcmVifkJZPLn4wdUfZP7iAP7on/5I6+sLlcFeR8UE/S39OZ9/8OiDAICunYX3CuWA90tmLJE4aanSgq6jh8TuQ/sOmbq+pT7T7cSJw3JTqjjO3uwxbA5x3G6zA2kdS6Xto9VD+4fm2sLz1bh7MmLRW3m6vLqMq/ZMV/6Ubwo/eP0HBb5DeLvgT/gBAD31uWfH+Bw+AMDkippB6tkMTpAYPTtWvMCP11yVQ5BZ5Pa6zNni8ZB37s6rBFtOHH/kkUeQSqU2/PnmN78JAPjmN7+JY8eOrfmehx9+GKdOnUIkEsHg4CA+9alP3dJrc9ayJHE8XX2jyjuHW2DNDM0AMr7kKv3TgMwgDBZi8saTriTT3eL/dzf/DgBwW+Q2WIIWJKoT+Otn/1prDIJ+5pbmjGrtXV25xcrgHB3wB64OKI1l1p+5cRkt/AXgtlSV065TNtoQmxbH04M7eR0qN4fvpCToQ/c+ZPp7VLf5c/uZWduBnjbaLFmc5u8bpTLjnzHu5j0thQf7sa8nJzB1MZKipPWHWj8EAPjG6W9Qgkh4W3NzmjoEbOHctiE7OnbQF1ZgdHZUaSxPHnsSADB0ZcjU9bzXm/GrEcfZN9zswGEg00XDXTXlJpqkg4zZoczZXU+q5jzwWm5WsOdEMttyqeDVk68CACaHCh92s+c8jM/rG4K8GFrEm+NvAgB2xWiv850L39H2+kLlcDfS3uSROx7J+TwPRl5NqbedWI3Ta5jp1mEBXeXnttSZMdkdNKr2uaUI0UBGHOehmeUmnoiDnQzNFt7xvVKlD3rvLur2feSeRwpflx6QbPGo23Pn4rf/8beRcqdgC9jg8/sAAN89/V2tMQiVIWShtYFtAtfT7KGEjg4rK54X0FhTvHuaC0VUDkHmDheztnh1VXRGTVjUFssUYsuJ45WEB3mUcpDhAwZXQJYbFmrM3uj55ss3Y1Vcukn+S8W8lBs81I6l2xtsykrtpX/+qT9He4yq75+++HShbxHeBlwZu0JfxPPbT3hBn6Uxv9qBhUY1okmbJq5U5jbVcpNt82JmuC+QEaJVZZ35MGJWqAGASIDW2uvD15XExGsue7UVQ0c1lCEqJjIemfm4ceEGAOAHT+uraLk0cgnxWtqw/fFH/hi1qMVcaA5/8oM/0RaDUBlG5+m96Unl/rz4qn1G1dmNyRtKY+GuG7YmKYYtTtepGlZkxFPCnnJbN3U8cddguYkkaf00O1Oh1lOL9Jx6ZeJ4qRX2bivdT1WuufMBek8U878FAGuUjlpTi/psTf7bt/8bkqkkWm2t+L/u/L8AAIP2QYSjlRtyJehhapXeZzwEbj0NVbRHWAip66xgtt+2HQBw7x33Fr3WP+sHoHY4nGHNYdI2ymqxGvaBqoYglyqOc2UlV5yXm+wkQHNd4SptxpqgNU5lt45ZK6s7b78TAGCp0iuOPzH6BADgiPMIPvkA2fuGWvRbuwj6idppE9vbtNGuFQA6aqhjxR/zK48lYaN1oaG68FkQAGrd9FlSaWHCFeDVVeasPLk4T1XyzwwijpfASoiy2dzWagY+YKgSxwcuDgAAFmfMZWsN4cQBpVOluRLckShsh3DHbXcAAFp6i1fOlou54BwmVqi99UDrAfzUPWSxU7XdvAAnbE0WI/Q5qUpVwWrNvfzV2SlrObWs9iDLBwBLzNwGzmsn0V7VgX8luAKkQzG7SeeknKr1je1azFYMAsDEEH22z146qyam9MGBvdqKEVyiqsfB8UEl8QDA5CJVL1qilrzva4bX5IWg+oMx8/cv/j0AwLnkxLb2bahbos/Yqzde1RaDUBnGl6hattaW/0Brj1CZ2uC0us8IkBnGxuJpMXb0UFV79/ZuNfGkCy4cKfO2UTy0zuszt/6Uyr6DNC/mwXsfNHW91WrN2JgoEseHxocAAOPD5iqv+X6hUhw3638LAPYEvb+n/PrE8R9cpORn22obfvH9vwhLyIJUVQp/8aO/0BaDUBmG58jflofArcdjpXPp7Oqsek/kdO5oW0duG8NsDCHWAURiavaUz770LADg5OvmbROjqyQcXR8qf8FFNBY1qrSLFTYwbL+iShzP7ro0m0SwJ+kfoSqBAGTEce5+zAeL56F4CPGkPoFt3kNnut/4338DP3WUdIUXhl9AKqW2GFGoLMlkEkk3raNsE7ie9joqZgim1M8d4WSbmfWE11yrW50czBXg3PFSjI5mSiQ4vOb3xeVGxPESYO+0WxHHVWVlbo5Sy/LSrDmrhew2i4VlhYP9HLRQFBsOt287HcR0ZnhfukYeqNvrt6PGVYOPHP0IAODkpFqPaaHy2Gros7u7e3feaxrd9BmZC6nzzgOAxRU6XHPFRTGMKm1FrZ3Zdi1mN+l3HbkLALBj7w4lMb1+8nUAwM1r5oc3Oq10GlMljLBFlpk2YQBYnKbf89iMuk6Elk5KLna1FPcQ5SHIqjoQcvHcVRqM12ujqord9fT5uzR/SVsMQmWYWaUOmQZX/jWls55atx11ajfD/J43Oy+AZ7QE42oONFxw4YD5f7dhZaVozgMfZMzMwWBUt9TzjByznrwsjqscgswzG9jurBCOJP1+Z5fVt1Qz1xMk5P3Evp+A2+lGR5QOnM9cfEZbDEJlOH7pOABg7EruPQevxUkklfvg85prpqU+ewiyKisr3r+Z7fwDAEuC1jcVcx6yE4rZFlWF4MpKVfaos0u0Trltblgs5s7m/V0kCrb3quloAoDnXqF95JVzVwpel11ZzkO4VbMUXsJkgIpUHtz9IO7qvAsumwszqzO4Ml84XmFrM7c0ZyS4DJvAdRg++Fa1PvjxRNzoADfT9fHgPVQEwUPPVcB7SrP7t939dD50eEQc3xK4vNRaZVY4AjIG9KrEcfZmc1ldpq7PnirNN8ByE46GjWqBzsbCfmXsOa7T//abP/wmACA+RhnlOzqoen3QP4i5oFpBVKgs/Ptt8uQ/+Ld4SWj0R/1KY3HV0GeWBZhi8ObT1+pTEo/dTXd3u9UOb5W5qsTuVqqoVJV1npylzebKgvkNLq+F7C1ZbsKptDjuKq1FTFWVDwAEYpQI8FX5isdTgTkP18Mk1NzVScmUe/ruAQBMJtUPpxEqy0KYDv/suZiLvX17AQCpKrUVVpwwM2tDp9oSiQ/uTktxaw4mFqQy7eHJYSUxGVZWJXTrcIJXVdVgqYOi+ferKqkBZMRxMyIbD+X0Nqip9l+PP+BHrIbeJx9/4OMAgG01VLkrQs3bH27x72vuy/l8Y12j0e0xND2kNJbhKVqnYoHiw9VqPbVAWu/NnslTTtg2ymznHwBYk7S+qZiRkr0vNGtn2NZEQpvNbb5QrxSuDV0DAERWzAt5bY0Uk9WlTlZi/3rufMiHw+YwErYXblxQFk82l+cuAwDaq9tR566D2+7GNgetub/7v35XSwxCZWC/cZfNlVeQ7mqkwqWYXe2QyYXlBaMD3Iw4znsltgtVAdu8mJ2NyIWAq9HVinVdiDheAl299Obet3uf6e+59yj5rO3cu1NJTHxoMyuO221249Cjqi13fC7T+trdXLgducpCscyu6KuoOT93HgCwzUs3Lp/bh3YnZbv/+mkZyvl2ZnKZxLhCQg23P60k1IqH1Q0kvHCbfDHuPEg+em3dbUriuRULE9XDL7nKpxTPcR6UqUocr6mnCqie9sKDLxmjyseqrn2ZRTYz1Vksjuua85BMJRGsp/fHpz5Iw7B//MiPAwDCNWEEQuqsD4TKs5QgEbGjNn9lCicrVSenjeFwDpNdH1NUCX3i3Ak1AaULY8y2mwLA1QtXAQDHB46riAjD4yRmLc6arwJnz3QVlZVAZlB0nddc5RFXoDq95pMOpbISpTXXzHtp/879AIDaZnOHw7fKyxdepgNyBNjbQ4mnn3qY2vwbdpsv7hG2HslkEkkX7TX6WvvyXmeN0PFftTg+MUeV6Wa6m61WqzF/QlXxFg+HM1vcAGTWN7bBKms86SxFlb0Kdpvd1Pf0tlMHXsKSUCIecZLTbFcrkCWyKdp3A0DEQmJ9Y3XxCntLlBRCXXMevvXEtwAA3mBGV/Es0/nozPgZLTEIlSG76C6freWOTqooVz0kNnvdNNP9p2MmVrWPXmPvjr2mrufEZSKVQDShzgu9ECKOl0A4nhZqShCPWuqpClVV+xPfiMy2CQPqBS1DHI8BHnfhDC8PKlqNryr1QM9mIkGbtXv67zEec81RcuGJM09oiUGoDN976nsAgGsD1/Jew9Omgxa13mD82TVbxah688nrQSlCdHCZvmdsWo1lSDRJN8ZS1lwWx3m9LjdNHbThuOvgXaau586ApF2dOH78LAll/ml/0WsbvXSwCCX1DAqaDkxjJboCq8WKu7fdDQC4d++9QASADXjy5JNa4hAqA1tZ7ezMXyBQlaLP9+WRy0pj4UpiM0kkAFiYpqr3a8P57xdvhb0H6LDw8H0Pm/4eXt9U2WvNLtLhannBvBDEVYO+Zl/Z48keFG12FsYj9z0CAOjfndv/sxxwpVWNs/h7qc5Fov5SRE3yYD1vXH0DAFAVysxWeWjvQwCAqwtXtcQgVIbZpVmjxX9be36fb2eCEkdjC2oHzyfsVDXYUmdurpQ1Tu/XuWU1iVLu4i5JHE9bqbINVjnhfbfZAchAZo+eQkrJvB+ep1DKoOjQEt2Prgyq60yJW0kjaK4tXhHLw7RnltTY86zn5AjZsroDGY/2XY27AADjYXOzMoStyXyIvOYbPfmTNrt7yCokYUkos8QDMp0bTovTVLKNu7JnFtV9Trhbx6xtVLbN4ORcZbqLRRwvAaPdtATxSLU/JB/2NlO1Jw+HY+G7EF3NaY9cC5R73wFAIBRAuIZEsx8/9OPG43sa9gAAbi6Z9zYWth4LERI7ah35K7juO3QfAKChU22FFfuPmu364M+4quq8M5eouqEUCxMWjyZm1Xx2+abqcZZ+cOCq83LDoojZttz6mrSgY64o6Ja4Pkq2JWaqs5pqSNznKhzVDPmHAADdtd1w2GjTY7VaURukz+Cz55/VEodQGZwNJMK855735L3m5nm677508iWlsbhr6eDKNhfF8Nho3VFVVVNqghTI7N9UJf+4zb+mynw1e08HddFwV005WQ4uZwZF15gTx3ltVtkqXNdCgveO7uLzNrh4ZXJBz0Hv/AR1RzZaMofR3U10OJ8PzWN2VV+npqCXm5PpM0wCaPXlHsgJAO4krYUTi2rPXTwcrqnW3AwDW4JEzYWAmplYcQsJrNVu8+I4D0xmG9NyMjo1CiAzt8EM2ed9FTGxfYw9ZX7TOnqT/h1nL50tezxM3E6/OzOJFt1zHoZXqeNqT9Me47HDvYcBAIsWNbM4hM3BsTePAQBCc/l1vhpnDWyW9NoWUjfvr1QLE04SJu1JJcOZk6mkkcAzmwD0uDyGvZaqJGkxRBwvgWeep0E2p988bfp7An46VE3MqNmAsGBfStY5uESi+Pkr55XENLdCb2be5BSi1lMLpC3XphenlcSTzSsXXgFsAKLAA7c/YDy+t40quOYT88pjECrHcow2fa3V+Q8NbAWk2pP52CvHAAAXBy6auv7yOaqqHLg4oCSeOT99bhNh897YPo+PvkeRnza3wJbiD8kHBxUVNUBG0DK75hpDkG1AMKwmIbkcpvc1i3mF6GkhIcvmVeNXuZ5/euGfAACO1bXDVbZVU1XbZEJ8x9/OsBBXcM5DNR12V+Jq19yOfrJ2eeieh0xdr9qP8VaqBg1xXFHyz7AwMTk8KTsmFQUXPLgaWDtQvhA6WvwbOyiWew7fU+RK4PwJ2ms/9+pzyuLJZj5F+9ie6oz1l8fhQZOdPoP//Po/a4lD0M/QzBAAwBq25m3xBzK+zdPL6s5d8UTcmD9lVhznTjtblZr9SRwksJaS/LNbSCRejZR/Pbk6SJ0cy/PmO3UcNodxbh6eKP/sCd5PclLADIadocKEZMpJ96aOhuLDA50peuPNB/Sc6eet9Dp39t9pPPbAXtIYYtUxmsUmvC25MkrdEuGF/L9ji8WCejetbVNL6qx+Si24aPGlE02WtXutcpE9p8FuskLMYrEYMzGWVvV0261HxPESCCVIiDb7CwaAwCKJ49kTqcsJH5BKEY9YHB+ZGlESE7ey7t+1v+i1VqvV8AbjinOVnB2mrLYz5FyzcTzUewgAsOrU48MrVIbVFP1+O335KweNgYXRFcST6qx+2CfarCUSC9Fc+VJu2E+RW0jNYPhpK7KNYnG8lMrxw/upWkNVS/3g6CAAYOSGufUze4Dz/IqajTq/l8wMh7v7IFmbVPnMdxu9FU4PUTI5tbjWG/MXPvILAIBkozq7GaGyBKNBI4FfqOWU5zzw+qwKw5vfhBUGkPFjVHXgf+H1FwAAl8+bt5PhtZC7asoNr+WliOOWGO3h2F9YRTxWWIva9DG8Np+9rK6KcTlC98taV/EKLWPOQ1zP/tLTRT+nf/2T/3rtE+kirGfPSbfO25XROargdcQLC5u1dnrfqpzzsLCcOfc2+4pbYQDAnu1Uecv2deXGU0ufja6WLtPf09VK1za0lL+blDtBS7EwAYC0xq9G0EqfBRwW8+I47z1VdaQvry4b3ZcdjcXFcbeFxPqFVXVVukwgFECsms4q7z7wbuPxO3ffSb8nG/DGpTeUxyFUBi4AKdSRDgBL0/RZf/X0q8pi4QHIbE9VjOykpYo5D9l2LaXolJYE7SlVDXkvhojjJcBtrJwhNQMfMFSJR/uPkAD9rvvfZfp7jBYxBf5pQGnD4YAsbzC/em+wy5N0CK1Jro3t/tvuBwAkvUnML0n1+NuVsI0+wz1N+Ycpsj8oAIzNqfNj5Ayv2fWEK2q4barc8HpQSrUIe8BytWG5MVpgS/CH7O8iUdxTY15QLwVuE671mGtbq/HUwJq+1fL3lptAjJKwZobD1bnp/e0P+5XEsp6RZRKquqrXHkb7fH0AgGF/+SufhM3BpaFL9EWy8Huzu5G6dcJWtdVVbI/Concx+LpwUk1c/oAfAJAMm98f8lrI3rllJy1A+Kp9pr+Fxf3Xjr9W9nB4zSwlQeq20j01klJnHcWii5k1t95D90ldcx5uLN4AAOxoWGv50u2mz9nFGXPdasLWw+qlvUZbXeHB7fcfoTNP/23qfPmz/Z7N+s2qHhDn9ZFAc9uu20x/z2076dq27sI/01uBhehSLEyAjPilwmYxEKGfvctizvIRyKzPbPVabrIrwNsb2ovHk+6iXAyptzQ5dvYYqWkR4MiOI8bjdpsdrlX6Gb5y+RXlcQiVYTFM77EGd+HkmTNJ3QyTfnWFoGyPOjNuTk9zOpxGlbYKCxMjeRdPv5ZJeBhwduW5TkQcL4FInDbabnsJ4riXhAhV4hFv/s1MpWXY7F6FVxlAFbeAeXHcnqBNgQ5vMKuP3vK723eveby/rZ8GxAF49ZK6rJ5QWeJOElv7W/MfCBw2B5DWHW6M31AWi9FSb6LaF8j4rapKtPGGuJTOGGNAmhNK/Mp27KXD/UP3mbNBADK2KqoG1vFazlXzxbBarcbBgSvhyw1XJJpZc7mKMZKIGPc0lcxGaV3f0bRWqOmpowTV8JKI429Xhmfod2sJWwq2+Hc3kWgXc6r5fDA8WHN61JyVAPvSqqrS5v+v12W+ooY/4yrWkkgsQrZzML++ARkxWkWFPc/rKcV6hu9Lqu6VQOa9NHp9tOi1DV46NIdT6lvrY4mYMedhvTh+WyuJfKOh4jELWxNPE31ODu85XPC63d10BoraFCXZAMwtpcWWKEwNhwMy4riq2TrG4PkS5nQZe0oFs8NuZd8NANYk3U9VVFa295D4vKO3+DwFhm0cVNl9JR20llc7q02JbI3V6WSMeX3/ljl9k7oj3SH3hn1OfYruRZywFN5+LMVorWryFtbhqkDriEpbFRaTs4daFoPnHcwvl78wlIf7osSGd+6k4eShbkQcLwE+yJQykJPFcdjViEd8oy9loJPTQjcWrvAuN6+eIHF5atjcAqDVGyxd7Pneu9+75mGr1Qp3iA54pwfNe8oLW4dgOIiUm4TN7e3bC15ri9LCrLJyPJigz67ZKkb2W005FFUfpzfpvD6YoaE2kylX4Q3Gh5FSKsfDAdqcq5jzkEgmwHsOIzFgAtVDkLkikavCC5Fd6Xh97LqSeLJZttHm5vau29c83uoi339/2I+xWXWfM6FyjM3T77VYi39PMyVKUs6Ukn0Sw103dVXmLENq3CREq6rS5v+v2UICANi7k+ajtHQWH0pWKtn2f2aHXwKZghEV6xu35ZZSWcn3yqRd4XvJTu8lM3YRzbV0TdSqTohkXj7/MuLJOKwJKzpq1toPHOg6AABYtlTmwCmoh4e9NVYVrtRmm6v5kLpzl8dH+55SLJoG3hwAAPzo+R+pCOmWkm0sXKsQj9jHvBQLE0CteFTfQms/W9yYge9hqhLJpdhYAcCPPfhjAIAdt5kX+G+VmTDdo2otG2P7xHs/Qc/1mYtb2HoEknR2bqst3FnitZJON7+qbs3leQGuErJC3IXC8wLLCesCXAluFrZ3VeVwUQwRx0sgmqCN7a1UsMAKBCPlPzhcHyZxwz/rN/09Lit9aFgMKzfseRRYMPf/395NQmVzlzlPurfC6DJVzHTXdW947uEDDwMAGraX31dOqDzZg4f62wq3kjoStFFV2f7EFRZmxXHDG8wORGPlP2SzzYvTWoI4nu2nreDgwNXfpSQkx4fGAQA3R2+WPR62QQDW/tuLkYpSQmN4Uk2VNNs++Kp8Ra+12+xGl4zK5A9AA7liHqpwPbrj6JrnmuuaYQlTxcIbV8SP8e0Ir5/OROE1paspbbljUzefJZlMGgO9muvM7TUeuIsGam3fWziZeqvE0v2sLMKbgav53DXmOxhNk6U/lyKOc2UlWw+Wk3OXzwEA5qbMH9yMfbeiopTs91J7ffEW/9Y6SgTGrGo7IwDg9SuvAwAcAQeslrVHvP29ZMMYrYoqTUIJlYMTkjz8LR+pIL1/Lw+bn3dQKty5UUohAc/gUWGrkkwmjQTeyqJ50eXUm6cAAMdePVb2mIJRiqeUohQgIx6psB0odeg8ANS6SfxVZWVVqjjO1y1H1ScCm7fRfuInHvmJDc/taaYEw7WFa8rjECpDyELn1M76/LPMgIwn+XxQnTjORa+s85mB7ZNUdFtzBxB3upiFC4sdntKShuVCxPESuJXhcNmbAhWHPm5bW/Wbb2d12eiDwDfAcsObGq/dXDX7rt5dAAB3rYLD3jquz1Iyoatm4zCWfR37AAA3F8svqgmVJ25LT6l31sDtLPxeY2+w6SVz7fe3AldYcOt+MbIFHSX+/GlhpJQq7SpXFeyW9DeWtrc3xdQ8dZ8szZmvSuefZ8JSfm/27AFTpYjjy3O0Qb86eLXsMQGZ6piH733Y1PVcKaBiAEs254fO0/sqCRzddXTD8+4wfQ7PDJ1RGodQGbh91GMpvGdqrW81fPmXImra6ZeDy8aOt8Vnruqa11xVB35jpoLJewCgtgslmqSkq8vmgs1qfkCcSisrY1B0CQPrDH9jRUUpy8Flw36mrb64D3Gbj65hawCVXJ2ie0xNamPC5c5dd9IXTmB0VqxV3o48/crTAIALxy8UvC60QJ9VHuCpAj5jltLZzNeqsGhaCa0AlI8vaaYCr28qbOh4HS+lKAXImh2mwB7VGKxcQg3O4dvJxqer3/yg01J4/rXnAQAzo+bOPiyOL4XV7CeymVihn9f6Th0gY20ltipvX2IO0gYLzTIDAJ/LB0DdHhfIiONsdWeG23dTV2/vjt6yx3OrA4d5JkR3/8ZCVh2IOF4Cnjo6lLQ3Fa8UYWo8NUDaBSG76rBccJswD+szA2fmVbX486bG7GRavomxV7lKbszSDSq+sNEAqb+eqokH/YPK4xD0wwMI2XO5ECzmzAbUiYd1zZQZ5c6JYviqfcZaouKzu/9werjvA+aH+wIZMV2FGB2OpSsRS/Ar40GZCWv541kMpP3TEoDLaT4zr7LKB8h4jrfUmRP9eM6Dija6bAaGBwAAtlVbzoRUHegzcHlKXfWaUDlmV2n9rLYVFn+tVqvR9RCxqBGipxcziU4zgiaQEWpU7ZV4jaqtMt9yzf6QKrxmufK7lE4dIFMwoqKl3hgUXYKHZnYiedZf/nv4+Ny48XVbQ/H3Um97+tDpAlIpNbZozNhSunLYvvFM0FTXBEuI3j8nrp1QGodQGVYS9Hlpri7cHcNDkOOOEs1gS+DGKJ23EiHzezFjzVUw2PFWixt4PVSxvvFcnQO3HSjp+1oaaK/HA0bLyRunqJPvwpnCCZZs+jr6AABWtxpZiTtTU2Fz6+fQ1SEAwKsn1c8QG1+h+0Fn7cbK4eoE7X2uTl2Vbp23IalUCvZaOk/dc+Cegtc2eGjNWY6r62Ywuj5MzjIDMmuuim4d3r+VOnBY5ZwHM4g4XgI8pOKuI3eZ/h6r1Qq3jUQBV3X5J0Nw21opw5Pe/eC7AQB33HNH2eMBgFCC3sxmfTQtUdqs3xxXW7E9MjNiDOc4unNjFaMnQovJS+deUhqHUBm4lam+qngiyWujm8XCqpoWfwDwtfgAAEf2HSl8YRqr1WoI0So2oLcyqAhQ7Kedvp+Wsr6x0JS0ln8jypWepQg1QKbKh/3gyk3JQ5CTaQ/NFbVzHpzNVA117957cz7f6ia7gaHFIaVxCJVhIUjrJ7eTFoKTlpzELDdzy+lEUBymBnoBQGiF9jLcwVJuLA7a+5RiO7A4Swm6OX/5E1vDE2T7lIyUtnbyPUCFeGQMrCvhcOVxe4D0P0FFZeW0P51oiQIOe/F7QV9bHwAgZUkpqYjNZnqVYmuuyi2O8jB6d4v6Tk1BPyHQmtVWVzhpw9aCKVcK8YQagfzs5bMAgKlR8+sn72FUDHY0ihuSgMdlXjxSub55a+ms0dtRWtUmV3t29G6sVn6rRBLpQdEmC9yAzM9IVUf6UogqUNkCohiuVNo+NqbGPjabF0+/CAAITW8U8ra3UPFT0p5UbmMo6CcYCxqfl/a6woWzu3rIJaG6yXynYMnxpJOKpVgisbWrir1J384+AMDubbtL+j5OSKroRjSDiOMlwFWMpYpHXhfdYFRUVqZslEUt5XDF16oanMHiuJnhcABw7Tx5cb1++nUl8TAnr50EAFjCFrTUb6ywbHHSY/NJDYNBBe089eJTAICxa8U3KDUO2qAvhheVxVNqhwWQ1XKqYAPKN6FSbqpARkgZmRopazzRWDQjjpfQAsuV47w2lhPuHmqsKzzsaj08bEmFUANkqmLjq+YOuTwEWWXyBwDGl6miprc+98Gvt44enwqpm94uVA5bNXVMdDUWb7WustC+imeWlBtOBFliFtPfwxWPKipqAKCuifZIh/cfNv09nChM2cu/vg2NDwEAgsulJTr54KNiSOitDIoGMknSqtrS9utmYHHcGjN3hKqyV8FupZuZ6jb/hSit6e01uQ/qO1qoUnVsWYSatyMRK53ruhoKr7k9LWkLACswMV/+4eVA1nA4k4ImkPGuDqcUiOOr6f18nIpNzMJ7dLadKidcGVmqrmCIRwoqK9lGrJRB0ckonQPY6rXclOqlzEOQdcx5CFjoHtXi2Xj/a6prMmbrDNwYUB6LoJe5IL3fnTZnUfuoB47QDBtvU/m7PRi2Rjmw13wnytC1IQBqZirYXHQG4E4Xs5w7RbNmfvSsmsHMxRBxvARuZThc9vXlvoklk0nD57cU8UhppScyN9a6KnPiOG+Gggk18TDnRujD5grnvrke2ZGu4HUBUwsi1rzdYAsJ9hMvxMN3kXfzrgO7lMXDXqqlbIp5k85VFOXklTdfAQBcvlCaxQVXMl65eaWs8WTbUJWyvvEgDxXiEa/hpSYQWNgJhNUMmeI1lyvUi+G2UNWgP+QvezzZcBVjq7c15/O7WujztZBSK9ILlaF9Gwl073vofUWvnbhBAs2rp9S0QUdTaT/tEgYVGd7VpXWEmuZW1hOjEMKBsld8cgtsyf6QO8kf0tfkK2s8wK0NigbU7nN5GCfvXYthsVhQ4yShaWZZwbyQLJZTtK/obcidkOyuJTsNHk4vvL1gm5Si/rfVPsOuLtsmqJxwMUApay4ntXjGVznhPSVbU5mFC9xUxDQ4RjaegaXS9oZ8buBzRDnhe2Up84dCS3QvMxIQZaZUL2W2GORZU6oIhoNIVlFi4EBfbkHSGaF714VR8zY1wtbgzFWal+SIOWCxFF5XeEiyyqI7j4/2PXv695j+nsgKnR+zrQfLxa12pFsTJE/zwGLdiDheAteHaJgjZ1nMEgvSDZVvguUi27+2vsZ85fjkyCQA4Oyls2WNh4la6MZq1gedvUZDSbXtE1enaVBRLXIfaDoaO4wBJOcGzymNRdAP26p4bMWFiG0d2wCo878FgNFpOpxOjZhPxEwMpQWkE+UXkHhgMK9XZuF290CovMKv0QKL0jpjDAsWO5BIlLdb51Zv9Fw5paICdWl1yRgO11qfW4ReT0M1ed9ZXKUdEkvl6ddoOJh/3J/z+SPbKSGZqlHrwytUhvkQrbkNVcX9XTlhMxdQU3nW1N4EAOjr7DP9PY01aXHcVv71DcgquChhPTEEe5R/jo0hjqdKE8dVtsDy4agUgQ1QK47XNtEecmf3TtPfszJLP9vj546XPZ5skh4SanZ15E7sp5ZorX3q9aeUxiHoJxqLIuWm329fa1/R69nScmJBTeU473dKGQ7X1UIV7yzylBM+M7PwYhYWiWMovzh+7jKdNW9cLm1g4/FXaR15+tjTZY+J/52lzMIw7pWlOQ6ahtdxs17KrT7aC6segnx28CwNeU0Au7tzW0dUp+j9c236mtJYBP3cnCA74NhK8bWB98Hzq+rcCXjNLckSya7OEunyDSq2W54vLYnnstN+T2xVtgDxdJq91MrxpTmq8rw+fL2s8SyuZMQj48ZkgpV52qRPzKrZEPXspIqFh+952NT1DV5aMLj6URUji2T70OjI/7NyhOnOfnHsotJYBP0shujzwpYphWD/W5UZXq5sLuWzy0I0T4AuJ9wyyv5jpcZUbssQQ/hJmPcIBoDWhoxAXO5unRdefQEAMHyjNOsHl41u9CqEmsmFSeNrs4MGH7r7IQDA9r3mhsHeKmN+at23hXKLbe85+h4AQNAWRCSudv0X9LMQooSbGXG82l695nvKDW/8i7W+ZtPsy/g2l7tdPBQJIZ6kPWUsbF50yR4kx0PKygWv4aUOT7Ik0kNCFQyd51k/O/vMC9EAMDdJv683B94se0zLETrolWI7wEOQVc55SKVShjj+nrvfk/ui9Nbh2owINW83RmZGSKgDsL2j+L3dHqf3pOGhX2ZuZTjckf2UMG9oNT8w0yw2N+1DatzmP7dAJqFa22heLDZLLElrPw81NosxsE6BeMSzddii0AxNtZR8VpVIZhtKs11W7Q1pWyknEImp21ueHz4PALAFbbDbct83G+z0XmYNQnj7MOWn4jYzHenRZTpjL4YWlc15GJ+hLqBE2HxhmDEvQIHn+IWr1C0xNlSajVuVjdY3HhKvGxHHS4A9bLlt3yy2dFlfucUjexUtxDaLjQYQmYQ3Biqy4EAmc1XvMVft2VhN4iBXnKtiLkSHpRZvfu8jb4IOztenypvIECrPcpQOtHWu4p/f+ArduK4OX1USSzwRNyyRjE2lCdg2Q4WtCrdScgupWeyWdOV4pLwbYiMBUOIeItuChf9N5YL/jbZEaZWVd+yn4cc795Ym8JjBaIWLmk8isKjDgzxVEbRQMqC3KXeLf5OnCU4bxTwZmMx5jbB1OX+DDo7zY8UFQU5aqhrIeSszHqqrqoH0GcMY6FkmuFMHMG/PAaQ/4+k1sdxiNItZ9hJ9ZEZu0KH/xkhp1Y9maGqj+yNbt5iFD4cqBpeyRVu1w3wi2ZjzEFBnIbUcWTbEsnye43s6qN161aZ2MKign8UIFXPYk3Zau4rQ30FDORs7S5uhYhZjOFwJ4rjKjo/mdkp29nf3l/R9+3bvAwDUNZZ29jeDse8u4b4EZIr0VAwuTVhp7fR5fKa/JzuRXO6kLQDYPXRPaqozd17qbOo0vp6cV7e3vDJBdpJV8fxFk20eKlqRPe7bj5kVsknjmTmFMLp5rOqsrK4OkWbBezIzcEEczwssJ7wfcdtKGwDudtD1KtY3M4g4Xgo8HI7b9k3Cgla5/WZ5oGaplew1VWlx3KJGHGdvMLMVqMbgDJvawRm17XQAPbAt/6CCOhttfoYWhpTGIugnEE8nbdzFkzbBRdqYjy+ouYEtLGcOyNmbymKwPQcPOion3BlTalWNM63yr0bKe9hu6aAkVq7huYWwW+3G8LNyV47zGs4JAbP0dpA47KouzRrADDNLtDmzxs3fztn/ltdqVUQddPDb0bYj5/MWiwVt1XRwGF9S81kTKgf737bVFe9o4KSlqoTNsy8+CwC4eflmad+YFqLLfeDPto0qZaYCkPHMLbfQymv4rQ6/TFrL38J+q7N+HOn+fhX3yqdfICuDcyfM2+/xfXIxqK4bbSpAVWy1rtq8FZYH+w4CAGJVMZpbJLxtSDhJ1Oyo7zB1fXcz+c+r8mU2hryXUBWtUhy/1aHzKqu02ce81Mpx/jeoEI/Y0qa/03wSwePyAOnlRIU4vvM2Kix59wPvNnV9dVW1cZ+cXZktezzM4DzZ5dZZ8ydOeuqpmz7oqIx/sqCOhVXag3msxT+/9TX14JrU4Wk1g+e568NscSqQ0epUrCV8Bi9VHOc1V8UQZDOIOF4KtyqOW9LieJkrK291OBxngxOW8vrxMlzVmoqY85HlwRkJu5p4GHsd/QIfuuOhvNc0u0monFqVgZwqSCaT+NSffgpHvnAEY7Oltdm8VYJJ2piwjU8hOhuo6iBuV3NoYEETWOshWwz2XVUx2JGTZdXu0mxVeFBauQdnRBKU/Cv10ABk1twZf3mHn/EazkKHWVQe+Lii1RY3X81++Rz5wD33ynNlj4eJxqJIuum0tLsrtxcjACyPk3j12POPKYvlncyxM8fw2b/8LD77l59FNKZvoxkIBYzuGDP+tzx7hJOY5YaF5FS0NH97Tjpli9nlwKj6jgFWa2lbcS5wcFeXduAoBleO8/ppFm6/T9rKL7ZOL1BnTCpW2u+NxfFyd2wCWV7KJRz42HdZ5RDkJ199EgCQWs7/szIGzzuAa+NiraKCb5//Nn7rxd/CXFDN/IR8sHWgGRsrAKhzk6C3FCl/JyIA9O3uAwAcPXDU9PewHdLUfPnPYLy+lZpoY1u8cheAABkxq5Thl0Cm0pyL5MqJxUmicn+XeXHcarUawl+575VAZs0txfaxuY7O8+7a8t4ns1kB3V+4OjwXn3j/JwAA9T3mBUuhNP7ll/8ldv+H3cpE53yw9WqN3VxRmTVGez22Yyk3cWtaHC9hThcXxKmwNmbBvVSdkq8XcXwLUVddWmsVHzTKfWPlFtZSB+ixLUzCVn4xenl1GUkLHZDMentu7yJvPFtVaVYFpTIbpOxxsyd/pe5HH/0oAGDH4dyVjsKtE41F0fP5HvzZ7J/htPs0PvLfP6L19Z21pNT0txXf8HU10VCglCulpLrKqKyIIq9PXS74gK1isCMny0oZwgNkieNlFn5vZVgdE16hG/LNkRKrRIvACQD+N5tl1U9r/82x8sYDZDxs7Unz7yNHMi0cKbRVuTp+lXYYKWBPd/7J6dyOOjyvd1P7TuDa2DW869vvwpfHv4wvj38ZH/+jj2t77aGpIfoilalQLESjl5KEwZSa6qpbGQ4HAF2tdC9o7TY37NYs/lU/gEwVeClwt1G5O1H2HST7gDsP31nS9/Gekq0Hy8mbp8gz/MLAhZK+zxiCXOaiFODWvJR5ELiKSnbm2iSJ3dZg/qNdrbcWliC9584MnlEWyzuVCzMX8DPf/Rn8+vO/ju1f2Y7XR1/X9tosuNQ5zZ1RI0skhpy9elZJPE4v7ZO2d5ufbWLYlpbWnGeKp5+njo9S15LpcUrQzSyUt9gCyHRsllqUwuI4V56XE2M+R4lWLzzoVIU4btiilTAzpNZFZxlVyR8AaNtJovj/9uP/W95ruupoDzG+It2RKvj3X//3+J9L/xNXq6/i8JcOIxjWV6G/FKb3Fr/XisFFTNkFcuUkaSe9oqHa/MyGei8J6SlH+fdvt+pw0dZEnyt3jbrEViFEHL8FsgcimYFbVMstHg2NDwHICC9m4Q+Ckiqfxcxgl9Z6c4fJ7pZ0ax/iSoeyTS6T31dTVX7Psm0t2wAAEytqhpW+k/nBpR9gvG7caL07ZT+F5wbUVa6up7aFbl4P3vlg0Wt7W9IeybbyD2IDMtW+pQojLBSrGJxhcVAspWScAeDQvkMAgB17y5tQOn+Z/Ip5oHEpWJN0a1sOlleI4J87V/CbhQd4Xrp2qazxAMD22+jguX/3ftPfwy13KocgXxkjL0ZL2AK3M/8Gp95JsYwvy8Gh3Hz2bz4LuGBYg7yZehPJlB4rhaGZIQCAJWIx5YW/fye9f+vb1FRXGVWDttI26dwpWO4ZLUurtK7xMMtSUNWJYnXSupk91NgMRjelnYZClpNb9eTlNZp/7+XkVuwZWEhXmZAcXRwFkLEHzIcrSj+bG1Pl94h/p/OJv/gEkqkkHFYHliPL+Ok//mltr/3Ui08BAK6eNTcrZ+ImnXMGLg0oiedWhiAbA+ptKLvIdaszFXh9S9nLLx5xUUqp4jhXmpd7rk40HjWGhJa6z2U/cBWDS09fOA0AGLo2ZPp7WLDkAcoqmF1NF9158xfdddZQJ/LM6owMni8zJ66ewB/d/CPj74v1i/jQ735I2+uvxOl+7nP7TF3PhUmqxHFeo4x11ASPPvgoAKB3Z+7ZUG8FFsdL3b/de/Reiml7+WMyg4jjpZICqpwltmSlbzDlth1YDtGCb0uVVnHN4r6KG70x9TyGgoJINtltUqoODoFQACsx+n87Y/kP6h015NU3uSKDM8rNPw/+MwDg3975b9HobwRswC/+7S9qe30e9GbmJtZU12QMYhueKX9Fq9VFS2+prZRcxVjTWJovuBnqmulAfWT/kZK+j/20PbWl258UYmSSBoqs+EtfE2xJWhN5jSwXt+qfxgMwy32QAYBQkmLi2Q1m4ASpqrkTADAyT78/Z7SwMNrqISGOO3uE8hBPxPHkHNksfLzx46hx1mAiMoHnBvUkJEfnSKizRc3tTw7uIi9km1dNBxkLyaV2orCwU26Rle3neK0qBRbUy209cKvdOoY4bgWCkfLuc3nNLPVeyVYISryL04OrSjnwcYekr8VX9ngYLupochUeWudNUdyDs4PKYnkn8tdP/zXOx88DSeALu78AABh3j2NqQY9N40KIrKO8NnPvSxYPVZ27xmco4R0PmrcnzB64OLtU3j0BrwXcVWIWYyaEHWW3Jqtvob3Ynu35u+ty0dlGgqvXV5roVIzsYqBS703c0WSvKn/ZP9+b2C7LDNPDpEc896q6PY+ZjvQmT5NRsHPiygllsbwTeezaY4ATqFutw8/U/gwA4DX/a9pef98d1G33/ne939T1LtDaMx8ovy9/PBEHfzxKsWtVtccFMp0tJQ8cVjjnwQwijpeI1+kt2R/y6CHyW9t7YG9ZYzGGw6VKuxFt66bqaDhQ9ioy9vi1xMxXQ9mtdkNsmlpUs4m8OpaupEgC/e35bTW8SfoA35y9KcOKykg0EcX3Ln0PAPDx2z+OLzxIB4ebFn0/51LEcavVCkuE3sMjs+anPpuFxe3e9tKyovfeQdnU7v7iNgWlcqszDLhdquzDL9Pt8KVshhne1K+Eynvo44NIa2NplZXs6Vbu6lMgM1TTbFsfADTV0AE0ZlUnjjf302Hh3gP3FryOW04X4+oG1b0T+f3v/D7itXEgDHzlZ7+CTx78JADgz07+mZbXn1ggoc6VNCdE8LqsqgU6GCdhpNRN+so8fb7OXz1f1ni4gqxUf28AGL5OCdvjA8fLGtOVG9TtMT9d2sGtviZT7b+wUt4hoYbtQIniOM/WYf/cchJOkm0XJz3NcPehuwEALd2lDZguhbkwCVut3sL3p3ffRUPtth80b3chFOcvX/5LAED3Sjd+86d/E/ZlO+AAfve7v6vl9XmPW+Mw977kNVfVnIfhSVqnZsbNV0l63V6ju7Tca4khjttKE8ezuymNWRHlIr38d7Z2lvRth/cdBgA0t5svijDDwnLmZ17qoGiVs3XYBtbMzCiGkzIzi2qqdAHg3A0ayrw6m19YtFgssK6SbnR2SI2F0TuV437aA/3nj/xn/Nr/z96bh8l1Vdfiq+bquXqeZ7Vaas2TbUmWLc8TxtgMJhDgMSVASH7ED3jP8EjyQhJIQsCZDAngQJjhmRAbbDxKtmXJkjXPY3er57mrp+qa6/fHrn2rZLW6656zr2JHWt/H9yVW3dunq+89w9prr/XO/wMACPqCONKeeVi2DnjOzSR0HgCqikiA6fXJ24WkF7bYbz8T8HtrBRHNavR1q9aZus4qXiFTXCXHTcKsbw4AVJfRoufKMn8Img+q5FG6p3AwKptOOzKVDIeLmas4hyepGn/srDkvuExxpi/pxRi0z+vxXOsj0jHmiKF35GqbvxS++cw3MRGaQHlOOa6vux4fuuVDQAyI58ax8/hOy3/+5MykMfHbw5lNe84oPSf94/JdBCrtpumft8JWxVBWmpzj2NaJbZ6kwBkNZltggVQ3jXRwadNiKixu3rDZ1HU851qh1N57hJQoYwOZHyRL8okctzIEeXCaVDuVeZXzfq6hpAEAMA1rDuhXKn5+4OcAgKWxpSgrLMPvrvhdAMDTJ5++LAXJiJOe9cKszGxScpw0t40FZAkRBgcDmSXHOSDuVMcp0fE0L0naIS3J3A6JYVWODZPjPZ3mwrILcgqAZCOitAcuz5kcQpopbrmBWoXbVrWJjgdI2VHlezMvSDKRzsVMKzARo8JSja9m3s81lDYAAAZnBuf93FWYw+EJIr5uabgFdrsda7OoC+/x449flp/PCnAO2lwITDTOJqwhIKIOIieNzpIMkB7syCHKUjA6/5zmiKl0K1VpP20+g5vt1rGKPOIsDJWg6Ogs/b2lzwJAygbWjK0t54uwL7QVCDloLSjJnr9bxxulsbQPyucOXamYjcxie+d2AMDdLXdjad1SlETo7/DqwKuXZQxmRHcAsGEl5bmU1sgWtYBU0d4GG4ryM39PxodpTusblrcTdnjoLF5bbk7Q136a3pMTZ+WtSDPBVXLcJFTC4SxTViaJH7PKo/TfQbrCa4TDxcwRWkymD09a01rfPkQv2nyWKgBQVlgGJOsFRzovT+XxSsC3X/o2AKB8tBwOuwMlBSUojlDbz76hfZb/fEP9nQCqiqsyuobboCvr5yf3VDAeoMXIrEqbiR3pkLFAMIBYgojSWMgcYcqL2NFTsspKLiBwZoMZcMFQmjxi9anZAkJBdjIE2SZPRp85T4W/kd7MvfHLCki9aEUAC4OJl4VUjC2VLQCAoEu2UHulYyKfDoR3LLkDANBW1AbEgJn4DHYc3WH5z69qonl209pNGX3eFaN3NhwPy6vzALhy6P787GcKtsWTLrTxflBFcGHV/Mb+kGbXJbvdbvwenF0hBdWgaCtVjLmFpGKvq6zL+Bqj+CNM+KVj1kbPVHXh/CrUilxSuV0lx+UwMjGCyXyycfvQjR8CAPzelt8DAHR7ui9LQZIV4JkWJItzaQ8eTFiz9hqEpolwOCAt2HFKmIiOqRHRbpfbsFmUXpt4DrfF1fKHrCLHVYKiezqoqLr/6H7JIQFI81I2YRfBIchWdaONT40DyeNJS3XLvJ/Ns1FxlHMhrkIfP9jxAwSjQdTm16KtlIrgH7nxIwCA14YuTxByex+dfznceCHku63zwY/ZaZLKdmXPKwJ9I/iMbYXtp6rojguYVgQOZ4Kr5LhJjAyYD+fzj/gBAGc6z4iORZU8ctgdhrKye0B2oh6foc2MK2GOsOeQAg4qlEb3KP2eWfGFX1B3iL7PEz3/NRWr/47oCJO35c3NNxv/7QM3fgAAcHo2s/AgHfSMJJVwIWS8aFQWESluhfXECy+/AAA4cdDcM3ZkPxVsXn1dtio+Oplqoy/Iykx1xMh20wY0HJddWHnT77YrkOPJgqF0EUHVesYgxx3y5LhKOFxlcbLg46IAJivw7E4KB/P3+uf93PKG5QCARHaCPPOuQhuzkVl0R2nN+/8e+P8AAPk5+cieomfkP1//T8vHwGotn8eX0eerS6oN9XHPsDnlciZoWNwAANi6eaup61h9Jt2to+qBDqTmRGnilw9HPKebgSECEW7N5QOfWeW4leR4UQWRfetXrs/4mpNHTgIA9h610HM2+WdrLL+0dSAARMZpT7PzsPVde1cK/u35fwMcgGPagRtW3AAAePCGB4lU9QK7T+62fAyBOD3rxTmZEYhl+VQoDNut2QMwocmdapmC50Qm16UQioUuuL8pJLcmhrJaALF4zCB/IgFz54ye87RGSp/hdYKi2ctdet8djoQN+xkzdhHcaSs9HoZh1xoDakvnV8b6XD4AV/PMJPHos48CAPIG82Cz0fN6W/NtAIDn2p8TDwefCzNx2hd6bZl1o7D95fCUvBCU96hmuyONbgwnxIu4g6NUgA9Nmwui5TOz9BqQKa6S4yaRCJt/2brbafE63S5LAhr+aSYTpQEgHqQHrndY1jpk6WryVb9m1TWmrnMn6LBnRUgBAPT5qV0kz7HwAYt9x88OnrVkLFcapgJTCOTSs3rfhvuM/76plhSFr3Zb3/7E/reOSOZ2P1YmnU8Fqf3V7LvL4bXS3tVGq2gCyM0y5+3KC7F0hZeJaJX5raWRVBy1TbLe7C/vehkAcGjfIVPXsSevFQu9SjhcfUXK657V8NLo8dPhzT47/zZjecNy2GBDwpbA6Kw18/+Vhn39+xCNR1GRW4H6gtTfus5FStdXO6yfc822mzodTiC5f+4ZlSfHp8N0QE4PAM8ETKRIhxXtfJ2ISfYPNwMj5F2Y+OU5XIUcZ8Je2nYgK4++fw5+zhRnjpMY5bV98goyFVs0VulGbdYVAG05RBBcv/b6eT/nmKV9UP/kVaJGCk8cfgIAUJ+oN+wocrNy4Z0m0uTp/U9bPoZgsu21NC8zArG8gLq62P5EEunhcOkhm5mgobqBrqs0d91C4MyYylLz3aC8DtjdcrRJugo9PbchE3AnDRcgpDARUA+K5nVJuqOJs8wAc+R4npvO+zNReRtKIGWRYg/aF7Sg4cDOq8HzcjgXPAcAuKXpFuO/ba7dDLvNjr6pPpzqk7XCeyOC4aDROVBXklkX2cE9BwEAL7zygvh42BbFrDjVIMftwExQ9l0Z9tPzPjFirnuDyfGEw/oCx1y4So6bhAPmFwwmLaRbFlasIa/K69ZfZ/pabluTbhHjw1p6gEkm4KqbVX6j3D5a5F64vY8J9P6JqwcHCTzx2hOAE7AFbYaiBgA215Fv85HBIxj0W9veO+CnoFdu3c8EgXF6lg+dNEeEZgImaliVmCkKcmjBiNplDzNG+6qCz2Cu1xrCnhWIHNZrBo21pJzLLzLXir8QWB1vtlunqYa8yl3ZsrkTgFo4nMfhgdNOHRRWeeAGQO9PXdH8m0aXw2X4NfZPX51zJfDkwScBABtrNhqKGgDYUEV+h2emZbvY5sJT254CAJw+nLkowBFNknZjb56cByZFpItIA6O0JgUmzd+XA+WkM2OYHDcbfgkAo/1U2Dp0XHa95EBNJswyRTxEhcjJWfnitkqhhUOQrSAiASom8/67OGt+5TBbWYXd1iiGr0QcmaCuvi11Wy747/VeKur0Rq3PMMoqpLmqpWZ+iwfG8kXUteUpMC9AWAiq4XCAdV0f9Yvob7FpfWZWX+ngEPa8InMdLPMh/fxtxksbSJ0FFCJ55gXPl9xdbga8Lkl3WfkDfvo/4mm/dwZggVMgZo0ApHOoEwDgji58HuDsHX/Eb8lYrjSEI2FMZ9M6fNeau4z/nuXKgmOCnt3f7P6NpWPoGuoy/u/assyEWIVe4sa4y0cSh07Q3otzcjJFemdPehe5BJjcNhvuW5BrzfyWKa6S4yZhtiIDADkea5SVXJUvKzTnoQkA9niSHOdFRwgcCMMV20yRZadNnX9WdjyMvAoaz7LGZQt+ttBNk9fQjHUJ11cSnj5EipnC2cILiNeqvCrYA3bEEcdvX/+tpWMYmqS/pSeR+SFg4DyRF4dPy6eL8+bRrA9XYQ49m9xqLgXDZ1ChlZKJFGlF3LprKd36pi03mb7WKj9GLgCY9b/lOTqcCCOeEG4VTvoE53kzn3NtNpsxR/OcLY2wk4iXTBQVfHDo9l/1Y5TAD7b9gP6PN3ydd6wk//HxrHHLPXAnw3TI9iDzOdcVpU0NFzMlwYGavZ3mSCoWN0gT0TqdMVwwlLYw4fBLLniaAZMpU7Oy84mq/YwRgixctAVSCq2h3sz3iEwQxp3WvHfcdeO0Ow1S6FJoqyN/1kRWAlMB6wJCrxQkEgnYKmjv9MHbPnjBv33kHvLADeRZQ9Clw5FD7+DatrUZfb6mlIJbA7EAYnHZPaVBjifME79WkeM6OQ88Jsk9pdFlEwO8bnMiEEOAZk8qWIXgK/EBAMqKzPMKVu27vXn03eR580yJdwzSz7wzY0boGaMON2984b9dXTHtgyOe/xoP5f9ueOHgC/R3jQC3rL7lgn8ritN8s7vdWiur7uHkBjuc+ftrZc4D83lmecpsb7aRqcC5gVLgzhYzocxAiuuAQ3Z+yxRvSXL80UcfRWNjI7xeL9atW4dXXnnlkp/dvn07bDbbRf87efKk0s82G34JWEceqfrfAoAzTuUYbqGSwu4DNBkNdJk73GY76XdgRY40vEU0cd247sYFP8vtT2Mh64KTriTs7SOPzda81ov+LS9EBN3uc9YuYuzvlWXLfFOc66L31grykDf9HNKVKQxyXNi7mucB7igxA/aClQ6b5GKiGaUIIxwgYlbaj5EV+2bJo/Q5WppkC4N+V7Ne8bMTtH7sPWKNB27MTc9DfdnCdgjD7fR+/sdz/2HJWK40DDmJtLu59eYL/vt9G+8DokDCm8DLR162dAyzcXq+MvW/BVL2alb4MXLnnlmSlZXm3KEhBaMzxmm+M2Zx02IAQFVdZuHSmSKWPCGZKbQxrCDHQ5GQERRttoOIyXErbEw4yNhM0GC5j5SnCXfCksLUa4fIPsYetF/QLTIXGisbjcPwia6r2Tq66Jvqgz/kh8PmwOaWzRf828rylQCAw4PyIos3wqyVVYEntWcQ3+cmCUmP3WO6G/HUUSpkPrvtWdEh6eQ88Pwj2YnC/t5Q2Dqnk01jU3Jn1cJSOmM01TaZvtYgx2Oy5Dh3fZm1RLv9xtsBAA2tDaLjYUwniK/wuX0LfvbtN78dAJBfJdvNeqXitwdJUJczk0OBuWmoz6Ezx4kRa9e23lESWjjCmXdZMDketsl3bU3M0nyiIuLlTAXJEOR4PG6IeM0qx9M/Lzm/ZYq3HDn+s5/9DJ/5zGfwxS9+EQcOHMCWLVtw1113oaura97rTp06hf7+fuN/LS2ZtZ29EUrkeJJIiUJ2k378zHEAwPCA+YOkM9mrIN1y2tFHwYsTw+ZI96XN5FVeUVchOh4Gq8BLcxZu77v3lnsBAIvXLLZkLFcauqL0bl7fdLEPZoWL/t7HBo5ZOgZ7Nk11Fb7Mny8+OEi3CAJqPtFASoFjlc+gCjnOJIS0mp3JI5WDDB+u9h6UJX65AGBWOZ7+O0i3rbHa0yw5ngjSMzQwLq/SnZiZMA7HC4XDAUB2nIoHvRPWt57/d0fPcA9iufSc3rP+ngv+Ld0Dd/vR7ZaOI2SjjgYOfcsEHOjFwd6SYMWuGUITADZfQ2TX4uWy+wEd26hli6kDrqRC1pO3rJr+ViuXrjR9rTNBe0rJ8DP2qwTMt/kbIcjC61IgGAC7K5b6MreLqChK7j3ssgdQRscQ7b1tswt3fzkdTsN3/ET3VXJcF0eHjgIAFhcvhsd5YSfIijKyvzw1cgrTQWvEPwAQCAeMwMlMyXGP02OcadMtAiTA8y2/h2bAftfSQYr7j+wHAJw8al4cd/YEZVDteG2H2HiMjs2o+Y5Nw3YAsvOJzr7bKCTHZAvJLJoze14yuiMtsg6sbSUrjXu23rPAJ4HyHCqODk5bayF6pWBP1x4AqRyddKyspP1LT1A+uyYdKnatZQW0x4o45DsIJoPJbk2b+W5EPvszwS4BHduodHJcOsMgE7zlyPGvf/3r+OhHP4qPfexjWLp0KR555BHU1tbim9/85rzXlZWVoaKiwvifw2HeTwsw7zULpJSV0gqWc10URmBWpQ2kKkv8MkmBfTnNVnhXLVkFAMgvsaaq2usn0qXYu7CKjT1yrwZn6CMajyJaRM/9gzc8eNG/Nxc2AwA6JzstHUdNM7WPbr12a8bXMNlohTcYbx7N+EQD1qVKcxeKC+aLfxx+Ke3vffQkHTj7uvpMX8tqTOlNetyuduBz2B1GZb53SJYArqon9eg1q82FIPMaMDYtX5U/10drE+KZefEVekitNBIw55V3FRfjmf3PAADsM3ZSiL4Bq+tXAwDcFRb1GicRtpMyhhWzmaC5htaD4qrM1eaZIF3BUpxv7t5VJfR+SYfpcgeJSos/XyPdhcK/I/vrmgGTbJIEoKEYSgD52ebWF6vI8eGJ1L7QjJdymS9VJOofl/fU7x2ndcWbyKzY4onSAfrc4DnxsVxp+NHzPwIAlOHiQmBVXhUcYQdiiRiefO1Jy8ZwtofIWyTM5SpEZ2hjcrJTrZv6UlDNeABSVlPSncQsUFPqtoZ88W96lu7FNqemxuNwGntKJtklwAVJlTGtWkbn+LrmzMIJM8Vr+6krhnMtMgWfr6yyDuT9Knebz4fyXFpTZyIz4uHeVyLOTtN8t7pi9UX/tqmFMgUm3fJ5I+kYnKBChzue+V6aBXoxp+y+BACmgvScq1j1caZLdX212HjSFd9myXGnw2lkGLizrT2rzIW3FDkeDoexb98+3H777Rf899tvvx07d+6c99o1a9agsrISt9xyC7Zt2zbvZ0OhECYnJy/4H8NsojSQUhkysSIFDofLdptf6Jnk55dJCkxGmSXH+fPTEWuUFewNNj288P15obvqOa6P9vF2ROIRZLuysaZpzUX/vrKaKrwjCWtJsfEgKSsyVdQAQFEOTebS7fQAkFdMm7a6CnObSEOpZgcCITnSfvEyUkXy5tYMqkqtIY+YRB4fNq+KYdULz5FS4N/RrH8akFIHGT6TQgglSC1mRsUIpLygrVDp9ozSfGsL2egQtwDKcohUGA/Jj+VKw6unXwUAFITnLuBc30YdPEMRa9e3mIs2/5W+yoyvWbGYVJYFpebVhvNhenba2O2aDYdjtZq0/y1nBago9NhGOz30TgKGJ6/CmLiwKnnwN5RHCkHR7Mkr3WU1NJF8b2LUiZEpnA6nYWcobTsAAAMTJJLJsWVGRuaCxn5+9Lz4WK40vHqW5lzH6MWiK5vNhpwZ+pvsOCmnOn4jekbMrbkMZ5Q+O+iXVbSeH6DnSkUVzeROICw753KhjAVrZsBnZkkVo6/UB0AtNwxIzbmSloYv7yK7tWOHzHfzttSTUCa7wDwnMR+G/DTnRgPmBIYTQ6SCPd9vzRzHAjoOlJ8Pee48o+Bw4PQBS8ZzJSFRRuv6/Rvvv+jfbltzGwAgnhNH50CnZWNoXU1WsRvXbMz4msoi2g9bYa/GxUSVbkQjeF5wn6uTqQCkRCDS2TqZ4C1Fjo+MjCAWi6G8/EJVS3l5OQYG5lZPV1ZW4l//9V/x+OOP45e//CVaW1txyy234OWXL+23+ZWvfAUFBQXG/2prU8o3brE1g9ZmeoHyi2WVlew1y57mZnDt2msBACvXmm+fnQ9M1Jj1rHTEaFPZN2JeJboQAsEAOBOsqWJhHzVXJNlmOCLbZngl4tQI2Vu0FrfCbrt4utnYSotKICtgaUCcWS9GIOWVy/YAkiitJoLm2jXXmrouXX0mGTTGC6KKosay8Muk57jZVkogVTCUJsftbnqGS3zm7QysIsdVFVrcemdFCHJBBZGbLdWZ2ZdV5tOGcTJmrdLjSsCRgSMAgFrv3Ir95iJSZ58bt04xGo/HkXDT4aW6JHMlilUhsapqXwCYHqcDh/QBm8USKvPb8cNkqcc2AVJgv/BYyDzZ4rYTeSRJaPFcqRIUbXQIKNhvzgejIBHBgt7eb0RpPj17rhzhQQEYmiYCKd+Z2Tnj1utuBQAsWr1IfCxXGvpj1AmwoW7DnP9e6qS/+5nhM5aNoW+Mzk6OiLmuaFecnkWj6COEQ8cP0X17zN/XCqIGUO/8A9I6YwTV7N5cIoxUwi+B1D5UsmtTJyjaqiBVtn10m0zW5D0xWw9K45V9lHc3fH7hLnObzQbbDK0XV62s9DASGMFomLoI7l5390X/XlNaA8c0zYPPHpDNLUjHRJCeSzPWgUYnrUPeLoTPgtkO8+d4K95dT67ngnubBa8D0h2SmeAtRY4z3rghTSQSl9yktra24uMf/zjWrl2LjRs34tFHH8U999yDr33ta5e8/8MPP4yJiQnjf93dqVA3lRbY8iIi86VtVZg8MhsOBwAlBSWWjIlDr/K95hbr9hPtAIBDJw6JjgcAzg+lDrWNFQv733L7U9QRxdjk1VBOHTyx8wkAQJlj7sVj64qtQAKABzjaedSycby480UAwNmjZzO+hpPOrdhYsY+5WWLE5XDBZXddcA8JGIpBhfmN201DsRCiMbn5hFtgVeY3/l55PpJAIpEwglBVworYR5MTxaVgeMSZfEyzHPS3lrbWAoDRWdq4FmdnZmFRU0i2RwGbvIXRlYbzAVrvlpUtm/PfKzzU1rmvfZ9lY/DP+A1f5rrSzLtj2Oqnd0TWesggNGNAttfcRn1qjAjjoXFZ8mj5muUAgDtvudP0tTkemt+iCbn5Nh6PG8VEFXK8vopCsCR90HWyMJrrqAiUcCQQi8spK7lVWCm8mtv8LfDAHQvSuNiiaiE0lDQAuNohqYtwJIzZHNo/3bbqtjk/U5tHhEj3lGxAeDpU/G+BlA3PyLRsFwrnWamEwxmCC2HFoE7nnxVqdsPfW2HfnX6dpDCF76WiPo3O0nrUPyprG8V7VLO2tuWFSSGlm95TaUxEaH3KtWd2RvHG6DvtGO4QH8uVhNOjpwEAdQV1lzxDLy2lHLtQnry4jcGiu0Jv5o4SZb4y2EB85UxMlhyvbiQhSltLm+lrB3uoc2jPgT1i40k4SCBj1hKP4R/2AwD2HbburHIpvKXI8ZKSEjgcjotU4kNDQxepyefDddddhzNnLl3B93g8yM/Pv+B/DJV2U6uUlUxsm1VpA9ZVeJlI9GX7TF1XmEOTixUJvh0DyaCioO2iVOO5UFtaa6SHn+o5JT6eKwkvHX8JABDqnXuBys/JR0GCVBxdM9Yp9QMJes5ZmZgJVi9ZDQAoKJdt8QdSvoUqfoz87kq2r+/auwsA0HXO/N8gXdWXHsChC535jckjLiBKgMOuALVKOJPjTPhIIBAMIG6jA59pVY2DvqPJkAXkeMAcOd5Q2gAACDvl5/8rDklh9G2r5yZqCmI0n/XP9osWs9Ixm6C9jsPmMGX3c+wAtXLv3Du/TZ5ZsNqPO9TMgAM8pW2jdAqS3C0oKW4IhALGiYAtScyAQzwr6zK30VkIBjmu4H+bPkeLkmxJrs+sdSCQ2n+MzciLLvxhP4DMQueBlJXV1WwdPbx0+CV6JiLAjStvnPMzi0pInT8Utq4QMTRJ9/YkzCl+s+w0/4zOyAaFs6pSJRzOqmDHpI5DjRxP+t9KziW9g1QEjgXVindWFBF0gqJ7z9Pv097VLjYeIFVM9NrNjYktLABrgucjLjpfNJYtLLoDUlZWXWNXu9J18Nz+5wAA1d5LdyWyfeBwxLr1becB2qeO9mY+d9ptduR7iFOUPnsVlNDeflnL3MKY+TA7Se9937Cce4NOuC8AxMO057YiwHwhvKXIcbfbjXXr1uG555674L8/99xz2LRpU8b3OXDgACor1TbwRw4cMX2NI0EHskg8gkhUjqxhnzH2NDeDoT7aSB08flBsPEDqsGa2ba0kL6lkt8sf1rtHSK2Rabuh3W6HfZZejXP9V8OKdDAQoQ3JyqpL2/dc13IdAGAwYl2Kd8RO711FQUXG19SUkpp1Ni7vd3XmPBXnzp8136rPbf4Hjx0UGw8viDN+84R7etCG5CLG85uKPySrCaywngHUFntngk5mkwG5DZGOXQSTfjaPecuChfDcTlqjR7sz2zS21pL1WCI7gURC1iP4SsJMeMY4DNx73b1zfubaJdcCcQAu4OC5g5aMI93Gyoz1hC/LB0B+zmVv14rizOd/49okkRJ3ypLjPJ+ozCVGyDvk9kvp4Ukq5LgVKkZWn/Ie2tR40r5XyUJycSUV/FS6h84dp/3kizteFBsPI5GVtDEqyszGKDhGxOPuo7vFx3IlYfcZ+v68Ae8lvb6X11CXyJTDmmBAIKX8zrKZm0+YHJfuIONgXhV7Dg4E9uabJ2gvhXAknCLHc32mr2eyWHJ+Y0Vk59lOpeu72olkfXnnpW1izYILEipFW6tCkHn+NkvY52fnG0K3wXHZ82U0FkXCS3Nuc1VzRtf4nD4AQP+kfCDzlYRn9lLo/GTHpeesugLqWOyasK4Q0dFPwsvpEXNWS0yOSxckVTvSgVRXhmTg8Pk+4jfiIbW9M+/7pLMRM8FbihwHgIceegjf+c538Nhjj+HEiRP44z/+Y3R1deETn/gEALJE+eAHP2h8/pFHHsGvfvUrnDlzBseOHcPDDz+Mxx9/HJ/+9KfVBqBwFmFSBLjwAKILnXCR4V46QJ/rkiV/y2tpU3PN6mtMXVecRwcOti2QRO8YVbPdscyVlZ4obejah2Qr4FcSEokEpr000W5uvbRX/6IiUtWcHcvc8sQsok56cauKqjK+hhew6fC0aFs2kFIhmk1wBlLt3JIJ9UzUsDrGDLxur7EBlbQM0ZnfOOehpFKuxb+jJ9kKGSd7G7Pg8CTJhd4gx+PmwuEA4PYbKdi6ZXlmvuBmwCE4YX9mSvCVzVQ8i9vj4n7TVxJOjpwEQKHSlwqJyvZmwzlDe5JdJ3dZMo6JEKkGzWQ8AEBhNpGynF0iBZ1DQ7p3tWQuxukOag3u6zKv1OE5UTLkfWIm2dGSAPKyzc+5bK8lmanAOT1Ge7wJ2Gw2o1PgXLfcPpe7EFSU46yiHQ/IK6FK66g4es/WezL6vC1ARaurRI0ejvaSHaAv4bvkZza0kBd5JCdiWbfOWIDOltwRlimyndRhIb3uGuFwJtW+ALDl2i0AgIaWBrHxcKENSJvTTaC6nIpOrM6UAFu0sJ+5WXDXpuSekoOiVbojuWNcmhznZ4mf1Uxht9thi9B3JB042zfaZzBoDeUNGV1TkkV7sqvdOnrgLvPFxYsv+ZlCB+0l9521zpIjEKf3tzjX3Hwy3EN//1f2vCI6nv6R5Fqu0IDLRUzJTIUTZ8hbf7hf7Xln7pQLrZcTbzly/MEHH8QjjzyCP//zP8fq1avx8ssv46mnnkJ9Pfkd9vf3o6srVSkKh8P47Gc/i5UrV2LLli3YsWMHfvOb3+CBBx5Q+vkc9GYGRflpykrBgwOroZYtNt9CwQtfulWABAJRmixYlZgpWPUYd8mHMg5MkHo5K5F5JTw7Qd9Pz1iP+HiuFJzqPkVqpgRw86qbL/m5ci8dfA91yvvNM+Jueq6qi82HwwHyG6uEixQHXBQyAyvsOYz2J4da+xMXDSem5cbEBQSVzhj2m+XAIwkYljGKYvTFTbSRq2mskRkQgNHJpPIgQgcBM7DS/5Zb/AuzMlOg5rhzDKXn8MzVg4Mqdp0msruxYP423/wovVMHzh+wZByc8WCm3RQAinJo3yBtr6YaWgukdWTYgelZuU26EX6p0FLPc6IkCWHMb1HzcwkA7N9N4aCv7JI78BWX0/rYXJ+ZMu+N4Lbc4XG5OYXnS5VniYlCtpyQxEiAlMOXKoq9EU3lpHwPu65aWemgfZwENJXeS3cjr2tZB1vcBjiA9mFrBDfZRXRmqa+oN3XdhpVE3DctMd8JMR+4IGmW0ASssf1k/1vgwjN5prhmDQm+6pvNfb/zgX8/s17aDCaPJIP9OHdChRznjqOEU7j7L/n1qASp2qO0lkkHznYNJXmmSOadCBV51Lk2Fr6aZaaDUdC+cnXt6kt+Jj5Ga//JgZOWjYPtA8vyzAXqci7EyJRszsPhk4cBAOdOmhcDWJGpwN1ILJwwCxaUSQeXZoK3HDkOAJ/61KfQ2dmJUCiEffv24YYbbjD+7Xvf+x62b99u/P+f//zncfbsWczOzmJsbAyvvPIK7r774nTbTKGyIXY6nAZ5JGk7wH66HK5pBqx6EVdohdUUWuW+VHCGtLIip4TGkkkYJyPPQcRR36Sc/9KVhhcPE0HimHHM+4wOnaFNy86jsj6zDP+032inrC2tzfg6r8trvLddg3KtWentnRz6aQa8ITaCGAXAadBepxqZzAoWScI+p4De26UtS01fa7T4C3oxcmEz3WPdDBqqGgAA2QVqyd1zYWw6GQ4XVQiHSxZ/rFBqT0XpnmW5mW8a2QN3YEreG/JKwZM7ngQAjJyef9PNoZxnRi6dvaKD/nFSsNhC5t4VLhayDZYUduzZAQDoO29+PU9XGUqKG5jYVin+ccBROuGjC+5EskXV5jcWjrDyUAJsYaBC1ADWdFk98yK1dB8/dNz0tdkO+j0syXkwGYK8qIo69hLehGVq5isBtStoT/nOW955yc94XB40FDUAsM53vKyO1s8t67eYum5RHT0Hzhw1AuNSYOJX5d21ghxP746028zvl6zYU/L8pmI9A6RIdVHbqAr1giSv39LkeNsqChi846Y7TF/rTiTtIgQVsQDQO0od6fZw5s8SB89H3VfnW1VEY1EEs+m8ev3S6y/5uTVNa+jz2VHL1rewnQpJ5QXmOtu8Njpnj07L2qpw5l9BlvkiEouTJOdcVnwzyW0W3FEj/e5mgrckOf5fiVyv+VZKAAbJJrlJ50VaZfPBv0c4IacaicaiqY2DybPtBcEZY7LkSF4ZkUDXrMjc6qXIQ8oCVuNchXm83v46AMAX8c37uSVVSwAAM05rqoNGhT8OVBSZ85zllrz+MbnW4yF/6nCk0i7OVVhWHkqAfQZ1SQhJcpzHpKIWYQJb0t+bfzeVUD/AmgPf6NSo8pi6z1EWw94je8XGw+AA3PL8zJ/v8V4iHp96+Snx8VwpOD9BHn91eXXzfq6hoAEA0DNtTWcUeymyn22mKM0nlba0vRrPudFZ84ekbE82ebQjrVNDAGyJwkS3GXCLvzNLjtDiuVK1+MfkuGQIMn/f6daEZsDzoqTdFyvHXQnzBz4W10gf9iamJ4x7Ztohubg62ZJuB871Xc3WUUW7n5Tgq+tWz/u5Bl8DAKDT32nJONJzHsyAhVLSHWT1LaSwXtW2yvS1rHw8dFyum9TojlTw0gZS5JGkitEgxxXsDIEUeSRJjpdUkGCHA5bNwLCJdALBsFyYqmGLpiBOXLWUnr/a5syFUZmA3zcm3zPBvTdTDkxxnfmO4asgvH7qdQpAjgGb2i6dNbhm0RratzmAo51HLRkL27VWFprLMOR98fisrL0aZ/6pBA5bEe7L/uWqnTFuO10nqWbPFFfJcZPI8ZifnIEUeSRF1oQjYYRjRGyrHGbyvXQgkyTHRyZSRLLZRcyX64MtQb/HbEw2jGtsltSVRVmZt9LxIrZ0vXnV6lUQWJVY7pmfIFvVSJuXaFZU1NOVwV6MzpjzkoFJlwKHuEq25BnkeFyNGHEnewzfLD6DQMrqRWp+i8ajiMZpoVcJrPMP+wEAY5Ny7Yv8u9njastmaJq+487eTqkhGcVWZ9w8ecTX8MFDEkE7HYyqCzO3MeKch97xXvHxXCkYitDc0lraOu/nWMXoj/ktGQdv+s3635b6rLFX47mSPZ/NwG63G/OiN0/OponVdSrhcFWllJ0RQUQswJbzGSpL1MLqmWST3FNuf3U7AODI/iNK13Ogk2TRVjUcDkh9R9JzrhEcH8/8oJ7tzYZtlvbcp3pPiY7nSkEikTBsVZoK57clafRR5+rxPvMdB5mAAznNkuPhaXpf23tl7V6yCmjf1to4/1o0F7iDUXIuOXSMiPaZcbV378DrZEH26p5XxcbEAhBVcpwV55IhoTpB0eldVpKFZJ2cB86Oku6QLK+nc+3qJaszvqY0h/Y3V60D1fHSsZcAAO5pN+VdXQJetxeOAK3/e8/IC4AANbtWINVB5p/1i46HRSVmbY2B1Nk/rGJYfgkwqa1KjrMwzuFRE6Tp4Co5bhIq4XBAilCR2qSnB3uqtGRxKy9XmiRgkOMJ80GDdrvdIOzjTtmDcc8oqePyXZkTkbVFVGUemrGmBfJKQGUbHdLu3ji/jdHq5tVAAoATONF1QnwcngJ6P8xYqjBccVJmDE/KbWZ0fKIBa1KlYzZaVFUyFQCgqozIGqkAzHT7KZWwIqNyLtgpzIFOqirGM8epWLTvsFxATONiOnAvaV5i+tqSPPpbRe3yLYdRF92zpjhzf/V8B83PA5NXbVVUMeWkA+Cq+vnVejetvwkAkF9jvjiXCVhVlecyt19qqGig/8MNxBNy+wBWRaqEwwGpTjueJ3WRSCSMuUlH5QPAEEnowu6mtUjFjxdICUck95SsYlJWVibV3ZJdVjpeykzUBGKySije49pCNlN7CleEvp/2gavB8yroGOgwLHLqC+b3ou45Rn+j//fC/7NkLK8deg0AcPrIaVPXDXZRns6Z87IWW1xEUiE0OdhRMnB4fIb2lImIWjGRySPJzphQlAQTqmp2t4POApLkOItAVHyCC3JSXZ6S68D+o5Rncf7sedPXGvaBwp0RvMcp9GaWqwNQUDpAFliS+5srCfvP07NQmFj4e8+J0J7kWM8x8XH4p/1gt5C6svk7Nd+IXFeyW0e4YMM5XWb5NwC485Y7AQBrNqwRGw/vlVRto66/jmxz2la2iY0pU1wlx01CJeUaSCkrpTbp6d6XhXmZT84MrshILmDDE0kCMQI4HOYrPUZAnPCEsWM/+Y2ePpz5ppH9b69WeNXRO0MK0GsXXzvv53KzcmEP0FR0sP2g+DhU202BVMucpDcYk5EqyjMgpa705KktOHNh2WoK9b39ptuVrmdyPDtfxk972J9671QIe0ON6Ux6vAuA/dNUyXE+XEm2rbFSgJ8JM2ALC+liZDweR9xD92wszzznodBD69hVKys1BIIBRHNobrmu9bp5P7u6aTUAYCQ8IqY8TsdkmA7YBR5zlkhVxVXG/y1pPaGj9gXkLZECoYCx+1Y5yKRnQ0h1EOnaDuR5af8Whdyekr9v1b8be11Kdllx6LxKi39jFc2HucWK9oyXQN8oeelzp1um8Mboe+0alctUuZKw4xidLewz9gX3KUyej0SsWd84p6Es31w4XGFO4QXXS6F3mPb/sVnzBUXevzHZIwEmfbmbxCy4QCp5Zq5tIsHOssXLlK4vK6S/tdS+GwDOdFKRpP20+YJZepeVZGHDmL8VHtHzZ4hQ37Zzm9h4ALVzZZGX1vp4Io4zPdbkvfx3R1EzfYc3rLhhgU8ChQ6a284My3/XwQR1fdhgQ3WJOeU4F2ykO8gSLtrLs/e/GeR6aH6TtP3kop3q/s0Kq5dMcZUcN4k1y9WqKnVVVFmqrFVrWX0jDGVlFKatIgBg9bLVAIDSKvOkyqXAanbVQCdWdfWPyvk7A0AQNIlV5GfuN52YpknGCiXzlQJuN+V20vmQFaFJ0JIKrwY5zsEZYzNy9hx5xbQw1pRlrqpNx8Z1GwEAza3mA3MuBV58zAbpMoxFTEjBMjGT7LBRnN8Kc1MFQ/+0X2RMdg8tlyoBekCKYAvGBb0Yw+pejGU+Olgl3LLk6ExkBkieP9saM6/4c0FyLCz3rl1JeO3ka7SjiwArm+b3C63Oo818IBLAREjOcoIxE6XnsjDLXOHe6/TCYUsKCQSVXnwIUWkVB4BIgE7l57plvJnTO//S56pM4bK7DB/0nkEZ3/j2LlqvZyfV5nDuqpRS1wOpoGjVv5sV9gxshaCyVm5cS2t3SZVMhxVjwE/dNu64ufbl69eQMqtpxfyWIFcxNw50ktVGTnjhZ6GlogUAELBb45+q6n9rVQcZk6zd7d2mr+U5UTLYkYVpquIG3vdJzm8FJVQ8bm0ybz0DAJs2kOfyoqWLxMbEQdGs3jcLK7J1uCDBhRwzCE/R3C+ZGwUAz7xEwcxdpzMvLHpcHtiCxI+c7jXX4XEVBA40vn7ZpcM4GVXZJLbonjA/By0Ef8gPACjwFsBhN1dwq6sgPjCnSO28PRfCkbDRjVhaYJ7Xs+K9XbSE5qXVy1crXW+EIAt2xmSKq+S4SaiqasqLyZ/KnaPmvfNGsNesKhFdUkAbIslDw9g0HfhUA+v6O2nxeu3ga2JjAoCQnVrXqosyr+7lO2kjNJ2YtkRZNxeC4SAOtx++wLv9rYqRiREMzlC7Zn3+/O2mAJAP+r7PDMpXeH/9wq8BAJ0nO01fy8EZkt5gOoQmYM0ixouPqud4ZJbIo+4BmU2IEVyseA5J9/FN77LRQfMSKkasW7VO6XomU0KxkMh4AODwycMAgIlh8wRnRWGyWOgAJmfkgktHZ6nLwuv0GmqEjMaTLF5OxuTGshDOjp3FaEA2Mf6/CnvO7AEAuAPuBTfrWa4s5DmIzDx47qD4WOw5tLWsKqpa4JMXwmazGS2nklZWRvFPcc4dH6I55HS7zIHWlUWKZhtsyMs2b9Vnt9tTIe9Cxb+jpyi0qr9bjUSoq6QDX1a+2h55LvBcqbrvvnHTjQCAFWtXiI2Ji5vc6WgGVnVHDk/Ru+JJmOsmqyumv9nl7Nb54Qs/pFC1/wY4MUDimVLnwmTE0hrKLwp75M5c6VD1v7Wqg0wnHM7opnEB0ZgMac82hKrkuBXFP0NZ6VRUVibnRS4iSkAnKBpIWVn1jfSJjUnHS5ltfaRDkLkgGQ+Ye2+cYXr+2gcvn5XVE689gb2nrfHdvtzo8HcAyEx0d/O6mwEAJc2yxWhAT3R3/QYi9ivrZcSywIVikvLC+XPe5kLfeXpfj52WEyjyXrCpRq34fuwQjeWlXS+JjSlTXCXHTUJVwSKurEx6l6uEcQLWEGzs6cYWMmbBFhZ8HynE3LSw1pZk7jm9pDbp4etKC1C0EP/4xD8i+0+yseoHq1D+l+XYdXyX5T/TSrx6LBlaEwRKchdemNY0U0dGbpVsuzGQskRxRs1vitevWA8AaFyauT3EQuBFTFWlbcW7e/b8WQDAYN+g0vXtp2ijt++QjJ+2EX4ZVVui3C63QaxLkUdGUJEiUcNEsWRB8sQ5OpwPdJv36a4sTm3MJFU1KgHIAFBbSPNzAJcnmfz7B7+Pln9sQenfluLuH90tfni63EgUUBG3tSwzFVp4lJ7DXcfk15qKeip03LblNtPXTo/R3+HgiYNi47F5aJ+kojwDUgf+yaBM4SZ9LlHJnQBSez+jy0Z3TMnwJLYiMYvFjYsByIaWMhGtWrRlX3DJtTK7gO7JoahmwO3UUs8Rg8MYs+3mvicOiLsc2TrhSBjXfPEafGDHB3DND67BnX9xpyUB7JcT5yfJsqE2d+GzxcpG6uZJeBPiAhj/tN9QDZrN1rGqg4yV6Cpzbkl+6swgFarO1hwqGTZAmnLcIUeOD43RexcNqhUArLAdYLV+un+4GYwO0HlLkmTjMalYkPGcy3ZYUpiK0PNklhw1rKxGrLey2nV8Fwo/U4j7nrkPG763Ad/f9n3Lf6bVODlwEgBQmbUwsbyxjTq1xuLy3ah7j1GxITJp3uvH8MEXLJLzudIGm1JhKzxD10uJyQB9q754iPYHzAdcTlwlx00iNKOm+pudooekvVumWmiQRzHFg1VScT4TnhHboDJhr1qZ99g8F9xHAuFIGAkPLawN5Q0ZX1fmKzP8zU51nxIbz1wYmxzDQy8/hEQWjTOeE8edj90pqga43NjXTiRpVjCzSXHrmq0AgHCWvKpGNRwOAJprSC3M5IoEnn/peQDA6WNqKsRD+w5dcB8J8MEhOqu2SXfbqbAlRULwHMBBxkpgZSWr0DVhqOsVgtiAlCevJDmuEw7ndXuNdUDSNoiDwcIT5n7P1loide151m9Lvv30t/Gx//wYACCBBJ4++zRu+vJNlv9cK+G3+QEAW1dtzejzeaDn0YpuHZ5zzXqOA4AzRvuHkUk5Aql1OT1bt91onqwHUoSKmL93ci5RFVsAqb0fBwXrgslxnsvNwooW2HCc5pA3UyG5vJZUWZvXbzZ9bf95KkK298iqBiNO2qyatTEKDNP3suPADtHxzIX3fuu9eN2dVIy7gGdiz+AT3/yE5T/XSgyGSUywuHTxgp+tKakBkkvi4Y7DouPoGkoSbYkLcxsygVUdZKxEV1H7pudoSRWSZkK0V+JAe7NgsjjhkCsiHD99HABw9uRZpev5LPDSqzLKyng8rhUUDaTO/5LnePZSTi+aZIp8LxGFs3FZa4aZGD1PRdnmnu9cG4lk+vxyyvpL4f5v3w9/oZ/+Hw/wyZ2fxOFB2bnncqJzoNOwya3LWzgEsyqP5sL+KVlLHQA4fZ7O7zOj5n3DuYNMskjOZ8Fcdy5sNvN8BecQsq2SBM73UfE4MKm2/+IcD94HXk5cJcdNIsejtknnlOVDxw+JjIMPRKrhIkZ6rE1OWdm6gg6gq5auUrqeLSwkPVC7h7uB5DzRWJG5+tdut8MRou/2bL/axiVT3Pd39yGaF4V92o5f3PwLOMNOTOZN4pHXHrH051qJY32kGii0ZXZYqy0gtUvPpIx/ajomwvQ8qRA1+R7aWE2G5BaxiSCNxxVXU7CwilFSLcKtlKobYp5PpEgI9odU7UIBUgFKnlyZ4NLnX6ZixNGDR5Wu57bciE0u+IqfAVVlJR82cgrlvO86+qjtMTRhrpB83QoKkYy6o5ZbWT30zEOIIop12evwV8v+CgCw174X33/urausafcT4dZUmFkLY5GTDnXnx8+Lj4XXcJWWU57fJEOQ+eCgSrIyocKhvLo4eY7UT6FpdYslLhxKhbzz3G3sDU2CQ5ckyfGicnpGG2vVOrfOnSKP+B175MhfnWeJ59u4S1Yx3dxGRfw7brzD1HXRCaogW61iDEQC2B7YDgD4dP2nsTlGhYXHOh8TO3/8V2DKSe/eyrr5Mx4AOlO4gjS3He8+LjqOnhHaN9tCNtMZLVZ1kLHatzjffDic0+E0CofOLDWx1RvhyqbvXiXjAQDKi6goZnfL0SZsPcPCCbPg8z/nIOgiPSha9XticlyqaDs9O21k2HCXgxn4snwAZLN+AGA2QetcJp3R6Shw0Tl0cFqtSzdT/Pvz/45B3yAQBx7b+Bi21m3FbHQWf/7Sn1v6c63EzhM7AQC2gM0Io50PpVmpzqhQWM7OEkhZmWXZzAscOCT2yOkjYuMZHKfnibP7zMIKcvz4GVrnOs90Kl3Pe6yIShKvJq6S4yahumAY5FFYhjyqaaQwv+Y6tVC+9Pak0UmZQygrIlWScoGU+lEyiKtzsJP+jxCQ7TVHIHmi9DfrHO4UG88bEQwH8WqILEg+s+QzeNeWd+Hb7/42AODR1x9FNC4bknO50DFOBFlVVmYqlvIs2nieHpAPKeFwOLM2DwAwO0EboFPn5boH2PtQdRFje45QQm6xjzvosM4LpFlIEyNMQqkW/4BUroI3V6bNn7t1EmE14rZtEYVTllTI+d/Nxuj7Zl9FszA8cAXn3OFptU0jB3KGYiFLLU5ePPgipgungTjwnQe+g4ff9TAaJhsAO/DwUw9b9nOtBofDVWdn5jlbkUOKwf5peVXNoJ826hyGZQZW2Kvp5jxwV5vUc9k/Qt+5aicikCocSpEQXGjzONTIcVYHheNhRKIyh5niCtpLrmpTE1wEJ4kQGRqXsw3ReZbKfUkvULeclzKg7n9aV0Lqu1m7tYFXPz36U4wHx9Hga8AjH3wET3z2Cdin7YjlxvDhf/6wpT/bKoQiIURz6G94Xet1GV1TnkN//1mn7PcdstE8kuMw/0x63V6jM0bKdzwcCYPdmVTUvoB818fiZaTu37h+o9L1nKkQs8fEivdMjrOQwyz4LBBJyMy36UHRKkUNQL7LanQqxU+oBA1y50IIsuQov3PlBeb8nYu8NJ6RWWtzHj7/m88DAJpmmvDh2z+Mf7rnnwAAvzzxSxwdUBP4/FeD97jZ4cy4nLKcMiBO3aHHu2QLkmwfmes0/+4W5dAzIGnRxPlTnI9jFpzTxVyABJjUVhWl8LwoNb+ZwVVy3AwS5glWBh84pNSeDg8djEp95hcLgDZEbDuQviDqwDg0KL4IfNiQJEZmbfR957vMezDlgMbTMyavZmb8/LWfI5GVgG3Whr/8wF8CAN67/L0oyS5B92Q3njj1hGU/20r0B+nw31yUWfHGMUPP88D0gLgPZSBBm2uzFX4gFRJ7qkOQHE8+30womwUvGJL2HNxKqVr840AhKQVLy9IWAEDb4jble7DySMqeiO+jGp7UWEPqRyklFJD6vlXC4QBrvO9GZ+gwY9b/NsedY/zNrFTVfPk/vwwAKJ4sxurm1QCAR975CACgP68fRzvemgeH9jFSjjunMnu+an3UrTMakQ0k9U/7DdWg2YMjkCoaSoYgHzlFCp2eDrW1nPdvb6bOGC4cilm9JPemqutSuhXC+JRMYUM3KJr3olLrEpCyRuzvMl9UqixKqXQHxsznRFwK/pAfgHlyvKmcukwibmsPn3+/8+8BAJ9c/0k47A4U5RfhvVXvBQA8Pfz0ZQu9l0TfdB9gp7mB15GFsHklKeadPrk9AABkFdK6uah2kdL1rK6N2GWeg3RLLBVCE5Anxw0rK0X/2/TrpPaUcRuddbir0Cz4LMAkuy4M+4IEkJulRti7keyyCsmc4x1eWudcdpcS/1KSR+c+aU99trKq8FWYuq4yj9aAsNM6q4jzg+cxmE976L9/N829y8qWYWvFViSQwDu//k7LfraVYL/xYntmhRu3yw37LNGc0uQ4F6RVuCWeEyU7yNg+1BlXW1s4G0LSNopJbc5rMAsu/kVx+UWiV8lxM9D4+0grK3UXeiDlOy5Fju8/uh8AMNKnVhFl9aNkcIYjhxbWpirzabn5DnqhrSRq9s2QN/c7lr6DChYg8u3BRQ8CAH7/O79v2c+2Eux/21aVGbnZVp/8nCvVIioF9igrzTO/SS/MpgVDUqXNRSRV72r20JNaMELhkDY5zvNQKCbzPXH1WnU8QMp2gEOPdKEdDmeB/y2rYVTbcod66Lt5ZfcrYmPS8fiPTZKS4qW91qSTx+NxvDpJnTrvXvxu47/ft+k+5PhzAAfw8E/feurxjv4OJLy0qd3clpkX8qJSIlKmIFcYAYCe4eT8reB/C6TZqwXl7NXYCkP14MAFMan9G6u9nVAnySpK6FBeUKzW7fNGhKI0l6gW/9K7EaVCnfh7UvVBZ3I8FJdbv1ntpXLg8+X6gOR5eGBcjhzfsZdsY7rPdpu6rqWKitCJrASCYWsybnYd34XDI4dhS9jw4dUplfhf/+5fwwUXQnkh7O/fb8nPthLt41QkaSxszNjKhD1w+6Zk/YZVOwcY0h1k6eFw6UUzM+Bgxz0H9oiMSdeCLj0fQmoPxxYGyuRRkhyPQUaBavfQnjnbna0cFM1d8nzO0YWu6G7LNVsAACVVch2bAIwss+rizDr1GA/c+QBdt9jcdWbwvZe/B9gB96Qbb7v2bamfXUk/+7Tz9FvSzqrT3wkg8+5IAPBE6Hk80y+brTMZpr1Jgdf8/suKDjJ/wA9APVDdmKfdEBMociizcmcMz282OYV9prhKjpuBDjkurKw81U5K1qkx9c2MLUbkuFT78tnz5M093DesdP2SxiUAZBcx3jSqWGrcdeNdNK51S8TGk45EIoFfnfoVAOBD137ogn97T/N7AAAjuSM40XXCkp9vFeLxOIJZ9JxvWLQho2tKCkrAXW/HzsulnAOpAkltWa3pa7klT0pRA6SKP6qbPbY+4YVHF+nFMdWDjDQ5ziSUKlEDAF3nyEd176G9ImPi341DQsxC2gYBSFXmC7LUCLLoDD1Dkl6j7Ded7zZ/4HOGiWToHOoUG086nnr9KUTyI0AE+NMH//SCf3tH/TsAAM8NP2fJz7YSrx4nwt8esGfkxQgAS2uWAgCCbllSzChuhmDa/xYAcpw0L0rmPDAJweoYs7hm9TUAgCUrZPYCbBulGl4OAC2NRGyWVZn3YZ0Li5ZSsWTdynVK17ucrlQIstDB+1wXeYarelay8igMGZVePB5HUhipZBdht9thC9O+e8gvZ/XCB3Vvwtx62VLdAiSFYmd65IN5AeCxbY8BALInslGakxIo1JTW4P5l9wMAfnTkR5b8bCthkOO+zP3wmRzvGOkQHcvINAmSVMlxe4SogPZemaBYnm9z3DnKJCvb10mJt1585UUAwOH9aoGELofLKGx19Mj8/VilmZetJm5gUl3KJ1giKJqFgFId4HwfXetA0f1EPGaoftcsWWPq2tJsmgOHZ9R4kkzQ6+0FALxn7Xsu+O+fvOeTsE/bAQ/wt//xt5b9fKvAAciLijPvkMkFPTfSc+50lJ5LsyHYwIUdZOwVrgsOwOXMHrNIt1GS2r8xqa1q18qCCy7aXU5cJcdNgJWIKpAmj46dJgKxp1NdZeuIEVnD7Ri6YNJPVRG7dtlaAEBBmYwSCgD6xkihkec0v/moKyKPueGANYvYkcEj6JroQrYrG7c3337Bv92w8gZk+bMAO/A3v/obS36+VRgJjBgHyOuXX5/xda4QTeqn+2R9xz0FVDneuNq81yD750sR0UDKJ1rV/9Ygx4VaKdMPH+w7ZhbLFy8HAFQ3yKghjp4iawtWD6mAK+hS7Z2shlLdpAeniISUUtQAQE0TZU+sX7Ve6XqvTd7CYjpC3ze3apuBYWU1bo2V1c93/RwAUDBdgIqiC9th/+p9fwXEgFBBCE+//rQlP98qGF6MoczX3uvayCc3kZ1AJCZX/Osfp0KLI6JmGdJST6RvcaWa5+lcYJuXdHWzGdRWUGFVyhKJ5yT2Z1UBExhSanZvHs0F9dX16jdhclxoT8lB0aqHK+6okfKsnJ6dNk5NqnYR9ijdYHhCbl/JxXtDkZYh3C43bLNE1kvvuxjbO7YDAJbnLL/o3963/H0AyJM8Fr/86jAd/OKFX9D/YUJbdP4oBbG9sOcF0bH8+vlfAwCO71OzDuAOsgPHD4iMR5fQBOSDHdl+ijumlZCc3yZmZLqaeF3yZfuUruf5TYocZ4JN1VoLAJYuoqJ7TUONyJi4I31qVE0ImO+hAsJUeErMvimdaDerHOYC4dCMXHE0HYlEAr89+1sAwPuvff8F/+Z0OLHSSeHBPzn4E0t+vpWYsNHzubzm4rXkUih0EXndMyF7pgjE1e1aL+ggE7JXmwzSM8n5OGbBGV1Aal7SBe/fVDtjWKjBweyXE1fJcRNw29RaO4FUK5dUeye3damG+gEpJSMviNpj0lTEGq19gv63z71CKsDjB8xvGjkgzqpF7G9+SqR3VaxqTnucjYVE5j7V8ZQlP98qdE50AgCq86pNeellx+gdaR+SUa8AtFHg7gGVCm9ZAT0DMafcwS3HR+9HdZkakczKUCmiJtdHBxiv06uk9ASAxU0UdpRfrLYIvhFnOkjFNtirXlVn4mkmJENGM8GS41Gb3wxizgEEgjJtuVy0qSoxb18BAFkOmnckVTWzILKuONs8uZnnoPliYErOciAduwd2AwCW5S+76N/qyupQGSJFx0v91ti6WIUTA9RdVOLIfKNeW1ILh432AJJr3ICf/naumBrxu34FFXqKqwTJcRdt9pXDwoUtkbhAprOnZEsWaX9vHdWgPUZHCqk9pREUnaNGjvOhTKqQnE5oq5LjvM+V9BuNupLrQKH5dcAdoWewfVBu35WODpBi794V9170b3e13AUvvOif7scPX/yhJT/fKrD/rWs683muuYwyeAIOOWs1INUhqxLICQAeEKHCrfm66BshUZKqjRWQEjdIZSqwn7aqrQqQItYlin+JRAI2F92vqkxt/1ZSSOs9Z5DpYt9hsvkc6lPfDyxtJnLcV+qTGJIRXh2eUev+4WcwGo+KFTXGg7TmZruy4XaYW8NdEXquB6cGRUOZGSdGTqB7shtepxc31t940b//3vW/BwDo8HRgckZu3281EokEbEX0vty67taMryvLovPy4IysPW7jUuoYunnTzaavtaKDjC2x2NbILFwOl/EsS+1zef+mKrpjXkxKAGIGV8lxE1jUoBZ2AgCrl60GADQsahAZCz+8HBSlgtamVgBAQ0uDxJAMyxhVtQCrGNPDXHSh438bGqdCxv5T1vgh7uklL72yyNxt0Z++5dMAgKHcIdHwJquR7sVoBvl2Osh2j5vzzZwPs9FZROJEaqq0nJb56G/D5IoEqhuJFL9+Q+aq+nQsW0zEnidX/d1PB3sx6pAi0ipGLrTpzG8GOS6k1OZiRHqF3QzS29akQ5BV51y2sJBS1wPAouW0Tt51012mry3yUAHBqm6deDVt1n7/zrmzHB5+gPzGd43tsuTnWwUuSNbmZm4dZbfZjQKw5MFhaJI2+56E2rtrhMQK+d8GggEgyR2ovrtsX8c2H9pj4v2b4kEGAA7tPQQA2PbqNpExdQ/QujszoT5fcnflZEDo0M1ZGIp2OKw4jztliOiRieTeNAalcDgAaG2gfXdRhYwaKh6PG2Fz1SXmC+5rl1DHZs1iGaVnOl4+/DJieTEgBnz0to9e9O9uhxtFE/Q9/PvOfxf/+VZiLEFreFtl5qHhbGUV9siG8en43wLyIciHTtDcpJo/BaQKh9I+6KriBiBV/JOY38KxMBJJT6NSn1qhbUkz2Xy5c9SLrOmQCIqWLiRPzOrZRRTlpOZZKfvA/ceJE0gEzJ8La4uSezQ7BWdK42s//xoAoA51c4ruPn7nx2GfIWuVf/7NP4v/fKswMD2AUCwEu82OFXUrMr6uOp/WxLGwzJmLwXOuSkEaSAmTODdKF3wW1On6kH533dk0L9VXqXUjGrxC9Co5/qaG16X+0DXWElGYla9OQKWD07J1CC0+KEq1UHBoIStjzKKnndpezpyX8z40No0e85tGb4z+3mNB2UmV0RUjT+StLVvn/Pf7Nt4H16QLcALfeOIblozBCjy540kAgHfW3PvCxJikavTUefLmR1zN7qeyMOkN5ky2VAuAW05VOyykFzC+j46iJh4m8mHYL0NqBiM0v+ks9BziFgjLfE9sGbP5mswCD9+I/Ox8w99VihwfnSLbmXhQjfxhUp2tUCTABUmVdkP2YxwPyahh0zE4PYizY2dhgw1vX/v2OT9zbyupG1/tehVjs9bM+1aAvRgXly42dV1WnPYPe0/K+PIDKYsHXaJmaEJGUSOh9u3tJA9Pqb3Jho2UxbH1+q3K9+DCIe8FdcGZMd0d6sXp/GwqcLuy1e1iGOFIOEWOK2ZhbNqwCQBQXm3ObuRS4PnWFlG3ZpDukByZGDGKP3WldaavrykkUtyKguQPXvkBACB3MvciGyvGTXU3AQBeH3td/OdbiYCH9hXrmjL36F/RmCR1PEDfqFwoJ/vfqnqOS3eQceeITqaCEewo3PnHOQQqkMyNSSd8VLN1pEUprNLXCYrmswB3D+iCyXE31AoAbpcbHDkh5e/MpHY8YH7fnZ+Tb+Rrne6Vt7J67fxrAIDC2bnXTKfDiUUJErD84sAvxH++VejwUwdSTX4N+f9niBvXknq+tFFt73cp8DlHhVsCgIaqBgBAfqlMt3V5Le1xFjeYOwOkIxKgOfJk+0nt8SQSCYMTLC9S23/NTtO8FggHxEJCM8VVctwE3kzKSlZpz1UZzBTSJBtX5tkHzSy45TnmkLOw0AlNWFRFC0jMGxN/MftG+xDKp4njwc0PzvkZu92OpS5Smvz6xK9Ff76V2N9OVfXIkDmfz3WtdMgorFM7CM+F7hE66NtCNqVgoHS7ipmIcPq6ouc4v7eReETEK/j4GbIc0lEMdp7tBACc7TyrPR4gNb/pBHLy4Uqq6qyrsLfb7UDyzyVFjvP3xOFVZsFETSAm1+Zt2Bh5zb/HFflEoEzG5Ns9d3bvBAAsK1t2SRKhwdeAFWUrEEvE8K8v/qv4GKyCt5Lek5vXmGvxnOyl73nPsT1iY6lvJZXI1uu2Kl1/9hjNIVL+t0YLfBzIzVIM9RL2rmZCW3WvBKQKh1LzWzRpqKszpsYaEoGUVuofRNPnSFWveOk9Lh/2dBT/3BkhpdLtGiaRBWJqxR/uHrEiIO71HiK8F2df+sD+yds+CQCYKpiyRElpBbqGupDIojV3U9umjK+rKq4yiLpjnXLB84EEPd/FOWq2UdIdZLqEJpBGjgt1/kWSmy+d+c2RIHKcFdY64HXJBptpaw4Gn/9jiRiicX2LDiMoWoMcP3mEiLUDR2TWb8NLWWPO5ZwHqYI7d8e542p/N2eIvt+OQdmQSAA4H6E5dGPDpTO23rH8HQCA/lwZJf3lwPN7nwcA+BI+U9etaaHA1Im4jKUOQN1aozNUKFe1D5TukGRf7lVLVynfIzxNi1PfsH5hKz1fUVV4ZwgIbXLixExxlRw3ga5zXcrXhmboQRkYlVHF8oOnQ9hPjtCic/T0UZExhW30YqmGi/DGXtKLUWfT2FpD7a9wyqo8AOCnL/8UsAGOaQdWNq285OfeseIdAICBnAGxMBGrwSrGltIWU9dtXkWK3Hi23N+f2+hUw+E8Lo9B0M7GZUiIY2foUNR5plPp+nQ1jsR80jtIqsjgpLoCkb1dpYKBJOY3Jo+klJVMsOgUJNmzcnxaXxk9PTudsovIV7OL4JZTSduggXF6JuOz5t/jxdVEojjyZTw00/GP//GPAIB6+/wtfrkDRKB+e9u3xcdgBaLxKIbCdFi7YcUNpq4tcJLqpXeiV2w8uoqaolx6JiM2GSI6q4De1/ysfKUCKV8LyHlXM6Gt063DnYyhqExbbsxGc3euV11ZKekRKREULU2O8wG0vlI9tPToftpvP/W8TJbMyDRZVzgiDqXne2aIyMfte7eLjCcdQR+tvde3XNpCbvOyzXBPuAE78E+/+SfxMViBXSfIdss2ayPC2wSYGJP0eA+CvufSPLWilHQHGSurdTIVeB1wZMnsBXju1pnfeO8t4YPe1Ut8QiKcgM2m1onCNi8AMDSuT/xycUSnqMGCCxbLSY1JK18tSs+QlGXr8BQVEtkK1iy4K/38sGwxMBAMIJBLa9296y/OeGA8/ODDcNgcGIgOoGNcnqC3Ai8feRkAEOg1t5ZX5JLgpn+6X4xDGZ0cRdyW9NNW7Nbh90SqW4fFe6qiO0A2hzD9jKvaoozUlgABAABJREFUAV6YmxJYSZyZzeAqOW4CTHCroK+LyNXzvTKTIQd7qlozpI/pxNkTImOqbSQvrWvXXqt0fbkv2XrhhlhQBfs5leSZJ4+K84sNlcepnlMi42E8d5yCQitjlfN+7rPv+ixcdhfGEmM4Ny7jd2o1ppy0cVxVZ66CyYvYwLScrUq/n8hx1Qo/IF/h5RDFfK9aO1WuN1fUnoOVGQ6oH0KYPOJ0al0Y5LgGEd3SSMWZytr537FM0TdE8+VIv/oGmw8zEoFO6RY2qp6Vd950JwCgaWmT9ngAIBgOIuqg59vn8Zm+/qZrqMXe7ZPx0EzH0WEipfKm51eOvXPVOwEAnY5OSwKTpNEz2YNoPAq3w42qPHNETbGHisaD03Ke40yOqx4aeK3m50gXup06QMq7Wooc33+YuqvOn1PfD3LhUCrknclxnstVwIVkCfKIlez2uF05KDo6S/eYCc+IdP8ZB1CNfTcTKlK2KnklNJ81VpnLeGEER4lYPTcgu79MJBIYSNBe7iN3fWTez7Z5yLf7yRNPio7BKuzvoPc3O2S+uOWJkQL2/IgcMcZWVuUFau3r+W5656U6yHivrENobt28FQCwZPkSiSGlMmN8akICIFWkk7CN4vBTW0zDoik7tZeROAvwWsl5PUpjykp2WUGmuM02lGz9owIO5RyZkiHHWTWcbVcrbufaqEDT65cTJQDAk7ufBJyALWjD1pVbL/k5n9eHTbXU8fLbs78VHYNV6J6iLvDavMxzdYAUrxCOhY1Ocu2xDCfvE0/lkpnF6SNkqSNVJOfimE5eAHeMSNhG9Q4ln+0Y4Haqnedys1Jcx1Vy/E0M9rBVgaGstMkoK5tbKfV83arM/e7eCK7mSLWtccup6mRRWZQisaQCKMN2YrdVN42s8pA+OBwbJfXwiuL5gyXyPHm4vo5UN8+cfUZ0DFYgGA4imkMH0msXmyuSMFHTNareofFGDE8SgagaDgcAjhgtNu19MkofDgdTbRWXtufgdiXVwBsg5TXL6dS6YNVJtltdWbm8dTkAmRZ/IEWM6Vi9lBXS3JhfrO8zZ3gpxzTsIjyyhZ/uodTms7bM3CYWSGvxDwyLd8qMOeld2dK6Zd7PffyOjwNh6mB5fMfjomOwAqxirMyqhN1mbktXkUcHB8mwoud3UPtr+3G1+dLoIBMKUZQgNI35Taj4xweHiRF1hQ6rotPbV3XAczf/ripgVfSLL7+oPR4OmePChAoMZb5NJkRPotDC1zLpowvdYhR7jk/HZduWz0+cx0RoAi67C0tLl877WS5InsXZy+4tqoJOfycAoNhuviO1xpcMPlV/hC6CI4f2qI2VagWStcsplLW22fyaPRf42X4zhcMVlpIKkX9XFaxaRoKfhkUN2uOZnKH5SIccd9gdSNYQMTGjr/bkfB4dC5OCLJqvpTq/+D4667c7QWvJ+IwMwTY+S/fJc6pZ9OQ7aY2VzNcCgKcPPQ0A8M36FuwiumvRXQCAH7z2A9ExWIWhCJG/ZnN1vE4vbEF6xw6ckbH66RmlfDxVu1YgVbCZCMrYvew9TLlBJw6ri12ZA5CwjTLmIw09STrX4Z/2a4/J1M++rD/tLQ4dcpw3+FK2A1wFr6s0H8DDYOWRlO2AbluHL9cHJPfFQ34ZbzB3Pv3NWmrMWXwwWOXROdwpMh5GMJ++880tC4f73d58O4C3RnjG3tN7aVaJAmsWrTF1rTtMf6ux0BiFcQlgeJoIRNUKPwD4h/wA5OyH2M5P1QoDSNlzjE3rk1pMjOqoRQpyaH5LOGQIzdZlZGm0cf2lffMWgtHiL+DJG4/HU+Fwueqe+NVlFOopEczMLaJa4XDcFSGkYjSUGWHA6zZ/MC7NIWI0GA2KkUcABSjFcmntvWvdXfN+Nj8nH2UBIum/t+N7YmOwCs+8TkXTmR7zRe5qHz2Pkh7v40E6OKp6MZYXUiE74U6IEGWvHyLf4/FB9YOxsX8TykNhtbdO8Y+vlWpf57lbh4zmNURCcCFhY8Wh8wC1Quvi+Zep8HPuhLpYgufcmaiMKEWXHK8roTNE0CFzDmBsP7kdANBW2ragp/In7/okEAViuTHs69onOg4rUNJCz9WDt8+dFzQfNq+mPX9OqRw7HnfTPLmqVc1vtrWB9lvOHHWv6XTw+5/t1JjfmByPypDjElZWktlhRsemhtITSJ0FJMhxX6kPAFBdXq18D2muY9V6eqbvvvVu5Xt4bEn/eqHcqIkQfdf5HrVCckk2zR8Bm1zWDwDs7SWCtDmnecHPcp7ZroFdRqHmzYxpJ50HVtZd2ob2UnCFaF9yblBG5GjYtUbV313OeZA6e/E+ULUjHUjt3yTEUqz0Trd+UgEXDyXmNzO4So6bgE4VnNU4UuSRbjgckNokzMZkvJT5ZYiH1A606VWiQb9Mm3fUSWWrZc3LlK7PSco7+vxynuPReBR+hx8A8P7b37/g57nl9KWuly57KIFZ7D69GwDgCrhMt0IvqV1CLTR2uRRvrvDnOPRVBxJEtIRPNJBSs0vYc7BaRMcf0pfjo//DCRFCK+GkeVI15RpIHRpGJvRbKQOhgLFaqir+AVk1FHcN8O+pgolh2nB09Mr4DnI2gyOstmnMceUYv8/+U/tFxgQAv3n9NzSuaUdG6robqsi7+7Xh18TGYBXOjlCAZbnb/LvSUNIAAAjY5Q5pwQSRbCW5avNbZWGyg8wusyHmXAYOG1IBF8R4XtIFH2R01HAcfsmKSF0Y5HiOOjnOikOJ+Y3VS1q5E26voVySIMdZeagz5/LhVWrf/ezLzwIAes+pteg3VxCREnXLWkh9/5nvAwACHQs/C8UFxbht8W0AgB39O0THYQXa/dQV01raavpa7o4ampERAAWjQaN7RDXnQbqDrLqRyNW2ljble5w4QgrIHbtlngcmtHWKbZKCCz7LccinKpg8kuiMYWvUtSvU1fXS5LiEl/LNmymovG2N+vOYjrCD1u+iLLWzwDvvpE6ZhrYGkfEw/B4/AODauoW7tt9+zdthn7EDbuBbT39LdBzSSO9Iv2bxNaavz4rTe9s1ItOVzvyUqgAEkO8g4w4L1cw/IFVEkghmZt9yXXKcr5fwQTf1c1UvnJ2dRW/vxZuxY8fkErjfbPA41VuNmDySOlyx/+3slPoizURNMKavGInH44bHGBN3KmBVjc2jfvhgBKNBQxWvqqq5deOtAIDWNeY3wZfC2bGziMQjyHZlo65gYeX/3Wvvhi1gA9zAd5/9rtg4rMCRniMAgIK4+U16licLtln6u5/olvHBt3npfqq2OgDgAb334wH9lrz0jghVn2hANjiDVT465LihprYniWRNGMU/jYPM0YOk9N93SF+Jlk6s6CjHE2Ga/w0/Ng0wUaOjPGJPUM5m0AV7/Dtjago0m80Ge5C2JWf7z4qMCQB2nKYDdlE0s8PMx2/+OADAn+/H4LicH7cV6JmhFs/6AvMhgYsqFgEAwm4Z9TGQsjIrK1CzV6soqjD+b1bo6GBiluZInfmtvoq+W7vbLmL3w3ulXI96ONzKNlJQlVbp20YlEgkgec7TUQ16HLRWSigrd++nQntvp95cyUT26JQ+OS4RDufL8gFIFZF00TdOZ4HYjBoZxcHzCW9CVHxxyk85PW2FmRFS3Ob/23Nvfg/c9nEixxsLzduYMDneM94jMpaxQLJIDhsKvGrkuC1M74jEfAsABSU0jmUtaqIkIPXeShA18Xjc2OfqnJkP7zsMAHjmRX2LSy7+6SrH7XHaL0mQ4xLqevZll7JY5L8bh8aqQLr4s2g57Zvuu+M+petLs2nNHg4ML/BJcwjm0pry0bd/dMHP2u12NMUpa+jn+38uOg5pvH7qdaMjfXXzatPX59plPd6Hpugc702o7wOkO8g4y8wQqimAxQ0SnX8GOR7XI8dZzS7BU5qB0qj/3//7f1i8eDHuvvturFy5Ert37zb+7QMf+IDY4N5s0PGaNQgVl4yysm9YPxyOVUsSgU5jU2NAks9Ob2U1i5pS8uPz5KkXIhgcvmGDzVgczaK2iCrpUioPANjfTYrIttK2jDxinQ4n6qN0OP/53jf3Ila1jALh7rz2TqXrPRH6u5/uk1GO17fS93bHDXco34MPwv5Zv/Z4DBWzhk80kFKbSGyIWeXHxIYK0kOOJIiRngE6OE6MqpP/OR6a3yIJfe9DIwwkrvd343Z8Jn50UFVP71pjtZrPKJBGYAqtS0MTNE964urPkieaDCwblgssOzJIRbvG7My+q1vX3ArnlBNwAI8+9ajYOKzAaJxIv6UV8/v6zoV1SyizJJGVQCQm4xHKQZqVPrUgXKfDafgxBuP6G2IOF9Ihx7nLJ444wjH9QgKHTeZ61ecSyRb/dGu94nzzPsoM7q6UUFZyUUNKWSnRZSURDleYTWcBzujRBduqcKiiWdSX1xt2hpLB8yN22utkYh0IAHcsoj3aS50vXXZ/UTOIRCM4M3QGAFDiMH/WOXuIir7b9mwTGc+hU4fo/wjBdOYEg60D+0dlyHFW+2oRmt5ksKPA/m0qMGWcT/m+KuC5ZCakTx4x6c8heKpgcl0iRI/vodMlX1dBgi+2ftXF/qN0Xu46p676lbYP1LWyYvvA4Rk5cnwkMILRWdoLtpZkJuZ725K3AQCOBI+IjcMK7DmzB4BaRzoAFLioWCfF44xM09qWZVffB0h3kHGnRlGuemfz1uu3AgDWb1yvPR4u/jkTevPA4ibymJfIeTADpZX0L/7iL7B//34cOnQIjz32GD7ykY/gxz/+MQCIh2i9maBzkOFqKiBDaPGLoOMPyaolCc9KIxwOeuQ4k9gSrSZHztKEnwgmlDeNVlR4v/skqb+D3Zkf/G9vIt/xg9MHxcZhBTr8ZM+wum610vXZCVIsdI/KpEr7Q34A6psYIHUQZo9AHfBCqLtg8HuScOnPtxs2bgAA3LzlZuV75HpzYUuePiTaKYfGaBMzOar+nfN8zSpNHRjkeBTKASyAbGWe//Yc8qmCyuKUhYWE7cDIDG0avTb1wxVbWXWPycwBADBsp/l7TXVmOQh2ux23NlLX0IhP35bHSgTcVNxa02Au4wEAaotr4bDR4VpqjYu56f1PD9g2Cyaj7Vn6zn+sFtMJGUtX0klYhjA5rkPUcAbOdFB/r5ROZmvZmCQFJBI5Nvx76QRFA8IWZOyDrvEd1ZaT4MKTry8AAVKEj+oex+lwwj6b7Nbpk+nWmZ6dRiSX1t2bVtyU0TVLS5bCHXQjFAu9qdv8D5w9QBZEMWBxhblwOACoKSIB0KxdhhTpGyOhlD2iPldyCHLMKWOF0TdCY+JOORUweSQR7Gjs36Bni2fkdAmoGDkovrZSLwSVsyckutJfevUlAMCeXXuU71FVSqKNCCKIJ/QFF2wfGA2o2z71nCOxzSt7XtEeD6BPjofHiXM50SXTIQ0Ax4bItaG+oD5j5f8f3fNHQBwIF4Tx6rFXxcYijdwaOsuta1qndH1JFu0nR2Zl9vJta6kbasuGLcr3kO4g4wB7nfmNLVkk9m9caNPlOqSzETOF0moaiURQWkoT+/r16/Hyyy/jX/7lX/Dnf/7nsNn07TDerNAhj9IJ43Bcn4zmliX2MlfBNWvIu6lxsbrykGEQKxEoVfYYXIkbGNdPceZ7OCLqyqOZYSKxdh7aqT0extkJOoDUeGoyvuZTd34KABAoCIguqNLgdtOmwial6/PsRBb0T8ooWHQ3MQCQ66SFWUJ1kFtI90q3DlDBmhVEhDUtVvue08EbfZ1Cm81mM4gRCSUjE+w65BEX/2I2/QMf/066Cz2r8yXIcYl20zJfiliXmHOXr1sOALhpY2aEyFzId9CaJjUHAEC0kA5W/+Oe/5HxNb9/y+8DAJ5rf05sHNIYmRhBPJv2ApuWbjJ9vd1mN1RMg9P69jHBcBBICrRrSjJf394IVnpNhvQLkvye6Kh8XA4XHMmwiKFxffURz286+7f207TWnu3UJzRHJ2j/ZocdLoc6Gc02WBLkkUGOawRFAyll5VRQf/3mcECdOXfDSipG5xWrr23pmI7R91SYpW73tbiGSF5ftU9iSHjl6Ct0ugwDaxdl5l9ss9mMDsnHDz4uMg4rwLk6zhmnUuh0Uznt2cIuGSurAT+t2+6oemdMuS9pOyjUQXbkJAmT2k+2K9+D50aJ/RsTrIgD2R51yxDe47LHuw6Ky6lDZ1HDIq37LGsl65rGFv1zvBEUrWGrkn6tBKFleClr2EXMTtD+Xco26GwPrbnTo2qFabZWCjvDIu8bAHz3VyS6s49mTus1VjYib4LWoUefffN2SPZMU3Fjdf1qpev5+56IyPhWsxVKVVGV8j1qyuRcEoBUcaw4T73zTzITizubm2r1OAoj50GAVzADJXK8rKwMhw8fNv7/4uJiPPfcczhx4sQF//2/G3Rajbxur6HQitr0g28kwpOqS5PeknpnDwApclwnqAgATh2hts7tu7brDsnYNOqEJrCiZmBSnzhiDMXpcL2hfkPG16xqXgWv3wvYgH9++p/FxiKNQ13U4llkV6teFrrpgCdB1ADAnkOkgFANqwJSB2GJpHPuiNAJlwFkFzEjqEhDDQeklIwSCuS4nTaMednqBEJeFl0roWRnlU9VmfpmCEh1IUj83Y6fOw4AmBlXfy4ddgeQPKNLeGtzMao0V90HuchDc8dIQEblMTY7ZrSbrqhckfF1NzfeDKfdiTNjZ9AxLhNYKg1D7RNCRkGjcyE7TnPJvlP63vzpBZbaUnVFXK6L5tz0jjRV8LytO7/FQjSPdPXrhzqVVdNhbd1KNSUUAORnJckjgfmNf6d4WO+gXlNOB76CYvV9KYOLGrrk+KplqwAArcv0c2Nm47RW6gSpGv63Qi3+PCbVAFwAqPbRWUBqzt1xkjIesgJZpjqt2FrlaOCoyDisAO9x82Nqha2WqhYAQNwbRzSmfxYcmkxamSXUSRZDrCHUQcaEZkGW+jwgGexodI1odv5J5nQZuTqa65KkvZZEUHQ6Oc65ODpgL+XCHPXiHz+HEjZtABAE3SfPpXY+aa1NrkUOoHtYpkOSleO+qM/UddcWU3jni10viozDCnBHukrGAwBsWUcK74omPVEaQ0J0t2kdiVmKq9TJbEY4Gga7M1WVqJ9RezqpCHHg6AHtMeUV0rtRX20+CykdbKf06p7L29mgtEr84Ac/QFnZha3cbrcbP/nJT/DSSy+JDOzNCJ1wuPTrdRexeDxuvAg6LRSSBBuHHdmjem3QrO6aCOpX+CQ2jQ2lDQCAkFPGHzIcCRuhGVuXbzV17cpsCuD67Zk3Z2BR32gfQg76nlSV42uXkMqopF79oJeOQIKebVYiqmD9CvLfaljcoD0eI3ldY/MJyL67B48dBKAffDY1Rof9k2dP6g7JqILrqEUM8khAecTfs46iBkitAaxA1AGrs3T/btyOzX7hOpDYNLLKYyw0pj0eADgzSv6wVXlVpt67fE8+luWTKusvf/aXImORRiib5tv6fPUN6EQvrbWvHX1NezxxN5GrOa4cZHvV35WOk3QYenn3y9pjYnJFJ/wSSO1tJA78rKjT6dZhZSULJXTA4Um64gbuRqxt0rMKAFLkuMemp6zid15irfTk0Fh0Or8M/1uhcLigjZ6lsjx1ey2ec6U8WQ92HwQAlNrNFUk/dRd1SAZ9QRw8d1BkLNI4PUx5OGVute+bVfqwAx39+kVXw//Wpn4+le4gYwGYzv6Nr405BMjxpIe97vzGc4lE9zdbByYievO30a0jodJO6AdF2212sJNhZ2+n9pi4S97IbVMAW1hI5Dykd8fVlqitc4V5hYYo5XSPTL5W9yyR7G3lmQUgMz59x6cBAFOlUyJ5KlZgx1EqtuZF1c7xKxpJFDNjkwm/3H+cfPAnBtV5Ksl9QPp5srywXPk+E8P0+/QM6odFGxZ0mrxpcJrmNYmOTTMwxWQeOXIE0WgUNTU1qKiYe3O4eXNm4StvRXSe69S6nlvydf/IgVDA+MvpLBj80A2M6m+G+MDIQVqqyHbSgVpiwhieJtWZzqaxubIZABDPiou0Px04e4AKGzHg+mXXm7r2f9zwPwAAk6WTb0pv/53HyXrGNmtDbZnapuG65dfRPXJl7JliLtpYVxWqV1MX19NhxpmjHzDz4g6qzp8/oxc2eOIwWes895K+5QMvhP4Rv9Z9JIOBuPin0xnD5BFvrnUgpfIxlEcCBxlDEasRDgcArjgpMyUKkjsP0Bww3K2u+F1URW3GzgKZQKcfP0N5KJ5p8yRb6SSRO0+dekpkLNIYDJHaX9WLEQAKnPSOSdjYSBRHgBQhKkFEr1hHB6O7brlL6z72OG26JDJjJOYTJtYlvGb5d+LfURWSLbASQdGAbCG5bhGFzd1w3Q3K90iE6O8VioUQCOqPKeGh+1UWqnv8Tw9RR9uLe2TUg44y2gtsaMy8OxIAltYtRbaf/l7/8NQ/iIxFGt3TREI1FDQoXZ+blQtbkPa3EsHzYwEqIuc41AUX6R1kQ34B26gkoa2j9uXcCZtb/yzAxT/d+Y39vSVCQlkJefSAXpfEqaPUbb1th37AKxc1uOtSFVyESPd6VwV7KfPzoILiXFLnhm365G/3UErpXVdWp3wfZ4j2t+2D6tZD6Rh30Hd9bdO1pq67d8O9KM8px0xkBju6doiMRRo85+ZE1OY4Lv5KBaB2DFBRc2pYnaeS7CBjIYHD5oDboW6vleNJFv8Ecgi7B+hvFgnozZVuG/0+gbD+XskMTK0Uq1atQm5uLtauXYsPf/jD+Pu//3ts374dfr/fouG9uRAP6pEsU+P0Epxu19sQpbe96ZDj0+O0IR6b1Ffo1S8i5VpLQ4vWfdhuQiKQczxAi0W2Q13B1lqTan/qGdGvpr12mtR5roALbpe5Sewjt3wEWc4sDAeHcXRIbUN1ousEntn7DAbG5GxiGPvaqS0/O6T+fbP/rYSCKR6PGwfH6pJq5ftILmLc3qnbYcEHbImQMd7o88KoCkdChhwPBGWKf9zi785W3ywwdu3dBQDoO9+ndR+e3yTaO5kc54KiKpYvJp/w2mZ9tSfPkcEJ9d/vjs3UWp9Trvc8Mg50U4ugCjn+gY0fAAD0Z/UrE1kd4x04M3rGkoImZzw0+tT9RtnKSuLgwOR4gVfPVsNrJws7iYINHxx0ray4+MdEiyri8bix0WerFhUYIe8CPsFTs7S28e+oCib7JYhotmapLlNfu4FUZ81r+/U7IyQ6v8oKUipdCQ/cnGIay/XrzYkt0hEYpr+XlIrR7/ADAB648QHT124oIEL9tx1qHZLxeBy/3v1rQ20ojdE4nb+WVixVvocznCTGBvSJMZ5zVS0eGJIdZCxI0OlsXtyYVNi7oL12cii7TigzAJQXkSrTm6duscrgAqLHqTemWJDWEAkiWiIoGgDsMXqWWLGving8bti+Fuer20+wD3PErl/U6BpJ2qqFoZQ5wPDE6O9+fkRPKAUQhxPNpb/dzSvNZePZbXbcuehOAMDTZ55W+vnTs9N44rUnLOn2GZscQzyH5pONSzYq3aPQQ3vc0dlRUv5rgm11SvPV7SNnxmgvMTKpb2U2Nk0cXrYzWyv3kTtGJMjx1w+8DgA4fUxvT8FztsSe0gxMMTQ7duxAUVERGhsbEQqF8L3vfQ8333wziouL0draii996Uv/rYny3Cy9tlwxZWVysbDBpjUmJp4klJXcupwePKoCbjWRsB2Q2DQW5RcZiopT3ae0x6TjV+hxerC1YSsA4Kkz5pSM07PT2Pwnm9H23Tbc+Zs7Ufl3lfjcY58zPYb5cLyfPJCLbOobYlYxGhsQDQz5h4wZrq5UvcLPRbHuQX1vuIlZIla4GqoKw2cwqq/Q44ODru0Ak+McpKYKIzwJMuS4hGflsJ+IQ90q+NIWOlBX1qmr/Bj8t9e16DGKPwLdOpy8ruM5zgUyKZXH+Sk6fDT5zFs9ve+m98E2awM8wGPPPWbq2r2n96Lmf9ag6R+asPifFqPpH5pwoF/fyy8drx4n9VmJQ33dLcmma8dD+ofrbTtJvTbaq+dbywXtiZAAOS5kZcWdf7rk+NTsFJA8v3BOgwoMchwpclsVvCfVVVYeO0S+p3sP7tW6DwDUN5PgYsNqc+rjN2JqlL4biVZhiRDkbG82khyUtoVFIpEQ6daoyKdO4ImoTGDZqVHaK7cWm/d5//gNHwdABUmz5Nrunt2o/5t63Pvbe7Hl8S0o++MyccImlEXWDGsbMgsanQvlOUSyRtz6ZJ2ngMgD1W5NBlur5BTpF6UTLiKzddS+PF/HE3Ftu4e6Jtr/tzbp5Q5ct446W6sb9Ap2QMq3XCfLDIChFJXo1uG9sq5ynNcRf8CvdZ+JmQnjDFdaoL6n5OdQwqKnb5QEMo6wXiE5B/R8947r2SICyQBkG4Agdd+YxZZK8uT+zsvfMX3tH3zrD5D35Tzc98x9WPP9Ndj8J5sxPasvbmS8djJZ1A4BzVXNSvcoyS4BkvW1s736AeZcZCnLV7cyM+ZGJ7Q7yI6eJrHkjF/PNoatSJkT0AGfT3U7//h6Ca7DDEzthD/96U/j0UcfxeOPP44f//jHOHDgALZt24ampiZ86EMfwiuvvII1a9ZgeFjmUPtmw5uFHGcP3WxXtla4iEE8CQRyGgdQTXUWEzWBmD45nldK92quVptQGZLtT+Fs2uQtKlZLKL+rkVrDv/HsNzK+JhqLouULLdjp2ElvfBiAG/ha99fwiUc/oTSOucChGTU5Ncr3iE3Ssz0wpa9sN4JOYnpFm5FequyeH9Cv8HNHBCsjVSEZDGSQ4169+Y3Jo+mQ3sbI7k7NaekEkFlwi380HkU0rhd8xb+Tbjhc2yLyA8wvVgvzSsdsTIgcd8t1RoTsRBykqyPNIt3/VsLKaiRO7++qmlWmr3U6nKiL0MH6R3t+lPF1p7pPYdO/bEJvfi9sCRs8Dg86/Z24+d9uxtOvq6lz5sKRbvKdDw+pkwcGMRbTJ8Z6x+igFw/o/d04kFOig+zg8YMAgO52veImz29TQb33JL1TT0dZmX6trkKPC5r8O6qCbQckcx50PSuZfJJQHp1spzyN3g49QsMWpuqIroVFIBIw1jYdcrzGR3u2mYS+J2vfWJ/R+be4eLHp639n6+8gN54LuIGXujLPsHq161Xc+oNb0RPqoeJDAhj2DeOGf7xBjKwJRAIIe2iuves6dZuma5aTN7+3WF+BXNFA8/fNG80pRt8I7q50ePVIv1A4ZNji6ZDj6ZZTfL5UhRE6L5QbJjGXhGIhkTHx/CZBHnGmQmWJnniD7VUnZvT2FOlkto6XMu9HuWijg34/dfs4Y3prpc/lAwBMxfT33XvPUTE6K2guAJmxtXYrEAf8Lj92n9id8XVv+8rb8Ojgo4AHxCs4gJ2OnfjIzz9iegyXAv9u3lmvMt/ldrlTVla9+t1RUSetuTpWZpVFqWt1O8g4888R05u7mRxneyUdsHWorhWp1+m94H6XC6aetJMnT6Kt7UKz/xtvvBHf+MY3sH//fmzbtg3r16/HF77wBdFBvhGPPvooGhsb4fV6sW7dOrzyyivzfv6ll17CunXr4PV60dTUhG9961tKP1e31UhKWSl1aDAOVw79yhWHw7GhvyokU6WLq6mV6vp16u2mQKr9SULNjGQ94oGbzLebAsDNVTcDcWDQMYhXjsz/3DPu+bt7MOAbAKLAQzUPYfZPZ9E2Q+/xD4Z/gLFZmeC7gRAR2otK1Ih/IC3F2w2MTOi1G7HFgy1k0yoileTRBj/q0F8wWHmmu2AwIRqK6wfMMJHBC6MqmDjWnd/Y5sXrVN8MARdWrLXn3KQNgq7iX9L/lgsjXFBURU87vScv7dIP0+Z3pNKnvmnk7pFIPJIqcCkiHo8jkEXf9XWLr1O6x31L7gMA7J3dmxFZHwwHseHvNiCSH4Fj2oHHb3scg58dREtOC/wRP97943eLkP7xeBzBbHoG1jevV75PdSGRIgHoP5NjM8n2True1Q8/07qkCJCynorN6hG2/O7rkuNG+3scyPaof0/ZnmzYEnTgY6JFFVz8c0LvwG+EIAt06/CYdEOQ+XAlMedyIVl3THyIHZ7UExKd7qaDvi1u0xoTB88Hnfr77uf2UQ6KfcautDbZ7Xb87obfBQD85txvMrqmf7If9/30PkyHp3Fz480Y+OwAfnnbL4EgMFU4hZv+4ibT45gLHeMkACnwFKA4R93moTRbzj5QKudByj4wvaDJNiQqcDlcsMVpfuvo0QsuNc7Mmvtuvl6CqOFQT6n5TWJMnlzaMy9dpG4ZBKTWEV0hIJ+XvE4vnA71tamtmc67CXcC8YTe3out3jwJPUXsO257BwCgYVmD1n0AYDRB5GhVllq2VnNVM3InSJDwj8/8Y0bXfPUXX8VvQjQ/XxO5BqE/C+FzTdSN/ovOX+DFDpn8iuN91JHug0/rPq4wnU87hvRDkOMueoaqi9U7SCQ7yHiPq5v5xzk2Evs35iak5jfdPa5ZmGIeNmzYgB/+8IcX/fdly5bh2Wefhc1mw+c+9zk8//zzYgN8I372s5/hM5/5DL74xS/iwIED2LJlC+666y50dc1NXHZ0dODuu+/Gli1bcODAAXzhC1/AH/3RH+Hxxx83/bOZuFWF05ZUVmoSNb1DpFrRTd5O9/BKtzJQwYlzFBA42DOodZ+WOvIszy/VV1ZKbRo3r6aQWYlFTNcjdlnDMvgmfACAv/71Xy/4+e2d2/Hs7LMAgE9UfQJ/99G/g9ftxb6/2IdWXysCCOBLL35JaSxvxKSDNkIralYo36O6uNpYME716NnYTIZpPF7oqXO43ZSDYXQg5RPN/uAi5LhdiBxPtqDwhlYVUuGX6eQ4z5mq4N9J17PSFqM5W7fwA6R84fK9en839gfvHdFv74y5kwG4xeoBuAU5BUDysdb1wD1+/jipWhLADcvVQvS+9J4vAWEgmhfFY88ubK3ywN8+gKnCKSAI/Opdv8L9m+9HgbcAP7//50AYmPHN4Es/0p9zz/SeAZK1mk1tm5TvU19C9hUhh/5cMh4k4jfXqdeFku+hZ1qig4xVML4cn9Z92lrogN3Q0qB1HyMnIgqt4p/dbjeU2s4svUNRTQMph3UzY3gNidv118qXdlKxbu9rehYtkiHIvAcoylVX/AMp1SErvlTRNZg894Sg5TXaXEHdlVGPvgDg4PmDAICcsHpH07va3gUA+MXxXyz4d4vH41j/Z+sxOjuKlWUr8eTvPInygnLcv/l+/O8l/xsAsNe+F/vP7FceD4P3702F5i260sHkePeYvlWf1DmH19xzPee0bsP7ErvNrm3PkQiT0jc9Z0sFr7xGQqKO03rEWF8XWWp0dOsTbPw96ZJHvE+WII+k9t6uBJ0FJoOa5HhE38YKuJC70T2fNC6ls/sNG9RDmQHZfC1XKX3fqqI7ALimiLpZnj+/MH/XM96DL+77ImADlswswe6/2A23y42/+cDf4BPrqBv9k7/5pHYhAgDOjdF8VOnV62bIitMz3TWqJ3L0T/sNt4XaUj0rK6kOMrb60+38s4Qcd+vNb2z3KmH/bAamduaPPvooHnnkEbzvfe/DyZPUXhgOh/GNb3wDRUW0WSwtLcXgoB5BOh++/vWv46Mf/Sg+9rGPYenSpXjkkUdQW1uLb37zm3N+/lvf+hbq6urwyCOPYOnSpfjYxz6Gj3zkI/ja175m+mfn58iQR7q2AxzoOTGip9LOz843fJh0yXFexHT909YuIx+//BJ9cnx4ilQ5fNBWBbecDgf07YLOjpLflc7m+s5aCs94cWj+ymwgEsDHnvgYAODjaz+Ob34y9Y543V588+30///r/n9F/5ReW088EQcXdu/dfK/yfex2OxwhUlWd69fbpHPnwPJFy7XuU+5Lql/c+sFn7KUvZT8kEZwhRY431dIzXVFToXWfrn7avMTDet+10+E0Ci26waWsPNL1T2Nrh/YufYsmDtBct3Kd1n2kQpBnQ7MGWVtbordp5MCyswN6/oAvHSWCzTHtULboKSkoQX2QCOQnO56c97NP7XkKTwfJNuWj1R/F2659m/Fvq5tX4zo7qde/fuDriMb0iCj2YrTP2LXshza0kaezy6fvrzYZosNwvltvLmmuJbKuoFRPkACkWrOLc9WVngBQV0n2OrphbNxqrituAFKqGl2/2VwfHUDqqtSzOYDUHlniICNFHvH8NhvX+46kwuEAwJ2giZKDtFTRN05knTOidyheXJO0P3FfaPujghMDJJTRyUHY2rAVFVkV8Af9+L8//b/zfvZT//Ip9BX0ATHgT1b8yQXPy1c+9BXkjecBTuAT39O3EPzR02StFR3Wm7tP7SfhxzM7ntEe04ETlGPRe06vuN1xigjf3Qcyt1WYC+mEpk7BBkgFO+qGTbIYQTczhs+3ErYD3CHJQhdVcAc5K9FVEY/HxbrS66tov1RSqZdBduQUdaSHpvSI/yxnFuw2epZ0OyOMYlSWT+s+XCCT4BXY0lSHV/ijW/8IADCYN7hgTsNDzz+EeFYcRZEi7PqTXRf821/f9tfweX04PXoaX3/i68rjYfTN0hrXWKgeOg8AuXba4/T69ebJnuFkdklCTwQEyHWQGVlm0OtsXrGUhI0Stp9GZ4wmOX77TbcDAFauXak9pu6JzIvRpsjxZcuWYdeuXejv70dbWxuysrKQk5ODb3/72/jqV78KADhw4ACqqvQemEshHA5j3759uP322y/477fffjt27tw55zW7du266PN33HEH9u7di0hk7oUyFAphcnLygv8BSUWbBrgtV7dyya1K7GGuCrvdDvbd1yXHeVHVVcRKhsMdPnUYANB5slPrPlIV3pGJEQzP0iSoc3D4k3f/CRAFZn2z+O4z373k5z7244/h3Pg51OTX4Gu3X1wMuqnxJmyq2YRoPIr//bP/rTweAOif6kcoFoLD5sCiMnVbFQBwR+g90W1/klLUGN5gNv0KL7ctlhWqezIDKQ91XcUgkFoIeWFUxZJFSwAAJRV6G2JW5cxM6FsqMAGl633I5BOTUarwZfsAyAQD8T6orkKP0GLP8Zmo3vedboGiGw7mjdH33DncqXWfzgm63hf3ad3nbz/4twCA12Zeu6SSMRwJ48EfPwg4gRJ/Cf71U/960Wd++MkfAiEgWBDEPz35T1pjOnCeSBEdhSYANJXTgWo2NqtNsk5FaN3WnXOvWUUqJl+53n2AFFFbmKce7gvIWSJxoU43/BJIKfx0rV4MxaAmKcLzW8Kh7+3K5JFuULRhQaaprEwPh+NuMlWw8tyWpUceDvpJiOSK6xW2aktrgeSSdLL7pNa9zk9SNktNrnr2jMPuQOMUkSGP7bt0t87e03vxL13/AgC4xXkL3nn9Oy/6zEMbHgIAHPEeMfaEqjg1SKS2d1ZvH1BVQGfk6bi+Fzr737L9nyo4BJkLnKoYHKdnUrfLDkiR47riBj5zc3ilKpgDkJjfisupwNZUp9eFwPaoumeByUDq7x4O6BHtS5rpLFBcoVdE7B0mIjM8rTcem81mdOuc6tTrSDbOlR6f1n0m+ulMsufoHq37ACl1tQ45ft+m+5A7ngs4gP/1k/91yc/9x4n/wC+O/wIOmwPP/8HzFwkz8j35aAtSl91Xt31VeTyM4kX0DD2wVV0VD6Q83oem9c7w9hyak/LceVpWP4BcBxnv/zw2vTmX928S+QUsbtDt+uA9qe6YYvEYlj+auVDS9O582bJl2LZtGzo6OvCzn/0Mv/rVr9DR0YH3vve9AEg5zkS5NEZGRhCLxVBefqGPWXl5OQYG5vbsGRgYmPPz0WgUIyNzt7Z/5StfQUFBgfG/2lo66FeX6yVUL24idUZtox5xYJDjCT1yHEi1UeT49A7YhiJWMxyOyXX/rF/rPgAQcdDhqsKnp2SdGqCJ56W9ep68rx57FQBgC9pQX16vfJ+ldUuxaJYI6C8/++U5P/Nvz/4bftL+EwDAP9z+D5dUz69NkFL/xyd/rKVk5HbTel89nHbNUC/QM6Dbcjo+S2oTXaKmpKAESArhdL3BGlvpwHfTJj0PzM3XkNVPdYPenASkvKt1baOYqNFdxKSKf0DKxiR946+E5JlKN3eCrR0klJWs9NbdfEhZWDiy6e+V48qB161HHuQiqfIY11N55NTQevSOre/Qus87lr8Dtfm1GJoZwvcPfn/Oz/zVC3+F6cJpIAT8+vd+PadlRnNVM1ojlKvw6KuPao3p5ACRWDqFVoD+/i47kWu6KqaZGJEQRTl6thP8TEqExHIIV2l+qdZ9AhP0fpzr0utokpzfBnuJiNp/WM8yoquPunVC03oEsnFQFuiyitho/6Y75zK5rttllV4Y1yXHr1lNxZ/aJr2zwOAk/f29Cb351m63oyKP9slunx6BOBSm70knewYAvvR2sp4ayh/CCwdeuOjf4/E47vrmXYAXyPZn49f/+9dz3udPfudPsLRkKYLxIB4/bt5OMx19QVIxLirW+93qSqigPWvXJyHibn3/W0Cug+zwSRIl+Qf9WvcBUjYBbBugCkPcYNd7TwyBnFN/fvOV+gAAyxYv07rPjZtvBAC0tOlZYo1PpdT5up0x0oVkXbsIAIgFqPrXPah3rty2axsAoLddb2/K2Tq6gZzxeBzH+8mXOyukV9x+cNGDAIAX/S/OyQd09HfgY7+ibvT/tfl/YU3lmjnv89fv/GsgDowWjuKpPU8pjyeRSOCcn/Zb1zRfo3wfACjJon3yaFCTiE7uSYuy9fa4AFDgpWdA17KVxaS6zg383oZiIcTiegKu8hriXZe26OUXGLyCpnBnYtrcGqIsXamvr8fb3/523HPPPaioSJGPW7Zswbve9S7V22aEN7ZqJRKJedu35vr8XP+d8fDDD2NiYsL4X3c3Taa6JMSietpQ+Up8Wvdhz3K2adEBkzUJp14lnAk23e/IP+QHAAxP6LcaSW0aY5M0SegGchqpy0H9hPo/u/vPAADnc84bpDtjYGwAn/jtJwA70DDZgPuX3X/J+/zpu/8UCJKf7td+ad5qiPHL7b8EAHhm9NUi+XYiRvon9axentpGi3LHCT0FenqHBatiVMEHD90iEh9kdAPr4ol4KlVaUzXIFiZDY3qV+alZWuglin+sztQNBlqxmlT1t229Tes+hbmkXpVQHg37aY6MB/U2VlIhyKyoKczSU+gCQL6L5oCBKb1ilES7KUDhYP9z4/8EAHzpmS8hGL7wuzoyeARf3UuigM+v/jyuXXrtJe/1RzdS++oZ9xkMjau/KxIKTYD2QXl2IiCPdhzVulfCS891eYF6EBsA5LpoH+EP+LXuEwwHwRmTJfl6RYRzp+iQduj4Ia37NLeSZczixsVa9wFSBLvu/Lbv8D4AwOnjeh7/xQUpUoVDjFURS0qZdX2Lb7nhFgDAstV6JNTIZFJMEwXcLj0Cmbt1dIs/ozN00M+ya67dACrzqUNOt0A25aDfaWWtXhv0XRvuQqm/FLADH/vhxy769w//44cx4hsBosBPH/zpJQuydrsdH1j5AQDAT47+RGtMfpsfgF6uDgA0l9McEHHr2Xz4p/3G/KbrfyvVQcaEpkTxj/eAbBugCiZpdTv/eP8GOxAI6c1vTPbo7rulyCOpoGggpfgfHNM7L/HfnT3MdcAq3ZEpvbyfvjEqkEWn9Kx1mitpDoh5Y1qFlqOdR8nuKw6saZybrM4UX/3AV2EL2RDNi+K7ey/uSr/1727FWHgMpbZSfOnGS+fmXL/8epRNUgH5r59aOBvtUhiYHkAgEoDD5kC9T11QCADXr7keAFDdoscHTYTomdTOeACwdjmJE6ub9MZUVEFEfUNVg9Z90jlFXTeJ7HyaQ3RzbLraiXc7cvKI1n3MWnPp93W+Afv27ZO+pYGSkhI4HI6LVOJDQ0MXqcMZFRUVc37e6XSiuHju6qjH40F+fv4F/wP0Am8AOWUlt4i5bPoLhlSFl4kV3RbYdH9nHSVzIBgw1J41JXrkQU0RXR+w6X1Hx/qPAQCKbPoVx/ff/H74xn2AA/jCzi8YBZ94PI5Nf7kJ4YIw7DN2/PYzv533PiUFJVgao8re91+fWxGZCfZ3kHItMa5P+q1qWQUAKK7VUy+w57wtpO/tWphDm2Jvvt7mmt9dXc9xqfc23W5EV51xeD8phna+PrfFVaaYCc2IjAdIHdCYcFcFz9m6/rfcAiuhrOSDQ3BKj9TmVrpQQk81KhYMBqDES0SmLlHTMU7kuGoAcjo+uuajcIQcGI4O48GvP2j896GJIbzvl+9DKBbCPS334Kvvnr9z7hN3fwLOSSfgBv75xX9WHk9xM82Pd1xzh/I9GLMj9HzvP6mnQK5sIILt9i23L/DJ+THQRXu28wPnte5jEJrQV/tKBTuyXUh+tr6vI5NHUrYqusqjUl9Knc+/pyqksjD4et21kq+XIP0MclzTPnAsQAfYXIfevhuQsQ8MR8KI5NDffUPLBu0xfePebwAAOvM68ZPtKWL7Ry/+CP8+9O8AgHuy78G9182fc/Pe5dTZ/GLHizh0Tq24FY6EEc6l7oMtbVuU7sFoqSbCIJGVuKjQagZdQ0nBjoD/rdFBFtVU+yYLmhKEJt9Dd//G4i3doMl0Cwld8oi7GXVFIFK2AwZ5FNXnOo7sJyKLg1BVYXgp2/SKkUDqPKFrYTETp/NJcY7e+XRxdbI47tTrSN51kjy/HQEHcrP01oGSghJ8aSuR3n/6yp9eYLH0/m+8H+157UAC+PL6Ly9YaLq/hUR5uyfVMwx+u4f4iyJ7kbYl0qpFxCsEHXr7t73HSOQYmtAPwJWyEWaV9prlesWR9PwDHeEOkNov6c65kVnaT+h2f/+Xk+P3339plaou3G431q1bh+eee+6C//7cc89h06ZNc16zcePGiz7/7LPPYv369XC59BdvM+A/cu+gXjsOk0cSCwYHlJzrlkko17VmMPydoefv3DPSY/zfNaV65HhjGRErYZdeWy4TNVVZMp78T//B0/A4PHi572X8nxf/D872ncXS/7UUHfkdQBx45PpH0FrbuuB9PrCeVDWnbacRjqj9jj3T9H3X5+tVdwHg2uWkurTn6U1Pk2GaTAu9+kpWLtok3HrkP7ecdp7p1LrP+BBN9P0jeur6EX+KPNItbPEiyCnVqpDsjDHII83DldRCn96u6p/2K99HMhyOLTBiTr02utcOUkDkzKi+Vzz7YDvy9Q6Or52iMTln9AstuZ5cvLv43QCAJ2afwOf/7fPYfmg7mv6sCUeHjqI8pxyP3ffYggdLu92Oj11LSsijMXWldn+I3v0ty/WIGgDIStBzrWtlJVUgKSsgIpstUVRhc9PfwmFzIC9bT4HMBU3dDgvD31tzLgEAZ1I2yntCVbAft66K0WV3GcFn2h6RSXKcrf9UIVVIZhuEqhL9/dvR/fTeP/WCess5AITttF+TKEhygWzbnm3K9+ie6AYcgD1hx/qW9dpjev/N70fNRA1gA373qd/Ff+76T7zU+RL+8LU/BNxA4XghfvnZXy54n8bCRuT585BAAv/38fkDPi+Fncd3Ag4AUeCaVr0W/0VViwyrvtM96t0afM6xhWza/rdGB1lCb35jCxTdcDgg9e7qBmDy/KYrbsjPzgeSS5LO/g1IBc/3dPQs8Mn50Xm2EwBw4vQJrfuw4l8iKJrXES5KqELKSxkAPAm6x9iMXlGD34+SXL1OtLLCMiB53NaZAw6ePwgAyIvo7W8YX7zli2gpasHgzCDu/cG92HdqH9739ffhx+M/BgDc5rgNv3/37y94n4ff+TAQA0IFITzx2hNKY3nlGBVX4iP6NpRS2XHH28nCxj/g1x2SWAcZd5Driu6cDqfRJa8bgszzI1ubqoJt9WI2vfOp2dwxJfbpPe95z5z/e/e7342xMb2JZyE89NBD+M53voPHHnsMJ06cwB//8R+jq6sLn/gEJZE//PDD+OAHP2h8/hOf+ATOnz+Phx56CCdOnMBjjz2G7373u/jsZz9r6TjnwvHD9FLtPbRX6z68yXfb9TcfQ700URw/fVzrPvUtRIpes0Zv0+jL9aX8ncfUq6ndI8lDfhja/reLKskOJ+6Na6k9+4NEZuj6FTKua7kOX7nlKwCAv9rxV2j5dgtO554G4sD7C9+PP3z7H2Z0nz+89w+BIBDPjuPfnvs3pbEMR0nhubRCz18KAMpyiBjRXcTY/7YwW58cl1J6MXGc5dBspUxuPnUXDEP9ItAqzqnUusFnkp0x5UVU1Mgr0ts4sqdv+6l2rfsYynEAo5PqCpapwJSxeuvaRbD/fUW9XjbDmZ4zAGTI8btuuAsAUFij/u5Ozkwi4qWd3tJy/XkJAH70xz9C/WQ9YAf+tutvcdOvbsKMbwa2WRt+dNePjLlrIXzseiLHnzn7jJISORQNodPfCQBYXKxvz5HnoPejb6JP6z5S5Hh5YbKDzAUtZaVxaHDnzOkBbwasqgnH9YrkbMsy0q/X3g2k5kguKKrCIMc1CXubzSbW5u/Kot+tolhvXuJC8vl+vS4EqYwHAHAnaK2djuj93RavpHf/3tvmV05ngpkheldOdKmTbL0zJPxpLGqEx61PaAHAiw+9CM+EB/GcON7x7Duw9ftbMR4ZR2tBKw5+4WDG+5ZbK28FAGzrUyP/Xz1J9oWeGY/2XsntcsMWJNLgTN8Z5fuwxYMjot/NINVBNhkkUYqEeIuzddpWtWndh4ukul0odrsdtjjdS3d+i9vpLKnbQcQWJtpZP0llpkRQtFFI1iTHec7V7WgCUgS7rlUbFyR1s8wAwBGi9/Zs/1nle5weJmK91KWXqcJwO9z4ztu/g2xnNl7ufRnrf7oeP5n6CeAgm9bffnH+bnRGfXk9yqZoP/yNZ76hNJaTw5SrU+mpXOCTCyPXTut2z5heMYqLKzkOPSIaAE4cpLVWt0jOZ0mJEGQujo1N63G5bKmku89lWz0WS6jCbKiz0iz4/PPP40Mf+hD+4A/+4KL/5eToPzDz4cEHH8QjjzyCP//zP8fq1avx8ssv46mnnkJ9PZGz/f396OpKeUM3Njbiqaeewvbt27F69Wp8+ctfxj/8wz/gne+8ONXcaqSb3eugqZVUdSuX6nn6AanDlW5bbsxBD251iZ53kt1uN6qpg351v7L+USKiHWH9TaOhvnYA3cPqyjr2K1xWred9mY7PXPcZfP8d30eOjd4756QTf9b6Z/jhZ36Y8T1ys3LREG4AAHzn1e8ojWPGTQer1fWrla5PBxM1HYN6XuGzcdosluYKbBqSr+zZbvVNDJAK3kgnSVVgqIVdQCSq3r5uLBh6whwAKXJct52eyXGJ4l9LI7Uvl1XpWSqwGioa1PuiPG6PoWaP2tXvlZ7JoGsXke9Nhh9qFn7Y/zbHrr8HKM3WV3nsPrkbsAEIA231eodrht1ux94/2YvVwdW0TiWAovEiPH7v47hl2S0Z32dt5VpU5VVhJjKD5848t/AFb8Arx19BPBFHtiMb5Tl6/t4AUOimIsTwjLqNTTQWNYK0E0E9xXd6Bxmv5SrguUSC0OQWWN1gRw70HB3Ua+8GUt01/Huqggl/nsN1MDtF6+7hE4e17mPz0CGtub5Z6z7xEK25ugWE9EKLLpikm43pEVqSVlY8544F1Q/Fho1Vob6NFaOlpgU7P7kTReNFcNldcNqd+OT6T+LV33sVdWV1Gd/n07d/GgDgz/en7EhMoHuG9v7FNr1OLQbPuQGodzQwUcfiDR2sWEw+6iVVesV23kdIEDVSXR9LV1Jx/NYbb9UeE/uO5xfpkdqc82WEfCqC5xJd8kgyKJrXW91CC1v8ZDv01yUWJE0E9fzrI04630iQ454YvSPnh9ULt12TNJdJdG0zbqi/Ad/f+n24JpMCpTBwf9b9OPM3Z0yJDO5tpqLtwcBBpXHwnNtcqLcHAIAcJHO6EjNaggteczkXRweOmEymwo7XdwAADu/V23MBqWKbbmdM3EH7Lt3OP76ei4mqMMtLKPVhbd26Fbm5ubjxxhsv+rc1a/Q8bzLBpz71KXzqU5+a89++973vXfTfbrzxRuzfr+elKYFsVzYQ1Vce5RTQS95Yo78B5da36ZDmwSEsd3BwRB2IIaYVyhlz00ZB4tDgy/UROeoBTvWcQn25+UUokUggXkAv9+a2zdpjYthsNnxw1QfxnqXvwcjEiLKFzANtD+DrPV/H0bD5Nv+e4R7Ec+h327pyq9LPT8dkP23SzvSrK2oAIGijBbA0X58c7z7XDfiAvUf2Ahr7aybHi/P0Dljp149NjaWUlibB5DgviDrgDbEuebRkxRLgdX3/NEAu54HbernFSwf5WfkYD47D7lb/zo25MQpkefTUnnywZpWOKvxBP2CX2TRKdI9wALJn1qOtGk5HSUEJDnzlAEYmRjATnFFaD2w2G1a4V6APfXj4ew/j3r82p/x8bn+SUB/V9wcFgJLsEiAOjIXUibH+0X4qRkD/4Jifk08Fu6QfZ2Ol2l7n0AlSac/49bsZ+N2PQK/4x0GVEuQRFxBnw3rzG8/ZEvs3Vh7peEQmEgmjo0LXCoHJLD6sqeLlXS8DAHra9ZRnAODL8gFTb66ch8r8SmAcmIipH9TZ/7bSq6/0S8falrUYfWQUs5FZxBNxpef05tU3w/0DN8L5Yfz9k3+Pv/vo35m63lPpAbqB993xPtM/ey6sWrQK2zq3wVmgbodSVEUii1Wtq7TH09pAIiB7lt5ayWdB3e5IIC14XrP4Z9ji6YbOQ25PyeyLLjnOdmG65BF36uiq6wEg15sLTOufBdZdtw47du/AHTfr56rkOOlZ0u3Wibvoe64u1hMCAkCuLRcBBDAeVrew4K7t1rKFLVTN4F2b34UHNj6A6dlpuF1upQ78zz3wOXz329/FRPYEhmeGDWuTTDGaIAHByhp9IWhzZTNZItnIxmZlk9o9J8OTgBMo8Oi9t0BScBEBAjG94h/vIyTOp4448W8sCFNGcn5Lz2lQAXfWJByagptac3sSU6vgkSNHEI1G8ctf/nJOYhwAfvvbzFourkSwKkd3wZDyvwVSBzTdzQf7g7OHuQ64mqbT1pFbTATN0iaZdnpnmN709kE1W4WhmSFEEIENNmxqm9sfXwdet1fLW/2hdzwEh82BYG4Q5/3mqtjPHSCixj5jVyKK3gi2sYl59FK8Iw65Cn+WPak60KjwSvpEF+al7CZ07Dl4ARRppUzaDkQ1ZejuLCJ8qsr0vV25M2Z8Ss8/je1ruMVLB0z2sBJRBRwqJOEPaYvYjPHodCFwirvEptERpDVgaGpIOZj5aC8V+goS+uOZCyUFJVrz3caijQCAk/GTpue5Qz1E+pbZ9boGGOV5VFybjKoTmkZXVVR/QwyknkudInnPEBGZ4Sm9PReQevcjNr09DpMqHoc+OV5ZQht+XdsoVtWkBzKpgtcSViKqIN2yQHefa6yVmi5d/BzGgnoKTSCV8xCy6ZHjB04cAACM9Ohb9NQU0v5xBurr0nN7aS84eEq963M+ZLmytAo4Kzykjn7ihHkP3NNjZF8gYWMFyBSAJYsjRjicpv9teS2tJYsb9L+n08fpO+fClCp4PtEttAFpAZgatiqBYMBgX3w5Pq3x8PWsRFcFk0eLmwRs2riQLNRFyt2NOrjjJiLY1163VvkegVAAbKVfW1qrPaY7b7iT7tWqfi8W3V3TomdpOxfsdjvyc/KVrWlbq1qxsnwlEkjg+fbnTV0bj8cxm0Xv2HWLr1P6+elwu9ywzepbWU1HqbgikWVW4KWziW4HGb9nupl/QKpzRIccD4aDlM8B/S55qfnNrH2lKUZk1apVyM3Nxdq1a/HhD38Yf//3f4/t27fD7/eb+qFXKvjgobtgnO8l8pLbV3XAXl665DjbskRm9Mlx9tB15aqfZiQ3jUAq6biiSY1obR8nUr0mv0Y7ddkKVBdX47oaWoCePfesqWsP91ErT35YfwMDAK01yQq4Sy+UFcn1vLZEfxOT7aRNdXp6t1n4p/2GslLXCiM9OMPwDVcAq/skWil5Q6wbniQZWHdoL5GI23aoh4wBcuFwQIqwH/ark378N7dH9Ysaviyf8X8PjquTGqzIkZhzmyrIOgx24FyfWlj0uVG6rtyjbztiBf7wbX8IRIBYbgy/3vNrU9ee89Pv1lTQJDKWah+poHSIsd5R8hu2hfULNkCqm2V4Uv094Q2+K6GfX7BsMdmhlVTq2Q4wqSLho7p+FYUeNixq0LpPeQ29I20t+vZDvJbokOO9Q6nQet3sCaPLypEkpRRh2EUIhMMV5dKBUXet5NBxD/TH1FDWAAAIOdQJ+5EokfTSKkYp/M763wEAnHOcM110PTNKhIoUOV6STfOITgjy+CwV/SXWXClP5uIKet8kbD9D0/Qs6ghAAODY6WMAgPPn9HIHgFRO1+79u5Xvke5/y50tqjCU55qZ45KiOyazdQvJklZWnD2lYx84E03tj+rKM7d0uhTYymo4oLbHCUaDmLbTvvvOa+/UHo8VuKOZihLPnHvG1HWHOw4DHgBx4Ppl14uMxR0h7kXHsjUQp/eEC9w6kMp54PdM4nzqTNBEMjWr/p6kcxK685shtHFCWSgFmO/0MXWy3rFjB4qKitDY2IhQKITvfe97uPnmm1FcXIzW1lZ86UtfukqUz4NcD6mZddty2cvx3Ek10iAdfEDT8XSTVMQCKbV3Ybn6SzU0SRsYCRUjAFQVkIpVVeVxsOsgAKCpUIbMsAK3N98OwPwi5q2hZ+iBGx4QGUeZr8wgfk/1nFK6RzwRR9xNFfXVS1Zrj4mtInSsJ9I99HVDFIGUalgnVZoJDF4QddBYS9YH+cV6RZIzHXQI9Y/4dYdkdMboelZyS75ueBIADHRR0PD+I+pWX3wAZeWoDi4IQR5XD0GeidPBoThHfw3I9mYbgWWnetXmgL4AhZU1+uT8byVRlF+E4mn6rh7b/pipawdjNJesrNInIABg82qy+iqsVl9zB/z07Dij+nMJkCra2L3qBSD2QJcI962roMMwh7upgkPKvE59cpzvodvin5VPhEhznb63pzPJ0uh4fBvkUUw/UD19T6pTSGbrQa9d/+9Wkkfrf9ShR47HXFS0rSrU77JqrqC/fcyrroyfdtF3tKpe3+bDCvz+Xb8PhIFEdgJP7nky4+sCwUCq2OqSKbae3Edhc7/Z/hvle/znM/8JADhxQD1ElRGfpU1AMB7UIiEkg2vZVkVXWTkTor2JRKddLETvh043Yvq1ul1WBvlkB2ZDGmp2QesZqbPA/qO0R+7r1AsKB1L2gTqdESy6y3PnweXQ31PokuPn/eeRQAI5rhzjXm82rC0gpf4Pd/3QVIfktqMkaHJNu8hmTwDeOK3dXaPmMycYwUTSrjVP//suzKF3NwQ9cpzzq/h+Oli9bDUAYMnKJcr3GJtM7bN057ea8pQjgo4l9Y7dO0x93tSp49Of/jQeffRRPP744/jxj3+MAwcOYNu2bWhqasKHPvQhvPLKK1izZg2Gh9WVPv+dIaWsZFsWkRYxAf+0ycCk8SRJkH68qdKp8D697WkAwOE9+gEFQNoiphhY9vgLjwMA+o7pL/JWYVM52b38x6H/MBVYcXKUNvmrq1eLjMNut2uneE+HpxFP0EIs2XKarhwwPabk4doWs8Ht0u8e4DA2HeK3dTkpvJYvWa49nsWNpKjKytPbXJ84Qwe9rnb1DQzD4yRyXJc8kgoXAVKFCB1lJYfVlRXq22rY7XZD7avTqWFsGiUCcAG4wvR8tw+oWVmFsmnD2VYlE8ZpBTaWk7XKqwOvmrpu2kNzyXUt+u2mQKpbZyKq3ko5OEGEvTsu0xm1uJ7mE1+ZT/ke3NHmtekTmhLt9ECKHJdQ6PGYdDv/DDW7AGHP85sOOW6Q2AJB0XlZeeQ1Ck1yPEn6SfzdOLhep/ATj8eR8CQuuJ8OltQmD8MuYGjc/DowOTNpZM9c1yozL0kjNysX11XQ2M7GM99bbj+8nc44YWBxpYxynIOU/RG/8j24cyDLpv9MpocgD4ypF8n52ZHoRmTFcCiuRx5x55+En7ZR/NPI6eL9pCPh0M5DSbctSFekm8UzL5Io6sj+I1rjAYAlTTSXePP01hN+lmYn9LvkB7tpf7L/mLooZTxIRY3CLH0SEgBGuqjTZttutc7WEwN0VmoqbBLJnrECd7bdSR2S2TH8atevMr7OUUHzx9ZlW8XGkmenc3yfX52HqWyieXLzOv3suOJcKtxH7HqC2ZiD5jcJcpxt6HTsUY15KALt+S2d59TZe49OmOs+MjXqkydPoq3twoPmjTfeiG984xvYv38/tm3bhvXr1+MLX/iCqUFcKWhpbAEAFJbqPcBGeJKAPyS35ba0tSjfI90eQNcuAkipBUam1H0U2f823y1TcZwapEP2i7tfVLq+a4qIvro8/VYsq3BD8w2wBW2Iu+P49xf+PePrTo4QOb6kRL3S+EZ4onop3lzhdzvcIgf+fA89RzoKluwCmuS5pVoXHMhbWaeuHmYvbV3fQyCNPNIkovkgJFn8C8X0Dlfcsqrrnwakiho65LikOgtI2bPo+DvXLib7oq0bt0oMCd6YnsqDvRgfvP1BkfFYgY/c8BEAwEjuSMbp8Gd6ziCRRaTYTStvEhkHByVNhiYRiqq9K2x/4k3oz7eAjAfuZDBpOyEQfsk2L3xPVfBcJDG/vb7rdQDACy+9oHUf7j5KRPR8HYGUSl+HPDKyMARso+x2u9GJxlkNKuAiNFus6aBtEZ2j4q44Egm173zIP2Sc4OrL9LNeynxlhg/+dML8327XiV1kGxcGltbJZP1YgfdueC8A4Nn2zO0Dnz9Cfrk5gRyxcGf2eFf5rhmG/60AWSfVQfb6IZqTThzSV7PzGVdHMQjIdv5JkOMcfimRYVOQmxJsODzqBQkOipboIuW1TbdjMwz6u0v83UJTtO7qCEBeO/gaAGB2TJ+sB4CsOJ1PRoNq69JPn/kpAMDf4RcZjxXw5fpQMkOiyX97+d8yvu748HEAwDUNcl7qPpcPADA4o2EfmZxza0rUM94YVcXU8eXI0isk8vwmcT6VeHedWc4L7qUDh90Bl53mSx1uwayAxNQqv2HDBvzwhz+86L8vW7YMzz77LGw2Gz73uc/h+efNGe9fKWiqJUsNd46esoo9yyWSaRuqGwAAnlz1w+PIZJLEjgIet/4h9NAe8gl+9iVz3tfp4AlMynM8NEYL67kBNSuboQgtyG9WL0aAAiuqQ6RA+vHuH2d0TSAYwMkhIsfrsuWI/xzQpljVj3HfsX30f8xCpKLOQResjlWBNKEpsYgZB36BRYxJEW5hVQUX/yTaO5kcZ7WmCqLxqBEuwnO4Dtw2mv91DldnzpP1THhaP2gQAJwx2sxIFCQrCvQDcIGUyqNnvMf0tdPhaYwE6Hd5s9qqAMB9G++DfdoOuIBvPf2tjK55/hDtrxzTDpHOAYDWSUfyIVcNKwqC3jG2oNIFt0HrEJrsWZrl0J9LorOkpAnFQlpB0cvXUJfODZtu0B4T2+LpkkdDY7Q/Ge7X7/osyqcDmjdXvUgyMSMXFA0ApQVU/CkuV7d84sK4hP8tP9uxRMx0UBTDCMCNyRyK7XY7ynNJzazS5r/33F4AgGfWI0YgWwG2D3zl/CsZK9H2dtHvVu3UV+gz6kupoBF0qO9NAgnav5Xk6HfsSnWQGYSmgEqbvav5nqpg8khCWelOJjLq7HP5uZPoQrHb7EZRS0dZKRkUzeuSzh4XSLOLyNb/u7EoSccHvaOfvKrDkzL77sYy2puGnGqChLNj1P1S6nxzWqowrq8gz/CdgzszvubYMOUEtJXKdX5uWk3d8TWL1YntiSDtTSS4pTVtawAAnny9d87uofW2ulR/fRrupbX/4LGDyvfg4p8Rhq6L5Ct7rkvdStosT2JqB/Poo4/ikUcewfve9z6cPEmEWDgcxje+8Q0UFdHEU1paisFBa5LK3+ow/CE123LZlkWCHOfFWYdg48OrLSLT1pPjpMOHTqvwTIyuLcqWUemy5/hUTE3F9mb3YmTc0nALAGCff19Gn09vN20pV+8+eCPaGmhBLKhWs7HoGSFCLTGrr4QDgNVLVwMAyuvU/SYlw2UAGXL80HEqRA336ZMik6OkqNQJ8gBSxb9stz5hz9+RDnmUPl9LEPYS5DhvXLrb1cO80sFqodFpdSJSOgS5wEXv/uC0+f1ExzgdYgq9hUYi/JsRdrsdy7wU9Hg8dDyja2Il1O2xvm693DhsdiRmaK480q7WVr1o+SIAwO033C4yJi6SP7PdXAZGOvjAL6H2NQhIWyrIWAXcrVNSoE9o8RwppayUsI26ZjUpvZqXqPuXc1eNhDUDkFKg6iiP2ALFCPjUGU/aHkC1M4L3OLaQTYyMLsuhYpsKOX6sl8gMX8InMharsKRkCXx2H0KxEP7pyX/K6Jqzk0RCtZXIETXs8R71qLevc0FSwv8WkOkg4/MpC0p0wMpq3Zwu7vzT9b8FALed9m+stFYB2w5IdDQBMl2bkkHRs5N0r0AkoFVIZjsc3VA/IPWO6OQ8jEyT4ELCxggAltRQt3UsK6b0PRm5OoVvXgEIAHz4xg8DAMbyxi7wo74U4vE4drdT4G21W64guWoR8S9hl9p+KRAMpAQXAs+A0R0ZmlLuIAvHwojb6NmpLa/VHtNQHxVGz3apWdoCqXlI4rwMpHIeBsfUueVgxFwR2tSOatmyZdi1axf6+/vR1taGrKws5OTk4Nvf/ja++tWvAgAOHDiAqir9cJj/jnAkaKOvXU1lclygJSswSQv8+V71FG/2ceS2Y11wcKmOv/Nsgl5ODj7SRU0RVRoDNvMbounZacRy6OXetGSTyHiswidv+yQAYLpgGp0DnQt+fvux7QCA7EC2qFromjY6YDty1Q7HAxPUFirlf9vaQIp/nfanHXsoEIIDGXXBxKjZoIl0nD1PC+BQv7pSiJGeKh2OqJM1TI7zPKADibbc9AOHSIhe8vChU/zjLgSJcDgA8CTokKZqGTEbmjXG5E7IvHMNpQ0AAFuu+aLrz5/7OQDAPvHmVTAyvvjgFwEAB6YOZPT5I0NEXt/cdrPoONxR+rt1DnUqXS9dHOHCvY6tytrrKAzqzlvu1B5Pujp3dFLfnkNCNcgkq66y0iCPJOy1OMdGQwRikOMJGXJcopC8qI2KP7fecKv2eOw2O+wRmpuOnT2mdI/RGXoGXTH9YDhGeJyeo+2vbzd9bU41PYsbWjaIjccK2Gw2lEzQueAX+36R0TUjdiLFNi2S278vrk56l3vIr10F7FVbXiATEirRQcbnUwmVtjEfaTziwXDQ6PyT6LBgclyHiN57iDoR+rv7tccDAMEpIn6On86swD7nPQSDosUKyUkvZQkrytJ8IsdjTvXA4bEAcR3ZDv1iOwAsqydhBBxAx0CH6evHQXZoy6v0M6OsxNuueRsc0w7ACXzz6W8u+PmjnUcRcUaAOLCicoXYODg7bmhG7bzbNZSyeJToZpDoIONzFyAjvJPYv3FWgDOub9EEpFkaaswlZudr0yfHZcuWYdu2bejo6MDPfvYz/OpXv0JHRwfe+17ycSstLTWI8qu4EDN+IkN0bQe4miqh8uEUaG7TV0FZNalNasr0PZiAlL9zIKZ+kAnbaJMvpahgokal4rjreMqLsa3+zRsOBwDXLr0W7gk3YAf++al/XvDzOzuoTUqy3RRIW8QCaouY4X8LWf/byZD65DwyQQeOeFBdSZGO8Aw9izotsIZaRIBkTVd3ZOqfPBf4cJXr1SfH66uoddlX6lO+BxcO7XE77DZ9spXJcR2ihol1CYINAG64jiwelq1ZpnS90eIPuTn37hvuBgCU1JkvcB7rI8LJG5R5/63ErU23wgYbjg4dRe9k74KfPzRIiurVFatFx8H+l6pWVkZYlVemlZLtWVipowK+ltvzdZDtzQaS52qdYMeObjoEjw2p34PBxb9oQl0NF46EDfJIQlkpoWJ0ZRMbJkHWA8DkCK3bh0+qB7TznMuZONpIbiVV1++KBrKvWtUq1404M0S/47FO84T9hJ3azW9Ze4vYeKzC7Yuou+XI7MJdMkPjQ4jkEQl917q7xMZQX15vzCenek4p3SPqpPc+PUxTBxIdZJKE5uYNFHpXUatu1ZYeUimhQOY5Scffm7srpYp/0SA9ByN+9aIGk3MSe8ri/FR3DZ97VJBwkppWoluH89ASLvVuYhYA5Ln0hYkAkJ+TD1uQxB/Hu8wVNuLxOIJZ9Ddb27xWZDxWwW63oxnUKfPLQ79c8PPPHXwOAOCadhk2bRLgPe65fjV7jt7R5P48DHjd+meLdDvT9t52pXtMzNK667K74HboC5MMIUFU/Xy67zA5D3R3ynQ2s72eTk6X2eKD8km/vr4eb3/723HPPfegoiK1cG3ZsgXvete7VG/73xrGwcOhp6zMK6SJeVHDIu0xsfqcCSkVxJ1E9km0CQNp/s5xdS++iJM2s5U+mU1jaw0ph+NZcdN/uz1n9wB483sxMto8ROD/+uSvF/zs6anTAIC1FbKLM/sNn+lVK9qwqirbLlPh5wqozqGBvcrYVkMX3JKp5X2YJDBE1SJIBbypQNI2avXy1QCA0ip1wpbJi0RYxqJnUT3N21xUVAGTfhJ2EUCKPFRV6RrkuNCmEUiFRKqoPDr8REBWZsnM/1aiOLsYG6pIbfmdbd+Z97PhSBh7u0l1tsQnF4AMALl2IqP7J9TUbC/teQkA0HtuYYI/E3BBUmeTzoSmVM4Dd/frzG+sqpkYndAeDnfX6Ozf0n8XCY/Ig68fBAA8u009M6auifJLViyRUY1NjdG8dr5PvUNS2hbNESNijAv5ZiHdqQEAhR76+w/PmB9T+zgd7t/MGQ+MT935KQBAsCCIox1H5/3s3q69gA1whpxY3iCn0LTb7chKEFkzHlacT5JLrUQgKwA0VDYAAIor1clIPg++WcLhbK5U55nE/HbjphsBAMtWqQkJgFT3uET4JZCyn5oKqndZheJyQdFZniztQnI0FkXS3h2lPn3BRUVhkqdyUje3CjhXp8AjZ9XnClEh+HTfaVPXnes7ByRdea5vu15sPFbhbUvfBgAYyFm4c3rnWRLdFcf1iyLpiM/Q3DQwpda9zeS4IyxT1HLYHUaRXDUE+cRZCj6OBtT3gOng95/nAxVMB+n9ciVkutq4iKhj2Wpzm+tAfvMzdf+NkF611lEecTVVwnyfiWj2wVSBoagROjRwu0ooof5yOrLpZWqq0g/QA0Cb4gQAO3C6x9wiFs6m2a+pUGYsVuP+lfcDoEVsPh+seDyOETepAm5bfpvoGAY7yFvq8Dk1pdf4LB02cp0ypEh4iv6GqrYTQGrj6rHJ+Awa5LiGPQe3UkpsiN0ut7Eh1lGOl1bSRnh5q/5BlH8vnRYxDoezRWUyFVYtJaWfDjnOhKGUipHb+6ZCapuPvjHqQJLaNAIp/1sVcnxgljaazUXqvseXE9n99Jx+96Xvzvu5Fw6+QJ1jEWBJmSw57nP7AKi3nHJB0hGReQYkOsgOHj8IINUhpwtu79Qhx3mvJdH5JyFuSP9dJAgtW5zmSR1PXiOwTsizksOidcijY6dJTd3Tbj4geM4xxWlMqoGzVpDjPOeOhc2fT04Nkvq5Jlemg9RKLGtYhiw/PVvffGb+Nv/BOO1Fb1iiH6D7RrRUJ3N6FLZfwWgQcTuRPa31rSLjWVxPVi/ZPvX9oKTaV4IcN/xvnVmw2fT3cBKdMQZ5pOMXkwYJ8iingPaSFSUygepILkmqXAefTQAZL+XK4pRQon9UTQAwHaW/m1R3HADkJOh7N9slvevkLgCAfcYuqq62Cl/8nS/CbrOjL9q3YIfk/sH9AIClvqWiY2itpnky4U0gEDQ/pwz46VzB9lMSYHs11ZwHfr+kzqfM42mR48niH++7dMFFRJ43VbB8tTk+4So5fhmRPoHpHK54oyBBaBXkJMlxuzo5frKdwlkDfvUNTDrYq46tUcwiFo8hbKdrlzbKTK5etxe2WZp8TvScMHXtrJc2UbdvkAkqsxoPPfAQ3A43/PDj9OilCwH7zuxDIjsBxIH7N94vOgbdFG8+OOa79dvpgQtVB7MhtU0xLxgSgTdAqv1Rx3YgFAtdcC9tJDfE6a2sppHcd1SW6qt+PQ4qIOjkPEiHw0kc+PjgIFWQZMLn1b2vKl3fP06HDclN4+wovWdmi5EA4Lf5AQBtVW9uGyvGe9a9BwDQ4+6ZtzPptwd/CwDImcmhYpQgSrKo82ssqHaYDdloLqkokDlc+7J9AIBgQr2DjFu6Q9PqG/10MDk+EVBXffNeKz9Lf22qLKE50pujvqZMTCd/lyjgcuofZribRedwJenLDqSFIGscrmZjNB9JEVqczTA2o/a+Pb/jeQBynRoAUJlPz9NkzJwIoGe4B9Nx+m7fCt06ALA8mw7Lz5ydP/D3wABlQawok/O+ZbB9oIpSn/e4NtiMLhtdGAFxih1kkVgktX8r0X8O2EtbZ7415hKhQht3WeoILljQIkYeJb90neJfbTMR0Js2yPjqc7ir6lmAvyMbbCL7XK/ba5y9XLlq33vQRs9jSa5MlzwA3Hk95aFUNJvbN43EaW9T5lYX2VxOFGUVGR2Sz56bv6usF7Sm3bJE1qKruaoZSLqanu41f67gLi9PXEbgBuh3kI3PEJcodT7lNSCcUHe34G52qS553nPpnOMt9xy/CnU4Hc4UeaSorIxEIwjH6KHlBVEH7J/GPnEqOHKKfPv6u2TCRRqriBjNKlDbzKT7Qhd45dqf2mqJaMmrNLcRfSu1mwLUqr2lbguA+RexHe0UBOmd9opXrpsrSfEZ98aVUrwTHlKvSPkfX6A6GFN7zg0rDKEwF4ngDKOV0i0zJgnyKF3po4v2U/TunelQz1Tg30XKH5I3MTpejPx3kzoUB8bpANkzrKaKHJok1YvkprGpjDptElnmVB7pXozrm9eLjcdKfPi2DwMh+l1/tO1Hl/zc612vAwBqXfpKqjeiPJdC3fxRv9L1bGVWVSgTyO7L8gHQ26RzYB0T7bpgwqeoTH29Y2UlCxN0sKyVWvtzC9U7pJxZtI+UsNYCUmuJTgjyMy8SYXl4n7pHeDq4Wys9vMos4o6kXYSAl3L6mPhwaxY9ozRXR6YiIuMBgNoimlcCMFe43XmC2uBtszZUFcu8/1bjXWvI/rPD0UEWDpfA9nPbAQAbazaKj4HJ8fOj5u1+mBwv8BaIZKEAgC1CAqDzA2r2Q+kF/4oi/SIpCwkS9gRCEbViG4dUBifVi6zpOHGExFGv7lETEgCprhoO99QFKyu1LBYjcvtuIEX6qc5vxnnJlS2i+AfSij+KHZKNS+kMf9dNctkDFbn0ngxMm7PViGTTvP9WyHhg3N5MAsEf7/7xJT9zru8cIvn0u713y3tFf77T4TQ83s/2nTV9/fB0MsvMJpdlpNtBNjZNxXWp8Eu2M9UJeefClhg5niwianUQmeRJrpLjlxvJPZgqeTQ6mXqBJCpFbPXCBzYV8EKTZZdZVFe0kkLDnaf2Yo3MEOmU5cwSCShg1BbSwaF/yhw5yuFwDb4GsbFYjTua7wAA/OLALy75Gb/XDwB4cMuD4j+fPd7hBHpGzBN29UvIg/Ftt7xNZDw53hzj3VX1BpPs+Ei/DyvaVMDEE3vX6oLb/D056iQpt4YmIvoe3/nZpM5kYkNnPFLk+NED5HH6+sHXle/BKp+1y2W8/tlzXPVZGp6S3zQ2VzUbNj3HzmceEHeu75zhVblxqTyhYQW8bi+qgkQq/fC1H17yc8en6KC/rmqd+BhuWE+2AZVNaoq/mJv+WDUlMrYKDVUNAIAsn/q+gu1GpIIduZvFk6s+vyUcNK9JjMkokGq0+Du9dKiSCOME0shxjaIGK4Q4iEkX3EGkc7hiL+X0sDkdcAg2Z5GYBat7JW1VjOB5p7m/3YEOUldnhYQ60C4DPnXPp2AL2xDPjmPbqW1zfmZgbABHhkn8syxf3WP6Uji5j7puf/3iwvk+b8SOvSROmR1Tf/ffiFOHyRpn596dStdz8clpd4qcvdLfNVV7joEx2q9HZmWKSLEgrXOTAXWLRSZq2BpRF0xC6Vgs8hoidT5hwVRWntqccLqTlL2JkEzWD6DfGcEFqeIcOS/s8hwSJQzMmDtXsujurWLXCgBNcRrrC+dfuKTg5bdHqDvSNemiM4Aw3BF6V9oHzQdgsnVgjl0olBupDjLVIpIRyCnk771xPZ2ZGlvUxZy8z+J9ly62bCSx5rpr1c89B44cMPX5q+T4ZYahrJxR2xBf4A8poNY1VDBOKCl0gdSCLFVx1vW/3XuUAsvCE+qHs7nAFd7+aXPk+MlB2gBD3Wb+smNZFh0EXul+5ZIK1z19FDS6rlKeqCkpKDGCKlRCOcdm6csuypJTtLOqhgMazcLupXdfwtcVSGvL11gTW5dREUKqlbKqlAi+/CI1y4B4PG5YvUgcZtjXlwkpFUiHJ3EBQYc8cmbTWJprZTaPrNJVtbAYC9D7JrlpdDqccMxSQeLo+flD09LB860r6BIJ4Lpc2Fq7FQDw+tjcRZPxqXFM5NG+4QPXf0D85y9roDl/OmFeXRsIBoyCRF1pnch41i6jwk92ofphnYtiEv63gL4lUjweN+ZrCXJcosVfslMHSBVaIwn1+TsYDYqOKctB95H4u5Xky7TUl+TRfRxZakXXmRjtu4uy5fY4i6ooLDrmjZk6D5zoJzVtke3N733LyM3KxQMrHwAAvDzw8pyf+cG2HwB2wDHtwPI6uTBOBu9PR4PmVYPsf2sPyx3j+ew1E1UjWVnFKBUUnl6wSxeGmYEhbhCyHcjx0B5HR1lZVE5/99pKmQ4wr4vWAZ3ssCMnqAh05oR6l2U6GmuIXCssU9uDdQ10AQDCM3LneO6Q3H9sv9L1VuQ8+Hvpns+/9ryp604M0Jz7VulIB4D33fA+2AI2JLwJ/PNv/nnOz4x66T2//xpZq1ZGVpz2At2j3aavbV1F5+XN6zeLjcfoIAuokeNs+yml0ubw2wjU92+8H5WykGVbJZ19rtli5lVy/DKDF/vsArXNg1E9jyZtWjRh+MLZgVBUrW3NUMQKbYi4ujsTmUEsbn6xZ/9bR1QuHA4AZofoxXx25/x+Weno6O8wEuU3L5ObUK3GnavvhGPKAbiBv/nl31z079Oz03i5kw4UNzbcaMkYnCF6vs/2m29/Gg/SQlOYJUeO8fM0NKFGji9eTmFHt95wq8h4bt9KLWptq9R9lVlZWVYo41unG1YUCAWMVUmCPGLrAp3OGCZqpDYfrNKO2NQ3H6zQerOEIK9YT90+N226SWQ8DG+UJs/T/Zn7Awa99Pfa0LJBdCxW45O3fRIAMFUwRer3N+Cx5x4DnBTAdNta2QBkIM3/NmDe+/D8UKoNv768XmQ8vA/QssJwyZLjsVnaj3T1dyldn26nJyFumJkgEms2Oqssbhgco8BBW0ymdZ3J8SjUQ0I5U0GMHNdcl8amxoDk11NSIEOO81zZvFStwBmI075bUsW4oinpq+00p67s8HcAAKqy3xqWKoy3L3k7AODJ00/O+e9PH30aAFATtyZktCKPBDeTUfMqZMPKLCFnZabbQXb0NBWxp8fV5+x02O12QyQzPqVGHrEPt4QNKZA2vyXU57fq+moAwJrla0TGtHXzVgDAqnWrlO/B87WUN7tuIZm9yqXsIoAUOd7R26F0Pb9ziVk5NXsu6HkaC5lTz7128jUAwEyverfA5Ybb5UZLnEKIf/D6D+b8zO7e3QCA6xuut2QMeXbaV/ZOmM/q4Bw8qT0ukDp7Jdxqz9RkkNYOJtl1IZGJVVlLvGJLQ4vImCQ6JM2G1l8lxy8zOAk6t0DNxoAV51LJtGyrAlyYDm0GrDKQImrSQ90GxwdNX8+KCkn/WwCI+unlOjuYOVn76nHypbMH7GKHqssBu92ONR7auP30yE8v+vdvPvVNBKIBeCNeS4KKAMATo7/f+RHz/oenu4hMmxpWD6h5I/i5VPUG4w6LXLeMhYnEIiatGmQCWfUgk946K6H6NQh2J+b1FZ0PK9etBABsuW6L9niAlNWL2cU6HUPjtEnnFl9dcAeRKmE/FaH3TMpvmpEP+q46RjI/zDBR81ZS1ADA9cuvh9fvBezAlx//8kX//mL7iwCAulgdkQbCKPTQ++YP+k15vAOpNdcWsokFhep2kKWrfaWsMNpPUyvu64fULJHS7Z0k9gM8lwAphaRZHDx6EADQ3y2TGVNWRIVWd476c2CQ40JEzU3XExG95ho1Mmp4IlUwklKO67b4cwBuWb5cIFt+Vr6xPxmcyXzvPRCi97+5SL4N3krc3XI37DY7Dg0ewutnLn6nD4+T5/01lddY8vOrfUSSqnTrjEwn7SOF7CwBgQ6y5P6N/aYlwEW79K5pM+B5UarzzyDHNfZv0vtuVmjqkEecOyYRFA2kzgKq5yW2mZD6uwF6Kl3/tB9xezJ3QrBbp6WSCMSQO3NhSjgSRiSH9urrmuQ7t63Eg6vIhvV47PhFBf2p2Sm8fJ5Ed5tqZbqZ34hrltNcXtVi/qxiRefAjRtJXLiobZHS9fnF9L5Wl1WLjIfD61U75AGgpJL2SMuXyHRbnT9HHNCeA3uU72G2q+YqOX6ZoVsB4WqqlMrH5XDBaafFR5Vk44OMFOnny/UZicLsF2cGhv8tZFo6GPVFVC2cjGeu8jjQST5H2SEZVf3lxKdu/BQAoDurG2OTF1a1f77/5wCAmmCNWFjKG8Gbhpwy80WXsIMqvMVZcqqqugqyCyiqVNsYGWpfl0wRSYIc7xkkP/epcZkiwuljVJTYsXuH0vWG3VTiQuJHFekEu2oIMrdySYWWstVLzK5ObDM5Pjmi7nuZDlbWRh1qBz5/yA9AdtMIACUe2mT1TGSeO9A+9tYKQE7H+1e+HwDQkXtxMWCymP7Wf3DPH1jys0tySox193Rv5kp9AMguonejrkzGUgVIqbRDsZBpsh5Ivu/JpanMJ0Mgskesqrcr75WcdifcTv0iQrpFl+r8Nh2UtY1av4pCcEur1MOwOcxTSnDBhDYHGZsFZwTZohYUfxTJ8bCdvqMKn37wYTqq8og06J3MXFk3YaPvZ1m1vC+3lSjJLkFVmH7fz//48/8/e/8dHUl6XwfDt6ojGqmR8yBMwqSduDuzYTZztSuSoiiS0ifKFCnZtC0d2pZtWS9lySL1KdDWK/HVe6zPlizLomTJko9l0RLDkrvkcvPM7iRMzgMMckaj0Wh0ru+PX/+qG4MOVYXnKcwO6p6zhyC6Gv1Md9cT7u/+7l312PTCNOYqidj75COflPL63Y10poi7zH8vdSszlzgrs/V2kMlQ+7IVqVVPXrbFE9X5x7Z467Ew4flEVCCn3hmzDtsBth4UERQNAJcHKCfm9bdft/R89lJmT2YR4Ewc/ttmoIfVa0BHoxgiEgB2d1Hnr1ahIZYwVpQ6c/MM4AKQBg5v/2CR4//qR/8VkADSVWn8t1f+26rHfu9vfw+RRARVmSocbBPTVXEv9m+l7gqzuRoAcOEGFUuX58Wp9de7D2jvofXryL4jQsaTWqEzoIj8AlHFv8U5ul/Hpsyr/Rlmz9sOOW4zeKGfnrdWleFFVWRlnjcNk3PWggb5wMEpt+tFfivdVMi8clzGphEAtrVSZW/FbXwDwr5gja4Pjmqc8dnnP6tbq3z5r7+86rGLK+RP98M7f1ja6x/aSZ6zSqU58j0UCemKQZHtT32dFCbirbK2WRu4MgAAGLo5JGQ8I4PkmXbpunE/5nvBCu/oonWCPR+cKr0ct7aw6uR4CkLUsfnkkVU1u+iFntXsrEKxAg6H0zMj1ommGiKy0m5rB74zl88AAEJTISHjYWxtzioRTSwt//u1/w0AWLxrLddjI/GlH/sSFCh4c/hNDC/mrDvmonN4b5TaTT9+QI4Xo9vlhhKjufbWuDkrK7axElkcaalr0X+emDevamYlHCCOHGeFntWCJJMXouaSgC+gFzSsKiuZPPKsJ7wiDyKIGs5jEEWOr7eQXFVPwg9RHQgAcOMSFaDeOPGGpedrPiKz2uqtBegWgxqhdfeV94zZB2qaBqWO5o1nDoi11bIDP9JJ1ipvLb21qrvs1//nrwNewL3kxiefkEOO97XSnjLpNd+xxSrGao+Ycxew/g6yUDQEQFw4HJAj2q3uKfX5TREzJhHk+Fsn3gIAnDl5RsiY2Cf83VPWglSBHDme302+Hqy3kMx2EaKKGgAQcNE6EI6bF5WMzGY9qhNiLG0ZOzp30BquANdGrhl6zns3aC/oWfYIK9bahWBVEH1xmvf+/ff+/arH/mrgrwAAvfFeqIocerKpks4608vmObjBCRKthKfEiJKAvA4yix2SfH+J2ivpe5x15BByTh3znesF75c5j8wKzJ63HXLcZty+Tl6i7519z9Lz9XARTRw5HgtTtfL2yFqfUyPo3kEE5MP7xXm8sr/zbLhwGGQpLKzQIbHKLUbJzujv6AcApPwpw5PG0OIQAKCzSo5noUyoqorHq8gn/U+u/on+b3751MuI18YBDfjCS1+Q9vrNlURomF3EhqaG6IeM2Ar/eiu8fDAXdXDggFDe/FsBt/mL8PcGchtZqxtivTNGkG2U3+uHotHfsqoaPHH6BICcpcJ6UVdJhw8muM1iVTicIKum/f2kprBa+BmbpYp+bMFaO3YxfOzZjwEAqtqMz+WLKpHi3bXiCmN2oau2S89w+E/v/Sf99//v2/8vkpkkDrYeRF9dn7TX9ybp8x+cNufJyWuuyIyHSn8l2LbaSpF8OUlzkN/tF3aYXW+w491xag/VkmI8S1VV1d8jq8pxJp1EkUci/CH91VSEaKlvKXOlMUyP0R7i6q2rlp6vH0AFdX0BOUVkJGl+/dY0Tc+yObxbrHIwMUuFiYHbA4aun16eRiwTgwIFh7d+sFSMAPAbn/4NIAakq9P46te/qv/+f13/XwCAx6oek2JjBQA7OiiHBn4gvGyOcAkn6PpanxilL5DrsLDaQcaKXFGFNgDYs5O6EXp3WOsE42A5vyqmk5gFF4rX+h6VO2NEdSOuhGmunQ2ZPy8DQDqdFhoUDeQKybwOmwV7xTPJLgI8f1shIsfnxwEArqTYLDOvxwt1heaXy3cvG3rOhRFSMNdkxFjg2I1/+6F/CwC4XXFbD8ZMJBO4qVKR5zMPiw+cZ/hS9H26Omx+LxBX6QzZUS+OV7h5if7NP3j3B5aezwVJFgCsF7qgTKVsOSs4c56KfpcGrAv38sGCC6tneGC1paEROOS4zdDJI4tV8IY2qup0tIi7OdUMfQ2YmDIL3iR0t4kjI1gZb4Uc5xb/Gp/YhWNfb9Zb2wOMzhpr859O0KFse6OYYAK78V/+4X8BkkA0GMUff/+PAQA//9dkt9K62IrtnfL+XZUKbWSujRqrpjOGZ0hxqcQVoRV+ZOdlq2EufOAQpczg9sf12HOwWkQYOZ5tE7VKHumZCoJso4CcR6Sv0tome2KWVKuiQqbamkjpp3qtLb+Ly4v6yt1Ua926IB/BQBAAVeaTafOqMd40NteK878FgLYqeq/Gl8YNXZ9Kp5AM0PiP7jgqdCx24Z8c+CcAgP/wxn/ApcFLSCQT+MorXwEAfKr7U9JsrADAr9GBdnjOXODkq2+/CgCYGjJPYpcCFwCt+B+yjZUouzdg/cGOTI6zIEEEeK4MR62pmZj4FaXQm5+mzr2ZBfPBroyOHtrfPnrkUSFjCs/Re8NzuVkwwSNKnQWsT6W7nFxGWqN1X2RBCgCaK2gONzrncsZDR00HfG6xOT92oL6mHnsyRMD+5tu/iVQ6hcnIJObr6Hv8Kx/9FWmv3d3SrRfvJxbNfTfd1bS37WwQJ7zZvoX28/4aa0SyTmgKCocD1t/1cegR6kB9/unnhYxn3y46B1bVWV9XEtnW6EqfmPlEJ48sKivzC6sisn6AvEJyytrnxus3/x0R4L2AFcKec1W8KfFKbV+S7pfr49cNXX9rljr7mj1i99t24Wc+9DPo8fQAbuBrl74GAPg3X/s30AIalJgizToQAFZmae82OGX+HJ9001otcs5VU3SYW4xZ63T9wdtEqp85IaYLJT9TZS5sLS+AO//47L1e8L6L/64VKB5z5yaHHLcZuu2ARWUlB3l2tXYJG5MrQ0Q0W7aYhYxDKKtr5yLmb072P+1tFes521jbqBOkl4aMVcQ8zfTvOL5XTJif3djZtRMvNr8IAPj9G7+P3/xfv4mhqiEAwO9+9HelvvbodSpAnLpkLvyMCxfupEBiHMDNy1ThPXH2hKXnc+VSlBWGrkA2WRHVx5OnQA5WBYWMyeeiTZ7Vlvr6FnpvWhrEKAaB9RNasZTYcLjOZtpYZZSMJSI6PxxOlF0Ed0UA1jojuPDTFhTb4s/+txNLxoiDgdsDgBtABjiyQ4wHn9348X0/jspQJeAFPvwHH8bHfudjSFWnoMQUfP7Rz0t97WqFvgdmiRpuOU5FrIeUFcJ6Osiu3LoCAEhErG+o7wUTNVZJCCawWZAgAty6anX/xqSTKP9bVkNy4XU9YxI153LInNUQvZNnTgIAZsasE/73gnMekqp1Sw2P6hFm0cPorKH1aTZh7J578yIFqH1QiRoA+OPP/jGQAJbqlvDx3/k4Pvv1zyKtpXG04yheOPyCtNd1u9xoqaa9zopqbn/S1ktr7fNPiCF9AaC3nc5MVr6TQG7vwKphEVgvOc7PE6Ws1Dtj1mEbldJoHhJFHvG/zSp5lK+kzrciXNeYsuuA1X33oWNU1Hj2iWeFjAfIWVhE0+a/S9NhKtD7NPEFwKASBABMrhizth2J0H7rg9gdCVDH2298hELnf+PN38Af/uAP8Qc3/wAA8JT/KQT88jLaeluyc5zP3ByXyWSQ8dFZu7tJ3PuuC5Ms5jzEMnQ+5e/2ehHwB4Cs3s7KvhvI7bOq/ILI8WwRMalZW5cyWsb0ftQhx22G17U+ZaV+aBC4IeYgJqvKIw7NTEatfXELgVtOrYSwNHWRmvKZY+L9D71xGteNifKBZelMGrNpmlyePyRuA2s3/tvP/De0V7fj2uw1/Lsr/w5QgdZQK37q2Z+S+rpdDVQAiirm7pWJBSJ2vBmxFf71qA4AQHPT5JxfmV0PWIHOf9cswtGwHlgnSi3ChyImlM3CU0FsfUOtOG9XnitZ1WQW3Mol6nCV/3esrAM6OZ6CML9Bj8ujW3XdHjVvr5X20m6qvcF8AnwpVGfNxmdXZg21nb9/g9LM3ctu+L1iA5ntgqqq+K2nfwsAMFwzjO+kvgMAeLbiWWE2OsVQ66FulKmIOQU4e47XeMV2a7Hf7OyS+U36yCQdIONL1lsx7wXfuxysaRbhFfoOi7TF01vzLdaCmeThwuZ6oXdGuWA4YKzYmETNuesNQWbP++SyuD2unvPgMj8mDgZzJV3CO0n6msi2aVEzVmx59TR1jSwOffAyHhiP7n4UH6+lLIdvJr6JV+68goAngP/84f8s/bWbAtY8cLlAIjLngQkWqx1kDa20b+tp7xE2ptFBErucOGNNlCI65yFfbKFp1vbeOnkkihz3ro8cd/tp8XCr4vZNbGFitZDMZwhRYiIAeOFJKnTtOWQ+OJit4yoUscVIAPj48zT3NPUZ6wR1N9Hn9UHtjgSAn9r3U/jErk8gmUni5978OWQqM/CEPfi7X/w7qa/b30n2uPCZs7KaXZzV91gihZf1lfT9TijW7l0m1Wv8Avfe2al/fmne0tNTWa8/FiWsFzxPWiXHrfARDjluM9g/y2rVeXSKNgrpmHUrhXvBKm2r5BG3XkQXxIT6AbkwLl+N+QObjE0j45FdjwAAGnvLkxSj4VGkMil4XV5dAflBRFt1G976mbfQV9cHl+JCX7QP3/sX35P+ur3NtAAlPOYWjUgm28ngEus5zzY9VlQHyVRSuE+0rvDwWAvOyA+oZBXbeuF3Z8lxi+SR6IMMAEwME7Fx6py5DgSG7g8piKjxqB64lGy3zop5QmFuieZbtpwQhUyMvkOj08Ysoxgr8RUgy9F3NYrraAKALU1bdE/li0MXy15/YZhIo+qUuJCyjcC/+Ni/wBd7vgh1WQU04CX3S3jlV40F5K0HDRU0D8zHzG2K2f+2zi/W4sGToUnTSpF8fpn+DVz8F4G9/XsBAB291mztIjGx4ZcA0NtF62RrZ6ul53d0079lR+8OIePJVx5aPVzdGaZ8h9Ehc3NRMayXHJcRDseWWBmP+bV7aHIIAJBeFncOYPS3E3kQcxtbwzlXp7vmg6liZPz1v/xrHIwdhBJT4Fbd+PMf/XMcbDso/XWZHB+ZHzH1PCbrhJLjeR1kVrp2Wzrp3HZo7yFhY1oOkRhlfMaYzc+9OHmWuj5EZcbk50XoAfImweQ4h3uuF+slj0QXI4GcFYJVn2AZVlYsTFpOmRc47T60GwDw3BPPCRsPo6uG9s0jYWNzQMRD+4iPPP4R4WOxC4qi4E8/9qfoQAeQBnyLPvzxi3+Mmkq5PurdLd26Mvr6qDEbGwAYnMzasKTEneGB3Nk7pVrrauNMBVFENJDrRrRqtcz7LOHzm8WgaCt8q0OO2wxWVlptNXr/HCnjbl65KWxMbPVilRznYDlR7VgAcOQhaoln70kzmI/SgUwGOb61cSsAYGSx/CJ2+vZpABTG6VLFhnjYjb66Plz6uUuY+sUp3P4Pt7Gnx3zl3Sy2t5P/YcafocAYg+jeSYe0Zx4V2zlQ66cD9kra/L2b354kyidav98Ua10fOnGRgbA2tp6OHhpbi7W5YGhsCACQWBZnhcAqTVZtmoVo/zRFUfTi5q27t0w/vypI4xA53wI5C4uZsDnrgJGZ3FzY1SyWHFdVFe4VIjcvD5cPK7oxQx09TR4x99hG4iuf/QpmfnUGpz59Ct/+lW9LC4XLx1NHKAy0c6c5T8VIig5rDQFxHR9A7hDirjRPcPOcKJKI3tm7E0DuHjQLDk92W5V5F8B6AzAbW+k93r19t5Dx5Ft05RdgzYAPiqLIGh6TVQsyGV7KLcGsdZiXshLMQPe/FdwdBwD7eshTOR1II5Esvw5Pp0jxvLtFzPdno+D1eHH2K2cR/4045n5pDp/Y/QlbXvf2BerU+uZr3zT3vHF63vKstU7GQvC4PHox+taI+b0JW2yKJDQ5SNOqFen0PH0/o4tixFvV/hzhY3V+SyuCyaOsfYFV2yheO0SKUvgsEGwKWnr+wJUBAMDkiDGrESPg4o+VQE4W3TVWiu/eM0OOryRXMBmh90RmOLsdqPZVY/RLo0h/OY3YV2P47Ic+K/01VVWFGqO99M1x4zza3RnKi1HjqtC9+Ho6yIAcYcwCABHoaCberbnDmlVaRqV9lijC/vGjjwMAtu7Yaun5wxPZDCUTjT4OOW4zdGWlRdsBbsMX1QIL5IWEWth85KdciyL9gLxFzIL/7bUhCnCcvCtuUWVsqd0CABheLB9Y9s13aLO7ePeD226ajwpPhXDyoxR2dhIRARdwd+qu4eexoka0ipG9wWKa+XtXr8Bq4kjNhprcZ2FFoReoJeJB5EHm0D5SDLVvsdYpceEqKX9H74pRDAI55SirNs2C1TiiyHEgV5lfiJg/XKl+eq4ov3GGO03vEyvTjUInxxOQYmVSkaID282J8hvZlQAd8na3frCJGkZ9Tb2t3ul7e0kZvaKYI1pXNLq+qUpsUeLQHppP2rrNe9mz2teH+yccjslxL8SRmnqbv8VuRJ0YEeTvraqq3pZrVXkkOiiaW/OtWpDx5ybSSznfgsqst6dM/9t9vfuADAAVuDJ8pez1ES+9N4d6xamFNxIet0fvErQDbGVlxlYllU7p/rftdWK7UtcTgsxdxCI7LPjMbHXOFW6L5wvQ/QHrOQ/+Kvo3tTeJ+eyYZLea83Du4jkAQGg2JGQ8QO4s0NRubU/AHYzhGWuilkJYmiM+wYp1oMyOdG2RPrf3rrxX9trLYyQSqfHVCD/jbhTsEH7kw5uk+Wlw2ngoZ20LzdPdLWI7pNbTQQbkVNqcQSYCvO+y2mnHIgRR+zcuSFoVgMyGsvsrE8Jzhxy3Gdt7SA3b2mWtBZYPQCI36awY6t5m/qafX5rXfYubguLJ8VA0ZPq5Ga+cTSMAZBbob7/yfvkW95uzROa0eq191psdNZU1QJaHvj5mvP1pfoWI4voKscpaXnyseIN5K2kxrvRWCtsIVPgq4FE9q/6+GbAvGIddCBnTOsMvo4lsOJxA8oiVo0xwmAWrGEWFiwDra1uToc4CcvZa8xFzhZbqJpqrW4Ny5rkalYiK27PlDzRaHR0y/sFL/0DKWB50cIv/TNRc90BMoYm6pVZckC6Q88C1ovTSyXFVHIGoJej7NROyFszIAgTu1hOB65dpbfz+m9+39HxWVvK/TQSUNG0KrdgO5AdF6/7l60S+BZlZlTaQa/EPuMXZDgSrgrq9llnV2OwyHfYCqvjgMp/Hh5ZKuo+T/tKnyZnQDDKVtCd+cu+TwseyGdAYICXq3IrxovTw9LB+7trWvk3oeNYTgvzOqXcAABdOXxA2nvUGYLLtgKj9m6qquro+FAlZ+hueAE1woqysnjj6BACgs8dcxxeDxTUi1wAuRljNaOKOTZF2EZkVmqus8Arvnn0XADA9bL5oVA5dtaQcX/GslLXI/Oa7JLpLTCWE501sFgQ0+m6OzBm3soqk6dzVUW/NUq8Y2uqzwg8v5dSZBe8dRFmjAusXgbgrSGjV3iyGg1svr8BFTN6XGoFDjtuMff3UstjUZo1IltH+1NdFrTmVQfNkS766IF/Jul6ce48q2d99/bumnheNRXP+t01iW/wBoDJF79FYZKzstcMRUpf3BHuEj2OzwJOgTeSdSeN+gd97h/zQR26Y83Ash4Yq+n5b8b3iDSKHeorCehYxGeG+XpVuPqvhvjo5rgokx7NE1HLc2ia9bwfNj08+Ku7w78pkPcctKI+GxocA5DzCRYEtAxai5tTs3N3TWCUnLLK1gkj3u6Hy3SO35qkVfFu9WMJgs6BSofXNzKEBgK5ibKszr/AuBS6Sh+Pm5xMuIokUEozfJd9btn8yiz37yY7s4YMPixqSroZZWrFmi3f6PNm/XRwo7+lvFDzncl6DGURWIsKDorlNGLAWEMdrpUhyXFGUXPHHZIckd8dVucXuJxjd9SSUGVsqvc996/JbAAAlpmBru7WW582OlioqRCymjO8F7kxk98MJoKpC7HeAO8ishCBzOFy+9ch6wXtcK3aGgJzOv/UU/wDx3TrrtdZi2yiR+Rw8JqvrEp+zuGNXBNaj0h1foLU/sSTO8pFxcGs228AD3Bi9UfJaVo7X4cFQjW8EDu6g97ulz7iYQ5borqetR//ZSiHJVUFnyfZGcWLQ5QUax+Wb5a0s74WmaXpBsrPFWrFuzXiyuRMzC9ZEKcxHOOT4fYz1VkA46E7Uogqsj2CbXcxuoBKA2yVuYWUS0Wz44d3pHIHS2STmxszHgd4DAIB4RbxshXdWo/fmYKf8UJ8HFV0NVODwBI0r7eaipMBxJcX6vPf3UlBVZb35IpIste967t3bw6TEFenvfeEMKYaYcDEL/neIJMfXYxsF5OZqkYcrPoRYIcfPXDgDABi5I7b441eIRAythEw9T2a7KQD0BilwcGJlouR1M0szuvrOIcetgRU1y9oy4knjJKKvlgorx48cFzqegfcHAADf/t63TT+X7/eASxyhud5gR9VLW+6WenEKe54rrap8WKEncm3qaqV124pnZb5FmCgLsvy528rem3N1RKoYAeseuIsxWjeqPXKChzuqqZgwFi5Njp+6RSHXFTFx55HNho4gvdfLmvH9CfvfuhLis4z0DrJl81Z9PJcEK4LCxsN7XCtFLSAv/FIgYc+df1b2b5lMRrdVFSVMYesZq+p6JrBFkuODN8iy4uZda/lo/LmJsmYAgJa67LrrQdnz+72IZduYm6rF59nUVNZAjdJ36tydcyWvvbNAhbH2CvGd8ZsFe/vIPjDuNj6nvH+J8v7iIWvzUDH43X69g8zsPkDTNF05vnWLuOL09DiJXq/fMd6xz8ifp4UF/KbW/m0z4LwxFqUZgUOO2wxeVOfD5jceQO7LIZIcjy3RpM+KRDNgdYGSEtveUx+gQ9FKxtxiPzqT9SqOy/G/fXhHVvHlLe2DnclkdP/bx/ofEz6OzYJ9fdRpkakwvpFZAb3vLTViW/y3dtLik3abJ0beH6CFdX7S2n1fDFxRPX/1vOnnchikSJ9Bbl1NmjH3ygNv7oVmKqjrI8d1hb3AOZcPIVZCQmWEwwFAhYv+fWxHYRQnz58EAERmrdnWlMOhPvKu1IKlW36/eYLaTT0xj/Ai1GbBto5cUeHmmLFDbSKdyHUPBMR2DzCxHU2ZJ34PHaPvzfNPPi9sPOsNdpTR+ce2Meu2HRBY/FuPD/qqoGifmMOVS3Xpa4qVIsLuA2Q9+OKzLwoZDyM0HQIAnDh7wtTzeI8jqyCZnKfvxLfe/lbJ6yo66HN+eKvATohNhu4mUunHXMazbEbn6JzjTYkPZNU7yJbN56HICIdjoZSVjk0gjxwXFH4JAGqGzvFW9m/5VizJFWv/pnuxvEh7WyvZQ4CcoGgmtTmczyyY9BPppdxal7X+U/OEfQaRUKnw01orxz7QnyC+4tLIpZLXja+Qgr23rlfKODYDmiupaD+zbFyJfOEmCb9mh8131JTCejrI4uk4MhrdX5UecWceXgOsWJHmd4qI6trUC2QWilr5Y3JpDjl+3+LyeWpTGLg8YOn5XJkXac9w6yqRZBzKYQacRC06HK6+kshxs+GH4/O0cIhWDTMaaxuhRKkQcOrmqaLXnbt1juxdMsDxvWLVdJsJVhaxuEoFJNEeyLyARRIRaJo5b76p+SkAQGrFWpp8MSQiNB9MzpkPn+UFgz25RYDVOWlYU1YyeSSSHG9rJKuH6jprhyNu5QrPiwsGYjU7E91mIMMuAgA+9OSHAACHHjUXrMYByIuTcoKHf+T4jwAAYv7Sa8HpO9StEFgR78O7WeD3+qGs0Pp2a/yWoedwp46qqMLJuho/KXXNFsmB3FzCYYwioAc7Wgw+u3rrKgBgflpckZTnSqvdiJw9ITJTYT1t/twdqWZUoUFdLEyxYonDhVWRB1AgZ401tTBl6nn9B6iL7Ude+BGh42Goi/ReXRotTdRMxKib5/Fdj0sZx2ZAXwvZtiW9xonSiUV63ys08Yp97iBbXDG/nnM+i0i17wvPvgAA2Htwr6XncyFTZNcH20ZZUTLmh7CL6oxhUjutWNt360HRAoNUmdTmrhuz4M9NpF1rc7AZyC7dE/OlOxHvRcpN3+32ejmK7VpQQen2dOlsnXmF9g6Hew5LGcdmANu1XrhjPBshFA8BAOoqxNvZxMK05zlz6Yyp5+WfH0UKglhwYUVQNjxJdsLIAB6XGG6BRSlQsrZ7JqEX/0x0xjjkuM3gAwgfSMyCgzx3bdslbEx8U3Gqtylkv/uiyfGmGmpd4mqtUUyEaMHzpMQRfveiIkEb0gt3i0+sb15+k8YR8Qj3BNxMYA/cq8NXDT+HNzGdDWJtdSrdNJaMljHdTskBMF5NrNKHN8VW2jutLBjlwOocq7YDemeMQGUl+/v2bremtOAxuTPi3qf2Jtpg1zaaV1gxOc5Kb1HggiT/faPQ/W89kvxvg6SsC8VCuoVLIVyZugIAaPaIXYs2GzzJbM7DlLGch1NXTunPUxWxW8raCro/zBbJASCSFG9lpW/SvdYULDfukJ/o2FD5zBKj4CKZZXJcEU+OD9+mA9Lb771t+rlcxBRJigC5QvLwxLDp58rKDPFpdAidj5orlvA8yB2WorGnnbzx57TSIZG3F4jIcWysrKO/iwod8APxlLEzWMpD92xjpficj+1btgMAmjrN20fwvk+k2le32LRoG9XYSu/RwwfEdTdwdti2fvPfe50czwABv5hCvh5crAIrcfPrgIygaD0vwuK2WfMQiy0yaFBVVSBLKUyFjBckM5kMNC+Np6NBbCAjo8lH91upbJ1oLIpEFf0Dntn7jJRxbAYsjNE9aIZXWErJ6Y4EAG2FvluT8+ZEbreGswKWFOBWxZ1PeU9pZc4NLYf0MYkKjM0vIuYXF42Cs288qvH5zSHHbQYrK62S49X19Pz+rf3CxlTps06Oy/JSbq4hgiPlMvc+cTAYEz0ywBXe65PF/ZgS1XQz7mzaKW0cmwF3r9BG4e1zxg7ZmUwGmo8Wmi1NW4SOJb/tfGTanN8zq3BEW2GwP6SV0Bv2NxOpFmF1jtVWSiawD+w5IGpI61IxZjIZPeBXJ8YE4KFdDwEA2raYDzCUEQ4HwHJrXzhBivpan7hW6nxUeavQFKCDw43p4mFFd8M0V/TV9kkZx2aBP0MbY6OhnLfHiSDTlq2pqUuhLkAH7ATM5yJcuErF66lRc6rcUsgnbPPb442C91jCvBgB+D30eRkl1u4Fqw1FKitTcdq3WbEP5Hla5HsE5KwQuFBtBheu0XdpdHBU5JD0/YB+oDQI2TkPh/tIlbjiL71mvj9IdnGdAfH5PpsFPa09uucsZ2aUQ1sf7Ruee+w54eN5qJ/2JsHmoOnnam5aA0QpooH15eoAuflE5Bl1PdlheoinwCZSnRyHNWsVT8Cz5u+sF401WRLRRaSuGaQyKZ1U39olNuhXTdI6MLNovBs5FAnp4+lq6hI6HkZXDf3dZU9xte6bl94EXAASwOEdjnLcKnqaegAAcZfxPVNUo+8wc1MiwQK1uYix+Z8xG87aGifF2hpzhoElcjy7LxZptVzpr9Q7PqyQ43sPUNcRC+WM4ANFji8sLOAzn/kMamtrUVtbi8985jMIhUIln/O5z30OiqKs+u/YsWP2DLgA1quslOF/y6QIW7aYAVeukstivNMY7A1m1t+5sYMW5CN7jwgdTz5a/ORlPREt3pY1naZAg+cPiPM73YxoryWF7VLGGGE3PjdOmwcAva1iPdlcqgvIrqVm26DDcSIQRat9WelhNsgDAKIJ8eGX7DVp1ZO3MkgHmL4ucQQnz5X87zWD/KKDSHJ8PQe+lbT4wx4ATI3Qd/rMRZOtfUl6j2QRNQAQn6Yb7+s/+HrRa6YzNOfubbfWfu2AUKVQEXAsZEzdPDpPhCGT6iLBNiZW/GbZaioyL84LP5/0mQubO8gAOQVLwCuO+G0KUuHIX23t/edCpkhy3AvrOQ/sUy5yjwvkOn+sdFnp7ctit7n6foADNo3ixl0qEsrKeTi+h6wANb+GwYnBgteMzY5hUaNx91U7BUmrUBVVVyNOL08bes78ChGgDRViuyuAvJBYk0VyAFB8RIh0NIlT185MEIl5+25pu4li0MUEAottuuDCQqYCF8JEkke1VTlhgpWibf8eEts9cfQJUUNaVUhmEs8o8tcN7h4Thb4OmqvaeowLU0ZmskKBDNBaL8dz/Gc//rMAAF9bcQHVRII4hxZ3C9wucUrhzYatrVRwSfmMV6jYrrU9KN5WhzvIzOY8cCGMLeNEge3jrBT/wtGw8DGpqqrvvazMb3oAsok95QeKHP/0pz+NgYEBfOc738F3vvMdDAwM4DOf+UzZ57344ouYmJjQ//v2t79tw2gLY73KSl2JI3CTzmp2KyF6A1cGAABjg+LahAGgqzlbnfUB6YxxgpwVNXV+8b5QjB//oR8HAHTsKb4BvDFPh5cdDTukjWMzYEsDqb9XVGOT9N1ZUo8qSQWNteLbn9QUTZnTi8YOMQy2MBFNjq8nOIPJYvYXE4HaStrIWvXktbKIlcPpk+RF/f03v2/6ufnKR5Htndy2ZqUKzuS46Bb/6AJ9H8bnxs09L0PPa6gUf1Bn1KRp3bw6UbgNMpPJIOqncRzbvnHF7wcBtW66h6cjxuY49r8NKOK93huraQ5nL1szSChERIs8XPs8Priy1VcrAgdWwHO3nggcP0ZE5vZd2y09319Fc1FXmzhFHBdcrRQk3z39LgBgYticJ2w5rCcEWYZdBJCzajNLRC6niTwKqHLyFZrrmqEu017nrctvFbzm1XOvAgDUZRVb28WqOzcbmiqpwDW6YKwzgRXmDQHxay53I5rdByTSCWQUOtduaRXXtZmO0b1nJZ8lkUwgkaY5Nx23JkgrhKFbQwCAd0+9a/q5OnmUEUe/uFSXrkQ324UC5AVFC9x3V/orgSzNYbaQzDZWLsUFr0usFSXP4WZCvr01NIZgRVAaKb2zgbrMb87dLJppxQKQZx96VsoYNgt2dmY7+r3ATMhYB0HCRfOIaLtWIJfzYLarjcl0V0Zsxh4XEjn/xQxYfCB6TEqaiol6540J8PzGingj+MCQ41evXsV3vvMd/Nf/+l/x6KOP4tFHH8Uf//Ef45vf/CauXy9ubwEAPp8Pra2t+n/19fIsN8qBySOrysq7Y0T+jd0VR0YzYc/ek2bAGxaRBBsA9LZlVb9KbqE0AvZulKli3NVKfu+35osHlp0dOgsA6K1xEqXXg95mev8SHmNdDe5q2rhsaRRrqaL//TT9/Zmw8ZY8IOd/K9oKYz3BGayoERl+2VyfbTnzwHRoKQCMTdO8FouYX5SLgYloK50xMvwhAeD0CSLsX3vrNdPP7eylzRlbs4hCYxURkUwqGgX7QTdVmfcoNYr2AKk1hhaHCj5+5uYZaH4NyAAvHHpB2jg2Ax4/SOF6Xf3GyFIOS65xi1MeMzqb6bvuCpjfaPN+RjShyWICxWte+ZfSUqv+hgisxzYKyP07utu7hY1JJ8ctdMYsLNGcm4lb2yMXAwdPWyHZ0q4sOS7QdgDIKbTM5DzkW8d1NsqzM6lM0NjODBbuJHr7Olnd1Sbk2GltJozdoH3Py2+8bOj675+gQv/wdfP++eVwdYAK0CfPnjT1vPw9qMjgWg735HvQDPItRkR22q2Eaa6dnjcnkgFyxTnh5FHKOnmkd6QLzPpRVVWfc83aog2NDwGgbh9RvsUM3T7QRLetLrqTEMbI2Fq/FQoULMYXMRMtfL68PkdcV3+jOFvdzYj2hna9mHR9tDR/yGDLXtF2rYD1DjIuhInMwwKAxx5+DACwc695W2B9ftPEzm9tjdTpYcWK9MSpEwByRU0j+MCQ4ydOnEBtbS2OHj2q/+7YsWOora3Fu++Wrt6+/vrraG5uxo4dO/D5z38e09OlF7R4PI5wOLzqP1Fg2wGrykreIPDfETkmK0ooVryIVsT63X7dPJ8tKYzgG9/7BgDg0ulLQseTD16Yrs1eQ0Zbe4ALL4cxvkKqi3pt4woxDwK2d5AaTvNrSKXLF294UyEjNAPILUJzS+aUEJzYLrpFkIlfK3kBu/fvBgAcPXS0zJXGwUGTUKArdszg+m3aqNy9VTyUxiz4UJTUzHfG6G1uAsNFgNzh0UplvqKW5tr+XrEb5OZaKmyYDUHmdkMOUZaBvjpqhZ2MFQ6suTJHYZw1yRrUVIonaTcT9m/dDwCIqsaIzbkozYV1PvEHx91baY7iMCwz4L0SW7OIwnoskfTwS5+4rg/d/9ZCi3/+80SqBvWQUAtjYvKaiRVR4GyNSMx8lxWHw4me47gzQvEbX1smFyb1k5uMgzqjyU3/1tvzhe0sLk5eBAB0+h2/8fWCrazGF42ptZczRETXeMSvdcFAEAAQ18ztKTlXx6N64HGJu3d5/mY/czPIJ8f1gEgBYFGKlTXAG6B5qCYg9rNjZaWV/KE33nkDAHBx4KLQMbENWUW1ubWFQ5OTUcE+VgBCUyEAwPsX3jf8nIUYnQNkiu78bj8CSdpb/M3rf1PwmlODFH6+vc5al5gDgqqqcMWIvL09Ud6uKZqIgrcj/d3iCxMsmjPDdQF5c64mdq/E53grAhDeX3Gnnijo2Yhp81zHxCx1IUYXjc/XHxhyfHJyEs3Na43wm5ubMTlZPOH1pZdewl/+5V/itddew+/93u/h1KlTePbZZxGPF3+Dv/KVr+i+5rW1tejqEtdu2tZEVQ/Fo1hSVjKpztV0EdjeSxNtdYN5NROrBUST44qioMZHm4eFqHHrgUiKbsxqjzhl1r3YWrcVqqYimozivWvvrXn8W6e+BbgAJabgyA553uebATs6srY0ai74rRRmo+Rtx22qosFeqma9wXbtp26Dl557Seh4fui5HwIAHD5qPpzF5aPNgU5oC0C+8sSKkpHJI5G2A0xEWSHHWYUj0h8SyHkO308hyC1BylIwm/PQ0E6t3Y8dfEzoePKxp2MPACCkhAo+PqWRX/qLh16UNobNgtYq8tScihjLVVhM0j0io8WfrYMS6YTpYht354kkRYDcpt9s7gSQm984e0YErl4kpefpgdOmnxtPxpHW6H4X2f3H3UhW1oDlOO0pRQZFAzk1uxmVNgAqymfPnvk+uiLwwlPU5bJt9zbDz9HDwFNiczDuxSef+yQAoHVXYY/doeUhAMCepj3SxrBZEPQGARj3HNdb/OvFFya40yaumNubXL1F81AqKjBpEnk5D+5sQLoJ6J1/KQi1w9DnNwvFv9ZOup+294glOHs6egAAW/rMF8z0bhrzepaSsFpIno9QUcOVFqs+BYCFSfpO3By+afg5754lAebSjPnCgxn4IvS9On1n7VqeyWRweeoyAMC96PiNrxfeFO0HBqcLZ2rkIxQPASCbHy5oiwQHz3MR3ijYhkX0Xmk9ApCaBuLtWhvFevOvJwSZ7VrNdMlvODn+5S9/eU1g5r3/nT5NE0Uh5Z6maSUVfT/xEz+BD3/4w9i7dy8++tGP4uWXX8aNGzfwrW99q+hzfvmXfxmLi4v6fyMjI+v/h2bRUk8EhKZoSGbMkzVcPWd7FhHQ/eEszLfs2yWaqAFyC9GJsyeMj8cG/1uPywNPmE5L3z+/1sf4e5e+BwCoXamlIAEHlhHwB6Cs0P19Y+xG2eu/8Rp1DkwPmm93NAI/sl7RJgo2QO5AzmFHosAKZDPWQwxeZEQGFXldXiigz4tJDjNIK0TUiCSPqvxZctxCqF9nDx0+u1rFJtQzYW+FHJ9eyH63BR9k2uupSJLxmjuAhpOkdmirM9/uZhTPPfQcACBeFUdkZS25dWmaOoX2Ne+TNobNgkqN5pQb4+XnWwCIu+g73FLVInws+fNlOGZOVSNL7Ts9SvffwOUB089taqex7Nsl7nvKZL2VLpR8v02RHrgs3nD7zW8qea3ksGlROHaYsgj2HTT33uf75TbViv0u6S3+JjzHR+fIl1pJKFL3l/s66H26vVBYlDDvIgLr2DYn42G9aKwgwmU+Nl/mSkLaR/uk7iZxVkiMhio6O5m12WRCU7SQQCfHVRRc+0tBlriBSRYmXcxAhr93/t+zQh5xULRIUQqQO1uYzXlg8ZFouwggp9I1Y6tya5QsVKPz5slCM2j30R786vTabJ1LQ5fIOlADnt3veI6vF7u7qSuxvqt8ZyFbBzYGGoXb/ADAi8+QqKf/IXOq9EAtfZebg2uFw+vBcojO7mxvZAYtHXQO6N8qVmEfmg0BAC5eM9/dwnvjD5Tn+Be+8AVcvXq15H979+5Fa2srpqbWKnVmZmbQ0mL8UNbW1obu7m7cvFm8aujz+VBTU7PqP1HIXxDNVp1T6ZROYOsbBgFYT5WIF+Iqj9hwOABwpahqPB02TnTGkPW/rZbX4g8AjaDN7KmhU2seOztGfuN9gT6pY9gsYBV42l9e0coHR0jaw2zvJrVHc5e5xYgP/KJDFLkoZeXevTlIc+DCjPlQyGJQFAVagkipm0PGlRkMnRwX6MnLRHsa5m2j+H1lpbcoMDluxQd9eJJaTqdGzStXS6GjIRsw7AaWosYODqlMSv9uy2w5Pdp/FIgBcAHfOf2dNY+fHqYCukOOrx/eBKlQZlaM5Sp0bKfvzcde+JjwsXhcnpw35JAxb0gAiCVi+l6psUas0sed/cNW2td5fmupE1dI4PnNSmZMKBLSfxYpuHj2OB3edz+02/Rz9aBogVkYQO4AaTbvh0k/AKivEWvRw8UfM0TNxAK1CLtTctWDW+soZLNQts7s4ixSVfR9+9CBD0kdx2ZAazWp7ELJUNlrIysRZBsY0dcm/oyhhyC7rJHjotW++d0aZoMd2ZOXLUdEgc/xVgqSLBoR6e8N5IgfK2p2PShasMht6OYQAODt99429TwO9RNtFwFYy3ngLLNKl3gRYD62N9D5cnh5bZbA3574WwCAN+wV3sG0GcHkOIs7SuHMNcrd8KXE7kkYVorkANDZR+KtowfEWaMCwPwUfd/HZ8yFMgNyRHcAEJ6jAhvnLpoBF/8+UOR4Y2Mj+vv7S/7n9/vx6KOPYnFxEe+/n/OJeu+997C4uIjHHjPezj03N4eRkRG0tclTuZWCz+XTlZVmg4E4qAgQGwzE3o4rqRWk0+YIpFiGNgciPTQZXi17SF8yHn7IfrmtQbEtHfeir5o2pRyQkY/BFWrTOdxh3urCwVpwsnTSU175Ox+nSV2W5/iebdRCbNaC6PzV8wCAsSFxQbpAbvN5+rz5lvpbd+nQO37X/AJYCutJlebcAw4JFgH+W1YyFXQ/XsEHmRo/jSkJ82p23S5CcDhcR2OH/vPIjLFuqdGZUf1ntsGSAVVV0arSnD4YXd0GGUvEcHWWlDb1KSfjYb3YtYUsoOAFJueLW9YxZFtZKUmaT6ZDJorkeaRFR3NHiSvNg8lxs2o4QI5qkMnxjGI+wJLJIyQhVIW8HhUjFyT9qvGDjBFYFYH4qnz680VaMwDA+BCtvReuXzD8nNkI3W/ejNhW6nuxs4H2XaPhUdwaW02Q3166DSgUwqvPFw4so7uBFOBLKH8m1O0FNWBLs3jPee6O4Jwco9DVvoK9ZgP+AFjXYDbrh0lW0eGXvB+00vn3yg9eAQBcOGv8njeCmQk6J5+9eNb0c3kfyl2WoqAXkk1yHWwXITp3AsgVJM1023IgpwyP/3wc6DoAAJjH2g6SN26RL3yn6mQ8iEBzJRXLjVhZMTm+NCnHVkcvkpskx/l60aK79eQQMk8p+t7lvxeJm8+MYXLcjMhtw8lxo9i1axdefPFFfP7zn8fJkydx8uRJfP7zn8dHPvIR7NyZS1Tt7+/H17/+dQBAJBLBL/7iL+LEiRMYGhrC66+/jo9+9KNobGzExz/+8Q35dyiKAi1Jyso7w3dMPTc/XESkcjx/45CvJDKCLdtoc3Zo3yFh42H4layFhQl/55Sb1A4yW/wBYH8HhZaNJ1cTi5lMBosVtCF74aEXpI5hs4BJl2IJ3vkIp4mwkNHiD1iv8PKErqbETrkrYSIf8tvjjYJVy6ILW2qa/o18MDEDzlQQGarY0kDfBU/A/GJ9/goVNbiSLgocxmRF7cmHVtHqEa/Hq3cAuSuNHXDvTGTXsASEhnAVwo899mMAgBl19Xf9tYHXSCWcAB7d9ajUMWwGtNa16pY9l4cvl72eyfGGCjlqJu4gmwkbn+PY7s2luIS3r3PuhJVNOpMETPiLwHqKfzxHC1dWuq2T454KmkdE+2nPTtD39OJ1c225srq+gJwSMZo2Tthv3U2K7kcPyp3r6gP1cIdpHfibd1cHxL03Rlk7T/Q+IaXNfLNhawt9pjF3eSXy0NQQAMo08rjFr7ncYaF5NVMe3zLVvkzW1DaY627h+VY0Oc575oxqviDJxTnR5FFkgeapsSnzApwUxAdFA7m1koMDjYI/N58iXqnLwhQzc244QedKmQIQAHi8/3EAQCwQQyK5uqv0SohC5w80H5A6hs0Cd5zWtoGbA2Wv5aDkapecLLuR2yRGOnPxjKnncYAn8xKiwLZ4Vua3195+DQBw7tQ5kUPSbfa4s9AMmOt4IMlxAPjLv/xL7Nu3Dy+88AJeeOEFPPTQQ/jv//2/r7rm+vXrWFzMVotdLly8eBEf+9jHsGPHDnz2s5/Fjh07cOLECVRXywtsLAf2P+PqqFEwceSCC16PONVIPtFutjLPhNO2LuOBQkYRUOmLPL9inJhiv9zOBrnV1eP9xwEAkYrIqg3ku1feBfwA0sCLR5xwOBGoUmjDduXulbLXRjWaODvqxKoFGUzUjE6PlrlyNbhFlf0cRYHtR6zYc+hqEdHkeNa71oqyUg8cDgSFjWfXNlK2+avNKxHvTlAL19K8WMUA5zywZ5xRZDIZPRxOtJcyAAQrggByh4FyGJ+jTaMrKT446V481PIQAODi9Gpy6+9P/z0AoCpaJVzZuRmhqqp+cCiX8xCNRfUNegXEktAMd5rGMhcxvjfJD60VTd5x+JFZcjyWiOnWTlxAFAEutPHcaQa6J69gcvzGFfrenDq31nauHHY9RPP1048/LXJImBylLojbw+WDvfPBofPcji8SbfUk4kh7jBc2WMVYH5DfJdOm0fhev/76qt+fGKUcoEc7nWKkCOzvI7ENKilHqxQWEiQWkjXfdjZlz06qOSKCCVDR4XBAruvDbLZO/17yvd27c6/Q8bzwLAmf9h40/3e5G5EDgkWB33cr5JGMrJ/8MZldK1l8JDIkmlHrpwJLTDNuiRNJ0/hlhI7n4/je4yRM8AB/f/Lv9d9nMhnMeqm4+8JeR3QnAtNDpBg/f+t8+WsjdG2dR2y3LoOtqMzYqwHAd1/7LgBg4P0BoePhUGaz3UNAbn7zu8R2/vF8yfsxM2DhiBmrlw8UOV5fX4+/+Iu/QDgcRjgcxl/8xV8gGAyuukbTNHzuc58DAFRUVOC73/0upqenkUgkcPfuXXzta19DV5fYcDWz4INIeNkceaR46Xki/XgBUgyyr+d82JxCMv8QKhp8GDEaxBWJRXSfURnthvl4/sDzgAZofg0Dtwf034+miTTdUrEFVRXilUabEYOXyEbh9VOvl7025qINT1eDnHv8+kWy0Tl57qSp58lS+/Jm1krYJKuWRW+IWaVj1pNX0zR9jutoEVfc0FWMFrwY2R9SdDjc7u3kd2eWHJ9fmkfWlQuNteKtg2p9dHBYjBlT+kyE7PG/BXLk+JnR1eqK1wZJqbC70ry/sYPCqEjRPXNnqnR3263xrN1CBmitlWNlxgq7fO/ncuC8Ay1unjAuBz6wm92k53f+iVwHWFXJYe1mwAVMkWQ9AL07MhIzr67neVq0ZyUrv81aIZy9RDYFi7PmO6HKoasxu0/xZTOFDIDJ8aAvKHw892JfI2U4XJq/tOr33xig4PO9QbGk42bFQ320tqWVNBZipTtlA010XxzaKb5bF1gd7mZGXStT7WvVEonnEtF2IevZU3I3jWjyiPeoVsgjl4/27KL3lFbXyv2HqVh0/OhxoeMBgPpKKirGNePrQDRD37vmarHBh/fC6/GiMZ7NM5vMFZbP3DqDTCADZIBPPP4JqWPYLNhSTxxRBOX3KLMxKkzIsmu1mvOwksnuldxi90r6/tQDU91DQM7SUHTHJs8lVvLVdu4hd5GnHn/K8HM+UOT4gwImj8wqK3W/SsH+t0BOzb4QMRfONzVPoXDpmPmW3nKo9hBpZ1TFuJSkzZmqqGhvbBc+nnzU19TDv0ibm29f+bb++7dG3wIA/PC+H5b6+psJbJFiJKwo5aXFpbelV8pYrKgOAEDzEFkgWu3LxAi3RZoBq0VE+nsD1NkCmPcZTKQT0EDvk8hNer7/bTlV1r1gFY5oNZRVJdTMYs5aQnTQIABE5+nf+/6F98tcSZheJEWFT5MTVJMPznmYic3g+kgu62FQo+LZh/d8WPoYNguqVVp7786XDr8ZnKT3XokrQrvZ8uEDfbfM2KsNjtO4YmHzgWnlwKSG2U16vvBApGVIfW1WQWzhIMN7UJcmx3bAim0UW+KIPlxZ7bIamyGbgnjEvL9wOegqXSXXhVMOb7xH3rOTd8vnAawXz+16DgAwpebCn8/ePItl9zKQAR7peET6GDYDfG4f6ivoPp5Ymih57VSEPovWKjnFSFVRdWGSGSVjTSPtIzuaxHdtcufehavmfLplnZn1QM6U+fWFn2MmHM4I1kMe1TbSOeLg3oNCx2R1reSA0PxCjSg88cgTAIDu7d2GnxNT6TOTnWUGAD//4Z8HAIy5cvY4t5ZJhNDmbpMiitmM2N5G4adxT/l1PZyifVJrjZzPv7mWvudpt7XMP+74FQWdHFeBaNzcvRtP0/spPHA4O5fEkubnXD0k9EG1VXlQwAcRs+Q4+wpzyIVIsJrdzAEUACbmaCMXmg6JHpKu/vbXGttEsKKm1lcLVZH/1f78c58HANwBqes0TcPLt14GALy0/SXpr79Z0BGkzXYkU7rCG41HydIGwLY28TY/QK7dyIzqILISQZYvRkudWC90th+x4jfLzxGtHGfPSbOqwXx/WpEHh3Q8996YDQllxYvoFlhdCWWyBXYunLWWSEIKGRmZo8/s5vBNQ9fPRGhN8kPsQa8QWoIt8ITpu/Xnr/85AODElRNIVaeADPCzz/+s9DFsFnD7aDmiZmhmCADgScrzm2clohnfUg6adGfE75V29O4AALRtMZdroivHE2LDL7tacl1SHDxkFDX1RGg1BcUWbXlNsUKOnzhFlh3XLl0TOyaL5Dh7KXNAvEgEq4LgTGajIcjDM8MAgFhIfOHnXnzy8U8CAFLVKdwcpTXhr976KwCAP+xHe4NcEcpmApPdg7ODJa+bjFBRpKVSTq4OAFS6iRzn4rcRtHfTd+HwQ4eFj2d5kfZho1Pm7AxPDZD6dmK49DpmFmNDRFxeu2V+jtKVlYLJI6+L5icranYmr4UXEVwVq/6+UbBoREZHekuQ7hszXRHNW4i8fOoR48pTq3h8C/mOvzPyjv6796Yo4+GH9zuiO1HY10NdUZmKDGKJ0mspq8s7g3LsevWcB4858RYXkUTakAKrOxv1M6dBcGee6M4/Jset5NhYsXpxyPENAJPjZpWV5y6Rwf30mPENi+ExZT2P+FBpFLpdRLV4L66njtFC1N5rbAPO3uR1FXJ8oe7FR3Z9BADw6p1XoWkaXj33KgZDg3Arbjzb+6wtY9gM2NJIRZIVtfSkuJigQ6yqqNjasVXKWLglz4yNydRCTnUlWgnByvGMy7w3GD+HwzdEoTFIygZLliEAFCj6Rl8E8v99nKRtFLypF90Cy0GqsXTMcDs9ALgqaJ6WcWgAgAqVDjPzUWMWFnPLtHHifAjZ2O0l65T/ef5/AgD+7PU/AwBUhitzKkwH68aTh54EAHT1l7anGp0jssKXltc5wIdZb5XxOUFmOBz71za0mtvzcFee8PDLPIW1WSVjfTOtZ31b+oSOSQ8JVcwXbfWiqvkYjZJgctwsYc+2fjLsIgBATdIxbGzOWJDecpqIIzv2uVuat+QKkj+gguR3b5DPaZ9X7Hdms2PqFu0Tv/n6N0te9/VXvw4AGLlmrJhiBQtTNFeduWQ8II4tNqu94vO8eB43e2YenqBC0uKcWEukVIzmECu5OlzAFN0Zsy7yiBX2gsfE9og1Dea6Uy9cow6BmXHjIdxGwd9PzkoxAuYWZFnH5eNY5zGoioqh0BBuT99GRsvgb65QIPLHdn5M+utvFvR39QMZAGr5PDPuHOhp6pEylta67PfKTTk+RsE8RH2V2PyRgC8Alelhk1tont9En1HZEuXQUfN2YiMTtFbOzRgn+h1yfAPg1kjNxH62RsEevvx8kWDCng+VRsE+lzJa/NnCYjFubEzff+f7AICZYfELaiEc33IcPpcPo+FRDIwO4D+/+p8BADXzNbq/pYP1g1XgSV9pQnomSp97Q0WDtM4BLgIlVePkuO6VmwICfrEkIi+KVvxmK6ppI7ytW6zK/qHd5J+5pc+c7//wOB1ktIQmNEQv4AvQJgirfX+NQFa4SH5l3kzOg8uf9YaUMN8CQKWLNjTchVMOfB1bYMnGP3z0HwIA7njuIBqLYixAhNJTW+QrejYTDmw7AKC8HyPbrrANiww88XC2DXqH8TZoVpmLzgoArPvfsvBAtL+3R/Xo651Z1SCT6aIVgxwSaqVoqwdFC/YJ1i3ITJLjupeyhHA4APBmqOhjNOfBLv9bRr+HQg1fmXkF0wvTuKhQIPJPHvxJW15/s6BGoXtmJFSa9J6P035B5pzrydC8ObdknEyYX6ZxyTj7sK2dWXKc52jR9y53xljp2KwK0vvT3iS264K7Lc0WSJOpJBJpIrQSy2IrkscOHQNg/iwwOErdE3MT5lSrRuBK0R56bnnOkA1ZKpPSA0Lr/PILkjW+GlRH6fv11b/9Kv701T/F2NIYqtxVeGGrE8YpCl6PF2qU9k2X7l4qea2vnuaPo3uPShlLW0OuC3Fi3niXC3uUixanqqqqk9u8HzMKVrNX+sSS4/XVxHVYsZDlDm0tYZwnccjxDUBbI90ItQ21pp7Hic8yyPHOZlLdmVFDLa8s6wGYMsiaGh9tFo1WeKfDpKi3IxwOoCp7e4o2OP/0D/8pvjtJiponWp+w5fU3Cw70HQBA4aezi7NFr5uN0mNNlWJbxPPBnuFmvMEq62iRkNFd0b+VDq6sKDYDbn8S3VJvNayILU9EKysVRdEDh812xsgKF6mrzm2yzRxAZQYgA0CN19ycu+vgLgDA08eeljKee/FPXvonUKIKNL+Gf/0//zW+PUx5D1/+8S/b8vqbBdzizy38xTAeJp/kBq/4uY1R7aODohn/W5lqX85nmV4w18EXioYA5Lr0hI1HUXRrjtvDt009l1tmRVv16SGhLvNFWz0oWnDwPI/JLKHFc65flWMdtX8nhc+1dBuzyYgptCa1Bc3Z+ljFH//jPwYAnImcwT/+2j8G/IB7yY0vfuqLtrz+ZkGjn85Q5eZcLlhyoJwM6CHIy8YL96+9TcHY5947J3w8TI7zGdgoZIkbuDMmo5ov/nX1UTfWscPHhI7pQ09/CADwyOPmcgDyuylF5w9ZzdaJg84mNX6x4wFyofMZJWNILHN3Kpe7EvQHhY+nEPZ49wAA/uTGn+D3v//7AIDmhWb43PKzfTYTOHj++sT1otfEUjEsp+j729cip1vK7/XrZ1Qz58G0i/YyHOgpEvq9azJMl3nN7g7jYhYz47HSGcMiDTPzm0OObwB2bSdCoa3L3OaWq+Yy1FDd7fRFrqozXvXPD4drrhOvYhm7TarA89fOG7p+NkLkKFsD2IHnmiiw6H3v+1gJrkCJKfjSJ75k2+tvBnQ2duot1uduFd94f/ctKk6EJ823OhoFB2eY8QZjUkeGokYPPsukkEwbr/Am00mkNVpYhfsMZv+e2UWVW1RFKyuBHKFl1nOcW7iePS7WJsntcuuElhk1+9g0zYlqSs7Szd06kZSxQ+iKRhsVzoeQDa/Hi36NCkJ/OPSHyGgZfLz/43i442FbXn+zoAo0r9yavFXyuiWN5jaZ/rc8b7J6ywh4zpVBaF4+fxkAcPr8aVPPY0/ens4e0UOClqT1yEwXCgC8+e6bAICLZy8KHY9e/LPAuevkuOAsDLbDCTYFTT2PiR3R6ySDCRej3TpJNy0cHfXigw8L4WjfURzfchxpLY2/W/w7AMAL9S/QGuZAGNqq6Tw4Gy8uAAGAmJuKI33N8mxtOEOEC3pGwHsB3kOIBCu/ze4pZQVy1lZaL/7JsjDhYqJZ5Xj+/rO+Rqw9A4s4zH5uSY3muNoK8d+ltvo2vZM0n/guhltj2T1QHPC45GWr5OMvfu4voMQUxGvjuBQgVfNnDn7GltfeTNjXS77jwc5g0Wtmlonn8rq8umBTBlh4F6gz3l2u+Olc29Eofi/AKuu74+XvkXzUt9AccmD3AaHjmRoj27GrN6+af3J2q2LGQtYhxzcAvCiaVVayDQtX0UWCFzFWyRiBTo6ngaoK8cQfhx+m3MbaKNgnt8pln6XJH/3cH6F/uV///1/a9yUc2m7eE8lBcaiqiiYfLRxRd/FW9jtT2WDUiPkNq1Fsac2SgB4YJqP5npJBjueHXphp858N5w5golU1p08SafTd175r6nnhaJYcz4hflvhv8msYBfunifZlB3KEPXsRG8Gp8xQwNTpoLpjKKNjHln1ty4EJHbsUNQDwX376v+g+uCpU/PZzv23ba28W+FJERiwkF0q2Hnf006b8x1/6cWljuTJAfpDff/v7hp/Dcy4HgokEK9n5AG8UqpfmIBlCAi4omrXF020HXGIVaVu3UOaH5tagaebWY1ZjstJbFBprSV3FHVNGwQGeogOmGEwmGiXH014qam9psqcgCQC/cOwX6AcFUGIKvvqZr9r22psFW+ro8wyni+9RMpkM0n76/He075A2Fi4qmglB5pB6PrcJHU92j2pWgSyr849to6zYGfK5X7goxSKvoO8/UxBe8Dp/moRt77z/TpkrV4O9lEWvAQCdJ5U47b1HZ8vvozlXxZUQ2/FVCr1tvfiR2h/R/3//cj9+9f/zq7a9/mYBd6Uvobjw4vwt+g5XolKo3ee9MNshmcqk9L3S1i7xGWuLszT33xi8Yep5+vwmeM6dnyZ+b2zKWDYLI5FM6OQ4FzWNwCHHNwBMbi8sWwuHk0GOszJ3ZNJ4yAsTbEpSzoTRXk9KK6MqXd3/VkIgTDGoqooz/98zeMH1An6x6xfxpU87qnEZ4GTpiFK8eDMapk2MzBb/tvpct4fRQtLJcycBAPOT5lR9RuB1eaFodP+NTBm/dydms75mGQhv1fOqND+ZVbBwZ4wrI34Tyn/TbIASq3xkECNMaIUiIcPPYbsILySsAcgFzq5kjB2wLt8mFW103pz/8nrwxN4nEPqtEL7Q+gV8Zc9X0N/YX/5JDkxhf99+QAPgAq4OF1dqsAVAR608FatfMR80tv8IWVU89ah4L3r2wjbrxcj7NylzicXiHx9kRHvy5hM/ZtcBboEVTYzke8WbIez3P0zfpQ8//2Gh42EM36CsjVfeeKXsteFoGDz197b2ShlPIfzYrh/Dqc+fwt999O9w+5/fxs6unba99mYBK8GjruJr6djcmH7Q3929W9pYAi66V8yEFurhcJVi1cdAzk/bLPEbTxNhL5qo0cUSbpgKVAeAgcsDAIBrl68JHdPoEJ1/Ll4z1wWkWw2at/ItC+5sNbtWplQajOigQYY7STfR2Hx5oo2v8abl7LmL4a//1V/jk4FP4rd3/Tau/s5Vp1NHAtqriWOaWCru8332xlkAQGzO3D7GLJi3Mtohmc8/MLEuEmzfbFZwwdZXogUXVueS/PO1Q47f5zjzHiWA/+CtH5h6HrcmyQgGunGJqkPvnnnX8HMCtbSBkqGqBPKISA8QXi6/SQsn6ZqgT854iiHgD+C7v/pd/N8/+3/b+rqbCR3VRL4wAV4I0yvkAdtWJc+L0+f2waOSatXoIjY2Q5ureNicYs0IFEXRW+qn5qcMP09vpUxSgUckmBhh1Y5R6OQ4xJPjHA7C6k2juHKDVKsTI8ZDUoxCJ8dNtC7r4XASvJQB4JlHnwEA9O4yRryMz5PndHxR/He7FAL+AP7jP/mP+KVP/pKtr7tZUFVRpYcVnbtd3MpqIkL3hcw5l5WI7ENqBBwK1BwUr9Jm30KzwY43hmiPtRwyp340Ai7+mQ2s44KD6AJpPhll2iMy27men8sgAnzYS2tpROPGi3msVuXDmWhkolQMmAyV9poGch09qqKis6lTyniK4Uj7EfzIoR9Bb5t9pPxmQn8HFXkTvuKhiHqhMpHrhJCBSg/tl8xYWTGhKSNb5/knnwcAHD522NTzuOtDdEZL/txk1qovrZDyX3SRdGmBPqvpeXNZGHrHpgQ7Q6trJXsp11XJCcDkwFkjc+7UIp2rfLDX79vv9eN//Zv/hV/+8V+29XU3EwJpugfP3DxT9JqReRKdBTQ5nWOMmTFyYnjr/bcMXc8Kc4/qgdclvnDDuRMsyDKKkQl6v0R3N7Moxexckt+ZHawKGn6eQ45vALhFzOyhgT3Kt3VvEz4mKz7Bqi/bJizhAAoAXU1d+s/D08Nlr2efXLYGcPDgoN5NCoKBOwNFr1lI0STYU98jdSxVHpqkp0LGyGhuTZVFaLL/tBkF8nyEyHEZG2ImRli1YxSRWDZwWHA4HJALLu3sNUcoTM7T5jk8L97HnouKngrjPoa6l7JgKxxGa5CCGI0eitn/dkujfS3+DuxBRZLu48ujlws+nkgmMLlE90elJicgFgAaqohsSarGFSMyg2tZ0cxkkFFcvEqKPhmWSC7NGjmuKysFt/i7VTeUDHU0mfWs5H1lf5/YjpB8MqpUsPe94D0xE4aiwZZULO4ohfkVWrfr/HVwqfa1+TuQj7295IkPX/HgyekoEZ8Vabm5Stu7twMAGtuNE/Bsf8neuSLBeyWzgot9h6jj9JknnhE6nvwQe8VjrnOaA4FFh1/q+UMmySNWhsqwM7QagpxxU8FQRtAgAPg12j9Ph8sXEmYiRFpWKvL2OA42BstTtLZfGy3exTERJgFIjUue3zgAJCO0vx2fHTd0PWfxpVfM3VtGweS42T2lrM4/ni+5uGgUejdlmjKrjMIhxzcAfg9NzPGUOfKosY0Wir39e4WPiTf+0ZRxRY3MAyhAX2QlRhuPoemhstf7aoh87G4Rm5LrYOMxfp0WjDfPvVn0mmWVFrrtrduljmVplhaL81eNBcVy5VVGOByQp0Dm9kgD4GtlkONMQrBft1Fw8a+3U7wyjQl7M77sAJDK9ppy2JFI7Oglz9DmDuPFRVYxBtxy/W8X4+XVUJlMBhk/bYR6mnukjMfBxqFWoe/CzembBR+/NnINUABkgO5GeWsuKxHNkNEXrl8AAISmQsLHEwwEAeS8sY2C710Z6wAXFDmXxih0T14JYZPc0TS3OGf4Ocl0EqkMfc6irRACvoAexDYXNj6mC1fpuzQ2ZM7r0ijM5DwwOV5fIcduwMHGobOxUz+HjUcKEyT+Bpo7Du44KHUsR/YdAQDUtxn/nrH9JYfWi0S+JZIZ8PwmurvZ4/LArdKca9bqhdcN9i0XBV1ZadIfhTMYZIh3+H03Q45rmgbVT+eS7T1yznIBlb5Ps8vli6RzUVorqtz2ZZk5sAfcrRPzFi+6sXVgvV/umsv2gUZzHjjzT5atMc8HZslx1raJ7vrggHazhbZgYxCA+WKkQ45vAPggYjYYSKb/LW/KzKjZh8aHAABaXF4AoitJ6pixufIHk/oOmryeOSZWJeBg49HXSH6Mi1rxhSPhJzJ2d6c8L0YAcGdo9p9dMqY+08PhJBAQQK6l3ow9B6tFZPh7c7GMW1qNoraByDgp5LjbWlgRV6lFq3wAawc+3bdYEjnO8+1spPx3e3JhEuyA09fWJ2U8DjYOzT4iOYZDhbu2Lg+TolxdUeHzyms5bqollV7GY5yM5vyF8IyEjo9sayYrZIyC710Z64Bu+WGy6YYLmDIEDnpIqAnbgfz9p+h9rqqqYLtKMyHI3GWVikow5QXQUEnFHyM5D2+ffZuunTdpVePgvoeiKOgOUpHxbqhwt8VUhLoVWypbpI5F9781GA6XTCd1O6SOJvH5E+N3qVhw4doFU8/j/Z6MM7O+pzTZAc4hnqIJe96jmi3a9mzrAQDs2blH6HiAHEFmJrg0looho8lVjh9/+DgAoP9A+e4kzjKr9YoPB3WwseAsMy2gIRorfA5ju9aumq6Cj4sCh8cbESYBuX2JOy3Hi57tm824SeSHX5qxMDECVqJrLnN8I8/PZsUWDjm+AeCF2iw5PhPKVorS4itFbOgfyxhvWztzkXyaRu+IbxNm8IK0opTfgCys0IGH21QdPDjY1bELALDiKfw9mA3Pgi3h9m/dL3Us7FfHi1M56B0WbjkdFlaCM5hI5+eKBPt7mw3OsLqIGcHVC+TV+errr5p6HlepuWotErwOmKnM6wVSrxxynA/FGSVT1qbnzsQd+iEFNNTIC8F1sDHorCELoqlYYfuoG+Pkoe1LyvXi1IO5vRoyGWMH/4RCpC9bsohEZzO9L64Kc4VFJmpkkOOPHHoEALBzj7mgxPoWEhT0dYkvbvE+1cy6NDqV3UtquWBnkWALMqNrN5ALGhTdJsxorqEiVFwpfx64OUpdHPGQvRkPDuxBdy2R41fGrxR8fGrZHnKciZrZsDEBCHfFAJDihb80T3ukqTnjuToAcGeE9iizk8ZtlIwiuULzws3Bwp1VRZHdcpsJhzMC3XbApLJSZlA0B2qaIcfzgwZljAkAtjSRDWA0U16Ysvdh6tR/6emXpIzFwcZhe8d2IHu7XBwsHGS7kCFeaVuTeDvjfDA/YLQgORehjgaPZtyW0wzYutOMeEvPMgNQXy1Wac/7L7OiFH3f7ZDj9z+Y2DCrrHzv7HsAgItnzaVRGwHbBsQ145tutovwKvJSnA/uovbBhvbyh1zdj9HxHH/gwBXeTCBD1cl7MJeghaLaW432hnapY+Hv+0LUmPqMDw6y7IeY4DZDsi6tZMM8JCys7U30/gdqzG1sx6dJHZRakaDQy/5J0/5pqhz/NAC4cJpUUN957TuGn9PWTdYzu7fJ6Y5ob2gHsueY0ZnSRc+706RuU+Oq8FBXBxuPF46+AABo2lrYQ3ZodggAUAW57cadjVmyRTVuHcX+5DKUZx3NpIxMIaUr3IxgJS2v+Md/06yKsamdPtsDew6IHpLelRReMa7e1y1YUuKDooGcr64ZCzIOh2OiRzRaaonoTKjlzwO6/63q+N8+iBi5SB0vf/O9vyn4+P/+7v+m666NSB3Hrcu3AOR8bcshPxxOdLgvkDufmhVccIE/tmTOq9wImByfnCsf6siIxqI66yLadoBtWswqx5n8kpGp0FyXtdhxA4mUMb5jeIo61bzwQlXk7CtZQLcQK3+GC8VDAIC2oLzQcQcbA7fLDVeU9ikDgwMFr2FB3p5O8Z0V+ajy0j46v9BYCixw80IO/3Z4P4Uf79izw/Bz8jvyRAeqb+3eCsBcRhcAXL5BHa5cYDUK50S7AWCSLKmZW+hlJW8DQG0FkT8JGCfsOTRGlpcykPNWZOK7GGKJmK4cV2PO1/pBw96eveQXqgKXhi6teXx8iYjVjhrxLZ33gr3BjNqYsFcud2eIBpP1Zojfnu09AIDd28WTrLyomvHSBnLFv6sXrwofE7eImfaHzFapRbfAArkx5StlyqG6gb5D+3bsEz4egDaLyNZHh2dKhyAPz2YPMSl5xVEHG4cj28l3djZRWHU3ukjFk6A7KHUcLXUt+iE5BmMkR9pNhCZbsohEPrkdSxknXTj8UgYJwWp0M+MB5KoGOSTUDDm+sEx7OCUlx0dTtyAzQY7zGiCLHNeL+Qa20bwPrvHIDQdzsDFor6LvwvhyYc/x6Ti1+Dd65dhNMDjnwWgIcmglBEDeHpfFCdzFYRSsopYhbrBS/Mvfo4tWVlqxMAGAN068AQC4c/2O0PEAQGtDq/4zr3/lwHatsmysAGB5lgjIc1fPlb2WeQUn5+HBRHWK5qzzw2sLgalMClo13U/H9x+XO47s3BlNG1NqM//gg5zOze426mLyVho/3+nK8VT2LCkQ+hqQSSKdMd4dw92I0bC5vAqHRdwAdLfTl66m3twGl8l0GeFwu7aSbQW32RoBkzqy/G8BoM5PC345cnxwcpDCwQB0NzuBnA8avB6vXuG9MLjWd3BsiTzp26vlqsYBIOCi73s4bmxTvPsAEdAffv7DUsbz2MOPAQAOPmI8pMkToOorqyBFwqq/N6seuZ1LJFjNZFZZyT6aMshxbqMzQ47L7kIAAHeSNjUjs6XVaR3b6Luzb5scot7BxqKrljwWx5bGCm5GucW/qUI8AZ0PRVFQ46O9ktE5N+MmQpNVuSKRb4tixjKEu/LYdkokrl28BgB4/Z3XTT0vHKX3kwt1IsEdTZGY8fktvEzjkREUnT8m/ncbAZNNsqyjDu+mYrLm06BppYktVjHyvtjBg4VtjdS6P5cqHBgbVuh7u6dDroqxsYbId+6aKIf3z78PQE7GA5AjRjgDxij43hVtYQLkyHHuwjSEPL5ItCcvh1eqPrXsPJIPtmtNLJvrZDcCvzu3lzdqz8BWPmyBJQP8PR2aHCp77ZVBsjiKzpsj1xx8MNDkof3r9enrax4bXxpHRsvAo3rQ2yw+CysfdQFa01MuY0WhxRjtPdkCSzRYxGFUyQ7khAQywn3zRSlmzvG8/3SbDORxyPENwP495Inc0Gpus51S6KbhVGqR2NlLXpXeKuNVIr5pZAUNAsCN8+Rr+nev/F3J6+5MUtVbiSmo8Mkbj4ONQ0WSPtcLI2vJ8b95hdpQF0eMkxVWwcUgo95gSwm6jtumRIO9Bs0sGHorpQSS1WqLfzxF5FH+hlrYmFzmlZXpTFoPnOzuEF9w0wM5U8Y33dMhUo7JPDh407QGjM2XDkFeStH3uqtRblCNg41BW1UbVKhIZVK4NnptzePLKq3/dhQka31EbvCBoBRiiRi407S1vrX0xRbgUl26TdPQ2JDh53Hw2eF9h4WPiVv858PGvbQB4Npt+lxvXbslfEw+Fx2QzNgHshqK7U9Eg0UgvTuNHXQTyYReIJVFjnOLf1pLlyWQlpI05zZWylUOO9gY7O0if+Nl91pCIpPJIBGge+nwVvFzSD6aa6nrz2gI8twSkfmutPiAd8C63yyHt4m2MAFynTFWMmP8bj8URWx3DIvmMloGibTxOZfnHJ6vRUJRFH2fazTYTw8azMgJGgSA1lraFxjJeWDrFRaNOHiw8OzBZwEAjdvWrqkjiyQQ6qzplGbxw3jpWfK0375nu6HrfVV0vzYHzXVoG0UkRKTynWHjHSUVNXTObqoTL5jJ5wWm56cNP285TvOOB+bsWBxyfANgVVmZyp7IZCjHmSQzUyXihV5GmzAjoGRVuonSigT2v3UnnAXsQcWBLQcAAK7GtRvwobkhAIAnJiecIh87e6iQ1Nhh7IDKasdav5xAL51kNRGccXOIQoSWF4zf70YxdpdI1eHx0rYc94IDimV48vo9tLDG0sbJ8XxynwsQIsHFEjPkOH9uw7fNvbdmUAF6/ycWJ0pex908DRVOGOeDCJfqghKhA/zJqyfXPF7XQ4TDT374J6WPZX6Cvmuvn3y97LUTc7nvbVu9HJ9Qtv3I91gsB3eA9iY9HT3Cx6PvKdPm9pSsDJUxvz165FEAwN4Dew0/h1WYrMoUjeZ6OkgqHmPE1FQoFwAo67sU8ATgVum7EYqFSl67nKH1uqlabreGg43BkW1kZZUKpNZk61y5e4UKNRrwyM5HpI6jtS5bVPSiYMbPvdDD4TJy9t9Mbpshx1PplNTOPyZbzHTGyAxlzv+bZs4CfK0sBSr7vV+4tlbUVAhsrSUraBAAWoP0/U66y9v0ZLz0nXNEIA8mju8lu5SpxNqw3x+c/QEAoDIlP+ODbVVYTFcOPTt7AABPHXtKynhG7lBh4NqdtcKYYuACmAxOUFVUXZRiJueB7Z8d5fgHAFwBMVpJZcj0T2PfYjNtwnwQk6WIBYDGKiIg+VBQDCNzdCN7M47/7YOKDx3+EABgHmvVcbNxasWzw3P80J5DAIC6VmNqlOtD1K61OCVH1T46SJ5apwZOGX7OwNUBAMDQzSHh46ny0XxgVuXD5LgM/1v+m0Z9D4HVBwwZavYaPxFSsYwJNXt2DZChhGJUqfT5TS+Vrs6fvECE6cq8SasaBx8YBJJ031wZvbLq95qm4dY8qY13NBoP7LEKJU5k5vSiAcVIVgDnVb2oqZTjzczkuO6xaAAy/b35MGJmfgPyAocl2A7oHUQmRCDs32v2IGMUZgvJio8+Z7fq1gPvRENRFKgJOooNXB8oeW1MpbWirdYJh3sQsb9vP5AG4ALO3Vrth/zeDcpkcS27UFUhNwS5ozG3j56YL10kB3KEpiz/Wyt+2hzGCcjp+vAoRN5GE8aJ6IHLAwCApQVz4XCGxuPyQNVoHmGfXSNgEYiMdQnIrZX5n0cpyPZSBoDOBgr5TntK2/TMLs7qBZa+tj5p43Gwceitoy6ywdDgmsdOXDkBAIiMGy+AWUW1N0uOG+xIZztOWfwbk/VmshHDMdq/ybL95Llkcdk4l8LzM3OcRuGQ4xuA4Tuk+jOrrGSySYbKJ7ZIm26jNyYAdPbRArN/137h42G01JBnaFQrvQEZX6QAm0rIr/A52Bhsr6d2o5vzN9c8tqjRZNnXKH8Dw/63Ru+V5RQVdmSlSodmQwCA4Qnj8wnbi8jYEOsqHZP8RiJDCqWAV/yYuPXMX22c5B6bIgW8S3NJaaljcpyLAkbASk9Z4XAA8Oyj1Ga4+3DpsNarQxScujBuXD3r4IOFBheRCpcnLq/6/fzKPBbj2Tm3Tv6cyyHIc8uFvXjzwfMt318yoAc7GgxlBoDJWVK7yPB25TnTzFwC5MgmGcpKXc1uwl4rCTqIyVIxLs7Sd/bKrStlriTwAbTaWw1VlXdc0qL0OdydulvyuuZuWseeOfaMtLE42Dh4PV64o7RxOnP7zKrHLo5cBABUJuWfcYJVQV2lNzpbnmjlQE6/Kl5EAAB9Xdk1xg3DYWwLS7l9iejwSyBHjpsRuelBwOZyRQ0jEyeOIL97qhy4m1IWOc5WO0bXSv4uycjBYHQ1ZVXgvqwNWxFcH836UKfygpMdPFDYUr0FAFmoRFZWk+CjYZr7WivE2/PdC96bDI6vJekLgRXmTKqLRnVFlhw3EYLMmTe3roq36QMAJZ0lx02IeHVyXHXI8fserPxmPzSj4NTYrlbx7T1Ntdk2TRewHDO22PtraCPU39cvfDyMtiApZBJq6QMlqxyrXXImCgcbj56aHgDAxbGLax5b9tF3dn+3vEINg0nu/JbrUmDfRm7lEw1WDZqxDJG5IdaDhlzGWnIZXKGWUXV+4tgTAIC+HcaJvIlZOmDwgUM0trTSpqwiaJwI0sPhquVZmWxppHFx+FsxRDK0kWyqdFr8H1Rsrd0KALgVWr3Z/ea73wQAVKYrpR2q81Gh0j2yEC1fiOGiJRcxZYD9UNkf1Qi4FXRhWnwxibt1zPh7ZzIZvYApgzziA9Lb771t+Dn9+2gveezwMeHjAYCxISp4XrlpjBzn75LM7kgg1/E4Ol+aiGQrKxaNOHjw0FFJqu2IezVRswgiBNor7SHpeM6No3zBjRWDsopa+VaiRottfF72ql54PeKFKU89RnYGjzxm3OJGt43S5NhGcZCxGbsvPgvIUntyCLJRQovnXFmFFgDY0rxF/3lkunjwPGeZqTFVanHUwcahvaYdSAIaNLx37b1Vj83EKay2u0585tS94E4Jo53Er7/7OgDgynljexmzYBEuZx0aAa8DZv29jYKzaMwEqvN6YbbY5tztGwBuYTVLjjMxIiMcrimYIzg4vbocdH8hSYsqAHQ00EYx6SldvVIqqaLUUS/fVsPBxqDdT4eCUDqEyfmc59SN0RvQKuje+NDBD0kfx+2rtwEA56+dL3ttNBbV2/JkKQ/4/jNjz8HXMqkiEvmWH2ZsB5o7SBW3e1tpxbIVWFEx8maeq9Wi8fD+hwEADW3GiO5UOqUHDTbWyAtkq68gomw+Vvqz424eLmA6ePBwsPMgAGAyvdrj7/1b7wMA3GF7Mj4q3TTHGQnkvHiTiqfJiCR5HnJ+qGYULNz1IUOlzeSRGXI8Go/qJwAZ5Hg0TPODqfAkyXtKXgdYEV4O566QtcVKSK51FHc8jofGi16TTCf1/BKeox08eHj64NMAoIdvMvytRBZ+8rlP2jKOzkbqDHZXlZ/jWcXI87Ro5NvaGbVEkplhA+T2zmZso5gcZ8JYNJgcN2M7oHhpfyvDrhXI/VvZMqscdh+g/f9jRx6TMh4ACPgDQPb2Gp4p3nF7d4Y6eTik3sGDB1VV4Y3S58v7WgYXJLc3GwvJXA9agtmCtzcrXCgDtjUOuOSIU4KBIICclacRcP6CT5HT9cEdm0bnEgB4+DE6Zz9z3Fy3nUOObwD0w5EnS3gYgKZpUq0QqiqqyOsOwMyiMXJ8aoGUs0pSDnkE5FSMmk8rOWG09NLE8uLxF6WNxcHGorulG8oKfdfeuPiG/vvvnf8eAMAVcaG5Tk5ycz4aqojMNFJRHZsd03+WRY6zqo1tSYyASRQZ5Hh9Te7gbkbBEqileW1n307hY7Lif8stsHzgEA3+3IwSNfPhHFndWCuPHI/O0uHz7NWzJa9LuOg71FnfKW0sDjYWT/RTx8VyxfKq9ffqFFnqNHvkz7cAUO0h8pfJwVK4PpjNeJiRk/EA5PwLWSljBCxukJEXwOS26jM+V82FcxY1MshxJqLNdDTpvuxuOQe+Ko+5EOS7k0SOrITlkuPc8Ti1VLwb7c7EHf3nWp8cIsvBxmN3E5GDl6Yvrfr90OIQAKAn2GPLOIL+IABjBclAHd2vnU1y9gKqouokq1H7QD1oUhI5zoS9GcGFHg4niRznv2vG7mv7biL+nn/qeRlD0u1nlmLGbCjZPjbf914GWmqJM6hsKF7QGV2gTp5ARn53nIONQ1ALAgAuja6ec1d8dG/v3WI8VNwqWuuzneWqMVFZQqHzF5PYosH7VDPkOBdJpZHj2Y4bo3MJkMvhMWtH7ZDjG4D8cBCjIRXL8ZzVid8lp92ISe7Z8Kyh64cnaZMyNWrMXsIKelp76AdXLvSlEOaidNBrDMgjjRxsPCrjtJHJr/DeDpGSuz5tj5qqsZq+YylXeXJcDzNKAhU+SQoWv/mWerYwyW9XFQW3y637VRqd3wC5h5nb1+k7cvHaWkueYtBbYDNyWmDNkuP5RUuZ5HgiTN+jsfmxktelvPQhb2naUvI6Bx9cPLP/GSADwAcM3B7Qf393iUjD3tpeW8bBZGAkVf5emV+mg4UfEtuys5ZIdc3GiG7ZFiZPHKUiRkePcUKBSWtFU1DpF6/49Hvo/TcTEvrGCSp637omx7OSQ6aMElq85/RqcpWDQV8QADAbLb73vjZ8DQCgrCjwuOS0LTvYeDzU8hAA4P27q1WMQwtDAOwjx7kgObFQ3r+6o5fmnSceeULaeNIxImnGZ4t3V+Tj+h0qkiYi4jMeAODuHVoDTw+cNvwcnRxX5JDjTB6ZUVbKDIoGcjaU/G8vB9lBg4zmairsLyWLE23b91Ph4KmHn5I6FgcbixYfFUpuzeX2HRfuXKCO9Iw9HenNwWYgayaR3xlfDCmVzl9NNXJsLVnEy8UqI+DOP1kcJQe1s0LdCFhUbJZXcMjxDUD+4ShfvVMK7H8LmDeWNwpOgjU6Jr5pZIbDNQeb4VGzqeCZ4mofPlQ0BOR58TrYeDS7aENzaSJX4VWa6Hv7ky/8pC1jYH/+tLt8RXUyRIucmpA31TLBnTSR8sPXygqt40XMTNK1rtTOiH+vWOlpJrBOdgssew8b2QgBQFKl99KjeagAIQmsBE+4ix8qE8kENB/t5HpaeqSNxcHGoqayBh0BIj5mlRxxN5OiQs2etj22jKOtnqx73JXlv/cc6MWeuTKwdycpiRrbjRWpIisRqRYmTGyYUTG6/fReVvoqpfip8pjMkONs6RdfMhcsahS83hm1IFtcIdWsLCUUo7GCvkelch5uT1GB15NwiPEHGc2gPe5geFAXF6TSKVybpOKIPy6v6JeP6xeIXH71rVfLXis7HA7IdfAZFVwMjlGwXXTRWJeIWXCA3uhU+cBSBovcmDAWDbb74r2rEcgmx9my1VdtbA69fIvCv2V2fgFAXQUVtjnHoRCYV+iqF5/z5uD+AXfr3F6+rf/uG6e+AQDwLnlXdUPLgtvlBsc7jM2VFiYBQMpN5LhuxyIYPR09NK4K42dN2Z1/D/VT4XjnHuPd5QOXBwAAo4PG52nAIcc3BF6PV1dWzi0ZI6L1lOs04PfK2RxxqnQphXY+Mm4ix2WGwymKYmgRO3OVkt1nho1Zwjj4YKK7mvz2Bxdzic5XZ6nFf1fjLlvG0BzMWgkY8AabXaLNFd9bMmAlOKO5k/4N+/r3SRlTY5AO+zUNxsl3DqybmzA2J5oBv0cZ1XgVnIOBmOgXDbbngceYxxyfp2TOtwDQ3Uz3WNpbvPgzNDUEZN20+lqNh5w6+ODhcPdhAMDN+Zv67yI+Um4c7j1syxieP04t3x1byyujF+N0qJYVDgfkQpBZKVMOdlmYGPXjzb9WFinCf9dMRxOT+7LGVFtBHQgxzSA5nrWUkFloAYDWGmqpTniKv1d3Z0mpWpGROxYHG4sDfQfIPlAFXj79MgDg1bOvUnZNEjjYe9CWcVS6aI4LxUJlr2V7KZkhyNzBZzTnga+TJW7Qi38mBBfeAG3i6qrFW2sBORGIGduB28NECE6OGBNpmMXRQ0cBAFt3bjU2nhEaz8yY3LN8apHOS+8MvFP0GibHnY70BxsvPfQSAGDeN6+fxdwdNG881W9f14ArSXPc+Hz57hjNS+KkzgY5VlZc1EppKSTTxkRuvH+TZWXVUJs7MxvF2BQVGhZmjFu8Ag45vmHgRcwooaV7EBnnv0yjpZ4qUFX15duZ0um0/gVlJa0scPjQQqz4lzvpppu3rcYJh3uQ8XA3hSsMp3O+g9dmSVFjFzneWmfcG2zLdmq/f2jnQ9LGc+zwMQBAZ6+JRTJ7725pk2OJoQdgmvD4lunJWxPIkuMmWsS4dYs9E0VDD0FWjHnMMVkvU50F5JHd3qzitQBSHlqIKt2VFG7k4IFFf0M/gFwRcnRmFFqA7tXje4/bMga2VTHif8v3CftLywAr/4zms+giiDSk3C+Lc/S+TM0bt7hjAoXnatHgUE0z5DhbvcgK5KwL0NrCfp3lwN8lWUooxo++8KMAgPZtxXNJxkJ0yKtW5c7/DjYWqqqiNkbz3WuXXwMA/O37fwsAqInU2Lbesq2KkTn35LmTAIDrF69LG49pcjzb9cFqatHgOcoMOb5jzw4AuT27aPDf3X9kv+HncJFUln2g2UJyXKP3U5aXMiM0HgIAnL91vug1755/FwCwPGNs7A4+mPj4Yx8H0oBWoeHNi28CAC5MXwAAPLPLXJDjeuDJ0Fw1t1xaIBaKhHSbPlne/HzfAsZFF9X1tGZ0tcjptGDS3YwIhPefAa+5ddMhxzcIHBxYWWvsEMAbAjUl7yPr7SD/0Kq68ofK+aV5XTko0/8WAKbvTgMAXn795YKPxxIxaH46rDsqxgcbP/vczwIA4rVxXBu+hvnwPO7MU1BVV4U9rW96cAbKW2JwgByHG8kAbyI5vdoIZKsG9QBMg23+mUxGJ+xlKCuDVUEAgObSDD9n70GyTnh4/8PCxwOsnjc53LgUxudITSC7xb+ruYt8pgHcHr9d8JqFOBUqW6rltPQ5uH/QpFAR51unvgUAePUqtdm7Ii5sabbHb77WT2SRkUDOSJIKOjJVjOdP04GaPbLLwVtJZLq0+Tarkk8rxsOT3j9HnsYTw+U9ha2guoIOSmbmXCaaZPnNHt5HnQ6tXa1lriQwoSObHG+oIEUUZ+cUwuQS7TXqvHJUpw7uH3RXUPfWubFzAIB3h4mk21G5w7Yx8PxZypOZkVRInMSdGTLAJLfRzmZWs8vaL7GdYSJjojMmKVdZycISMwVJmaIUILfmGSW0+LskmxxnK6vZleI5DyNzIwCAVFiiKtHBhqOmsgbba8hfftJF6+z5Sdrj7W81XmhaL44+RF0WW3aU3ldPLxInBm01HyESXpcXapYinl00lkPY2UcCvUcPPyplTHOTtD+6fOOy4eewtWulz5zgwiHHNwi8YCwnjVUkZfrxMvhAYmRM06Fp/WfZ5Lg7SSWyycXCROTg5GCuxb/NIccfZOzs2ok2F3UHXFi8gG++/01AAZSYgp6mHlvG4Ha59Y16HKVVI6y6kUnUmN18AvKLbezv9fbJtw1dH46G9XtYCjmeDReB26CFCXJdPbLmN7fLDWTPMEYUqO+epgPyyK0RKeNhuF1uKHH6MIamhgpeMxmhubityunUedCxu4b8GIfSQxidGcXlGG1M/8Gj/8C2MSxMEiFye7RwsSYfXCSUOeeyatBo8Y8J4tqAHPJInzPdQDxpTMnIoW2ybAeePf4sAGDbrm2Gn8PrqYygaCBb+EMuv6EcllO0F+YgT1ngtv1SgZxzsWzofIXT4v+g40DbAQDAYJTsAwcT9L9Pb33atjGwnSXfA6XA4fQcVi8D3MHHpHc5cOefT5VDjnN+QQLmbaNkdetYOQvIJse5kPzKG68Yup6DBmVmmQFAcyUJFBeTxTsRYi7qZNrS4ITOP+h4fhdZ950eP41QJIQr01cAALvq7elIB3IiunJWVpz3VOuvlZY/pSgKMgk6K9+duGvoObqYQJIIZGKEhBzXbxvvUEpl7TaqfOYEFw45vkHglgWj3mAcsCGr9Sn/b4/NlA8D0CtJCUgNhwOAKhd9qaeWCqsrByez/tMxOS3LDu4vfPzgxwEA74y+g//0+n8CALTGWqWEihUDHwIUv1Lyujffpxatybty/PwAILlCB/3FZWPtpplMRm9fT8UkKSKy3IPRFljZnrz6xl8FonFjBwfZCz2QK07MhstX5heiRBDKVo4DuYLk8OxwwcffPEffay1iXBXq4IOJF4+8CE/YA7iAr/79V/HKbTrkvrTjJdvGwEQNhxCVwva9pAB68tiT0sbD1kZGgx1ld+rkz5lGLJoA+YHDeveQCWstVvnIIsdZABJJFLaLuhcHj5K/8w89/UNSxsPwZyhHaCG2gFii8HcqnCZSsLVajlLMwf2D5/cQUTNfOY8Ldy5gpYbuoZ944idsG0N9Jc0p0Uz5/RLnT8m02PQrdI8YJcc5JFRW9gTPUWayfl57k2xyLpy9IGVMTB6dvXTW0PWJZEK3Z5Cx7wYAT7Yl1Chhz4UW2dk6nXWkcl3SinMwKS+NxQmdf/DxcDt1CJ8eP41vvvdNaIoGZUVBd123bWMwSo5zrg53VMqCkiJ+YyFirFuH91WybPF8Ljr7mgme5/m5yu+Q4x8I3L5GCqg33jXWlsskk0uTR45fPU+eom+/X17t6amkBU+2ogYAGv1ERE4vTxd8fGh6CADgTsgl6R3cH3i652kAwGtDr+F0/DQA4Cf3/qStYzC6iA1PEbkYXTCu5DALJkvTapo2u2UQWYnoM7+sDTGHWC7HjXXG6ISOJE/e/AAkVkyWw8CVAQDAzLi8YCAmx40EM9sVDgcAe/r2AADatxb2wD17gw5f4TFj76WDDy5UVcV+P7WW/sXVv8DF6YtQoOC5vudsG0N7Q/Z76AGisdJzKauPOxvlBBUBeS31BtvXhydpHdAScopJbBsFAPNhg+R4VpjhMZNuZAJ67oSJgwwPpbZSzqGPg7HZj7gcmGCTrWJsq2sDsl+NYlZWPXt6AAAfffajUsfiYOPx6Wc+DW/YC3iBj/z/PgKoZGN1ZMcR28bQWEXnrnLdkal0Sg+H29IkT2H7+MOPAwD2HTIWIh9N0DohixznLiAz5Hgkni3KSdKkcJj94OigoevzC6kNNXLIaD0E2WAhWS+01MjNMutqoC6imFJ4XNFYVLdr3d6+XepYHGw8HmqkXLC3B9/GF7/1RQBAY7zRVtHd+B2yznzt3ddKXsdnQc7ikQXeL7FzRTmcHiA+5uqFq1LGw3vKeNp4zgNbDZrt2nTI8Q0CH0iMEjU1DdTC1VInz+OVfRWNqGoUH1WUZFuqAEBrFSll5hKFCaShmSEAOfWNgwcbx7dQCNyl6UtIV6WBOPDvfuLf2ToGDisamS1tccGHa5khivmbWiOqwXwLj8YaOfcvBw4bVejp4zbW7W4aNYEaKFnfFtVrbNm7PUwkxcyYPHKcSTbNU540Y7/lgEt+d0xHHYW8hOKhgo+zT2NTQO4BxsH9gZ959GcAADPVdC80JBp0Kwg7oJPjAMZmS3e28Zwr01aF/VCNttRfunYJADA1Zjww0wxcLpc+d5pV+XhUOeT43BTt10YnRw0/p72HPmdZqn8OUk0jXTRsOB/8HskOQfZ7/VBitD7dnixMjrM4pKvenmwVBxsHVVXxk9tJ8DFSQ3vMzoy8Yl8h7NhC/uYV9aXJ5Yn5CZ1JkJlBwXtVo3PuQw8T2fXUY09JGc/RQ+QP3NZt3FqOMxVkdRDx3+XO0HLI79jML7CKBIcgc9BmKeRnD+mB9ZLQ10IWrElv4UPH7YnsPKwBW9u2Sh2Lg43HwY6DqApVIa2mMVZLe8xfefpXbB1DIkxz2+hs6T3Tq29R7s/EkJy8GAa7SRglx9kSSZZolslxo/MbAKRdRI7XVZqzjXLI8Q0Cb9KX4sZsVZrbyR9rR5+8QBb+4hlpf2KiRnZbBwB0BmlTyG2l92LFRcqkloATDrcZ0FrdiqPJo/r/357cLm1jVwyDV0mZ8YMTPyh5Hfs1SiVq8v7t+ZvdYpCt0gZy/pCs3il7PXeiSGqnVxTFdNI1Kx5ltYgBwK6t5GfX0ll+7mLSLz9FXBYaAlRwmV8pXGxZSBIB115bWFnu4MHCP/qhfwR1ObddPOA/YOvrB/wB3Z9/bK40Oc7dOsmIpEobcioUDg8rB1YqezWvtDFxC+x8xJhynLt6ZNk08XjMKMd5bpY1xzUHm/WfjYQgX71NCigOgpIJtrK6O13Y35PJcfbKdfBg4/c/9/v6mawn2IO//2d/b+vrH+g/AABwV5buyB2ZyQpEUvIIVsC8JVIyWy3Mv+dFghXRZmyjOLwz4JWz7+a9qlFlpS7OS8qzR+Wum4RSvqgRS8VyhZYWuT7frAbXKrSCVla3xm8BoDwrr0feuu3g/oCqqvjTH/tTIJtp3rDQgH/xsX9h6xjYPnApVZoXnA7TXkBNyKVw2XLPqD1qWqU3T8/4Egwu/pkJQa5tpHl6/25zwaofKHL8t37rt/DYY48hEAggGAwaeo6mafjyl7+M9vZ2VFRU4Omnn8bly8aTTmXBq2aVlXFjC71sz0ogt/mIpsqTR3cnaQPPbRcywUGLUbXwuGo6iHh88fEXpY/Fwf2Bk795El/s+SK2Lm3FX/6jv7T99StV2oTOLpf2io6m6TvL6gkZcLvcplSDslXaQC4EySg57q+iro/mOnkHfyZc2Eu8HLgNVCY5bubAx0HJslWMALA8S6/1xunCtl8R0Hi76+3z43OwcfB6vPjbH/1bfLbus/iPh/4jXv63L9s+BjVJ29WJhdJqmYVlmgOTy/ImOFah8GGgHHRyXJF3yOaDjFErK54HZQXWsTUKh5Eagex9bsAf0C0NpkLlyfH5ZVor01Fjn/N64E/TGjgyt7YbLRQJ5QQpbvmCFAcbj6A/iN/50O/g+b7n8dpPv4aHeh6y9fVZ+MT+tsXARXufJjcLhe3t2O6uHHi/JGv/xnMUv44RcKaCrDFx6JwRlTaQI45kWaoAOe9wVpWWQv57KSu8mrG9Y7veTboQW3tuYrtWT0JOZ5WD+w+fPP5JfCzwMXjCHvzRJ//I9tdvqKR7pVzOA+dPBVS5XcS8pzSajairtCWF+3JR0Qw5zuKMB9pWJZFI4FOf+hR+7ud+zvBzfud3fgdf/epX8Qd/8Ac4deoUWltb8aEPfQhLS8Y+bFnwu2gjbJSoYdKLFZkywETNSrp8JfzE2RMAgJGbpW0lRKC/s59+KLKfmIjQYbmtynh7m4MPPr7y2a/g1u/ewsM7H7b9tdlWZWGlNBkd04hgrQ/I9SzVVYMGbFVYWaim5U3/ZoMz7Cj+ReaJ0D1z8Yyh6/mAITNXwQw5zvOyzC4E/bWm6bWuDF8p+HjMTd9rbk118ODjY499DF/751/DFz76Bekh3IXgTtFrTi8Wzh5hsP9ta5284MLuNioK+aqNEULcIehX5Vm/9XXRvdjR02HoeiZG2pvldH/oKlJ3tl3eAHj9Wgmb8Ck3CSVJa+VMqLxdFh/2ZHuOA0BAobVvYnFt8efqcNbDMwU0VTtWVpsFX3jkC3j1M6+it67X9teu8dI+I5qMIp4sTrb6gzSn9bT2SB0P+2nfGb1j6PorN6+sep5opGM0NyzHlw3Pb6xmNxsOZxRMjjMJXw527LvZOzztLl9g5H1wwBOAS5UrvPN6vHqH5Fxs7XekfTutiwd3HpQ6Dgf3F/7PF/8PEr+XwCee+ITtr81rewylbUM466zSLbeLmMUcRslxzU17b1lZZjy/Gc36yWiZXAe4yW7EDxQ5/uu//uv4l//yX2LfPmOBHJqm4fd///fxK7/yK/ixH/sx7N27F3/2Z3+GaDSK//E//ofk0ZYGh4QYbfF/7S0y6B84NSBrSLmqc6Z81Tm0EgJgTzjco/seBQAk3Akk02sX/bElarNur3Za/B3Yg6AvCKC8qiau0L3UWC3Xn5eJbiPKcfYPk9n1wVkEvipj5NH0AhFeXKmWgUycDjCzi6XV/gw+YNRUyCOjL5+jLqZvfe9bZa9taKeNfH9fv7TxMFgRHkqH1jyWyWSQ9tNBRy9cOnAgGXwQ4IJjIYSXw8hmAaOtXl6xfEcP2dupfmNbaDvIcSY4jO4pt/RR2/ojBx6RMh69tVYFovHyY0qlU8i4aI5mOwkZcKVo3ZtdKr8OcDhcc618K5MaN60z00triz83x28CAFwxl60BYQ42L6o8OQL37lRhqx8gR9RwSL0ssOWekfMpAIxOkW/vwrSxDAaz8LtpLtcUzVB+AZAL7+SztmjwXjVpsC3UDnKc80I4p6wUBsfJrtKdtqf4zpk5bFmVD/5dZ529Xv8ONi9aasles5wFEfMOXMCUBbb97NpaPuckPy+Au0VEg3MeencYKxYvLOXmfrPB8w/0LmtwcBCTk5N44YUX9N/5fD489dRTePfdd4s+Lx6PIxwOr/pPNHjzb1ZZyYpzGWAPtXLp5EAuLVdWEng+6ivq4VLoQFNoEXvz7JsAgPlhY16bDhysF/UVVBkt5w2WctFmWHbyOgdnGPEGa2wj4lqWYhAAnjj2BABg5+6dhq5/78x7AIDBG4PSxsTEeygaMnQ9+wnzvCgD7ky2bc1A9kR1Ax0OD+6Wr2TZ2kwBRMvq2s6mkZkRnYDc071H+lgcOACAY/uPAQBaeor78w9NDdEPGtDZJO9Qy23xkUQEmlbeNoQ7BDn0XAbMkuN8HWcxiEZ+a62Rjqb8g4zMNn9eK+cipRWlmUwG2Wggab7F+aj3054iirWf3+A0rYvelON968Ae+L1+PeehVEAc55LIJsfZ5sWoZQjv3zg8WTTyw+yNZP0AgKeCCBpZYZM6OW4wC+PMBeqinJ+Sd3be0U2F5LQrjXSmtHr85l0qAkYXja1h64USJcL+5IWTax4bDdN3vqvGCUB2YA/a6kjQkXKXtiCKJKkYV+uTaz3E3Yj+6vK8YygSQtalSBfHiUZ7I3EWLFooh/xcGbPdOg80OT45OQkAaGlZfZhqaWnRHyuEr3zlK6itrdX/6+oSPzl2NFPra1WdsQ9MdlARAPT3kgow2Bwsey37zOWrC2RBVVQ9hGgysvZzi3tps+T43zqwC41VNPmX8warayWC4NjBY1LHs6OXNqB9O8vbXHgCtEFva5SnrDRb/OO2LZmevFw51kOIyoBVPjK9D3UfdAO+lTznyrR5YezqJMVAwrdWwcB+41XuKtuDcB1sXnBBslhILAAMz1AYpxJXpFq/MMmd0TKGAtlk+98CwNgQddCdPL32oF8InHcjSzVYHagGsnWDUCRU9vrZcE7JLetwBQCeDK0D5bqsZhdn9cNeS538sPdPvEht3N171u5jR+bJvrCymLegAwcSoOc8zBfPefjGq98AANy8eFPqWHgfZiTYEcjt36SFw/kDenhf/txVCg2tVPQ7vP+wlDEd2X8EANDRbcxaa2KWPtfYUmkbh/Ugf79azj6QLR/tUo4vTpCY6NyNc2see+W9VwAAqfnyXukOHIhARwPdtxlfafKXs8xkFf4YzO8Zsf0Mx3LnalnKcT3nwaAddX6+mtnzwIaT41/+8pehKErJ/06fPr2u11CU1e08mqat+V0+fvmXfxmLi4v6fyMj4n21HzvyGABgyzZjicy6b47Ew9X+nZTm6q0uT1Bx5coO/1sAiE7TZPDN17+5ehwrEWgVdALb12PMbseBg/WiuYaKNSsoTYxwiJZsz3E+OBhpObWj0MZqRKPkOC++Mslxb1YGmL+Il0JjOxE0B/fKU2rzfG5E7Tm3ROokmdYMjId6s+Ff/rXevLMrdBDsqDV2AHPgQATq/FRoLEWOj80RQexKyvUrze/gG5seK3t99w4iPA/sPiBrSDrBMTlXXPiRj9ffeR0AcPrE+vbXxaCqqh76vLhcvqNpPQcZMzDaKjy5kH0fNblkPaOzhjodWLGYj/HFcQBAjcue/bYDBwDgSVEhaTJUfE7h3B3ZgZwcgsykdzlwACQ/Twqy85sRO0MAeiFVlm0Ud9wYVdezKMWs5YAZ+Fw+uNVsh2SidIckd/N4NHtCMIOeIABgKrI2nPnOLHnbq5ENp8kcbBLs3bqXfnADsVTxgpWrkva3HfVyz2CJZSpE3hq5VfZaxUucqs/lg88rZy3g8UzNlw9TB3LFNs5kM4MNv+u/8IUv4OrVqyX/27t3r6W/3dpKgUz3qsSnp6fXqMnz4fP5UFNTs+o/0TDbAruSoUWVA9xkgInucgsYkKtccaubbHBi9N251d53Fwcv0g9pSp924MAO7OqhA3agvrjqLpFO6Auc7PvEDMk6NDYEAEhGjbVeWsGlc5cAAG+ffNvQ9ctxqgT7VHkHLJ9Cf9touAiHfshsqa/2kqrGSAjyyBQVaWdGywfJrRftDe16S/WFwQurHuPunZYq+WpKBw4Yg1fJWuJbrxX3559YICWcNy3XfsLv9QNZjsaIapDbUnf2GrOZsgKvSv9mIyofIDe/BbzyrF4aaomsYcVkKXDxz8pBxgy6WogUL+eBO7OYnWclk/UMJsdHwmvFOKNLRJi3VDhzrgP7wF0W0+HiIchssSnb/5ZDcdNq+WBHINd6LzNM10zWD5AnTJEkcjPLK7Cdn0xRiqIo0GIkYDt/7XzJa5kc9yvyBSAA0FhBRc9CgZxRN72HO9vlrdkOHOSjxl8DJduuxvNqITRvoTPps48/K3U8g9doz3320tmy18qe2wAgHqGinxH7WCBn1cfztBlsODne2NiI/v7+kv/5/dYmyt7eXrS2tuLVV1/Vf5dIJPDGG2/gscceE/VPsASz7QGsCJXZUs+twhy2WQqxjD2kHyPoCgLIKWgYV4Ypkdy14gQVObAPB3YeoB9KTE0j07lDrmz7odkJImjOXV7bHngvTp0/BUCuv7eaoXvR6CadbQdkZirw3zY65/KYZIYVccgUz6elkPHQYa8lKJ8gUVUVnhgdjK+MXFn12Btn36AfjNUYHDgQAia856LF/V07txPB+ND2h6SPR0nSIWYmXL5YpduqSOzW4cKi0fmNA4dl7in1DiID1jNsvWLlIGMGLDApV0SoayHFqR3zLQBUa/Q5DM4OIp1eTQDOpeg731tnLIjKgQMRYJJyZqn4HLeUpI2AbM9xnRx3GyPHNTcRsjLzC3iu4pD7clhcIVJHlqd2OkbvjVHyyA5RCgBdaJHvAVwIzD1UqPKzzACguYpIxlAytOr3mUwGqQqqfu/v3W/LWBw4UBVV59Q46LgQmDiX7TnOe0Mj4i3eT8k8L9dX0xqgecrn/AC5fDFX2nwn6QeKTRweHsbAwACGh4eRTqcxMDCAgYEBRCK5TW5/fz++/vWvA6CK5S/8wi/gt3/7t/H1r38dly5dwuc+9zkEAgF8+tOf3qh/BgDgynkiHE6eMeYPySofJlNkILVMi0E0FUUqXbp1rbGDKq77dthjZdLgpw3O1PLqxfXG5A0AgD9lT6XZgQMAqKugg/NCbKFoINvQ5BD9kJCvPJubpMPzneE7Za9ltUjAJW8Rq/QRCcQETDkweeJ3SwwcZu9wAyKZdCatE/sylYy8EUqgtI9mIpnQx22H/y0AHNh2AADQ2LvaUmDg5gAAIDQWsmUcDhwAuYPscqY4+RvV6J7d0mzMrm490FWDS+VVg6NTpPxl8kIGuPhntCDJoW1mg4rMgIsBRsbEHugcmCkLKyFaa67duVbyOi5o1PjtsTLZ3rod0ADNpeHayOqxNW6jOfhTL3zKlrE4cAAAlSrdvzOR4uT4cpruE9nWgbu37QYAeKvKb+ASyQTYKUQmOc4h70bI6MhKRGdcZIW883jSSrrsGR7IFVJlk+PsIT67VLrLignBSpc92Qq9jVRsXNRWf37XR69T6LwG7O9zyHEH9iGzTCKoM1fOFL1mMZ4lxyWLU3nvY8Sm6cTpEwCA2XFj+QtWoHuZu7NzfBnwvOzSHnBy/Nd+7ddw8OBBfOlLX0IkEsHBgwdx8ODBVZ7k169fx+JibqL7pV/6JfzCL/wCfv7nfx5HjhzB2NgYXnnlFVRXyw81KwVuPTDqn1bdQOPt6ywfuGcV7Q3t+s+T86V9Kz1VtPPYu92a5Y1ZtFaRRc58YrXf6NDsEACgBo4XowP7wBXbVCalq0HuxdD0EADAFZd72AdyPtRGWur5GpkqRiZcjM5vXJnm7hUZePYJakHbvX932Wvnw7l5RqbHd3sTzbnlDny6/y2Atnp5Qar52Nq8lV77nhDkySj9/7Yqe8bhwAEAtNbSHiCmFO+yYP9b9ieXCVajLCyXJ8dvDZNn4/jgeJkrrUMPQTag0gaAVNYXpqZC3t5pcYbWxtMXy/ua9+4gomLvTrl7yuFbFNo6cHWg5HV2BiADQKW/EmqUjmTnbq/uALsbIjvBnS1Oi78D+9DXSufNQEPxfdmKRvMNh9TLAhMj8XQc6UzpImMsnVsjOps7pY1pz449AIDtu8tbeuZntzQFm6SMJ78QkL+HLQYuWsrs2ARyHuLsAVwMLNxhu0HZONBzAAAQ9a4u3g7cGQAAqFEVVRVyu34dOMhHcolEC4MThTu7M5kMZiOzq66VBQ78NEKOs0pbppisqTY3bxqxM2Ry3EqmwgeKHP/a174GTdPW/Pf000/r12iahs997nP6/1cUBV/+8pcxMTGBWCyGN954w7KHuUhwgjaHhpRDTSMdYGQGOtVW1urp26XSyYFc0KBdi1hXHflEhtOrw/S49WlLnXylmAMHjEpPpX6v3Bi+UfAaDoeT7X8L5IgRVruVQjQlP5CTlTFGyfGWDlJDb++RlxvABUkjtgP5C6/MMLZjB48BAOrbSquu9HbUNFATsKcQ2F5FxP1EZPVaMJOmQ97utvJFBgcORKG9nr6PCVdxxQirbaLzctrW88EqPSMt9Xo4XJU80l63MDHQAgvkvHv1jhoJYPsAVs6XvDZL1MhsywVytiq8DhbDmYv0XWKC3w5UJOkzvDx6Wf/dYmxRV4ptqXX2uQ7sw1MPPwUACLYFi14TV4g4aamV29GWv18tt8/le1uBgiqfPHKT5062PS0FfU+ZhjTCNVgV1H/mDIdSSGYTRWUFhDK8Gp2ByhWSt+3dBgB47LA9treP7aLX0QIaphdyvvpsJehPOh3pDuwFBxsXy3mYX5rXmdvmWnl5WEAuzJi7DEthPUS0UQSrgkC2UX92sTw5zkK4g3sOmn6tDxQ5/iCBKzIZNWPoel3tKdHsXlVVKAmq+nCwVTHML1MF2K7gjK0tpGJcdq3eFAU7gwCAjz79UVvG4cABkL1X4nSvjMyuDdACgIlFuocqNPn+eXzgN0OOywz35eKf0fCkxnYioPfvltfCqLf4lyFFAGAunD1YJAGPW95iz21xXGwshqkQkeNKUrEtWyG5QBui106/tur3yz76jh3uPWzLOBw4AICuRiqQpzzFC26X7xCpODsir7WTwWq4hWh55TiT4zLD4Xg+TysGA+uye0+ZynFv1guqWHdVPuzIeACM+2jeHr0NAFiatS9coVah9eDW9C39d2+cp4yHCq1C6v7fgYN70RjIBhauFCda3VVUJOxu6ZY6Fr/br4fVjc2MlbyWBRCV3kooijwlo5nssPmlrGpaotjT7XLrf19/vRI48PABAMBLz78kb1DIdV+WyzPjXJ2+dnkd8vnobulGlZvWzZlkTtl/Z47sKWthT6aaAweMCoX4AlaH34vR2azQIAO01rVKHQvvV5Nq+UlrKUb7JJnkuKqq+vymn9FLgIt/7FVu6rVMP8OBEHCFN+MySI5n/Rhl2g4AgCtFrcIzi6VDpviwEw+Xr5iLwOO7HwcApKpTSKRyyrGhxSEAQGeNvNY5Bw4KwZ2iQwErxO/F1BIRmnb453EHx3Kq/CZ9JUOkgEy/Mj08yWWMqLFDNXjzyk0AwDvvv1P2Wj5YyGwRA3L2PKWSyYHcfKym7Fuy0yH67G5P3dZ/Nz43Di1Apfvje4/bNhYHDnpaeugHPxBPFN53sP9tY6XcFn8AaGsgW6GquvJFxoyb9nm6Z6IEvPjciwCAhw4bCyN1V9D61dYozx6JvWzDsdLFPwA4cYY8K8cGSxNf6wV3NfE6WAxc9LArHA4Amn2kBBteHNZ/d+oGBWgri3LXIgcO7kVDgOarycXiNpuuKjozPrz3YaljURQFWpz2HuU6Ue6MErnJocmyMD1G6s6zl86WvZYtRWQHDvOedSFSvmjLBUnZ1lE8h5ZbB+zyUs7HtkZSqw+FhvTf9ezrAQC89ITcooEDB/eC+YK55cLk7/gcWfMpCQUul1zLVt6vGjnHMznuU+TmF/D8Vs6iCVhdJDULhxzfIPCXzmjqKrcQhKZDsoYEAHBn6MA0Ey5OjoeXwxRWgdwBUTYObz+MgCcATdFwd/Gu/vur01cBAP2N/baMw4EDhjdDqriJUOEui9llumdr3PJtMDg4I99rsRjYP0xWKBCQC41UfMYOJ1wFlhrGlq2phVfKEzV2HWRSUVKULiWWSgYoeavpu9ZQJY9cuxfbW8niJqrmlPZvX34bAKCsKLaEHjpwwOht7dV/LtbZxoGczTVy200BYF8/hZG3dpVW72QyGT0cTqZFExcWjQZy8ty8tXurtDHpWRjx8lkYY1NEii+Hyhd41wNe9zjkvhg4HI6VhXago6YDADC1kguevzZJ4ZxBJWjbOBw4AIC71+isdfpK4cyAjJbRC/tBf1D6eFgcUC7YcXCU/HpXwsYspqxifpL2iXdG7pS9lslqzqqQBd6zhiKhstfakT8EAE015BWsBkrvp7lbJ7FUPmxPFHqCPQCAwVDO43l0iYov21vk2Tw6cFAItV7an8yvFCZ/x+eJHFeT8unbbVuocOSvLu8QwRktssnxlnriFupbyqvBz12m7BYuYpqBQ45vEHSZv4HU1VQ6hWx3qtTkbQDwZOgUV8qvLF8pa1c4nKqo2F5PC9WNOfJ4Hp4exsQyHZK3VDpEjQN7UQFSQ0wvFZ54FxN0aLAjHC5YEQQAxLTy5HhLFy0uTO7IAHuHay7KhSiHC1cuAACuX7oubUxsH5BA+Y03+wjLPsi01eXmT1YEFEJlHR1eZAYy34t93fT9SAQS+hp16hapGANxuR1MDhzcC7/Xr3fIJN2F2zwTKn1P24Ly9yVsY1IuBDmyEgGy00hzUB5pb4Ycz2gZxFK0Vsj0m61w0d82EhTNKkbZ4XB1AVqPE0rpdYBVjHbl6gDA1kYqVMS8uXWcFY2tfrkt1A4c3IvOeurITXoKz7fhWBha1gTWDrUv78fK+WmztzWLvWSB5yojcy7vO2XPbyww4YC8Ujh3hcij8SF5QdEA8MzjzwAAtu3aVvK60WkipcMz5QUsouCLEpn37Xe/rf9uZJGsMp2OdAd2g7t1FuKFOz9G5+ge8aXlktAA0NlE3/+YFit7jmeVtuz5TRcWu8vzCrfukj3dzHhpJ4xCcMjxDUJ+WnU5JWN+6nR+WqsMdDWTr2dVQ3G1jB4OlwC8Hvlhg4ztDUS4XZq8BAB49URXsC0AAHMESURBVNyrAAB1WV1FMjlwYAcq1Wz7U6TwRn3PEUqy/8izH5E+luNHyeKir788eeoO0IFhR/cOaeNh4kiDhpVUefUOB3fK9L/lv20kJJTJcQ7dk4X8EORS5PhSnKryNT57wjiBrG1KEoAHeP3C6wCAhu20MXlq31O2jcOBA0Z9BYkKiqlqmDTn8E6ZYFKZ81eKYTqUK57KJMfHhki0cPnG5TJXrvbIlZk9wTaARsgjvoYJdVngwxX7wBdDJEmEvh2KWManXvgUAKCiNfceTK6QpUV3UK6nswMH94KtrDK+DHXA3INLt+kspqQU+N3y86eY7C4XgszEsOz9G68BRua37q10/8oUpQDAtm4ioLdsLS8YY/vAZFSiETpyBUZWlxZDyk1zsh2dX/prztJrnh8+r//u3ZvvAgDqFXkZIQ4cFEJrNRXBl1G4g24sRPs8FufJBNstZbRM2XO8v4bm/9Z6uUV8MzkPPGYrdtQOOb5BqKvKqUnLhdblH67qa+RO1vt20MJd11pc7crhcHa0deRj8Q4pef78W38OADh56yQAoCZhH2HkwAGj2k0LRzGihkOM7FAxcjBHOR9VIEe0yvQZzPcON6IaZKKiNiBPfcQhoeVIEQDo2dEDANi1bZe08QDko6mHIM8XD0GeXCCCxK4AZIAKn4Fl+hxfPU+FSG49PdRzyLZxOHDAKEeOZ7xE4HB4p0ycOXEGAPD9N75f8jr2a3TDDb9X3v2bXCGCIxwtr7q7O56zpvO55CmQ2OuxXPglkEeOe+Qe+nZv3w0AqGksvW+Mpmk8dRXyO78YW4JEaI2Fx5DK0Dq1oJGCbGfLTtvG4cABAGxrzyp93avPoQzuIuZwetngsDdWhhcDC844NFkWeJ9rRADCnTGyLUyYW0gaSP5MKnRNXaXcOY7PGuXI8bSb1kq7OtIBYFcr7fF5nr1w5wLinjigAUc6j9g2DgcOAOCjz30UANDVX3gPG3eRLWpjhfxcnfxzfLkcwu7tVPx76phc4VRsibrqrg+W7zJnm1krWWYOOb5BUBTFcBvsbDjrr5bIplFLBFd4w/HiB6zpRdokybYcuBfdVXTzTcSJRLo4cREA0OlzWp8c2I/tXdTJUN1SmGRmAocJHZkwuvkEcn7aMu9fVVH14IwbQzfKXp9RidRiAlsG+ABQrhgJ5Fq2ZCo9Ga4kfQ6ToeKhV6+98xoA4Mq5K9LHk492FylwTw2TncrtBfKE3Fovz6fYgYNimBmmDfp33vjOmsfmw/O6t7ce3ikRrLiOpkrv35gcl5nxAOQKi0bmN7v2lD/0zA8BAA4dK19M44OMbPKou4X2kXGUDpNf0Yjwaqi0L+ehs6YTNb4aJDNJXJy8iGQqiWU/kWqH+w7bNg4HDoBsp3JWS3B74vaaxzn7gcPpZcOb9RddXCkdYM4+6LL9b/kMbyTrh5WOMkPngdy6xGR8KfBaUV8l94xy6zLZG7z9/ttFr0mmkkD242Kxjx041EdrU8xPn+E3Tn0DAOBd8qK5zj4FuwMHANBeS2eu2WjhXIX2bfT4S0/KD4tVFVXP6hocGyx5LXMPssN9p0ZInGukQzKWye4pnUDODxb09oAyixj7qzHZJBOcKl1KxchhKOxPbhce7qU09LCHiPu7y6R+csI4HWwEnjzyJACgurnwYnB9mCqbiZD8cJl0lDa5hdQ994IPFvGl0uTAupEVrsyEyvt9ZVzyyXHOeTDiVcYFSyuLqlnwPFoqBJkPe7KJo3uxu5FUloNR2hi9f+t9AEAd7FNTOnCgIyvQG1sYW/PQcob2USpUtDfIt1XhEGRWGBcDkyKy5xKeO5mMLwUmx2XvKYOBIABj3UPxDK1H0t+nrE3KUmIJ6Uzx96p7J5HoTz/6tNTx5ENVVDQlyDrxd//n7+L1K68DfgAJ4CNH5duzOXCQD1VVocaJJhiaGlrzOBf0vZo99ppMdodjpbtjIjGab3yqXHK8ykdENM9dpfDa2yRwuHX1ltQxLc7SXvH81fNlrswptWWT41zUKMV15HMOHY0dUseTj0d3PQoA0Pwa7k7dxdu3iMBv1ZyMBwf2ozFAivCZ5cLnQSbN+TrZ0EOQw4XJeobekS45o8WreFe9XikkMsS9WCHsHXJ8AxGepQX+9PnCSeAMu1KuAeDiGVJjv37i9aLXBJuDAHL+5HaBfW7TVWnMLs5iTqWiAZPmDhzYiZZKCracWp4q+PhSmibvgCI/vJDnhlgmVtAbkpFIJnR1pWxVNC+qrFQvBSasg1VBaeNprKXNhOYpT45fukFemqGZkLTxMHwaHeC46FgI4QStFUFfUPp48vHZFz8LAPB1+XB95DqWVPpOb611lOMO7AdbWc1F1+Y88D1SV1EHVZW/tWWStVwI8sg0hXvJ3r8xwcGFxlKwo3sIyBHdRvwh2Qag0ieXHK/x5uxUSnXrLCVprrM7z6YtTa/3/tj7uBUnIu2pvqekWvI4cFAM3hSREcOzw2seGw1ROFwl7CnaHz14FACw+8DuktdxMU52foFOjmvlyXEml9Ir5YuX68HMKJFq1+5cK3st77tlZ5nx2pRUi1u96Jk7KbnngHvRWt8K9xJ1PvzJq3+CK/PUnbm7vvR3zIEDGah25brAw8tri4AbRY6XC0F++xQVla5fKm93sh74VdoHGdlTJjQix6v85nN1HHJ8I5FdJ8qFi7gq6AAj04+XwYFvy6niX7xAHZF9/b32Kra3d2yHEiOl01+98VdIVtEb+OxDz9o6DgcOAKApQBvK0YXRNY9FY1G9RbC3tVf6WFrqiKiHC4isFFfpsXc1IL910Wh4Uiqd0gl7VnfLwNauLKHrApLp0n6MV27RBnnibvEOGlFguxfNW5y0j6ToM7XT/xYAHt/2OADg1vwt/Nb/+S1AASpCFdjbu9fWcThwAOSKQwuxtZ6z/Du77hG+b8sRIwOXBwAA06Plu3rWA53g8KJkgRTICS54jpYF/jdfuVneDqp/P+0nf+jpH5I6Jq/bq7cK3x5daxXB4G6dWp/8fXc+ntvxHABgODOMt0fowPnsNmeP62Bj0FydFVEU4Jknw7SfDLqDtoylrYEKR+UKgHsO7gEAPHrkUanjOX7sOACgf2/5s7BdgcMcPlfOYjFfKCObHG+sJiKvVN4Pn02UpD3+9fnod9Hn97cX/xaToHE8se0J28fhwEFzdTOQrZ/dGFtrSfrm6TcBAJN3ihf2RYL3iOVEbrwPrnLLC3gHciHIhgQX2UyFar+jHP9AgZO0OVm7GOpbiDDatmWb7CEhWBEEkPPqKQT2I2ci3S6oqoqOOLVbffH9LwIq4Il6cGibEw7nwH5EpoiwvD259oA9OJnz57LD/1Ynx1HaEkm3XUkDVRVyFzF9fitDjkcTOVsCmWr2fEuScjkP3P7JC7FMPHGENuFbtm8pPp6sZYSd/rcA0FLVgqZAEzRo+KuJvwIAHA0etXUMDhww6gO0F2KVeD7OX8+2kZfPRhMCPvAnlNK2Wby/kx0OpxMcavlQTh4Tz9GykFim96ac6gjIqT1le7MDuTD5sfm19jwAFRfmo1l1fcrebJ2ffPInAQCJ2gT+/trfAwAe73rc1jE4cMB4ZO8jAApn60xHaT/ZUGHPvoT9tMvZNLEiur1Rrr1WYw2tAUaU43YFDjM5Xo48yg/Yyz8/yEBTDa1NbONSCFUN9Nm2Bu23M/nEQ58AAFx3X0eimtasjx39mO3jcODA5XJBjdH+pFDOQ0TLCqV89ohA2DKrHDnOXSEN1XLXAr+LlOPlzvAA0NVH7hbHDh0z/ToOOb6B4MMSJ2sXAxM1vDGQifpKOnzGUJwc5zZhuz3HAeD/eub/AgBEPXRj/Psf/fe2tFA7cHAvdnbuBABoFRopxfNwd5r88JWYAp9Xru8hAGq5zoqhpxYK27wAuQ2xklSk3zc8v5ULT+LWJwCoq5a34HtdXrgUIjrK5TzEUvaEwwE5ZeJivPj7xPNxc439AUFHmo8AAFI+Uv3806f/qe1jcOAAAJqr6PsfzhQgx28QOb4wsVZVLgN8CEi5iqvhgNz8JzscLr+wWC57gsfEXrCywOr6UopBBhNesj0rgVyAIAcK3ovZxVloStbqK2ufYxd2du2EJ0xrZyQZgaIpeLjdsQ50sDFg4ruQlZWrmvZTfc19toxlfooImovXL5a8Ts95kLx/Y9soI0TNSnrF3jGVCYpWfKTQVhUVNQG5Qjdem0pZGjK5ZmcYJ+Of/8g/h0txIeVNAQrgWnI53ZEONgyeFK3/g9NrQzBTHtpL2SG6A3Ie36GVUMnrOOuGC4aywPMbz6elwFZ9TUHznTEOq7iB8Ch0AyzFSrc/scrHDqKGvcESKK6Geuv9twAAVwbKt8qKxs9/+OdRF6MDV52/Dv/48D+2fQwOHADAtvZtQLa789rIan+/uzNEjrsS9qnOuB1xerE4McK+h+wjJhO8qJYLT+KDjN/tp3RsSVAURX+Prg+W9kXjhZdDk2WCO3C4I6cQWJ3aUitX4VMIX3rkS7n/kwY+dfxTto/BgQMA6G0ii6plrC1uTYSJ6KxS5YsIAKCntQcA4K4srb7m+U92OJzP64PfTaoaX1Xp1/JW0tws+yBTV0V7tYy7vA/60MQQgFygnEx4M/TvLxaCPDJDAhBk5GdzFEK/J2fTUBOq0cNfHTiwG0yOjy+Or3ks2BkEAHz46Q/bMpbpEdrb3rx7s+R1l25SZszSXPnQtvUgskAFvbGpwh0o+YilSeDAPuWywOFz5cgjLkZWeaukC2X0gGw3CvooA7n9b63fXhsrgOwcj3cf1/////PM/2P7GBw4YFRkqLvk3s62WCIGzU8Fpq2t9uQ+saijnMgt46E9XnOt3P0Sn8l5Pi0FFsFZOcc75PgGgsmjcl+6V19/FQBw/nT59On1gluFSwVncFCR3V6MAFmr/Nnn/gyqouLLT3/ZFjW9AweF4HF79Panm+OrN+u8qPky8lXjDG7/LhXsyO3tdoT71lTQgZ5bXMuNqcoj/17OxGkBn14orayMZ7L+aZIPMgBw/SIR9d99/btFr/HW0lqxvWu79PHci6O7juJrj30N/pAfP93w006njoMNQ38HkYaZyrVk60SEyPFGnz1BRf192bF4ShO/ejicKt+iyajtwJZtZOF0ZP8RqeNh8t0IOb6SIjLHjo7ECoU+i5mlwuT4+DwRgUpCfodVIbz7pXfxu/t+F/+q81/hzX/+pu2v78AB4/LpywCA7765dn8yFaEuxeZKewpIXCQqZfsJ5LIE5sfLh8GvB2wbtRgtX9Bj6xUmr2WB3yPewxYDi1LsOEN3NHYA2WPA+MLaIgsAXLpNBY3kUuk8IFn4tSd/DUc7juLln3oZ/+zD/2xDxuDAAZATeNxbkLwzcQfIWvJvbbeHHN+9lYJpO3s7i16TSqfATYgtQbkCLg5l7usv3600H6b5Pxk1P6fINRx0UBJ8WFqKl65u8+Oc0ioTXPUp5Q22nKZFtbHKnkPovfjozo8i8asJuFR7vSAdOLgX3oQXsUAMtyZvrfr9VJgODRWFUowkwa25kUKqpL9rXQsp+Tqbiy90ovDk0Sdxa+AW+veVDis6d+UcACA0HZI+JlfahQwyhsNF7FDs+TQqoBTyUWYkXUkgDezdujGtnp/90Gfx2Q99dkNe24EDxpMHnwReA5KeJJLpJDyuHJE6G5sFvEBrtT1t2dzxkUgnEE/F4XMXLoRGEhHAbU9+QaWnErOYLUuO68SI5IKkrkz3kI93MaJZ0zS95d4OpTbvveeWC6+VbLfiSm7MHrOqogr/+sf+9Ya8tgMH+WiqagJiQCS9dk6ZXiaRQUulPR1twUAQWCzv8R1X6HHuhJYFM50xqo/mPpmh80A2syFU/j06f43EdiuL8kM63C436irqsBBbgOYrLJbhc8D4YGHyXDae6X0GJ//RyQ15bQcO8hH0BDGKUX1+ZdyaIJ5BWVHIStUG9Pf149XZV1FZV9y5It/Gr7Ve7v67u60bAOCuKE9fxzIxwAWUMMIoCkcCtoHgCou3qrTvo53hcD1tPQAAtaL4VyOqkZeZnmK+AXCIcQf3AwKgdp3h2eFVv+8/SITwM0efsW0se7buAQD07uwteo2vmggcXmBkgr3ByhE1TFTboWZ3Zeg1yoWEJjXrKddmwSGDMa2wGiqWiiGepoOO3f63DhzcT2iqbIJLcUGDhqnl1dkKi2lS73XXyZ/bgNXe2KX8GNmP1g5bvMg8zbVMNBQD7yl5jpaFxtosOa4A80vFC5JL0SU6xMAecrzKTUWBhZXC/vRsTeZJ25+r48DB/YTOOhJSRJXVHtaxRAxzK1Rc8iblZhcwuLOZye9iSCrJVdfLApPjXPwrhe5ttC49/djTUsfE4XOlAt4BYHiSziyxcHl7AhGoq6D3aiFWeM5l+zE7OkgdOLifwVZW4eRqwRRnmbmT9umaubNkKVFcxMvWz9DkF//YIqVc4HA0FtX3lPo+1AQccnwD8eSxJwGUJrOA3OHKDv/b3nYaS1pJI5EuXG6Jq7QxaQu2SR+PAwf3M2pcpB4cC6/2BpuJUrt2W6199wiTCqUUI/k+g7LBZFC58EsmxznAUybcGm0qyrXBdvbRgVC27QBQ/sDHXQiqotoSVufAwf0KVVHRUkWigoml1WGKUZX2SXaFw7lUlx6CfPXO1aLX8Vyyr3+f9DHFlojoGJkaKXndy99/GQBw/pRcq758T3MOgy6E/BDpljr5KtQje2le795ZuJDCdiuyA0sdOLjfsatzFwAg5l1Nouo5Oxmgu9megmRTDQWrlbL9BHIhyXy9LOikiwpEVsp069hUkGR/by4QFAMTWnbsuwHKCAOKFyS5c9Ihxx1sdvzoCz8KANh+YLWN5mKSzq3Vqn3nwEyMin53J+4WvcZVQSx0rb9Wug0d73FHp0ZLXpcvxmioaTD9Og45voFg77FytiocrGEHoZVPvhQbV9JNi25ng3xrBgcO7mfs7NgJAKhoXN3VMRqmibuzxr57RJ9PSlR4B8ez6dcW2ozM4vol8tJ+/d3XS17Hm3Q7iAh+jXIhoXz46mrukj4mtrIqduC7cOMCAECLalAURfp4HDi4n5GYo8nrG69/Y/XvffT7/s7SNk4ioSZoC10qBJnbUdm7USa8Gs1v5TpjWHDBuTfSxuPx6h2P/uribcBToSw5noQt7cK7eonwUwOFj0CzEcrtsNMWzYGD+xEH+w4CALSAtipM8cbYDQCAGlPh9dhTRGoNUst+2lPc9hPI2YLKDodrrctZCOQX+AqBlY6yO4iM5k7wvpsD92Rj6i69P9954zsFH+fiwUYEcjpwcD+hvZYKXCyyYzT30Hz2xOEnbBvLzcuUp3bm4pmi1/BcIztPAQDmJqlbaWy6dAjybDibvaYBNQHz9qgOOb6BYCI6kiy9iOkp1zaQ4x6XBwE3KdSnFgsv9hkfVZK6GuUTRw4c3M945mGyTQk0re7qeOPcGwCATKi8F6EosGf32ctni15z8ix56vGCJxNccS5H1IRX6MBlxyadyaBy5DgXBu1QapfLeZiYz/rfphwrKQcOXFG6D25P39Z/t5JcAbKc6uEdh+0bS9YKqhQ5bme3Ds+hS7HSggsOtLOlg8hbvoOIVeVK0p7iH9tTLcYKdxDtOUQWZU88bN8h1IGD+xFb27fqHTJnb+X2lrcnaf61y1IFyJHRnE9QCJlMBshuJdvq5XZuej1e/b3RC3xFMDpNgpmF6cLKaVFIx2gfWapTB8itEXaR48ham0+EJgo+zFlmjnWgg82OxgB1pMxGZ1f9nv9/U0BuR0w+9IDfEh3pLMiz47xcV0kdKGlX6QKprhxPwpKa3SHHNxDXLlJb2hsn3ih5nZ5ybYP/LQDEQ/R6py6dWvPYcnxZj3G1Ky3XgYP7FdziPxVZvTGeXJkEAFRr9rU/TY8QQXPtzrWi1zBRU+mW739b5SfiJZ4p7Q8ZjhNRXeGSr9Jja6oUUiWvY6sXO8ia9npSCWjewgc+Pkx4006LvwMHdR7aHI8t5pQjExG6R/xuP1pq7QmHAwBPhlrSS4Ugj84QKWJHpoJPzYb7lin+6YHDFfIDh3V7rRIekfz+2fEeAQCyDhG3x24XfHg5RWNtq3OsAx1sbqiqCs8KzXMX717Ufz88R57VgYx8u0/Gts5t9IMbiCULe2VPh6aB7LaNLUZkgveI5cjoZJZF97vkdsYoCRrPSqp00CYLQOzYdwO5nIf5aOHsifshy8yBg/sBviTt425M3Fj1+5llmmOYPLcDTEaXIsd/8O4PAACTdyflj6c6G4LsKi08XIhQEVJJWTvDO+T4BsKv0CLJtinFwG25W1pLB2yIgidFG6GRubW+laF4CADgUlyrWsocONiM4Aru6ELO/yqTySBVQeTrQz0P2TYWVgHywb4QuJ3eDsWgkYozYO8m/dknngUA7DtU3P83lU4hDhozk18y0dmUtd5xF/atnA5T0cOn2aTwceDgPkZLIFuQjOYKkuw/3lbVZqv1ENuYzEWKk+M3humAMzkk/+DAc2gpay0ASGhkQVNbIb+FfWWR9rcXrl8oek33dvIs3tm7U/p4AGBmlA6ZN0cKd1CFYiEAQK3PafF34KC1ks56y+7c3nJ8cRwAUO2yTwBSX5ULe2OP6nuRUGhuU6FKD4cDcvu3hrbivraZTAbIbiVlj0kPNC6yn2SwUMYucrzWS3Mpz633IqZSsaO9Tn5Bw4GD+xnbmqgImHKncHcq5/X9dz/4OwDA+M1x28YSDAQB5ObVQtAtTGywa+U1QHMX7x4C1i+4cMjxDQR/yKW+dADQ2EZVokcOPCJ9TADgz/YnF2p/ml+hqm9dRZ3jf+tg0yM0GgIAXB3JBbJdHb5K3RUacGDrAdvGwi1N0VS06DXRdJYc98knx5l4KRcMVN9C82BvR+lgYhEwkrw9OZ8jsWS35QKr1U3RzNrPjv1vA6p9Ci0HDu5XdNR2AAAWkrn29HcuvAMgp7ixCyxwYP/WQuBwODsU7WyJV0qlDeTmZDvI8eUQjWVofKjoNUzU2DEeIPdZJF2F16Yzl8lfMzQZsmU8Dhzcz3j64NMAALU2RxlMRmifVO+VT0AzXKpL3+dyx+G94D2uHeFwAFBXVV5ZGYqEdDV7fkixDDQFc5YLM6HianYW0cj2QGfUVdD7FE4W/tyqm+lzfXjPw7aMx4GD+xUtdS1QojRhnLx2Uv/9dIKEUh2BDvvGwnulEiHIvP/l/bBM6OGaHiCRLM6dtvfQudoqr+CQ4xuIhmr6kFNq6RZ/PeXapkWsSiECaWpprYfa8Ay10tV45LfjOnBwv2NHxw4AQMafQSxByodzt88BANSoiqoK+5LXOcimVCcKP1bjk3//1gZoPCml9PzW0kWL78P75W+K+d9dKgR5ciFLjmeAYFVQ+pjyD3yFPHDnolQBr3TZM/87cHA/o6exBwCwhNw9/P6V9+l346UV06JRoZLqbmGluI8sh8fZ0WnHe8Ry3Yi85+SWWZnwZCWT4WhxqxcuVtrR0QTkrKyK5TwMTlBwdXimtD2NAwebARwsz0HzAKBUEXnT2yxf1JAPd5p8Pa/fvV7wcSbN7djjAjlRSinBRb7liq7sloSqiiqwa+B0qHgWxuFjlM3xwjMvSB0Po6GS+A72Fs+HpmlYTNLed1vHNlvG48DB/YxAgoQOA0MD+u+iPir8Hew9aNs42FquVAgyn1vt6EJpqs0V/3Rf8QJIZGXs+debgUOObyCaauhDK7ZBZ+gp1157yJFqNy32s8uzax57+8zbAIDpu8UXXQcONgsObjtIG1EXcPIqVXivjF0BAFQk7WlXZHD7UykFCz9mh0KPiZdyxT8OJLaDGBm6OQQAeOv9t4pewwcKJaHYojwCcge5xfhacpx/V+N1CpIOHOxopYJkzJ3znB1fojbTBm/x1nYZ6GgiBQ9b392LVDqlh8N1NMhX+7z43IsAgINHSx+e3BVEMLU1yu+M8WXfgMWVwuGXAHDyHK2dbHciG/xZaD6NLA/uQUyj71ZDlb3fJwcO7kcwOX5zOmdDFOwMAgA+/PSHbR3L8jydh68NFs7WuXqHujgzK6U9aUVhaY5I8YErA0Wv0TMpUtkQT8nQfdDDJZTjWdFdXUB+gRTIeYmzt3g+IokIkhlSpjZUOHOuAwf1CnXkXJ2k+Wx8bhxaBVmJPLbrMdvGwZ3NmrfwXgmwNzcsX7A2u7iWo2SwAM5qSKhDjm8gmBwv550zPElq7Zkxew4OdX5aLBdia9VQU2FSk1fAXuLPgYP7EW6XG75lOvy/eeVNAMDNKTpA1Cr2+pXqwRlKcXKcq6l2KAa5Yqt4S9svcfXXjoU1HaVCZKlDA6t81JR9y2NkhgoEr77z6prHalvoe7Sja4dt43Hg4H7F7u7dAAAtoCGdoft5eoUKWq1V9uagPH7kcQBAe29hn9TxuZw3pJ4tIBHBiiCAnE1JMfiqac3at7N49oIocEhoqW6dobEhAEB41h6ldldTF/2gAlMLazsk4yqtoW1BJ5DTgYPJG9RN9+bAm/rvrs+Rcnt7/XZbx8I5D7NLhYmRy7cuAwBCUyFbxjM3QcT39cHCSnYgt8e1Gg5nFmqa9q5z4eJZGLxG2NWt09lA659SsfY9uDN5BwDgUTwIeBz7QAcO2gK09xgKDQEA3r3yLgBAWVFs2UsyeluznUEuIBIvvK/U5xKP/LnE7XLre0rVX/yMfv7aeRrbXOm9cDE45PgGoqUu60HpLe6dk8lkoHmJPG8JyvesBID6CqpYcZtTPmYiRBxVqk6LvwMHANAAUjoMjAwAACajdJBo8llr57GK+kq6b0vZmNS1Eine39cvfTz7d+0HAHirSitlTp4l1eCls5ekj4l9D1kZWAhMnHP7rh1QV2gpHp4dXvNYsDUIAHj88OO2jceBg/sVB7YegAIFmqphapmIzVAqBCDnR24Xyvnfjs2O0Q8peyya2FaFVYHFYCcx4lf9q16zENiSgD3TZaO+uh7INmyOzo6ueTzhof243ZYRDhzcj9jZRkG5MQ/tm5ZiS7gboqC4/kb5e8l8cDB5sRDk+WUion2KPfkTbK1VbA0Act3froy1cDiz4BC6+Uhx24GL1y8CAKZG1xYHZeCpR54CAFQ1rV1zLt6isaSX0k6WmQMHAPrq+wAAUzG6P8/coRyUiri9wtT66nq4FJpPIqnCezjOL7Cr0FYfIK4jjuJCwCu3qIN/asTa/OaQ4xuI1vqcyqnYQh+KhIDsepof3CYTu3tImcUBGfngQE7Hc9yBA0J3ZTcA4OYcKca37NsCAPjkhz5p6zgO7yMPwfq24gFJGS+1Re3dulf6eNgGKpqMQtOKd8ewmj1YGZQ+Jm6TLxWCzHOxJ+ORPh5GlUqbisnw5JrHQrEQACDoD9o2HgcO7ld4XB5sbyC14sUpOlQvqUSubm+xV8Wo2yEVsQwZnyfluJKw58DPRMel68ULjcl0Um9htyPHxkhIqG4daFOujqqq+mdyLzmeSqeg+Wm92tbu+N86cHBwK9k0ZQIZRFYiePn9l6FBgyvhQmNAbsDkvWAyej5amPgNrYToOsUeEqnCTa9TqjOmtYvO+lu7ttoypu3dtA529BUvFnOHZCxcXCgiEixMKdSRPjI3AgDwpuRbzjhw8EHAnvY9AICIhwjpqxNkr8J2K3ZBURT97Mln0XvhqaKzsh25OgBQ7Suf87BewYVDjm8gagI1cKukTky7CvuO6225mvwgD8bjh0ihWFG/dnPB/rcOUePAAWF3CxWTxuN0r44s0kZvW7O9B2sOGSsUeMOwk2hlokODhpVU8YA4TsFm5btMNNY0rnrNQtiyjYobu7ftlj4eRtAbBABML6/NcphZokOM4znuwAFhfwt1pZybOIfJ+UkkaqjY9eEj9vrfcrfL6ydfL/i4t5oO+41V9hBIyQjNa7rHbQGMz+asXryKfDKC2+RLqdl5zbJLeQQALTXUiekP+lf9/vb4bf1kxIHbDhxsZvR39VO2jgIM3B7AO9ffAQAElgO2K30DLppPCoWX5/+er5MNthIoOb8l7c0N4670jKu47zp3mNZX2UO2sV1rNBlFIr1anDI6TwVKv+Zf8zwHDjYjPvbUxwAASp0CTdOw5CGytzdofzcbFyTvTt0t+Hj3dhIIPvfEc/YMKCsYvzl8s+gl6+2OdMjxDYSiKHpbbrGW04n5CfohQV47doADMeZW1h6wwklqHWPrFQcONjue3vc0/ZDlP4YXyRqjq6bL1nGwMiMcD+tevPmIJWL6Jt0OopUVNQAwMjVS9DoO7LRjk66HIBcpRgLQbaw6m+3zdeM5dz62Vg11ZZDaw8bvjK95zIGDzQh1hrauf/R//ghfP/F1QAHUZRUP9T1k6zhq/ZQHUCwEWa2gcW5p2WLLeOqqyocgc+Aw0kClXz5Z8/zx5wEABx45UPQaLp6yIsgOsG9n2rN6LbgxdgMAoMQUBPyO/60DB6qq6tk6L597GefHyM+11WNvxgMAVHuyVlaxwjYmbG9ih/8tkCNfoqm1QZMMu/29+XVKWVnxHtgucrzGVwNkG0hvjNxY9djUEnU8OXatDhwQtjWSuG4psYT5lXkE2mkv8lM//FO2j2VujLjAUxdPFXxcD7+0af82PUp72PNXzxe9hudjJ5DzAwpexIq1ZE2FaNFwJe3xKgNyFd7Z5bWBJ5w03VRlr5+yAwf3K158+EUAwHx6Hu9cfQd3F+8Cmv1ejEFfUP95ZHYtGT04Oaj/zAcMmXC73EBWoD0TKh6AmXGTuqWhRn5KPec2ZDzFFTXrTbm2gpYqGlehnIeUl4iu7qZu28bjwMH9jJ215IE7oU0g0UAqtEe7H7V9HI3VpTtRuNOOSXTZaKimObRU8W92kfZ1StIexWdzLXU8si9lIXAGhF3vEwDdDmJmefXaVNlMBI0z3zpwkEOvmxSLr1x7BXfCFKC4vc5eGysgr6U+WfjMHEnaS0TzeFbSxbsjXz/xOgBgYmjCjiHpIXSXbhS31+J9d321PeS4S3VBidOaMzy9OluHuYYat9Md6cABAFR4KvSA+TsLdzC4QOf33jr7leOc88B5XPeCLUzsOjP7QR0mC9G1Fk2MlQzNxzV+a3OKQ45vMBYm6cN95/Q7BR+fDlOFxM5wOC1K5d1wIox4crUiqqaZvmj7tu2zbTwOHNzPaAw06p0Uv/md3wQAVC5WoiEgn+zNh9ftRda+G7fHbq95fHQm660aB3xee8KKlBRthufCxdv8NQ/NN6zqlgk958ELJFOFCa3Lty4DAFZCxQ87otFWS8nky1hNIM0uzgLZj2pP9x7bxuPAwf2MDx8m+5R4dRxv330bAPD8nudtHweT0cWU2oMTdKCxa//G42HioxA4pI3nZtlgwpsLBYWg504EgnYMCQDgT9EB6+yNs6t+z907HUF7w10dOLif8XTv0wCAq9GrmNGIJDnUdcj2cRx/+DgAYPu+wsQ8F+HsKrTx65QKeedg5sRS8awbkRi/S12GpchxO/fdDBb5jc6tznngOZeFeQ4cOADq0nQ//Pqf/zpuz9OZfkNsVbL5DXPLhc/xV2+TH/rEsD3FPw5553yJQohlaD4OVgQtvYZDjm8wtAQtUByOsebxbIu/nYeGvrY+/eehyaFVjymVdKA6tMv+TZEDB/crtgWpBep7898DADxUZW97P8OVKLz5BHLhcHZ2oagpWmJml9Z2oQBANBYFsrxRU638TXpvW25jUawN9vw1atUavbP2PZSFvpbsnHtPF/+Vu2SpgqR9gcwOHNzvOLLjCJSYAqjA31z7GwDA4bbDto+DO1HS7sJK7bfefwsAcPvK2mKlDOhzqAfIZAoT5EyOuzP2EPbhGbI54ANUIfT10/z39KNP2zEkAMD4TVoP3x54e9XvWUneVOl0RzpwwPjpp38aABANRhELEvHw5O4nbR9HT1sPACDlKlyQ7NtFc8ljRx6zZTyPP0IZXTyHFQL7oFe67bEN4RC6YrYqi8uLQPYYoAtGbIAnTcF9EwurSTS2a7U73NWBg/sZuxXKvfpW5FuIpWOoSFdsiHK80kXzVrEQ5IRCRT+7lOM8v5UKQV6v4MIhxzcYvqwssFh7QFMnbdAP9B+wa0io8FXohvd3Ju+semxhhcbpeI47cJCDf5wqmSk3bdg/cfATGzIOd4oIj3s3nwAwEaLfeVIe28bjydBrFWvHyveN5BAhmfC5ffCoNCb2prwX6/Uqs4Jnjj4DAPDUrv5sro1dAwC4Y26oqrNcO3AAkAdubWy1MvChJvsLkkyOa16tIBnNaulqtz1zSVMwS+iqQCgSKnjNQoT2cK6MPUVSDgnlYOFCYBLHLv9bAHrL8nxi9YHvzTNvAgBW5uzrHHLg4H7Ho7seRVdNFzQ2jk4Ax/cdt30ctT6a94vt37hQmS+EkImORuowYTKmEHTPcZt80Cs9RGYVE4CMzORsF+0UXXDg5mR4ctXv27fRGB4/+LhtY3Hg4H7Hr33i14AMgGxu+mHlMNzq/7+9Ow+Pqr73B/6efU0mmYRsZIdA2EE2WRRwoYq1P1BxqyjV+qu9oCK3rVp7r7ZPhatVn/Zqqxd7q97ba8vvVlHbKopVwRWQNSyGLSQh+57MJLOf3x/fnEmGmUDIck5C3q/n4XmSc2aSj+A5c87nfL6fj3JdJGRyi6pYQ5BDoRAkk/hMyB6lzGwd+Tx6rpkK6bliNfbc6XP79DuG1d32k08+ifnz58NqtSIhIaFX71m9ejU0Gk3En0svvXRwA70AJo1Ijje3N8fcL18AxJuU7cWl94kDsHvvYo/Pg2ZPMwAufyLq7o2H3oC+rfNDyw/cs/QeVeKQe4PVtNRE7ZO3ya9RglESn+oNbbGXY8ntCAxaA+KsyiSQ5HOp3CftbP3tVdYXcsVMY0djxDDVklrRlsEcNCsWC9FwcEli1+o1rUuLrARlByADQE5KZ19qXVcv7+7CvRgVGlSUHN9VeSfPqzlbS4e4wTFIyjwkTUsQSeieKj0B5QfWAV1tU1qDkUm2w6dFW6226p6rkohGotmjZ4e/XjVqFcxG5a9L5IdtJZUlMfcrfc/cm+GXch90pQou5N/TU3LcYDeEX2fQK1csIw/crGmN/Gzy6kQ13qQ8tg4kkk3Nn4rE1s5cWwh47vbnVInDYex8IOmPfiBZ3VQdXoWSl6bMA0n5/OYK9HzOlavZR4/qW3u8YZUc9/l8WLlyJX74wx9e0PuuueYaVFVVhf+8++67gxThhbNoRS+fniZvy09qlE6OG4MiqdW9PcOBkwdE1UCQy5+Iukt2JOPJS58EgkBuRy4S7AmqxGHViOVGtW21UfvqXKJyT+4fpgR5ZUxPvcrUSIrIfR/3Ht4bc39/e5X1RZJF9AqWIKGxo6uSsbShFABgh3J/P0TDwfuPvY+nJz+NJViC31z+G1VWViQ7kqEJiVZzNW3Ryehw/1uTMv1vjQZjeMmpJb6H83xnFZJSrfrSEkVy/FxDkOWVRX537DkQgyFvlLiRa9dGJpCafc0AgBRbimKxEA0HP5z1Q6TYUvDc0ufwX+v+S5UY3E3inFrdVB1zf0Wd6O8dbO95KPFAks9ZVY0999ttD4pzjFJ90OXCDvla9mzyA4QEc4Ii8ciSTSJvUNFaEbG9oV3cHyg9p4loqLtt/G0AgBxXDmaPn32eVw8O+TwhP+TrrqS68yFlQLnhvvL5raeHf0BXbqGvDySHVXL85z//OR566CFMmXJhwyBNJhPS0tLCf5zOodMSxKrr7J3TQxXjXz/4KwCg6OsixWICAIskbqyqWro+8ItKRQy6Dh30OuWXdhANZT+56Sc48v0jOPzkYdViOFdvsEZ3Y8RrlCAvf+ppWFGTWyzxVzI5LlceldeWx9zv7ewplWRX7kLdoDNA7xfn1J2Hdoa3G50ik1WQHnv4FNFIpdfp8eMbf4yPHv8Ia69fq0oMWq0WafEi+Rs0Ridj2kPi4t1pVe6a0246dyVj7rhcAMDcGX1bbnqhMpydy/aNnTMmzhIIBhDQiKpyedCSEsamiTkhfmNkQr5NEtfiGQ7OeCDq7qr8q1Dzoxo8NO8h1WJITxTL5Xt62CbPt/G09jwgcyBJXtFS4FyV4/JqxESrMiuuHRZHxO89m7wCXKlkvUxe3eU1eCO2y21WbBrl7k2IhoPn/+/zeHnuy/j6X79WLYap40XLwpTs6IKBM/WigFbr1SpWoDJryiwAQPbYntu4yN045LlnF2pYJcf76pNPPkFKSgrGjRuHe++9F7W10VWV3Xm9XrS2tkb8GSxyb7CePljlJzVyhblS7Dpxg9W9T2RxZbGIJaBsLETDxYTsCbCared/4SCJN4gnqvJsgO7kD7ZJY5Rbunj1ZVcDAAqnFcbcv3OfSATXlMduATAYwq1eXLGr2f1akSxRsv8tAGg6RAVqSU3XcmFLsjjXXjHnCkVjIaLekeevyNVv3ckPBZV80Ha+a0q5alCpana5Jy8AVDZURu1vbG0ExKkvXGWuhMIs8ZkkWaSIpH2HRiSUspKUb9NDROcmnyN6mvMgGaWI1w22FEdnwsgoHvTFIifyE23KJMdHxYnZE3Khx9l2HdwFAHA3uBWJR3bLtbcAAJy5XdfWrg4XvJKIU175SkSCVqvF96/5PpId6nVrkGceGuONUfvk7hJKzjIblzMOAKC1xE5ht3vaEYA4FxsRHXNvXPTJ8WuvvRb/8z//g48++gjPPvssdu/ejSuuuAJeb+wPDQDYuHEjHA5H+E9W1uBdJI9yiA8xnSX2cKTwslyFn/DmpYolp9aUrg+rU/ViOKdDo2wsRNQ7i+YuAgAUTI2uNLY6xbE8Y8IMxeKRz1s9DU9qdIlqdr2k3EoUec6DXEl/Nrk3bnKcshcjcl/xsvqy8LZqt6iokYfHEdHQIifHa13RRRdy30M5WaGE9maR6D1w9EDM/fKQUKWuKa1mK9BZnB0rOR5ujyABznjlHkgWjC4Qw64AHCk7Et7uN4hg81KU6Z9JRL2XmZwpvtBGz3lodjUD+rNeN8jSnF3XZrHmTgDA6HzxgHDp5UsViWnO1DkAgOSs2Newx8uPA1A+OT46Xvw9VLR1tVU5WnZUfBECclJzFI2HiM5Pbqsirzjpzh0S55A4gzLzFICuVik95RW6t7jq60NS1ZPjTzzxRNTAzLP/fP1135cT3HLLLbjuuuswefJkXH/99Xjvvfdw7Ngx/P3vf+/xPY8++ihaWlrCf8rLYy+/HwhXXXYVAGDMxDEx9yu9HEu2bMEyAIAmQRPedqZVPCGS+4YR0dCSn54PAPBqoh/+yR9sSvYZlGclxJpyDXQtfZKruZVg1ogkdHNHc8z91gTxEGHi2IlKhQSga0lpZUtXAknuOc7+t0RD0+kjpwEAf/3wr1H7bEnimJ6QP0GxeOSevKcqTsXc/97H7wEAig8WKxaT1iduNaqaovvyystyNV6Nou369Do9HHrxgMCjExX+gWAAIbPImI9Jj31NTkTqSXYkA50drEprSyP2Ha8QSV+EgKxRyqz8cMY5AVGsjtrm2KvS5bapSs0Oy03LBQB0SLHbqjS1i5WlSq9Iz4gTraoq27qucb8+IfI7eree7VqJhiD5PCHPhukuLU8kn+fPmK9cQKLmBNWNsedOhAsuAoDN0rdWTaqfidauXYtbb731nK/Jzc0dsN+Xnp6OnJwcHD9+vMfXmEwmmEymAfud5yL32m3zxu45Li/LddqUXeKfkyCe4JY2d1181HbUAgYgw85ejERDkZz4bvJEt1WRbyTMknJ9XUuPid/56a5Pge9E72/pEElzuZpbCfLAulhDkCVJCj+Q7N4OQAnx+nhUozpisF/RqSIgDqgvqQeUy68RUS+ZIc6n9e7oqsGgIQgEgcLc2G2lBiseF1w9to1q8bQAJsAYUu6BZG56Lk61nsKorOgKenlZrs4fe/XkYMpLycP+6v1oC4nr79Ka0nDJ0LjR4xSPh4jOTavVQuvVImQNoaSmJGJI3alq8UBQ61Gu/61WqxXJGhNQ0xS7PaBc4ahUcrx7packSdBoNBH7mzxNgAaw65Ud9D7KLM7/Lp8LZ+rOIHNUJorKxSwze4BD54mGoo4mcU/cvc2yrLFDrMCWV1AqwdUoWgbWtsR+GCmv4NH4NTH394bqyfHk5GQkJytXidzQ0IDy8nKkp6cP+M8OBoPw+/3nf2E3ToMTObYcWDVWeDzRA0TSHGlIsCUgOzE75v7BkmPLQY4tB952b/j3xtnikGPLwbTkaYrG0lsGgwE6nfI3WERDRcAlWoIcKzsWte/gsYNAAlB2vAyYp0w8kkeU1DS4Yydq5AS1koPY5BuCWEuyvEEvAiHxd6jUjYzMaRYXF/Ud4oM9FAohYBaxFGYql1wjot5LMCYA6LpJkEmSpHh/b6BryHusocxAVzWhkgUXSfYknGo9Bbc/ehm/XE1uCCrXs1KWaksFANS4RVLLpxclSXa9HfE2Zc//RNQ7Br8BXnhxuvZ0xHa5JZ3Br+y5RBvQImQKhYeBdhcKhcTgeS0Q6Ijdk3ygyS0OfEEfWtwtSLAnROxv87YBZiDeqOw5LtGWCHgBmICDJQeROSoTJ+pOAACS9MrN5SCi3gu3qDICHp8HZmPX/bo830y+f1VCeO6EQYq5X65w1wX6ng9UPTl+IcrKytDY2IiysjIEg0Hs378fADB27FjY7SLhUVhYiI0bN2LFihVwuVx44okncOONNyI9PR2nT5/GT3/6UyQnJ2PFihUDFpckSaiurkZzc/MFvzfDl4GXFrwEjaRBSUlJ1P5ff+vXgAZwmpwx9w8Wc8CMlxa8BAA4eeoktBotnln2DEJSCEnmJEVjuRAJCQlIS0uLelJONBJ4msVDq8qm6N6ucv/bVEeqYvEk2ZOABoQH7pxNXjGjaHLcJD4rYg0rCi/HQteqHqWMjh8NtAO1HvE0vLKhEui8x5uYo2yLFyLqHafFCQSBFl9k66gmdxNCkmjRoeSDNnmYeqyhzIA6qxHl/uZyv/PualvF+U7JFU0yec7DnuI9WD19NcpaRXItOzFb8ViIqHcm5kzEvuZ9SMqKTKieaRSrUMwhZc8luqAOIYRQ3xqdHG9tb4WkFUmcRIsy7VHjzfFinoIWOF1zGtPt0yP2t/lFclzpWWYAYPQY4TP5cLj8MJbNWYbytnLABmTalekRT0QXpvv8hvLachRkds00e/eTdwEjcOrIKeBbysQT7iNuADq8HbCYIttDyQ8p9aG+p7iHVXL8X//1X/Haa6+Fv58xQwyW+/jjj7F48WIAQHFxMVpaxAW4TqdDUVER/uu//gvNzc1IT0/HkiVLsHnzZsTFDVzzeDkxnpKSAqvVekGJ2ca2Rug6dNAENchLjx4A1G5th6SRkGPPQZxVuYb3kiTBX+sHNEBaXBqsZiva69ohQUKBswAmvXJtEHpDkiS0t7ejtlbcaA3GygCioW50kmgFEjQEo/YF9KJqJT1RuWNDHmrp0/pi7m/1tgJGZRPR1199PbZv247JMydH7Sup7Hzo5wO0GmVHcszMnYk3jrwBj10kr8KDirxQdVI5EfUsxZ4CtABtwcjWePLQMwQBi1653q7ysKKe5jz4tWJ1Y0q8cnMMWmtFBf3OAztxx9Q7IvYVzigEtgILZi5QLB5Z5bFKwAh8vv9z4BbgWINYcTU+abzisRBR74zJGIN9zfvQjvaI7RljM4BKYMZ45YbOA8CYrDH4puUbjM6LbsVXUd81fLL78M7BpNVqofFqIFkknKk/g+ljpkfsbw+KvzelkvXd2UN2NKIRJ2tOAgDqfHWADchPylc8FiI6P6vZKlpHGYGKhoqI5HhjRyNgBEwh5XKC6c6uHEZVY1V41lo4JpdYNWkI9X0F0bBKjr/66qt49dVXz/kaSeoqs7dYLHj//fcHNaZgMBhOjCclXfiyIFvQBvgBSSvBbI7xtLvz39YR74BRr1yPSADQaDWQdBL88MNgMkDSi79bu9UOnXbotS+xWMQNaG1tLVJSUthihUac7FGi4k0ySQgEAxEDbkJGUcUoJ9CVkOIQCZiALvZyUluyDWhFzAeDg0Wu4ow150EeqKT1Kz+r+tarbsVPj/wUbpMbwVAQxZViYJ7Bq3y7ASLqndT4VKAFaJciEzUnqsRycSX73wKd/WaDgCvgirnfrxPJcSVXEDVVNwF24FhpdLsvuZpcyXhkqfZUwAc0+sTN1Bvb3wAA2Dx9G+JERINvlFX0rq5rj+yB69GIwoJxmcrOC0hNSMU3Ld/Ar4luqxpejeiDogMndQEdAgigsjF6FWkHRGutJJvyrUwS9AloRCNON54GAMRlxaHB1YClc5YqHgsR9Y7Wr0XIGEJZXVnE9vaQuO5NiVOu2MJqtgIBAPrYyfHccblAGTBp3KQ+/w7lMwAXGbnHuNVq7dP7wwlvrehN1l1ICkHqHIOt5M2VTCeJ5LLH74HHLy46dBrdkEyMy+R/hwvt/U50MchNzRVfaCIrVppdzeEHbTkpOYrFk5YgKmWC+uhKdgBIzhQV0YvmLFIsJjk5HqvneEWj+DvTB5R/bpztyIZRZ4Qv6ENZSxm+LvkaAGAPclAR0VA12ikeNnq1kW2a5Mo4k1/ZVXZyNaA7EN3fGwBCBnGd2b36ZrDJcx5iVbPL7V8SzcpXMY4dNRYAUB8Sy3APVR0CAOhbhlXdENGIEnKJc9jXR76O2F7fLo7jZKuyK+3klY9tvuiCCzk5rnTBhTzDobq5OmpfzjhxD3DF/CsUjQkAUi3iIWiVq0q0pPWI+OaMm6N4LETUO/J1bEltZEtl+YFkeoKy3Ro0PtGhQy5o607uRZ45qu+tmpgcHyB97XFtMnTdOPkCka0HgqGuhJJOo3xCWq8VNwjegBdtbvGhHwqEzvUW1bHXOI1kCfYEoPO5UHldeXh7WW3n096Qcks7gW4JGFP0wz+gKzGSYE5QLKaGSjEc9NDxQ1H75OS40j0rAUCn1WGsUyRrjtYdxd7KvQCAMbYxisdCRL0jV63o7JHXaOWN4vxrRd8KJ/pq6eWiAm/8tOjWIIFgAOi85BydrNwKojiTaPXS5o9OHn21/ysAQFNV7B7pg+ma6dcAANw2Nzw+D5p1zQCA2fmzFY+FiHqnoUxcwx08eTBi+4HjBwAAkjv2oLbB0tEsKrH3HdkXtS/c/1bhggt5hoM8nK47+TycmqD8ap1Mh0hY1fvqUeOugSfggVajRWY8e44TDVU2iNV0pQ2lEdv9epFwkItElKILiuvtmOe3zoeUcovBvmByXGVarVYMzgDg80cmxzu84gMXkjpJX6NWVLX7gj50+EUscjU5EQ1NWp84rZfXdyXHz9SLQUUan0bRpZ0ZSRniCw1Q2xL9hLexXSxnV7RqsPM02+qJrhyvaasBAFg1yia0ZP5qcaHxn2/9J/zJ4usrJipf3UNEvTNzwkwAgN/gj2jrV9EsHrQ5dMoOPZMTHq2+6POby9/VaiU/Q7ker/LDz1jV7CXVohLJVR+7DcxgunLGleLzwAD85dO/IGgXBSmLJiu3komILky6QxRduKTIc8bhksMAgMYzjYrGU1cmEjQHjh2I2icP6TRIyrbHs2hFm9F6V/SQ0GZPMwDAYVJ+IGdesmihKMVL+PLIlwAAp8EJo07ZtrFE1HsTsycCAOLTI4fLB43imklu6aoUuSrckRJ9DpML31yNfb+mZHJ8KOi8n/IGIpfl+gP+iP1Kk4duBqQAXD7xP5lZp3xFJRH1nlyh0r3XoGQRJxElK7QBICk+KbzqJaiLbq1SdLwIAHDmxBnFYgr3QTdE90Gvc4mbnDi9csOPu3OGnACA4sZilPvEw427lt6lSixEdH5OizhmA6FAxLL62nbxMNBpcioaj3yOlxMg3cltTcx6s6LJiESrePjZEeqI2tchiW2j7KMUi0em1+kR5xbn+hc+fgHQAPACE7InKB4LEfVOZpJIjMhL+mUdGnEuyUjMUDQeOcksz0/oTn5IaYKy7bVsOlHp2dgR+aAgFAqhqV2s0lGjfeA9190DAKjT1WHrvq0AAF+N71xvISKVXTr5UvFFty6fre5WoPMyUsl2rQCQmSI+A3SW6ILdomKRV6goqYja11tMjg8BcvIoJEW2HQgERfJGI6nTKsRm6RxKpAd8GvHhJd/kENHQNCFH3Ngn53T1XWzXiqEZk7L7PqCiLzQaDRxmceMQq8d30CAS5nJvciXIfdnloaXdyTcS8cb4s9+miAkp4t/upOYk3H43LHoLxidFt0cgoqHBYrDAohdVevLDNQBo9IhzSYpNuUFFABBwi3OavFqoOzl5o3TFoDz4zSN5ovZ5NaIoRI2BnACQa84FAOzx7AEA2Dpsqsz4IaLeyR2VC0Cs1unOpxf3qdlJylYxyg9I2wLRbaMmTBPXdIsuVXY1yqXTRTIrf2LkCqH6lnpIGlEsI1+bK2ncqHEYkzgGgVAAf6v6GwDAqVP2ATIRXZg0u7hHr3HXhLdVNnUW4ElAVkqWovHIs8PavNHnXHmFovyavuAV4BBgNYsl/Hpj5FNcf1B88GugTnI80ZYIrUaLIILi/xQJSI5XdtAJEV2YCZniYrze27WcsrJNfIhlxClbUQN0fUCdXVUTCoUgmToHZyQr129wbIbo6w0tUF5bHrEve7y4qZo/fb5i8XQn97r1mEUSadKoSUN6ADIRAf5Wca325f4vw9sSMhMAAJeMv0TRWKxacT3phTdqzsPnez4HALgalG1hkhwnrhvlIovufDqxLT1R2YFOshXzVgAAAnHioUKKVtmHGUR0YcakizksIXMoosAhaBLFFnmpeYrGI696cYei20bJRSH9SdT0RUFmAYCuAcyy8EPTEJCSoM657ur8qwEAlRpxX3JV/lWqxEFEvZNgSAAAHK88Ht4WMolzi9PqVLRdKwCEOsTvPl52PGqfKyiub0fZ+r4akcnxIUAefBmUItsOyMlx7SD9M23cuBGzZ89GXFwcUlJSsHz5chQXF4f367Q6jLJ2/c+lD+qh0zFRQzSUjY4TgzEq2rqWFBWdFsuMkgxJisfTVi+e7H6578uI7dVN1eFPoJxU5ZZkJdgTwn3HT1SeiNgn90+blKdshb3s6ulXA90+Btwnom+2iGho0fvENVx5Q9fDtpBFXLwvmLZA0VjCDxp1okqwu6rGKgCA5FG2V9+8S+YBAEZlRd+syOfcDKfyD24BYPmc5RHfT0uZpkocRNQ7BRki8Qtt17D5+pZ6oLOt95gMZYeYp8SLJHMHottGqZUcD7fX8jZHbK9oEPcFGp9GtRUyuaHc8Neadg2eXf2sKnEQUe80lIohyEUlReFt8kpreeWMkkq+EbNqdh3YFbWvXRIr5VPj+74akcnxIUBOjgdCkUv85eS4DoOTkN6+fTvWrFmDr776Ctu2bUMgEMDSpUvhdnclZLovCbboLIMSBxENHINH3CF8XvR5eNtHuz8CAJQeLo35nsHkbxPnsTO1kcv8w1XbQcAZp+yHq94rzrmna09HbG/oEBcASVblHyIAotrnB2k/CH8/P1udCnYi6j2zJGaxVDVXhbfVukXPcaXbqqQkpISHvJfXRa6MkYezmSRl+9/KbbPa/JFLYH1+H+RWvEoPdJJNSpkEq0FU28+Nm4tX1ryiShxE1Dvxtnigc0TXsYpjAICTlSfFhmC3QfAKSU8Qq1582uiVMTt27gAAlJ8oj9o3mOT2WsWniyO2VzWJzyidX71Ct5tn3xz+jJqtmS3+PYloyBqbLlZc+41drawa2sX9shrJcbn1aazZOl6t+HDoz+wJJscHkdvt7vGPx9PVe9Hr8aKjvQNVNVURr2l1taKjvQMBb+C8P7cvtm7ditWrV2PSpEmYNm0aXnnlFZSVlWHPnj3h15woPoH7brgPC/MXYuW1K/H5559Do9HgwIHoqdyxHD58GJdffjksFgumT59+we8nogvjqRXnlm8qvglvaw42AwBynMoOzQAAs0YkjhrdkYOBzjSIZLnGq3wFizEopohUtVZFbC+pFk+j9X7lBxXJXvqnl/DpjZ/iB6N+gF/f82vV4iCi3onTiqGOZY2iijEQDKDGJXozjrIoO2hSq9VC4xWt+CoaIwcSyedgi1bZQge5arLV2wpJ6qpa7568z03LVTQmmVFnxNu3vo0/rvgjvnzoS7GyiIiGtPR4kZA2OsS13KmaUwAArUer+PWkvOol1pD3ygbROsTTGj1vYTA1Vohz/YmKyNWRtS3ioa0haFA0nu7y0vNQ0F4AQ6sBL//fl1WLg4h6Z0KWaNcqWSS4O0TO8X/+/j8AgNYz0fPEBptcwNbsa47aJ5+H5cHNfaFeBmAEsNvtPe5btmwZ/v73vwMQAzeXTl0KT0fsD8858+Zg5xc7w9/n5uaivj5yuWz3G46+amkRPYGdTvEU6PDhw7j00kvxwAMP4I+v/hFHjhzBTTfdBIPBgAkTJpz353V//6ZNmy74/UR04caljwMqgHZde3ibWys+zMamjlU8HjkR09TeFLG9slHcNOgDyn8MLZixANtKtoV7jMuqmqsAK+Bt9ioeU3cLJy/EwskLVY2BiHonzZKGcpSjtEWszCmpKkGoszQu0aT8EHNdQIcAAqhurI7Y3tzRDACw6WyKxuM0i2vKkBRCaV0pclNyASA8c8Kit8BmVjam7tjzlmh4yUrOQlVFFVqDIjFjSxbnj5xRyheATC2YCvwD0Fq1kCQJGk3XnLCOkGi1Irc5UUpqgmgpcHY1e12bGBptlIyKxnO2Y786purvJ6LeG5MxRqz20AJHyo5g9vjZONVwCjABVp9V8XhS7ClAM9AWjFyNGAqFwr3Qc1L6/lnAyvEhQG6r0uN+/eAnjyRJwvr167Fw4UJMnjwZALB27VosW7YMTz75JAoLC3HDDTdg3rx5mDhxIoxG8cG6YsUKJCYm4qabbor6med7f3l5ORYvXoyJEydi6tSp+N///d9B/+8kuthNyZkCAAhYAuGBbD6zuECWh3UqyaoTH5xnD+SUEyNOq/JLslLsotVBfXvXQ8buH6py8oaI6HzynfkAgGqPSEZ/c0as2tF4NLBbei6SGCxyVWB1S2RyXD4H2/XKxmQ2mKHxiITRoZJD4e1yP1w1luUS0fAlz8OSr+HckigAUePaTV6+H5SCcPkihx23h0SRSrI9WdGY5AHHAX1kNbucHLdo2CaViHpHr9ND2yFSxsVnRKsm+Xo3J0H5B5JpDtGqT+4vLnP73ZA7UY/LGtfnn8/K8UHkcrl63Nd9sKVep8cHBz+ANqDF9Kzp4e1H646iI9CBsUmR1Z6nT58e6FCxdu1aHDx4EJ999ln4d3zyySc4dOhQxOtMJhOmTesaWPTAAw/g7rvvxmuvvRYV4/ner9fr8etf/xrTp09HbW0tLrnkEixbtgw2m3oVRETD3fQx08UXeuB4xXE4bI5wX9dp+coPG4szipYDbd7IJ7yOVIeIabzyMSVbxY1K9+R4dVN1+EM1Pz1f8ZiIaHiamDEROAY0oxkAcLJa9L81+NRZum6STOhAB+pa6yK2t/naAD0QZ4pTPCa9Tw+/2R/+uwG6+kUmWpSvriei4Utyi+KKnYd24vuXfB+VbWIlYqq970PY+spqsMKgNcAf8qPJ0xRxfu3QisrxrKQsRWOSWwpIRgmhUCjcaqZgegHwKXDl3CsVjYeIhjeTX1xXnqwR13BNklgNPj51vOKxZDozgVLAq4tc5S0PCTXpTHBYHX3++awcH0Q2m63HP2azOfw6g84Ai9UCs80c8RqjxQiL1YI4W9x5f25/3H///XjnnXfw8ccfIzNTfKAeOHAARqMRkyZNinjt0aNHMX369PD3S5YsQVxc9I1Wb96fnp4e/jolJQVOpxONjY0gor6zW+zQtIsqvQMlB7qmS/uUH1QEAA6T+IBq9Uf2JQsnRszKJ0YaysUgkY+++ii8Te43jgCQFK/OQE4iGn7mjJsDAAjFhyBJEkrrRXsVc9B8rrcNmvmXiEG+hdMLI7ZrLOJzIdWhfALJEhSViqfrToe37Two2gV6mpTtx0tEw5u7QlSKby/aDgB4d9e7AIAkKH/tptFoYIE4vxWXRg7A9BvEADul271kpXQm4/VAs6s5vL22XfQcH5M6RtF4iGh4s0HkGuXr2w6jePA3NWeq4rFkJ4uWqGfPeZCT406LM6K91YVicnwIMOpFixJJ09U3XJIk+AKdvcKCg/N7JUnC2rVr8eabb+Kjjz5CXl5eeJ9Op0MgEIgYHLp9+3YcOHAgonK8Jxf6/q+//hqhUAhZWco+XSe6GJl9Iilz9MxRHDlzBABg8KhTxZgWL5Y/yRU0snq3qNpWuhcjAATbxElVHgoKAKdrTgMAtF7lBzoR0fB1+dTLAYj+rs2eZpQ3iUGT8qBOpaU4RNsolz9y9WLOOJGguWbxNYrHJP9dnGnqOucePX0UANBW1xbzPUREsUwbLe4jq/1iaf+e03sAAMG6QbphPg9Ps7jXPXzqcHhbKBRCyCxa9Y1JVzYZnZaYhs6xFzhVfSq8vdot/r7S7GmKxkNEw9vE7IkAgLiMODS2NkKyipylXByipEn5nYW3FiAY6jrnHzolulUYAv3LdzADMATIyXFougZrBoIBoPOhh9EwOIMz1qxZgz/+8Y94/fXXERcXh+rqalRXV6OjowMzZ86EwWDAj3/8Y5w6dQp/+9vfcM899wBAROV4Ty7k/Q0NDbjzzjuxadOmgf5PJBqR4iASESdrT0ITL04kuUm5qsSyYukKAMDogtER2//2j78BAIp2FykeU7pD9GN0wx3eVtFYAaD/H6pENLJYDVak2ERC+nTzaZQ1lwEAkozqrEBJMCUA6FqdI5N7jseb4hWOCEg0iBVC1a6uPuiNblHlo/SAUCIa3haMXwAAcFlcCIVCaDOKB2yXjrlUlXiMIXGfXtVcFd52pv5MOMtSkFGgaDxarTbcI/ho+dHw9t1HdwMAQq0hReMhouFt3pR5AADJJmFnsVj1Bx+Ql5Z3jncNjuxRonJcghRxnbv/m/0AgOaq5ug3XQAmx4cAk6GzIbCm6wmIx99ZcS2JtiuD4cUXX0RLSwsWL16M9PT08J/NmzcjPT0df/jDH/D2229j6tSp+MMf/oDvfe97GDt2LJzO8w9P6u37vV4vVqxYgUcffRTz588flP9OopHmsumXAQAyCjPgN4llnbPGz1IlFrlCpdZdG7G9zS9uZuKNyidqMp2ifZRH27WypaJJJMfNkjqtEIho+MpNyAUAFNcU44T7BABgevp0VWJpqBRto77a/1XEdnnJqRqtrMJzHjq65jzInwmJRvYcJ6Leu2LaFYAESGYJnxz8BCGbSPYumbZElXjktiq1rV3XuXI/3DhjHBz2vve/7auxKWJemTGpq8CuxlUDQL15GEQ0PI1LEgMui2qLUNosWqvY/DZVVlobdcbwPLOGjobw9ppWcX6zaqz9+vlMjg8Bep0ems4y8VDnOiivv7PJvIR+9c05F0mSYv5ZvXo1AOD2229HWVkZXC4X/vKXv+CDDz7AypUre/3zz/d++XddccUVWLVq1UD/5xGNWFNzRQ+wBl8DKtpE0jcjTvl+4wAwyjYKQHRy3B0QVdtO6/kftg20nBTRXsCv94e3peWJJP6UMVMUj4eIhrf6EyLp+6etf4I/WZxXls9drkoscpuSkqqSiO3FZ0Q/3GCL8q0H0uPEap1mf3N4W61HfCZkOdhOj4h6L9mRDL1LDwB4/v3nAQDadi2yU7JVicemFatf5HaBQNfAd/nBoNImZE4AADQFxOC8UCiEgFn06C0cXdjj+4iIzjYrXRTYfVX6FSSH6HKxaPoi1eKx6+wAgONnjoe31bnFEPo4ff9aGjI5PgRoNBrotDoAQCAkPrh8ftFvXCup80+0Y8cOvPHGGzh16hR27dqFW265BadPn8aPfvSjiNd961vfwsqVK/Huu+8iMzMTu3fv7vX7P//8c2zevBlvvfUWpk+fjunTp6OoSPkWC0QXG7mK8WDtQbyz7x0AwPgk5SdKA4BDLypm3H436lu6bhw6JNGDPNmu/I1Dflo+AFF1FAiKc27QKBJG47PV+XsiouErWS/OY0VtRXAFXTDqjLhu9nXqxNJ5TnUFu3qOt3vaETSJc1xOsrLD4QDgWwu/BQDIKuxKhDeHmgEA+cn5isdDRMNbQjABAPBJ1ScAALvXrloscQaRjJFX5wBAXbtI1MgFIkobHSdaGVa0igKZyoZKoLNgfGLORFViIqLhqTCpEPABHsmDNw++CQDIcSh/LSlrqRJtAncW7Qxvk8+//V2Rru/Xu2nAGHVGBEIB+IN+wAD4guomx2tqavDII4+goqICqampuOqqq7Br166olirvv/9+n9+/cOFChELse0Y00K7OvxoAsKtiFyAB0ACXxF+iSixJ9iQgAEAvKheTHSJx49WI1TGpjlTFYxqbIZabQguU1pRiTMaY8IdqkkWdPsFENHzlO/Oxq20XSoyiWntKyhQYdYMzL+Z8cpNzgXrAremaqXCkTAxmRhAYk6HscDgAGJsmzrn1nq4HpO2GdgDAhNETFI+HiIa3LHMW6lGP5sRmAECaQb0hk/KcB3muAwB8+MWHAIDW6lY1QoLJJ1q2fnn4S+AK4HBp57BQL8LX4UREvWE0GBHvjkersRUfVohzm5rJcQssaEc7qlq65jy0+FoAI5Bk7t99PCvHh4iQXySJG1pE7xx/UCzL1WrU+SdauXIlTp48CY/Hg9LSUvznf/4nUlN7n8Tq7/uJqO/S49Jhb+6sotEAlmYLZhbMVCUWrVYLnUesjDlReSK8XW5pokZy3G6xA52dq07XngYA7Dwqnj6bg+w5TkQX5uxBcJOck1SKBBifIVa/eE3e8LZvyr8BAGg9Wuh1ytfFpNrFeV5ur+UP+BG0iEr2afnTFI+HiIa3FZetiPh+bMJYlSIBnBZR+NUWaAtvk693fc0+VWJqPtMMADhw6gAA4FjlMQCAwct+40R04QqskYOFC+zKDhruzq4VOY7atq6Wra6AWC2ZbOvfwz8mx4cIbUj8U3gDnTcznf8yalUeEdHwdlnyZeGvL4lTp2pcZgyI81hJraiqDIVCCJo725iMVqeNSW5KLgDAmiQGd+wv3Q8A8NWocyNDRMPX/dffj8SmrsGSgfKAarFMzpkMAJAsElwd4mbhZM1JAIDJb1IlpiSTqORx+92oa64Tgzl1ogBkat5UVWIiouFr8aTFEd/fuOhGdQIBsHDWQgBAzviuSkq5rUqiSZ2BwwWpInHl0ojPgFO1pwAAlqBFlXiIaHhbkLcg/HVCcwKWT12uWiwOg2jZKs92AAA3xGrJlPiUfv1sJseHCKNeJI/8IVFNaTCJJ7vxcf3rm0NEI9O6a9aFv77z0jvVCwSADWJYUXljOQDgTNOZcFOv6WOmqxJTil18eFa7qgEAHSbRA31W/ixV4iGi4Uur1eLN770Z/v7/zPw/qsVSMLoA6Jy5efi0WEp/uv40AMAOdfryOiwOoHP+8dGyozjTegaAGBRtMqiTsCei4Wt+1nzce8m9uK7gOjy68FGsmrdKtVgKMkUi2qPxhLc1ecUgzGSLOi1M5KGbXqMoupOvv+O1zCsQ0YVbOW9l+Ov/WPEf0GrVSyPLq3WaPE3hbaOyxHyHS6ddGvM9vcWe40OEWW8GfEAAotpIbqti0HL5ExFduKUzl2L2m7PR5m/D3d+6W9VY4nXxqEc9qlpFb7AGn2gflWpLFS1OVDDWORa7KnahuKEYpTWlkCxi+vaCSQvO804iomiLpy3Gy1Uvo6i8CDdffrNqceh0Oug6dAjagzhSfgRzJ8xFZUslgK4ByUqT22sFDUEcqzyGJIOoJM+Mz1QlHiIa3nRaHTZdv0ntMACIh3wAUNFWEd7WFhQtVlLj1GkpOi1PtKuSLBKaXc0ouKQA+BxYOn+pKvEQ0fC2cPJC3PfpfYi3xKt6jQsAydZkoB1oDXTNdGiXxBybcZnj+vWzmRwfIqwmK+ADQhrRe7wjIKoYzXr2vyWivtn15C61QwDQtay0tl30BpOrBtVMjJhaRbXi6x+8jixfFgBA065BmlO9oU5ENLx9/5rvqx0CAGBK7hTsr9+PhKwEAJ3Vg56uJI4azEEz3HDjVO0pMSwaAFrO/R4ioqEuwybOq5WtlXB1uGC32OGWxBL/0YmjVYkpNy1XrNYxAAdPHQzPe8hPyVclHiIa/l784YtqhwAASItPA9oBd0icZyVJQmNHI4CuqvK+YluVIcJmFm0HoAU6vB3wBUXfW6OWPceJaHhLsYoWJvLNwsl60f9WzeR4YlAk7E+1ncLekr0AAJvXplo8REQDJTc5F0BX26jUMaJ6ccXSFT29ZdDJLV1O1Z3CgRIxJM5b5z3XW4iIhrz0+HQgAEAD7Dm+BwDg1YlzW1ZSlioxabVa6D2iBvJQ2SFUu8VnQZqdBSBENLzNnDgTAJA4WtzLl9SUwBsU59wUG3uOXxRMBhMgisZR01wjvgiBvRiJaNi76dqbAAC5k3IBAP/7/v8CAMoOlakVEi6fcDkAwG1x40j1EQBAsk6d3pBERAMp3Z4OAKhyiVZWNS5xXalmYmRM3BgAwN7qvajpEPGMjlenqpKIaKBotVoY2kUb1H2n9gFAeOh8fqp6ldrWgBg4f7z6OL785ksAgLadqR8iGt6mjhWD3Du0otPG9oPbAQBalxYWQ/+GDvMMOYRoJfHP0eYXfcr0ErveENHwlxYnEjLyss6adpEYGWUepVpMS6YtEQ8kTcC+enEzk2VXp8KHiGgg+RrE6sMPd34IoFsFuU2d/rcAsLhgMQCgLFiG5mAzACA/mUv8iWj4iwvGAQCOVByBL+iDZBRzbGZOmKlaTLPGiwHz7fHtaNKJwXXzc+arFg8R0UDIS8gDIK5tXT4X9p0W9/F2f//nmDE5PoTE28QEaa9WLAswathShYiGv1FWkQSXk+ONAdEXLM+Zp1pM8bZ4GFyi0qcuoQ4AcM3ca1SLh4hooPibxFD3EzUnAADHK48DAEJtIdVium3hbQAAb7wXrSYxRKkwo1C1eIiIBoo8ZPhkw0lUtYkVO3qtHk5r//rf9sfCwoUAgNePvQ4AMLWYMD5rvGrxEBENhERLIhKNoqXK50c/x9GaowCAUfr+F90xOT6EGHWRyXCrwapSJMCOHTtw/fXXIyMjAxqNBm+99ZbiMWzcuBGzZ89GXFwcUlJSsHz5chQXFyseBxH1jykg2kNVNFcgEAzArRO9x8el92+idH85Q+KmJdTZ0+qySZepGQ4R0YDIHyUqsl1wodnVjJBJnOPkXuRqmJw3GRnWDEADSFYJ8AA3zr9RtXiIiAbKaLtoEVXRVoHDdYcBAOOTxkOrUS/VctNE0dLQFXQBAAoMBarFQkQ0kAI1AQDAu7veRWlrKQAgOy673z+XyfEhJM4YF/G93dL/pQF95Xa7MW3aNLzwwgsX/N7Fixfj1Vdf7XcM27dvx5o1a/DVV19h27ZtCAQCWLp0Kdxud79/NhEpZ1z6OMAPSFoJ2/Zug88slvxPyZ6ialw51pzw1zqNDuOS1E3WExENhHEZ4lzmNXpxtExU1CAI5KWpt1oHAC7Pvzz89QzMQEpi/wYnERENBWOSxEyFen89Xn77ZQCAvV29+3gAmJI6BXm2rnP+VQVXqRgNEdHASTOIlq1FlUWo84sV4IWp/V+NyOT4EJJgTkCCISH8vcPqGNTfFwqFsGHDBhQUFMBsNiM1NRWrVq0CAFx77bX45S9/iRtuuEG1GLZu3YrVq1dj0qRJmDZtGl555RWUlZVhz549gxoTEQ0ss9EMu1vcJLy24zWgc5HMjLEzVIwKuDT30vDXv132W6Ta1evHS0Q0UCZlTwIAhCwhbD8sBhXp2nXQatW97J+VLnrgQgJ+dfOvVI2FiGigTMiYAABo07Zhf9V+AEBcR9w53qGMzObM8Nffu+J7KkZCRDRw8h1ihWRJawnaDGJe4/Sc6f3+uZz4OAgkSUK7v71P702LT4Or2gWDzgBfyAefz9fr91oNVmg0ml6/fuPGjfjTn/6ETZs2IT8/H2fOnME333zTl7D77EJiaGlpAQA4ner1byOivskz5aEIRfiw/EMgEdB4NEh2JKsa01N3PQXrn6xYPmc55k6Yq2osREQDpTCrEAgA0AO//fK3gAPIlDLP+77BtmLCCjyx/Qlcn389rpxxpdrhEBENiCtnXgkUAVqnFtUNYgDynNw5KkcFPHX7U5j/3/Ph6HBgav5UtcMhIhoQ0zKn4f3S91EdqkYwLggAmF/Y/4HDTI4PgnZ/O+wblV9K5XrUBZvR1uvXv//++7juuuuwZMkSAEBOTg4WLFgwWOH1KwZJkrB+/XosXLgQkydPVjRGIuq/uVlzUVRfhIbEBgBAgjZB3YAgKto33rVR7TCIiAaU0WBEUlsSGhIbcMZxBgBwedbl53nX4MtPzEfzw80XVMhBRDTUTRgtKsc9QQ+QILZ9a9q31Auo07yJ83Di/hNItCeqHQoR0YCZP24+UAp4EjwAAJPWhIk5E/v9c4dNW5XTp0/jnnvuQV5eHiwWC8aMGYPHH3/8vJXVkiThiSeeQEZGBiwWCxYvXozDhw8rFPXQ9p3vfAfPPPMMli5dipdeegmNjY19+jkbNmyA3W4P//n0009x3333RW3rTwxr167FwYMH8ac//alPMRKRur4949sR39+7+F6VIiEiuvhdnXV1xPd3Xn6nSpFE0ml1qg6pIyIaaCa9CVnxWV0bfMD8Sf2vYhwIYzLGwBnPVddEdPFYNHVRxPcFyQUD0jpQI0mS1O+fooCtW7di8+bNuO222zB27FgcOnQI9957L1atWoVnnnmmx/c99dRTePLJJ/Hqq69i3Lhx+OUvf4kdO3aguLgYcXG96wXW2toKh8OBlpYWxMfHR+zzeDwoKSlBXl4ezGYzgP61VemPC22rAgDHjh3DW2+9hddeew1VVVXYs2cP8vIiBzZpNBps2bIFy5cvj/kzGhsbI5La3/3ud3HjjTdG9CsfPXo0LBZLn2K4//778dZbb2HHjh1RsZ0t1r8HEanP5/fBtMEU/r5ifQUy4jJUjIiI6OJVXFmMwpfFcCJDhwGeDR7Ve44TEV2snvviOfzztn8GAGjaNQg9FVI5IiKii5f+R/pwS5WVE1fi/638fzFfd65cbtTPHPAoB8k111yDa665Jvx9fn4+iouL8eKLL/aYHJckCb/+9a/x2GOPhRO1r732GlJTU/H666/jBz/4waDEqtFoLqi9iZrGjRuHn/zkJ3jwwQfhcDhw5MiR8yagz+Z0OiP6gFssFqSkpGDs2LH9ikGSJNx///3YsmULPvnkkwuOi4iGDqPBCG1Qi5AuhMmJk5kYJyIaROMzxmPu6LnYWbETt8y9hYlxIqJB9MDcB/DoXx6Fz+HDJExSOxwioova4vjF+MzzGVbPX43HLntsQH7msEmOx9LS0nLO4YwlJSWorq7G0qVLw9tMJhMWLVqEL774osfkuNfrhdfrDX/f2to6cEEPEU8//TRSU1Mxe/Zs6HQ6/P73v0diYiLmzxdLwFwuF06cOBF+fUlJCfbv3w+n04ns7GxFYlizZg1ef/11vP3224iLi0N1tRhw4nA4eqxCJ6Kh6xeTfoHffvVb/Peq/1Y7FCKii94jCx/BA+89gB/O+qHaoRARXdT0Oj2OPXwM619bj8dXPa52OEREF7UP//XDAf+ZwzY5fvLkSTz//PN49tlne3yNnExNTU2N2J6amorS0tIe37dx40b8/Oc/H5hAhyiPx4MNGzagrKwMdrsdCxYswEcffYTERDGw4+uvvw4PyQSA9evXAwDuuusuvPrqq4rE8OKLLwIAFi9eHPG+V155BatXrx6QGIhIOY/d8hgeu2VgnuwSEdG5LS9cjuWFy9UOg4hoRMhJzcEbP3lD7TCIiKgPVO85/sQTT5w3Eb17927MmjUr/H1lZSUWLVqERYsW4fe//32P7/viiy+wYMECVFZWIj09Pbz93nvvRXl5ObZu3RrzfbEqx7Oysnrdc5zUw38PIiIiIiIiIiKikWtY9Rxfu3Ytbr311nO+Jjc3N/x1ZWUllixZgnnz5mHTpk3nfF9aWhoAUUHePTleW1sbVU3enclkgslk6nE/EREREREREREREQ1vqifHk5OTkZyc3KvXVlRUYMmSJZg5cyZeeeWV8w4XysvLQ1paGrZt24YZM2YAAHw+H7Zv346nnnqq37ETERERERERERER0fA0bEbXV1ZWYvHixcjKysIzzzyDuro6VFdXh/uKywoLC7FlyxYAgEajwbp167BhwwZs2bIFhw4dwurVq2G1WnH77ber8Z9BREREREREREREREOA6pXjvfXBBx/gxIkTOHHiBDIzMyP2dW+bXlxcjJaWlvD3P/nJT9DR0YF/+qd/QlNTE+bOnYsPPvgAcXFxisVOREREREREREREREOL6gM5h4NzNXHnAMihhf8eREREREREREREI9eFDOQcNm1VhrpQKKR2CAT+OxAREREREREREVHvDJu2KkOV0WiEVqtFZWUlRo0aBaPRCI1Go3ZYI44kSfD5fKirq4NWq4XRaFQ7JCIiIiIiIiIiIhrCmBzvJ61Wi7y8PFRVVaGyslLtcEY8q9WK7OxsaLVcFEFEREREREREREQ9Y3J8ABiNRmRnZyMQCCAYDKodzoil0+mg1+tZuU9ERERERERERETnxeT4ANFoNDAYDDAYDGqHQkRERERERERERETnwd4TRERERERERERERDTiMDlORERERERERERERCMOk+NERERERERERERENOKw53gvSJIEAGhtbVU5EiIiIiIiIiIiIiLqiZzDlXO658LkeC80NDQAALKyslSOhIiIiIiIiIiIiIjOp62tDQ6H45yvYXK8F5xOJwCgrKzsvH+hRDQwWltbkZWVhfLycsTHx6sdDtGIwOOOSHk87oiUx+OOSHk87oiUN5KPO0mS0NbWhoyMjPO+lsnxXtBqRWt2h8Mx4v5nIlJbfHw8jzsihfG4I1Iejzsi5fG4I1Iejzsi5Y3U4663Bc4cyElEREREREREREREIw6T40REREREREREREQ04jA53gsmkwmPP/44TCaT2qEQjRg87oiUx+OOSHk87oiUx+OOSHk87oiUx+OudzSSJElqB0FEREREREREREREpCRWjhMRERERERERERHRiMPkOBERERERERERERGNOEyOExEREREREREREdGIw+Q4EREREREREREREY04TI4TERERERERERER0YjD5Ph5/O53v0NeXh7MZjNmzpyJTz/9VO2QiC4aGzduxOzZsxEXF4eUlBQsX74cxcXFEa+RJAlPPPEEMjIyYLFYsHjxYhw+fFiliIkuPhs3boRGo8G6devC23jcEQ28iooK3HHHHUhKSoLVasX06dOxZ8+e8H4ed0QDKxAI4Gc/+xny8vJgsViQn5+PX/ziFwiFQuHX8Lgj6p8dO3bg+uuvR0ZGBjQaDd56662I/b05xrxeL+6//34kJyfDZrPhO9/5Ds6cOaPgfwXR8HKu487v9+Phhx/GlClTYLPZkJGRgTvvvBOVlZURP4PHXSQmx89h8+bNWLduHR577DHs27cPl112Ga699lqUlZWpHRrRRWH79u1Ys2YNvvrqK2zbtg2BQABLly6F2+0Ov+bpp5/Gc889hxdeeAG7d+9GWloarr76arS1takYOdHFYffu3di0aROmTp0asZ3HHdHAampqwoIFC2AwGPDee+/hyJEjePbZZ5GQkBB+DY87ooH11FNP4aWXXsILL7yAo0eP4umnn8avfvUrPP/88+HX8Lgj6h+3241p06bhhRdeiLm/N8fYunXrsGXLFvz5z3/GZ599BpfLhW9/+9sIBoNK/WcQDSvnOu7a29uxd+9e/Mu//Av27t2LN998E8eOHcN3vvOdiNfxuDuLRD2aM2eOdN9990VsKywslB555BGVIiK6uNXW1koApO3bt0uSJEmhUEhKS0uT/u3f/i38Go/HIzkcDumll15SK0yii0JbW5tUUFAgbdu2TVq0aJH04IMPSpLE445oMDz88MPSwoULe9zP445o4F133XXS3XffHbHthhtukO644w5JknjcEQ00ANKWLVvC3/fmGGtubpYMBoP05z//OfyaiooKSavVSlu3blUsdqLh6uzjLpZdu3ZJAKTS0lJJknjcxcLK8R74fD7s2bMHS5cujdi+dOlSfPHFFypFRXRxa2lpAQA4nU4AQElJCaqrqyOOQ5PJhEWLFvE4JOqnNWvW4LrrrsNVV10VsZ3HHdHAe+eddzBr1iysXLkSKSkpmDFjBl5++eXwfh53RANv4cKF+Mc//oFjx44BAA4cOIDPPvsMy5YtA8Djjmiw9eYY27NnD/x+f8RrMjIyMHnyZB6HRAOkpaUFGo0mvGKRx100vdoBDFX19fUIBoNITU2N2J6amorq6mqVoiK6eEmShPXr12PhwoWYPHkyAISPtVjHYWlpqeIxEl0s/vznP2Pv3r3YvXt31D4ed0QD79SpU3jxxRexfv16/PSnP8WuXbvwwAMPwGQy4c477+RxRzQIHn74YbS0tKCwsBA6nQ7BYBBPPvkkbrvtNgD8vCMabL05xqqrq2E0GpGYmBj1GuZdiPrP4/HgkUcewe233474+HgAPO5iYXL8PDQaTcT3kiRFbSOi/lu7di0OHjyIzz77LGofj0OigVNeXo4HH3wQH3zwAcxmc4+v43FHNHBCoRBmzZqFDRs2AABmzJiBw4cP48UXX8Sdd94Zfh2PO6KBs3nzZvzxj3/E66+/jkmTJmH//v1Yt24dMjIycNddd4Vfx+OOaHD15RjjcUjUf36/H7feeitCoRB+97vfnff1I/m4Y1uVHiQnJ0On00U9NamtrY168klE/XP//ffjnXfewccff4zMzMzw9rS0NADgcUg0gPbs2YPa2lrMnDkTer0eer0e27dvx7//+79Dr9eHjy0ed0QDJz09HRMnTozYNmHChPCQd37eEQ28H//4x3jkkUdw6623YsqUKVi1ahUeeughbNy4EQCPO6LB1ptjLC0tDT6fD01NTT2+hogunN/vx80334ySkhJs27YtXDUO8LiLhcnxHhiNRsycORPbtm2L2L5t2zbMnz9fpaiILi6SJGHt2rV488038dFHHyEvLy9if15eHtLS0iKOQ5/Ph+3bt/M4JOqjK6+8EkVFRdi/f3/4z6xZs/Dd734X+/fvR35+Po87ogG2YMECFBcXR2w7duwYcnJyAPDzjmgwtLe3Q6uNvN3V6XQIhUIAeNwRDbbeHGMzZ86EwWCIeE1VVRUOHTrE45Coj+TE+PHjx/Hhhx8iKSkpYj+Pu2hsq3IO69evx6pVqzBr1izMmzcPmzZtQllZGe677z61QyO6KKxZswavv/463n77bcTFxYWrChwOBywWCzQaDdatW4cNGzagoKAABQUF2LBhA6xWK26//XaVoycanuLi4sJ9/WU2mw1JSUnh7TzuiAbWQw89hPnz52PDhg24+eabsWvXLmzatAmbNm0CAH7eEQ2C66+/Hk8++SSys7MxadIk7Nu3D8899xzuvvtuADzuiAaCy+XCiRMnwt+XlJRg//79cDqdyM7OPu8x5nA4cM899+Cf//mfkZSUBKfTiR/96EeYMmVK1NB4IhLOddxlZGTgpptuwt69e/G3v/0NwWAwnGdxOp0wGo087mKR6Jx++9vfSjk5OZLRaJQuueQSafv27WqHRHTRABDzzyuvvBJ+TSgUkh5//HEpLS1NMplM0uWXXy4VFRWpFzTRRWjRokXSgw8+GP6exx3RwPvrX/8qTZ48WTKZTFJhYaG0adOmiP087ogGVmtrq/Tggw9K2dnZktlslvLz86XHHntM8nq94dfwuCPqn48//jjm/dxdd90lSVLvjrGOjg5p7dq1ktPplCwWi/Ttb39bKisrU+G/hmh4ONdxV1JS0mOe5eOPPw7/DB53kTSSJElKJuOJiIiIiIiIiIiIiNTGnuNERERERERERERENOIwOU5EREREREREREREIw6T40REREREREREREQ04jA5TkREREREREREREQjDpPjRERERERERERERDTiMDlORERERERERERERCMOk+NERERERERERERENOIwOU5EREREREREREREIw6T40REREREREREREQ04jA5TkREREQ0gixevBgajQYajQb79+/v1XtWr14dfs9bb701qPERERERESmFyXEiIiIioovIunXrsHz58nO+5t5770VVVRUmT57cq5/5m9/8BlVVVQMQHRERERHR0MHkOBERERHRRWT37t2YM2fOOV9jtVqRlpYGvV7fq5/pcDiQlpY2EOEREREREQ0ZTI4TEREREV0E/H4/jEYjvvjiCzz22GPQaDSYO3dur9//l7/8BVOmTIHFYkFSUhKuuuoquN3uQYyYiIiIiEhdvSsVISIiIiKiIU2n0+Gzzz7D3LlzsX//fqSmpsJsNvfqvVVVVbjtttvw9NNPY8WKFWhra8Onn34KSZIGOWoiIiIiIvUwOU5EREREdBHQarWorKxEUlISpk2bdkHvraqqQiAQwA033ICcnBwAwJQpUwYjTCIiIiKiIYNtVYiIiIiILhL79u274MQ4AEybNg1XXnklpkyZgpUrV+Lll19GU1PTIERIRERERDR0MDlORERERHSR2L9/f5+S4zqdDtu2bcN7772HiRMn4vnnn8f48eNRUlIyCFESEREREQ0NTI4TEREREV0kioqKMHXq1D69V6PRYMGCBfj5z3+Offv2wWg0YsuWLQMcIRERERHR0MGe40REREREF4lQKISDBw+isrISNpsNDoejV+/buXMn/vGPf2Dp0qVISUnBzp07UVdXhwkTJgxyxERERERE6mHlOBERERHRReKXv/wlNm/ejNGjR+MXv/hFr98XHx+PHTt2YNmyZRg3bhx+9rOf4dlnn8W11147iNESEREREamLleNERERERBeJO+64A3fccccFv2/ChAnYunXrIERERERERDR0sXKciIiIiGiE+d3vfge73Y6ioqJevf6+++6D3W4f5KiIiIiIiJSlkSRJUjsIIiIiIiJSRkVFBTo6OgAA2dnZMBqN531PbW0tWltbAQDp6emw2WyDGiMRERERkRKYHCciIiIiIiIiIiKiEYdtVYiIiIiIiIiIiIhoxGFynIiIiIiIiIiIiIhGHCbHiYiIiIiIiIiIiGjEYXKciIiIiIiIiIiIiEYcJseJiIiIiIiIiIiIaMRhcpyIiIiIiIiIiIiIRhwmx4mIiIiIiIiIiIhoxGFynIiIiIiIiIiIiIhGHCbHiYiIiIiIiIiIiGjE+f8RIjOBWlqvVAAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -408,12 +405,17 @@ ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "id": "482d99d0-2fc1-4bb8-9cf8-684acda8d34f", "metadata": {}, - "outputs": [], - "source": [] + "source": [ + "## Summary\n", + "During measurements ApRES continuously combines the signal it receives from the receiving antenna with the signal it is tranmitting. Because it takes some time for the transmitted signal to arrive back at the radar, the frequencies of the transmitted and received signals are very slightly different, so they combine to create a signal with a frequnecy componet that is proportional to the difference in the frequencies - the beat frequency. This difference is proprtional to the range to the reflector, so to estimate the range, we just need to estimate the beat frequency. \n", + "\n", + "The previous page describes how this is done in theory using a fourier transform. \n", + "\n", + "The next page demonstates how this is done with real ApRES data collected from Antarctica. " + ] } ], "metadata": { diff --git a/src/_build/jupyter_execute/sections/radar/apres/theory_1.ipynb b/_build/html/_sources/sections/radar/apres/theory_1.ipynb similarity index 99% rename from src/_build/jupyter_execute/sections/radar/apres/theory_1.ipynb rename to _build/html/_sources/sections/radar/apres/theory_1.ipynb index ababa7a..5c2a158 100644 --- a/src/_build/jupyter_execute/sections/radar/apres/theory_1.ipynb +++ b/_build/html/_sources/sections/radar/apres/theory_1.ipynb @@ -5,12 +5,14 @@ "metadata": {}, "source": [ "(page:apres-theory)=\n", - "# ApRES theory\n", - "This page describes the theory behind the Autonomous Radio-echo sounder, including \n", + "# Autonomous phase-sensitive radio-echo sounder theory\n", + "This page describes some of the theory behind the Autonomous phase-sensitive radio-echo (ApRES) sounder, including \n", "- a description of the linear chirps the system emits, \n", "- how individual and multiple reflectors are represented in the returned signal,\n", - "- how the range to these reflectors is encoded in the frequency content of returned signal, and \n", - "- how to extract the range to reflectors using a fourier transform. " + "- how the range to these reflectors is encoded in the frequency content of the returned signal, and \n", + "- how to extract the range to reflectors using a fourier transform. \n", + "- \n", + "Later pages will describe how the phase information in the returned signal to compute the displacement of reflectors. " ] }, { @@ -336,7 +338,7 @@ "metadata": {}, "outputs": [], "source": [ - "s = np.exp(1j*2*np.pi*f_d*t)" + "s = np.exp(1j*2*np.pi*f_d*t) " ] }, { @@ -504,7 +506,7 @@ "source": [ "This range-amplitude plot is the ApRES equivalent of the usual time domain plot you would get from an impulse radar system: i.e. one which sends out a single pulse of radio-wave energy and records the echo from the reflector(s) beneath. \n", "\n", - "As expected, in the plot above we see a peak at 110 m. We can detect the position of the peak using `argrelextrema`, a function from the pckage `scipy`. " + "As expected, in the plot above we see a peak at 110 m. We can detect the position of the peak using `argrelextrema`, a function from the package `scipy`. " ] }, { @@ -641,9 +643,9 @@ "N = f_d T.\n", "$$\n", "\n", - "The more cycles in a signal, the more precisely the fourier transform can determine its frequency. This is a fundamental property of fourier transforms and its crops up in many applications, including in quantum mechanics as the Heisenberg uncertainty principle. This is a great video on the subject from the same source as the video linked above about fouier transforms: https://www.youtube.com/watch?v=MBnnXbOM5S4. This video graphically demonstrates the idea that it is difficult for a foufier transform to determine the frequency of a short signal containing few cycles.\n", + "The more cycles in a signal, the more precisely the fourier transform can determine its frequency. This is a fundamental property of fourier transforms and its crops up in many applications, including in quantum mechanics as the Heisenberg uncertainty principle. This is a great video on the subject from the same source as the video linked above about fourier transforms: https://www.youtube.com/watch?v=MBnnXbOM5S4. This video graphically demonstrates the idea that it is difficult for a fourier transform to determine the frequency of a short signal containing few cycles.\n", "\n", - "Interestingly, you will notice if you play around with the numbers in the cell above, that (all else being equal) the width of the peak does not depend on the chirp duration, $T$. At first sight this is surprising because you would expect that a longer duration chirp would contain more cycles and would therefore result in a narrower peak. However, notice that as you vary $T$, the number of cycles, which is printed out beneath the cell, does not change. This is because increasing $T$ while keeping $B$ constant decreases the rate of change of the frequency, $K$. This means that by the time the signal arrives back at the radar, the transmitted signal has not increased as much as it would have done if $K$ were larger. Therefore the frequency of the deramped signal, $f_d$, is lower than it would have been. \n", + "Interestingly, you will notice that if you play around with the numbers in the cell above (all else being equal) the width of the peak does not depend on the chirp duration, $T$. At first sight this is surprising because you would expect that a longer duration chirp would contain more cycles and would therefore result in a narrower peak. However, notice that as you vary $T$, the number of cycles, which is printed out beneath the cell, does not change. This is because increasing $T$ while keeping $B$ constant decreases the rate of change of the frequency, $K$. This means that by the time the signal arrives back at the radar, the transmitted signal has not increased as much as it would have done if $K$ were larger. Therefore the frequency of the deramped signal, $f_d$, is lower than it would have been. \n", "\n", "A longer chirp duration tends to increase the number of cycles per chirp, but the decrease in frequency of the deramped signal $f_d$ counteracts this. In fact, the two effects balance exactly, resulting in the number of cycles per chirp being independent of $T$. \n", "\n", @@ -659,7 +661,7 @@ "N = B\\tau.\n", "$$\n", "\n", - "From this we can see how the badnwidth $B$ effects the peak width, while $T$ does not; $T$ cancelling out in the last step above corresponds to the two effects descrbed above balancing each other exactly. " + "From this we can see how the bandwidth $B$ effects the peak width, while $T$ does not; $T$ cancelling out in the last step above corresponds to the two effects descrbed above balancing each other exactly. " ] }, { @@ -673,14 +675,14 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "So far we have considered just one reflectors. In general we simultaneously receive signals from reflectors at a whole range of depths. To give a feel for what this looks like, we will plot the frequency of ten signals with their delays selected randomly, to represent signals from ten reflectors at different depths. " + "So far we have considered just one reflector. In general we simultaneously receive signals from reflectors at a whole range of depths. To give a feel for what this looks like, we will plot the frequency of ten signals with their delays selected randomly, to represent signals from ten reflectors at different depths. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "First let's redfine a few functions to make sure to avoid any issues with varied parameter from the previous section." + "First let's redefine a few functions to make sure to avoid any issues caused by varying parameters in the previous section." ] }, { @@ -698,6 +700,8 @@ "f_2 = 400e6 # ending frequency\n", "f_c = (f_1+f_2)/2 # center frequency\n", "B = f_2 - f_1 # bandwidth\n", + "K = B/T # [Hz/s]\n", + "\n", "sampling_frequency = 40000 # [Hz]\n", "t = np.linspace(0,T,sampling_frequency*T) # time vector\n", "def chirp(delay = 0):\n", @@ -773,7 +777,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "In practice, signals from all the reflectors are combined togather and arrive back at the radar simultaneously, thoughout the chirp. This means that the signal received by the radar is the sum of signals reflected by many reflectors - hundreds or thousands in reality, compared to the ten we plotted above. Moreover, the signals all have slightly different frequencies differences, $f_d$, depending on the range to each reflector. Let's generate the deramped signal that these ten reflectors would yield and plot it. \n", + "In practice, signals from all the reflectors are combined together and arrive back at the radar simultaneously, thoughout the chirp. This means that the signal received by the radar is the sum of signals reflected by many reflectors - hundreds or thousands in reality, compared to the ten we plotted above. Moreover, the signals all have slightly different frequencies differences, $f_d$, depending on the range to each reflector. Let's generate the deramped signal that these ten reflectors would yield and plot it. \n", "\n", "We first compute the frequency differences for each reflector:" ] @@ -868,7 +872,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The plot above shows what ApRES would record to disk if in our simple 10-reflector case. The signal has ten frequency components, each correspondong to one reflector. The challenge now is to estimate these frequency componets to determine the range to all the reflectors. As above, we use a fourier transform. " + "The plot above shows what ApRES would record to disk in our simple 10-reflector case. The signal has ten frequency components, each correspondong to one reflector. The challenge now is to estimate these frequency componets to determine the range to all the reflectors. As above, we use a fourier transform. " ] }, { @@ -1000,14 +1004,15 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "12. Summary\n", + "## 12. Summary\n", "- ApRES emits one-second-long chirps. \n", "- ApRES detects the range to sub-surface reflectors by combined the frequency of a transmitted signal, which continually increases throughout each chirp, to the frequency of the signal received from the reflectors. \n", "- The tranmistted and received signal are in the MHz range. \n", "- This combination results in a 'deramped' signal which is in the audio frequency range.\n", "- The deramped signal is saved to disk by ApRES. \n", "- The frequency components of the deramped signal are extracted using a fourier transform to determine the range to sub-surface reflectors.\n", - "- The range-amplitude results, `S`, can be used to compute deisplacement of reflectors using cross-correlation betweeen successive measurements." + "\n", + "On the next page we explore the beat frequency and how it help us estiamte difference between the frequncies of the transmitted and received signals. \n" ] }, { @@ -1042,4 +1047,4 @@ }, "nbformat": 4, "nbformat_minor": 4 -} \ No newline at end of file +} diff --git a/src/_build/html/_sources/sections/radar/impulse/impulse-radar.md b/_build/html/_sources/sections/radar/impulse/impulse-radar.md similarity index 100% rename from src/_build/html/_sources/sections/radar/impulse/impulse-radar.md rename to _build/html/_sources/sections/radar/impulse/impulse-radar.md diff --git a/src/_build/html/_sources/sections/temperature/analytical_solution.ipynb b/_build/html/_sources/sections/temperature/analytical_solution.ipynb similarity index 100% rename from src/_build/html/_sources/sections/temperature/analytical_solution.ipynb rename to _build/html/_sources/sections/temperature/analytical_solution.ipynb diff --git a/src/_build/html/_sources/sections/temperature/heat_equation.ipynb b/_build/html/_sources/sections/temperature/heat_equation.ipynb similarity index 100% rename from src/_build/html/_sources/sections/temperature/heat_equation.ipynb rename to _build/html/_sources/sections/temperature/heat_equation.ipynb diff --git a/src/_build/html/_sources/sections/temperature/heat_intro.ipynb b/_build/html/_sources/sections/temperature/heat_intro.ipynb similarity index 100% rename from src/_build/html/_sources/sections/temperature/heat_intro.ipynb rename to _build/html/_sources/sections/temperature/heat_intro.ipynb diff --git a/src/_build/html/_sources/sections/temperature/numerical_solutions.ipynb b/_build/html/_sources/sections/temperature/numerical_solutions.ipynb similarity index 100% rename from src/_build/html/_sources/sections/temperature/numerical_solutions.ipynb rename to _build/html/_sources/sections/temperature/numerical_solutions.ipynb diff --git a/src/_build/html/_sphinx_design_static/design-style.4045f2051d55cab465a707391d5b2007.min.css b/_build/html/_sphinx_design_static/design-style.4045f2051d55cab465a707391d5b2007.min.css similarity index 100% rename from src/_build/html/_sphinx_design_static/design-style.4045f2051d55cab465a707391d5b2007.min.css rename to _build/html/_sphinx_design_static/design-style.4045f2051d55cab465a707391d5b2007.min.css diff --git a/src/_build/html/_sphinx_design_static/design-tabs.js b/_build/html/_sphinx_design_static/design-tabs.js similarity index 100% rename from src/_build/html/_sphinx_design_static/design-tabs.js rename to _build/html/_sphinx_design_static/design-tabs.js diff --git a/src/_build/html/_static/_sphinx_javascript_frameworks_compat.js b/_build/html/_static/_sphinx_javascript_frameworks_compat.js similarity index 100% rename from src/_build/html/_static/_sphinx_javascript_frameworks_compat.js rename to _build/html/_static/_sphinx_javascript_frameworks_compat.js diff --git a/src/_build/html/_static/basic.css b/_build/html/_static/basic.css similarity index 100% rename from src/_build/html/_static/basic.css rename to _build/html/_static/basic.css diff --git a/src/_build/html/_static/check-solid.svg b/_build/html/_static/check-solid.svg similarity index 100% rename from src/_build/html/_static/check-solid.svg rename to _build/html/_static/check-solid.svg diff --git a/src/_build/html/_static/clipboard.min.js b/_build/html/_static/clipboard.min.js similarity index 100% rename from src/_build/html/_static/clipboard.min.js rename to _build/html/_static/clipboard.min.js diff --git a/src/_build/html/_static/copy-button.svg b/_build/html/_static/copy-button.svg similarity index 100% rename from src/_build/html/_static/copy-button.svg rename to _build/html/_static/copy-button.svg diff --git a/src/_build/html/_static/copybutton.css b/_build/html/_static/copybutton.css similarity index 100% rename from src/_build/html/_static/copybutton.css rename to _build/html/_static/copybutton.css diff --git a/src/_build/html/_static/copybutton.js b/_build/html/_static/copybutton.js similarity index 100% rename from src/_build/html/_static/copybutton.js rename to _build/html/_static/copybutton.js diff --git a/src/_build/html/_static/copybutton_funcs.js b/_build/html/_static/copybutton_funcs.js similarity index 100% rename from src/_build/html/_static/copybutton_funcs.js rename to _build/html/_static/copybutton_funcs.js diff --git a/src/_build/html/_static/design-style.4045f2051d55cab465a707391d5b2007.min.css b/_build/html/_static/design-style.4045f2051d55cab465a707391d5b2007.min.css similarity index 100% rename from src/_build/html/_static/design-style.4045f2051d55cab465a707391d5b2007.min.css rename to _build/html/_static/design-style.4045f2051d55cab465a707391d5b2007.min.css diff --git a/src/_build/html/_static/design-tabs.js b/_build/html/_static/design-tabs.js similarity index 100% rename from src/_build/html/_static/design-tabs.js rename to _build/html/_static/design-tabs.js diff --git a/src/_build/html/_static/doctools.js b/_build/html/_static/doctools.js similarity index 100% rename from src/_build/html/_static/doctools.js rename to _build/html/_static/doctools.js diff --git a/src/_build/html/_static/documentation_options.js b/_build/html/_static/documentation_options.js similarity index 100% rename from src/_build/html/_static/documentation_options.js rename to _build/html/_static/documentation_options.js diff --git a/src/_build/html/_static/file.png b/_build/html/_static/file.png similarity index 100% rename from src/_build/html/_static/file.png rename to _build/html/_static/file.png diff --git a/src/_build/html/_static/images/logo_binder.svg b/_build/html/_static/images/logo_binder.svg similarity index 100% rename from src/_build/html/_static/images/logo_binder.svg rename to _build/html/_static/images/logo_binder.svg diff --git a/src/_build/html/_static/images/logo_colab.png b/_build/html/_static/images/logo_colab.png similarity index 100% rename from src/_build/html/_static/images/logo_colab.png rename to _build/html/_static/images/logo_colab.png diff --git a/src/_build/html/_static/images/logo_deepnote.svg b/_build/html/_static/images/logo_deepnote.svg similarity index 100% rename from src/_build/html/_static/images/logo_deepnote.svg rename to _build/html/_static/images/logo_deepnote.svg diff --git a/src/_build/html/_static/images/logo_jupyterhub.svg b/_build/html/_static/images/logo_jupyterhub.svg similarity index 100% rename from src/_build/html/_static/images/logo_jupyterhub.svg rename to _build/html/_static/images/logo_jupyterhub.svg diff --git a/src/_build/html/_static/jquery-3.6.0.js b/_build/html/_static/jquery-3.6.0.js similarity index 100% rename from src/_build/html/_static/jquery-3.6.0.js rename to _build/html/_static/jquery-3.6.0.js diff --git a/src/_build/html/_static/jquery.js b/_build/html/_static/jquery.js similarity index 100% rename from src/_build/html/_static/jquery.js rename to _build/html/_static/jquery.js diff --git a/src/_build/html/_static/language_data.js b/_build/html/_static/language_data.js similarity index 100% rename from src/_build/html/_static/language_data.js rename to _build/html/_static/language_data.js diff --git a/src/_build/html/_static/locales/ar/LC_MESSAGES/booktheme.mo b/_build/html/_static/locales/ar/LC_MESSAGES/booktheme.mo similarity index 100% rename from src/_build/html/_static/locales/ar/LC_MESSAGES/booktheme.mo rename to _build/html/_static/locales/ar/LC_MESSAGES/booktheme.mo diff --git a/src/_build/html/_static/locales/ar/LC_MESSAGES/booktheme.po b/_build/html/_static/locales/ar/LC_MESSAGES/booktheme.po similarity index 100% rename from src/_build/html/_static/locales/ar/LC_MESSAGES/booktheme.po rename to _build/html/_static/locales/ar/LC_MESSAGES/booktheme.po diff --git a/src/_build/html/_static/locales/bg/LC_MESSAGES/booktheme.mo b/_build/html/_static/locales/bg/LC_MESSAGES/booktheme.mo similarity index 100% rename from src/_build/html/_static/locales/bg/LC_MESSAGES/booktheme.mo rename to _build/html/_static/locales/bg/LC_MESSAGES/booktheme.mo diff --git a/src/_build/html/_static/locales/bg/LC_MESSAGES/booktheme.po b/_build/html/_static/locales/bg/LC_MESSAGES/booktheme.po similarity index 100% rename from src/_build/html/_static/locales/bg/LC_MESSAGES/booktheme.po rename to _build/html/_static/locales/bg/LC_MESSAGES/booktheme.po diff --git a/src/_build/html/_static/locales/bn/LC_MESSAGES/booktheme.mo b/_build/html/_static/locales/bn/LC_MESSAGES/booktheme.mo similarity index 100% rename from src/_build/html/_static/locales/bn/LC_MESSAGES/booktheme.mo rename to _build/html/_static/locales/bn/LC_MESSAGES/booktheme.mo diff --git a/src/_build/html/_static/locales/bn/LC_MESSAGES/booktheme.po b/_build/html/_static/locales/bn/LC_MESSAGES/booktheme.po similarity index 100% rename from src/_build/html/_static/locales/bn/LC_MESSAGES/booktheme.po rename to _build/html/_static/locales/bn/LC_MESSAGES/booktheme.po diff --git a/src/_build/html/_static/locales/ca/LC_MESSAGES/booktheme.mo b/_build/html/_static/locales/ca/LC_MESSAGES/booktheme.mo similarity index 100% rename from src/_build/html/_static/locales/ca/LC_MESSAGES/booktheme.mo rename to _build/html/_static/locales/ca/LC_MESSAGES/booktheme.mo diff --git a/src/_build/html/_static/locales/ca/LC_MESSAGES/booktheme.po b/_build/html/_static/locales/ca/LC_MESSAGES/booktheme.po similarity index 100% rename from src/_build/html/_static/locales/ca/LC_MESSAGES/booktheme.po rename to _build/html/_static/locales/ca/LC_MESSAGES/booktheme.po diff --git a/src/_build/html/_static/locales/cs/LC_MESSAGES/booktheme.mo b/_build/html/_static/locales/cs/LC_MESSAGES/booktheme.mo similarity index 100% rename from src/_build/html/_static/locales/cs/LC_MESSAGES/booktheme.mo rename to _build/html/_static/locales/cs/LC_MESSAGES/booktheme.mo diff --git a/src/_build/html/_static/locales/cs/LC_MESSAGES/booktheme.po b/_build/html/_static/locales/cs/LC_MESSAGES/booktheme.po similarity index 100% rename from src/_build/html/_static/locales/cs/LC_MESSAGES/booktheme.po rename to _build/html/_static/locales/cs/LC_MESSAGES/booktheme.po diff --git a/src/_build/html/_static/locales/da/LC_MESSAGES/booktheme.mo b/_build/html/_static/locales/da/LC_MESSAGES/booktheme.mo similarity index 100% rename from src/_build/html/_static/locales/da/LC_MESSAGES/booktheme.mo rename to _build/html/_static/locales/da/LC_MESSAGES/booktheme.mo diff --git a/src/_build/html/_static/locales/da/LC_MESSAGES/booktheme.po b/_build/html/_static/locales/da/LC_MESSAGES/booktheme.po similarity index 100% rename from src/_build/html/_static/locales/da/LC_MESSAGES/booktheme.po rename to _build/html/_static/locales/da/LC_MESSAGES/booktheme.po diff --git a/src/_build/html/_static/locales/de/LC_MESSAGES/booktheme.mo b/_build/html/_static/locales/de/LC_MESSAGES/booktheme.mo similarity index 100% rename from src/_build/html/_static/locales/de/LC_MESSAGES/booktheme.mo rename to _build/html/_static/locales/de/LC_MESSAGES/booktheme.mo diff --git a/src/_build/html/_static/locales/de/LC_MESSAGES/booktheme.po b/_build/html/_static/locales/de/LC_MESSAGES/booktheme.po similarity index 100% rename from src/_build/html/_static/locales/de/LC_MESSAGES/booktheme.po rename to _build/html/_static/locales/de/LC_MESSAGES/booktheme.po diff --git a/src/_build/html/_static/locales/el/LC_MESSAGES/booktheme.mo b/_build/html/_static/locales/el/LC_MESSAGES/booktheme.mo similarity index 100% rename from src/_build/html/_static/locales/el/LC_MESSAGES/booktheme.mo rename to _build/html/_static/locales/el/LC_MESSAGES/booktheme.mo diff --git a/src/_build/html/_static/locales/el/LC_MESSAGES/booktheme.po b/_build/html/_static/locales/el/LC_MESSAGES/booktheme.po similarity index 100% rename from src/_build/html/_static/locales/el/LC_MESSAGES/booktheme.po rename to _build/html/_static/locales/el/LC_MESSAGES/booktheme.po diff --git a/src/_build/html/_static/locales/eo/LC_MESSAGES/booktheme.mo b/_build/html/_static/locales/eo/LC_MESSAGES/booktheme.mo similarity index 100% rename from src/_build/html/_static/locales/eo/LC_MESSAGES/booktheme.mo rename to _build/html/_static/locales/eo/LC_MESSAGES/booktheme.mo diff --git a/src/_build/html/_static/locales/eo/LC_MESSAGES/booktheme.po b/_build/html/_static/locales/eo/LC_MESSAGES/booktheme.po similarity index 100% rename from src/_build/html/_static/locales/eo/LC_MESSAGES/booktheme.po rename to _build/html/_static/locales/eo/LC_MESSAGES/booktheme.po diff --git a/src/_build/html/_static/locales/es/LC_MESSAGES/booktheme.mo b/_build/html/_static/locales/es/LC_MESSAGES/booktheme.mo similarity index 100% rename from src/_build/html/_static/locales/es/LC_MESSAGES/booktheme.mo rename to _build/html/_static/locales/es/LC_MESSAGES/booktheme.mo diff --git a/src/_build/html/_static/locales/es/LC_MESSAGES/booktheme.po b/_build/html/_static/locales/es/LC_MESSAGES/booktheme.po similarity index 100% rename from src/_build/html/_static/locales/es/LC_MESSAGES/booktheme.po rename to _build/html/_static/locales/es/LC_MESSAGES/booktheme.po diff --git a/src/_build/html/_static/locales/et/LC_MESSAGES/booktheme.mo b/_build/html/_static/locales/et/LC_MESSAGES/booktheme.mo similarity index 100% rename from src/_build/html/_static/locales/et/LC_MESSAGES/booktheme.mo rename to _build/html/_static/locales/et/LC_MESSAGES/booktheme.mo diff --git a/src/_build/html/_static/locales/et/LC_MESSAGES/booktheme.po b/_build/html/_static/locales/et/LC_MESSAGES/booktheme.po similarity index 100% rename from src/_build/html/_static/locales/et/LC_MESSAGES/booktheme.po rename to _build/html/_static/locales/et/LC_MESSAGES/booktheme.po diff --git a/src/_build/html/_static/locales/fi/LC_MESSAGES/booktheme.mo b/_build/html/_static/locales/fi/LC_MESSAGES/booktheme.mo similarity index 100% rename from src/_build/html/_static/locales/fi/LC_MESSAGES/booktheme.mo rename to _build/html/_static/locales/fi/LC_MESSAGES/booktheme.mo diff --git a/src/_build/html/_static/locales/fi/LC_MESSAGES/booktheme.po b/_build/html/_static/locales/fi/LC_MESSAGES/booktheme.po similarity index 100% rename from src/_build/html/_static/locales/fi/LC_MESSAGES/booktheme.po rename to _build/html/_static/locales/fi/LC_MESSAGES/booktheme.po diff --git a/src/_build/html/_static/locales/fr/LC_MESSAGES/booktheme.mo b/_build/html/_static/locales/fr/LC_MESSAGES/booktheme.mo similarity index 100% rename from src/_build/html/_static/locales/fr/LC_MESSAGES/booktheme.mo rename to _build/html/_static/locales/fr/LC_MESSAGES/booktheme.mo diff --git a/src/_build/html/_static/locales/fr/LC_MESSAGES/booktheme.po b/_build/html/_static/locales/fr/LC_MESSAGES/booktheme.po similarity index 100% rename from src/_build/html/_static/locales/fr/LC_MESSAGES/booktheme.po rename to _build/html/_static/locales/fr/LC_MESSAGES/booktheme.po diff --git a/src/_build/html/_static/locales/hr/LC_MESSAGES/booktheme.mo b/_build/html/_static/locales/hr/LC_MESSAGES/booktheme.mo similarity index 100% rename from src/_build/html/_static/locales/hr/LC_MESSAGES/booktheme.mo rename to _build/html/_static/locales/hr/LC_MESSAGES/booktheme.mo diff --git a/src/_build/html/_static/locales/hr/LC_MESSAGES/booktheme.po b/_build/html/_static/locales/hr/LC_MESSAGES/booktheme.po similarity index 100% rename from src/_build/html/_static/locales/hr/LC_MESSAGES/booktheme.po rename to _build/html/_static/locales/hr/LC_MESSAGES/booktheme.po diff --git a/src/_build/html/_static/locales/id/LC_MESSAGES/booktheme.mo b/_build/html/_static/locales/id/LC_MESSAGES/booktheme.mo similarity index 100% rename from src/_build/html/_static/locales/id/LC_MESSAGES/booktheme.mo rename to _build/html/_static/locales/id/LC_MESSAGES/booktheme.mo diff --git a/src/_build/html/_static/locales/id/LC_MESSAGES/booktheme.po b/_build/html/_static/locales/id/LC_MESSAGES/booktheme.po similarity index 100% rename from src/_build/html/_static/locales/id/LC_MESSAGES/booktheme.po rename to _build/html/_static/locales/id/LC_MESSAGES/booktheme.po diff --git a/src/_build/html/_static/locales/it/LC_MESSAGES/booktheme.mo b/_build/html/_static/locales/it/LC_MESSAGES/booktheme.mo similarity index 100% rename from src/_build/html/_static/locales/it/LC_MESSAGES/booktheme.mo rename to _build/html/_static/locales/it/LC_MESSAGES/booktheme.mo diff --git a/src/_build/html/_static/locales/it/LC_MESSAGES/booktheme.po b/_build/html/_static/locales/it/LC_MESSAGES/booktheme.po similarity index 100% rename from src/_build/html/_static/locales/it/LC_MESSAGES/booktheme.po rename to _build/html/_static/locales/it/LC_MESSAGES/booktheme.po diff --git a/src/_build/html/_static/locales/iw/LC_MESSAGES/booktheme.mo b/_build/html/_static/locales/iw/LC_MESSAGES/booktheme.mo similarity index 100% rename from src/_build/html/_static/locales/iw/LC_MESSAGES/booktheme.mo rename to _build/html/_static/locales/iw/LC_MESSAGES/booktheme.mo diff --git a/src/_build/html/_static/locales/iw/LC_MESSAGES/booktheme.po b/_build/html/_static/locales/iw/LC_MESSAGES/booktheme.po similarity index 100% rename from src/_build/html/_static/locales/iw/LC_MESSAGES/booktheme.po rename to _build/html/_static/locales/iw/LC_MESSAGES/booktheme.po diff --git a/src/_build/html/_static/locales/ja/LC_MESSAGES/booktheme.mo b/_build/html/_static/locales/ja/LC_MESSAGES/booktheme.mo similarity index 100% rename from src/_build/html/_static/locales/ja/LC_MESSAGES/booktheme.mo rename to _build/html/_static/locales/ja/LC_MESSAGES/booktheme.mo diff --git a/src/_build/html/_static/locales/ja/LC_MESSAGES/booktheme.po b/_build/html/_static/locales/ja/LC_MESSAGES/booktheme.po similarity index 100% rename from src/_build/html/_static/locales/ja/LC_MESSAGES/booktheme.po rename to _build/html/_static/locales/ja/LC_MESSAGES/booktheme.po diff --git a/src/_build/html/_static/locales/ko/LC_MESSAGES/booktheme.mo b/_build/html/_static/locales/ko/LC_MESSAGES/booktheme.mo similarity index 100% rename from src/_build/html/_static/locales/ko/LC_MESSAGES/booktheme.mo rename to _build/html/_static/locales/ko/LC_MESSAGES/booktheme.mo diff --git a/src/_build/html/_static/locales/ko/LC_MESSAGES/booktheme.po b/_build/html/_static/locales/ko/LC_MESSAGES/booktheme.po similarity index 100% rename from src/_build/html/_static/locales/ko/LC_MESSAGES/booktheme.po rename to _build/html/_static/locales/ko/LC_MESSAGES/booktheme.po diff --git a/src/_build/html/_static/locales/lt/LC_MESSAGES/booktheme.mo b/_build/html/_static/locales/lt/LC_MESSAGES/booktheme.mo similarity index 100% rename from src/_build/html/_static/locales/lt/LC_MESSAGES/booktheme.mo rename to _build/html/_static/locales/lt/LC_MESSAGES/booktheme.mo diff --git a/src/_build/html/_static/locales/lt/LC_MESSAGES/booktheme.po b/_build/html/_static/locales/lt/LC_MESSAGES/booktheme.po similarity index 100% rename from src/_build/html/_static/locales/lt/LC_MESSAGES/booktheme.po rename to _build/html/_static/locales/lt/LC_MESSAGES/booktheme.po diff --git a/src/_build/html/_static/locales/lv/LC_MESSAGES/booktheme.mo b/_build/html/_static/locales/lv/LC_MESSAGES/booktheme.mo similarity index 100% rename from src/_build/html/_static/locales/lv/LC_MESSAGES/booktheme.mo rename to _build/html/_static/locales/lv/LC_MESSAGES/booktheme.mo diff --git a/src/_build/html/_static/locales/lv/LC_MESSAGES/booktheme.po b/_build/html/_static/locales/lv/LC_MESSAGES/booktheme.po similarity index 100% rename from src/_build/html/_static/locales/lv/LC_MESSAGES/booktheme.po rename to _build/html/_static/locales/lv/LC_MESSAGES/booktheme.po diff --git a/src/_build/html/_static/locales/ml/LC_MESSAGES/booktheme.mo b/_build/html/_static/locales/ml/LC_MESSAGES/booktheme.mo similarity index 100% rename from src/_build/html/_static/locales/ml/LC_MESSAGES/booktheme.mo rename to _build/html/_static/locales/ml/LC_MESSAGES/booktheme.mo diff --git a/src/_build/html/_static/locales/ml/LC_MESSAGES/booktheme.po b/_build/html/_static/locales/ml/LC_MESSAGES/booktheme.po similarity index 100% rename from src/_build/html/_static/locales/ml/LC_MESSAGES/booktheme.po rename to _build/html/_static/locales/ml/LC_MESSAGES/booktheme.po diff --git a/src/_build/html/_static/locales/mr/LC_MESSAGES/booktheme.mo b/_build/html/_static/locales/mr/LC_MESSAGES/booktheme.mo similarity index 100% rename from src/_build/html/_static/locales/mr/LC_MESSAGES/booktheme.mo rename to _build/html/_static/locales/mr/LC_MESSAGES/booktheme.mo diff --git a/src/_build/html/_static/locales/mr/LC_MESSAGES/booktheme.po b/_build/html/_static/locales/mr/LC_MESSAGES/booktheme.po similarity index 100% rename from src/_build/html/_static/locales/mr/LC_MESSAGES/booktheme.po rename to _build/html/_static/locales/mr/LC_MESSAGES/booktheme.po diff --git a/src/_build/html/_static/locales/ms/LC_MESSAGES/booktheme.mo b/_build/html/_static/locales/ms/LC_MESSAGES/booktheme.mo similarity index 100% rename from src/_build/html/_static/locales/ms/LC_MESSAGES/booktheme.mo rename to _build/html/_static/locales/ms/LC_MESSAGES/booktheme.mo diff --git a/src/_build/html/_static/locales/ms/LC_MESSAGES/booktheme.po b/_build/html/_static/locales/ms/LC_MESSAGES/booktheme.po similarity index 100% rename from src/_build/html/_static/locales/ms/LC_MESSAGES/booktheme.po rename to _build/html/_static/locales/ms/LC_MESSAGES/booktheme.po diff --git a/src/_build/html/_static/locales/nl/LC_MESSAGES/booktheme.mo b/_build/html/_static/locales/nl/LC_MESSAGES/booktheme.mo similarity index 100% rename from src/_build/html/_static/locales/nl/LC_MESSAGES/booktheme.mo rename to _build/html/_static/locales/nl/LC_MESSAGES/booktheme.mo diff --git a/src/_build/html/_static/locales/nl/LC_MESSAGES/booktheme.po b/_build/html/_static/locales/nl/LC_MESSAGES/booktheme.po similarity index 100% rename from src/_build/html/_static/locales/nl/LC_MESSAGES/booktheme.po rename to _build/html/_static/locales/nl/LC_MESSAGES/booktheme.po diff --git a/src/_build/html/_static/locales/no/LC_MESSAGES/booktheme.mo b/_build/html/_static/locales/no/LC_MESSAGES/booktheme.mo similarity index 100% rename from src/_build/html/_static/locales/no/LC_MESSAGES/booktheme.mo rename to _build/html/_static/locales/no/LC_MESSAGES/booktheme.mo diff --git a/src/_build/html/_static/locales/no/LC_MESSAGES/booktheme.po b/_build/html/_static/locales/no/LC_MESSAGES/booktheme.po similarity index 100% rename from src/_build/html/_static/locales/no/LC_MESSAGES/booktheme.po rename to _build/html/_static/locales/no/LC_MESSAGES/booktheme.po diff --git a/src/_build/html/_static/locales/pl/LC_MESSAGES/booktheme.mo b/_build/html/_static/locales/pl/LC_MESSAGES/booktheme.mo similarity index 100% rename from src/_build/html/_static/locales/pl/LC_MESSAGES/booktheme.mo rename to _build/html/_static/locales/pl/LC_MESSAGES/booktheme.mo diff --git a/src/_build/html/_static/locales/pl/LC_MESSAGES/booktheme.po b/_build/html/_static/locales/pl/LC_MESSAGES/booktheme.po similarity index 100% rename from src/_build/html/_static/locales/pl/LC_MESSAGES/booktheme.po rename to _build/html/_static/locales/pl/LC_MESSAGES/booktheme.po diff --git a/src/_build/html/_static/locales/pt/LC_MESSAGES/booktheme.mo b/_build/html/_static/locales/pt/LC_MESSAGES/booktheme.mo similarity index 100% rename from src/_build/html/_static/locales/pt/LC_MESSAGES/booktheme.mo rename to _build/html/_static/locales/pt/LC_MESSAGES/booktheme.mo diff --git a/src/_build/html/_static/locales/pt/LC_MESSAGES/booktheme.po b/_build/html/_static/locales/pt/LC_MESSAGES/booktheme.po similarity index 100% rename from src/_build/html/_static/locales/pt/LC_MESSAGES/booktheme.po rename to _build/html/_static/locales/pt/LC_MESSAGES/booktheme.po diff --git a/src/_build/html/_static/locales/ro/LC_MESSAGES/booktheme.mo b/_build/html/_static/locales/ro/LC_MESSAGES/booktheme.mo similarity index 100% rename from src/_build/html/_static/locales/ro/LC_MESSAGES/booktheme.mo rename to _build/html/_static/locales/ro/LC_MESSAGES/booktheme.mo diff --git a/src/_build/html/_static/locales/ro/LC_MESSAGES/booktheme.po b/_build/html/_static/locales/ro/LC_MESSAGES/booktheme.po similarity index 100% rename from src/_build/html/_static/locales/ro/LC_MESSAGES/booktheme.po rename to _build/html/_static/locales/ro/LC_MESSAGES/booktheme.po diff --git a/src/_build/html/_static/locales/ru/LC_MESSAGES/booktheme.mo b/_build/html/_static/locales/ru/LC_MESSAGES/booktheme.mo similarity index 100% rename from src/_build/html/_static/locales/ru/LC_MESSAGES/booktheme.mo rename to _build/html/_static/locales/ru/LC_MESSAGES/booktheme.mo diff --git a/src/_build/html/_static/locales/ru/LC_MESSAGES/booktheme.po b/_build/html/_static/locales/ru/LC_MESSAGES/booktheme.po similarity index 100% rename from src/_build/html/_static/locales/ru/LC_MESSAGES/booktheme.po rename to _build/html/_static/locales/ru/LC_MESSAGES/booktheme.po diff --git a/src/_build/html/_static/locales/sk/LC_MESSAGES/booktheme.mo b/_build/html/_static/locales/sk/LC_MESSAGES/booktheme.mo similarity index 100% rename from src/_build/html/_static/locales/sk/LC_MESSAGES/booktheme.mo rename to _build/html/_static/locales/sk/LC_MESSAGES/booktheme.mo diff --git a/src/_build/html/_static/locales/sk/LC_MESSAGES/booktheme.po b/_build/html/_static/locales/sk/LC_MESSAGES/booktheme.po similarity index 100% rename from src/_build/html/_static/locales/sk/LC_MESSAGES/booktheme.po rename to _build/html/_static/locales/sk/LC_MESSAGES/booktheme.po diff --git a/src/_build/html/_static/locales/sl/LC_MESSAGES/booktheme.mo b/_build/html/_static/locales/sl/LC_MESSAGES/booktheme.mo similarity index 100% rename from src/_build/html/_static/locales/sl/LC_MESSAGES/booktheme.mo rename to _build/html/_static/locales/sl/LC_MESSAGES/booktheme.mo diff --git a/src/_build/html/_static/locales/sl/LC_MESSAGES/booktheme.po b/_build/html/_static/locales/sl/LC_MESSAGES/booktheme.po similarity index 100% rename from src/_build/html/_static/locales/sl/LC_MESSAGES/booktheme.po rename to _build/html/_static/locales/sl/LC_MESSAGES/booktheme.po diff --git a/src/_build/html/_static/locales/sr/LC_MESSAGES/booktheme.mo b/_build/html/_static/locales/sr/LC_MESSAGES/booktheme.mo similarity index 100% rename from src/_build/html/_static/locales/sr/LC_MESSAGES/booktheme.mo rename to _build/html/_static/locales/sr/LC_MESSAGES/booktheme.mo diff --git a/src/_build/html/_static/locales/sr/LC_MESSAGES/booktheme.po b/_build/html/_static/locales/sr/LC_MESSAGES/booktheme.po similarity index 100% rename from src/_build/html/_static/locales/sr/LC_MESSAGES/booktheme.po rename to _build/html/_static/locales/sr/LC_MESSAGES/booktheme.po diff --git a/src/_build/html/_static/locales/sv/LC_MESSAGES/booktheme.mo b/_build/html/_static/locales/sv/LC_MESSAGES/booktheme.mo similarity index 100% rename from src/_build/html/_static/locales/sv/LC_MESSAGES/booktheme.mo rename to _build/html/_static/locales/sv/LC_MESSAGES/booktheme.mo diff --git a/src/_build/html/_static/locales/sv/LC_MESSAGES/booktheme.po b/_build/html/_static/locales/sv/LC_MESSAGES/booktheme.po similarity index 100% rename from src/_build/html/_static/locales/sv/LC_MESSAGES/booktheme.po rename to _build/html/_static/locales/sv/LC_MESSAGES/booktheme.po diff --git a/src/_build/html/_static/locales/ta/LC_MESSAGES/booktheme.mo b/_build/html/_static/locales/ta/LC_MESSAGES/booktheme.mo similarity index 100% rename from src/_build/html/_static/locales/ta/LC_MESSAGES/booktheme.mo rename to _build/html/_static/locales/ta/LC_MESSAGES/booktheme.mo diff --git a/src/_build/html/_static/locales/ta/LC_MESSAGES/booktheme.po b/_build/html/_static/locales/ta/LC_MESSAGES/booktheme.po similarity index 100% rename from src/_build/html/_static/locales/ta/LC_MESSAGES/booktheme.po rename to _build/html/_static/locales/ta/LC_MESSAGES/booktheme.po diff --git a/src/_build/html/_static/locales/te/LC_MESSAGES/booktheme.mo b/_build/html/_static/locales/te/LC_MESSAGES/booktheme.mo similarity index 100% rename from src/_build/html/_static/locales/te/LC_MESSAGES/booktheme.mo rename to _build/html/_static/locales/te/LC_MESSAGES/booktheme.mo diff --git a/src/_build/html/_static/locales/te/LC_MESSAGES/booktheme.po b/_build/html/_static/locales/te/LC_MESSAGES/booktheme.po similarity index 100% rename from src/_build/html/_static/locales/te/LC_MESSAGES/booktheme.po rename to _build/html/_static/locales/te/LC_MESSAGES/booktheme.po diff --git a/src/_build/html/_static/locales/tg/LC_MESSAGES/booktheme.mo b/_build/html/_static/locales/tg/LC_MESSAGES/booktheme.mo similarity index 100% rename from src/_build/html/_static/locales/tg/LC_MESSAGES/booktheme.mo rename to _build/html/_static/locales/tg/LC_MESSAGES/booktheme.mo diff --git a/src/_build/html/_static/locales/tg/LC_MESSAGES/booktheme.po b/_build/html/_static/locales/tg/LC_MESSAGES/booktheme.po similarity index 100% rename from src/_build/html/_static/locales/tg/LC_MESSAGES/booktheme.po rename to _build/html/_static/locales/tg/LC_MESSAGES/booktheme.po diff --git a/src/_build/html/_static/locales/th/LC_MESSAGES/booktheme.mo b/_build/html/_static/locales/th/LC_MESSAGES/booktheme.mo similarity index 100% rename from src/_build/html/_static/locales/th/LC_MESSAGES/booktheme.mo rename to _build/html/_static/locales/th/LC_MESSAGES/booktheme.mo diff --git a/src/_build/html/_static/locales/th/LC_MESSAGES/booktheme.po b/_build/html/_static/locales/th/LC_MESSAGES/booktheme.po similarity index 100% rename from src/_build/html/_static/locales/th/LC_MESSAGES/booktheme.po rename to _build/html/_static/locales/th/LC_MESSAGES/booktheme.po diff --git a/src/_build/html/_static/locales/tl/LC_MESSAGES/booktheme.mo b/_build/html/_static/locales/tl/LC_MESSAGES/booktheme.mo similarity index 100% rename from src/_build/html/_static/locales/tl/LC_MESSAGES/booktheme.mo rename to _build/html/_static/locales/tl/LC_MESSAGES/booktheme.mo diff --git a/src/_build/html/_static/locales/tl/LC_MESSAGES/booktheme.po b/_build/html/_static/locales/tl/LC_MESSAGES/booktheme.po similarity index 100% rename from src/_build/html/_static/locales/tl/LC_MESSAGES/booktheme.po rename to _build/html/_static/locales/tl/LC_MESSAGES/booktheme.po diff --git a/src/_build/html/_static/locales/tr/LC_MESSAGES/booktheme.mo b/_build/html/_static/locales/tr/LC_MESSAGES/booktheme.mo similarity index 100% rename from src/_build/html/_static/locales/tr/LC_MESSAGES/booktheme.mo rename to _build/html/_static/locales/tr/LC_MESSAGES/booktheme.mo diff --git a/src/_build/html/_static/locales/tr/LC_MESSAGES/booktheme.po b/_build/html/_static/locales/tr/LC_MESSAGES/booktheme.po similarity index 100% rename from src/_build/html/_static/locales/tr/LC_MESSAGES/booktheme.po rename to _build/html/_static/locales/tr/LC_MESSAGES/booktheme.po diff --git a/src/_build/html/_static/locales/uk/LC_MESSAGES/booktheme.mo b/_build/html/_static/locales/uk/LC_MESSAGES/booktheme.mo similarity index 100% rename from src/_build/html/_static/locales/uk/LC_MESSAGES/booktheme.mo rename to _build/html/_static/locales/uk/LC_MESSAGES/booktheme.mo diff --git a/src/_build/html/_static/locales/uk/LC_MESSAGES/booktheme.po b/_build/html/_static/locales/uk/LC_MESSAGES/booktheme.po similarity index 100% rename from src/_build/html/_static/locales/uk/LC_MESSAGES/booktheme.po rename to _build/html/_static/locales/uk/LC_MESSAGES/booktheme.po diff --git a/src/_build/html/_static/locales/ur/LC_MESSAGES/booktheme.mo b/_build/html/_static/locales/ur/LC_MESSAGES/booktheme.mo similarity index 100% rename from src/_build/html/_static/locales/ur/LC_MESSAGES/booktheme.mo rename to _build/html/_static/locales/ur/LC_MESSAGES/booktheme.mo diff --git a/src/_build/html/_static/locales/ur/LC_MESSAGES/booktheme.po b/_build/html/_static/locales/ur/LC_MESSAGES/booktheme.po similarity index 100% rename from src/_build/html/_static/locales/ur/LC_MESSAGES/booktheme.po rename to _build/html/_static/locales/ur/LC_MESSAGES/booktheme.po diff --git a/src/_build/html/_static/locales/vi/LC_MESSAGES/booktheme.mo b/_build/html/_static/locales/vi/LC_MESSAGES/booktheme.mo similarity index 100% rename from src/_build/html/_static/locales/vi/LC_MESSAGES/booktheme.mo rename to _build/html/_static/locales/vi/LC_MESSAGES/booktheme.mo diff --git a/src/_build/html/_static/locales/vi/LC_MESSAGES/booktheme.po b/_build/html/_static/locales/vi/LC_MESSAGES/booktheme.po similarity index 100% rename from src/_build/html/_static/locales/vi/LC_MESSAGES/booktheme.po rename to _build/html/_static/locales/vi/LC_MESSAGES/booktheme.po diff --git a/src/_build/html/_static/locales/zh_CN/LC_MESSAGES/booktheme.mo b/_build/html/_static/locales/zh_CN/LC_MESSAGES/booktheme.mo similarity index 100% rename from src/_build/html/_static/locales/zh_CN/LC_MESSAGES/booktheme.mo rename to _build/html/_static/locales/zh_CN/LC_MESSAGES/booktheme.mo diff --git a/src/_build/html/_static/locales/zh_CN/LC_MESSAGES/booktheme.po b/_build/html/_static/locales/zh_CN/LC_MESSAGES/booktheme.po similarity index 100% rename from src/_build/html/_static/locales/zh_CN/LC_MESSAGES/booktheme.po rename to _build/html/_static/locales/zh_CN/LC_MESSAGES/booktheme.po diff --git a/src/_build/html/_static/locales/zh_TW/LC_MESSAGES/booktheme.mo b/_build/html/_static/locales/zh_TW/LC_MESSAGES/booktheme.mo similarity index 100% rename from src/_build/html/_static/locales/zh_TW/LC_MESSAGES/booktheme.mo rename to _build/html/_static/locales/zh_TW/LC_MESSAGES/booktheme.mo diff --git a/src/_build/html/_static/locales/zh_TW/LC_MESSAGES/booktheme.po b/_build/html/_static/locales/zh_TW/LC_MESSAGES/booktheme.po similarity index 100% rename from src/_build/html/_static/locales/zh_TW/LC_MESSAGES/booktheme.po rename to _build/html/_static/locales/zh_TW/LC_MESSAGES/booktheme.po diff --git a/src/_build/html/_static/minus.png b/_build/html/_static/minus.png similarity index 100% rename from src/_build/html/_static/minus.png rename to _build/html/_static/minus.png diff --git a/src/_build/html/_static/mystnb.4510f1fc1dee50b3e5859aac5469c37c29e427902b24a333a5f9fcb2f0b3ac41.css b/_build/html/_static/mystnb.4510f1fc1dee50b3e5859aac5469c37c29e427902b24a333a5f9fcb2f0b3ac41.css similarity index 100% rename from src/_build/html/_static/mystnb.4510f1fc1dee50b3e5859aac5469c37c29e427902b24a333a5f9fcb2f0b3ac41.css rename to _build/html/_static/mystnb.4510f1fc1dee50b3e5859aac5469c37c29e427902b24a333a5f9fcb2f0b3ac41.css diff --git a/src/_build/html/_static/plus.png b/_build/html/_static/plus.png similarity index 100% rename from src/_build/html/_static/plus.png rename to _build/html/_static/plus.png diff --git a/src/_build/html/_static/pygments.css b/_build/html/_static/pygments.css similarity index 100% rename from src/_build/html/_static/pygments.css rename to _build/html/_static/pygments.css diff --git a/src/_build/html/_static/sbt-webpack-macros.html b/_build/html/_static/sbt-webpack-macros.html similarity index 100% rename from src/_build/html/_static/sbt-webpack-macros.html rename to _build/html/_static/sbt-webpack-macros.html diff --git a/src/_build/html/_static/scripts/bootstrap.js b/_build/html/_static/scripts/bootstrap.js similarity index 100% rename from src/_build/html/_static/scripts/bootstrap.js rename to _build/html/_static/scripts/bootstrap.js diff --git a/src/_build/html/_static/scripts/bootstrap.js.LICENSE.txt b/_build/html/_static/scripts/bootstrap.js.LICENSE.txt similarity index 100% rename from src/_build/html/_static/scripts/bootstrap.js.LICENSE.txt rename to _build/html/_static/scripts/bootstrap.js.LICENSE.txt diff --git a/src/_build/html/_static/scripts/bootstrap.js.map b/_build/html/_static/scripts/bootstrap.js.map similarity index 100% rename from src/_build/html/_static/scripts/bootstrap.js.map rename to _build/html/_static/scripts/bootstrap.js.map diff --git a/src/_build/html/_static/scripts/pydata-sphinx-theme.js b/_build/html/_static/scripts/pydata-sphinx-theme.js similarity index 100% rename from src/_build/html/_static/scripts/pydata-sphinx-theme.js rename to _build/html/_static/scripts/pydata-sphinx-theme.js diff --git a/src/_build/html/_static/scripts/pydata-sphinx-theme.js.map b/_build/html/_static/scripts/pydata-sphinx-theme.js.map similarity index 100% rename from src/_build/html/_static/scripts/pydata-sphinx-theme.js.map rename to _build/html/_static/scripts/pydata-sphinx-theme.js.map diff --git a/src/_build/html/_static/scripts/sphinx-book-theme.js b/_build/html/_static/scripts/sphinx-book-theme.js similarity index 100% rename from src/_build/html/_static/scripts/sphinx-book-theme.js rename to _build/html/_static/scripts/sphinx-book-theme.js diff --git a/src/_build/html/_static/scripts/sphinx-book-theme.js.map b/_build/html/_static/scripts/sphinx-book-theme.js.map similarity index 100% rename from src/_build/html/_static/scripts/sphinx-book-theme.js.map rename to _build/html/_static/scripts/sphinx-book-theme.js.map diff --git a/src/_build/html/_static/searchtools.js b/_build/html/_static/searchtools.js similarity index 100% rename from src/_build/html/_static/searchtools.js rename to _build/html/_static/searchtools.js diff --git a/src/_build/html/_static/sphinx-thebe.css b/_build/html/_static/sphinx-thebe.css similarity index 100% rename from src/_build/html/_static/sphinx-thebe.css rename to _build/html/_static/sphinx-thebe.css diff --git a/src/_build/html/_static/sphinx-thebe.js b/_build/html/_static/sphinx-thebe.js similarity index 100% rename from src/_build/html/_static/sphinx-thebe.js rename to _build/html/_static/sphinx-thebe.js diff --git a/src/_build/html/_static/styles/bootstrap.css b/_build/html/_static/styles/bootstrap.css similarity index 100% rename from src/_build/html/_static/styles/bootstrap.css rename to _build/html/_static/styles/bootstrap.css diff --git a/src/_build/html/_static/styles/bootstrap.css.map b/_build/html/_static/styles/bootstrap.css.map similarity index 100% rename from src/_build/html/_static/styles/bootstrap.css.map rename to _build/html/_static/styles/bootstrap.css.map diff --git a/src/_build/html/_static/styles/pydata-sphinx-theme.css b/_build/html/_static/styles/pydata-sphinx-theme.css similarity index 100% rename from src/_build/html/_static/styles/pydata-sphinx-theme.css rename to _build/html/_static/styles/pydata-sphinx-theme.css diff --git a/src/_build/html/_static/styles/pydata-sphinx-theme.css.map b/_build/html/_static/styles/pydata-sphinx-theme.css.map similarity index 100% rename from src/_build/html/_static/styles/pydata-sphinx-theme.css.map rename to _build/html/_static/styles/pydata-sphinx-theme.css.map diff --git a/src/_build/html/_static/styles/sphinx-book-theme.css b/_build/html/_static/styles/sphinx-book-theme.css similarity index 100% rename from src/_build/html/_static/styles/sphinx-book-theme.css rename to _build/html/_static/styles/sphinx-book-theme.css diff --git a/src/_build/html/_static/styles/theme.css b/_build/html/_static/styles/theme.css similarity index 100% rename from src/_build/html/_static/styles/theme.css rename to _build/html/_static/styles/theme.css diff --git a/src/_build/html/_static/thumbnail.png b/_build/html/_static/thumbnail.png similarity index 100% rename from src/_build/html/_static/thumbnail.png rename to _build/html/_static/thumbnail.png diff --git a/src/_build/html/_static/togglebutton.css b/_build/html/_static/togglebutton.css similarity index 100% rename from src/_build/html/_static/togglebutton.css rename to _build/html/_static/togglebutton.css diff --git a/src/_build/html/_static/togglebutton.js b/_build/html/_static/togglebutton.js similarity index 100% rename from src/_build/html/_static/togglebutton.js rename to _build/html/_static/togglebutton.js diff --git a/src/_build/html/_static/underscore-1.13.1.js b/_build/html/_static/underscore-1.13.1.js similarity index 100% rename from src/_build/html/_static/underscore-1.13.1.js rename to _build/html/_static/underscore-1.13.1.js diff --git a/src/_build/html/_static/underscore.js b/_build/html/_static/underscore.js similarity index 100% rename from src/_build/html/_static/underscore.js rename to _build/html/_static/underscore.js diff --git a/src/_build/html/_static/vendor/fontawesome/6.1.2/LICENSE.txt b/_build/html/_static/vendor/fontawesome/6.1.2/LICENSE.txt similarity index 100% rename from src/_build/html/_static/vendor/fontawesome/6.1.2/LICENSE.txt rename to _build/html/_static/vendor/fontawesome/6.1.2/LICENSE.txt diff --git a/src/_build/html/_static/vendor/fontawesome/6.1.2/css/all.min.css b/_build/html/_static/vendor/fontawesome/6.1.2/css/all.min.css similarity index 100% rename from src/_build/html/_static/vendor/fontawesome/6.1.2/css/all.min.css rename to _build/html/_static/vendor/fontawesome/6.1.2/css/all.min.css diff --git a/src/_build/html/_static/vendor/fontawesome/6.1.2/js/all.min.js b/_build/html/_static/vendor/fontawesome/6.1.2/js/all.min.js similarity index 100% rename from src/_build/html/_static/vendor/fontawesome/6.1.2/js/all.min.js rename to _build/html/_static/vendor/fontawesome/6.1.2/js/all.min.js diff --git a/src/_build/html/_static/vendor/fontawesome/6.1.2/js/all.min.js.LICENSE.txt b/_build/html/_static/vendor/fontawesome/6.1.2/js/all.min.js.LICENSE.txt similarity index 100% rename from src/_build/html/_static/vendor/fontawesome/6.1.2/js/all.min.js.LICENSE.txt rename to _build/html/_static/vendor/fontawesome/6.1.2/js/all.min.js.LICENSE.txt diff --git a/src/_build/html/_static/vendor/fontawesome/6.1.2/webfonts/fa-brands-400.ttf b/_build/html/_static/vendor/fontawesome/6.1.2/webfonts/fa-brands-400.ttf similarity index 100% rename from src/_build/html/_static/vendor/fontawesome/6.1.2/webfonts/fa-brands-400.ttf rename to _build/html/_static/vendor/fontawesome/6.1.2/webfonts/fa-brands-400.ttf diff --git a/src/_build/html/_static/vendor/fontawesome/6.1.2/webfonts/fa-brands-400.woff2 b/_build/html/_static/vendor/fontawesome/6.1.2/webfonts/fa-brands-400.woff2 similarity index 100% rename from src/_build/html/_static/vendor/fontawesome/6.1.2/webfonts/fa-brands-400.woff2 rename to _build/html/_static/vendor/fontawesome/6.1.2/webfonts/fa-brands-400.woff2 diff --git a/src/_build/html/_static/vendor/fontawesome/6.1.2/webfonts/fa-regular-400.ttf b/_build/html/_static/vendor/fontawesome/6.1.2/webfonts/fa-regular-400.ttf similarity index 100% rename from src/_build/html/_static/vendor/fontawesome/6.1.2/webfonts/fa-regular-400.ttf rename to _build/html/_static/vendor/fontawesome/6.1.2/webfonts/fa-regular-400.ttf diff --git a/src/_build/html/_static/vendor/fontawesome/6.1.2/webfonts/fa-regular-400.woff2 b/_build/html/_static/vendor/fontawesome/6.1.2/webfonts/fa-regular-400.woff2 similarity index 100% rename from src/_build/html/_static/vendor/fontawesome/6.1.2/webfonts/fa-regular-400.woff2 rename to _build/html/_static/vendor/fontawesome/6.1.2/webfonts/fa-regular-400.woff2 diff --git a/src/_build/html/_static/vendor/fontawesome/6.1.2/webfonts/fa-solid-900.ttf b/_build/html/_static/vendor/fontawesome/6.1.2/webfonts/fa-solid-900.ttf similarity index 100% rename from src/_build/html/_static/vendor/fontawesome/6.1.2/webfonts/fa-solid-900.ttf rename to _build/html/_static/vendor/fontawesome/6.1.2/webfonts/fa-solid-900.ttf diff --git a/src/_build/html/_static/vendor/fontawesome/6.1.2/webfonts/fa-solid-900.woff2 b/_build/html/_static/vendor/fontawesome/6.1.2/webfonts/fa-solid-900.woff2 similarity index 100% rename from src/_build/html/_static/vendor/fontawesome/6.1.2/webfonts/fa-solid-900.woff2 rename to _build/html/_static/vendor/fontawesome/6.1.2/webfonts/fa-solid-900.woff2 diff --git a/src/_build/html/_static/vendor/fontawesome/6.1.2/webfonts/fa-v4compatibility.ttf b/_build/html/_static/vendor/fontawesome/6.1.2/webfonts/fa-v4compatibility.ttf similarity index 100% rename from src/_build/html/_static/vendor/fontawesome/6.1.2/webfonts/fa-v4compatibility.ttf rename to _build/html/_static/vendor/fontawesome/6.1.2/webfonts/fa-v4compatibility.ttf diff --git a/src/_build/html/_static/vendor/fontawesome/6.1.2/webfonts/fa-v4compatibility.woff2 b/_build/html/_static/vendor/fontawesome/6.1.2/webfonts/fa-v4compatibility.woff2 similarity index 100% rename from src/_build/html/_static/vendor/fontawesome/6.1.2/webfonts/fa-v4compatibility.woff2 rename to _build/html/_static/vendor/fontawesome/6.1.2/webfonts/fa-v4compatibility.woff2 diff --git a/src/_build/html/_static/webpack-macros.html b/_build/html/_static/webpack-macros.html similarity index 100% rename from src/_build/html/_static/webpack-macros.html rename to _build/html/_static/webpack-macros.html diff --git a/src/_build/html/bibliography.html b/_build/html/bibliography.html similarity index 99% rename from src/_build/html/bibliography.html rename to _build/html/bibliography.html index 324e021..0328635 100644 --- a/src/_build/html/bibliography.html +++ b/_build/html/bibliography.html @@ -195,9 +195,9 @@ diff --git a/src/_build/html/book-intro.html b/_build/html/book-intro.html similarity index 99% rename from src/_build/html/book-intro.html rename to _build/html/book-intro.html index 6d765db..b2d7a6d 100644 --- a/src/_build/html/book-intro.html +++ b/_build/html/book-intro.html @@ -195,9 +195,9 @@ diff --git a/src/_build/html/genindex.html b/_build/html/genindex.html similarity index 98% rename from src/_build/html/genindex.html rename to _build/html/genindex.html index 90399df..67b1f7d 100644 --- a/src/_build/html/genindex.html +++ b/_build/html/genindex.html @@ -193,9 +193,9 @@ diff --git a/src/_build/html/index.html b/_build/html/index.html similarity index 100% rename from src/_build/html/index.html rename to _build/html/index.html diff --git a/_build/html/objects.inv b/_build/html/objects.inv new file mode 100644 index 0000000..26f9f10 Binary files /dev/null and b/_build/html/objects.inv differ diff --git a/src/_build/html/search.html b/_build/html/search.html similarity index 99% rename from src/_build/html/search.html rename to _build/html/search.html index e2d8114..855b0a4 100644 --- a/src/_build/html/search.html +++ b/_build/html/search.html @@ -195,9 +195,9 @@ diff --git a/_build/html/searchindex.js b/_build/html/searchindex.js new file mode 100644 index 0000000..182120a --- /dev/null +++ b/_build/html/searchindex.js @@ -0,0 +1 @@ +Search.setIndex({"docnames": ["bibliography", "book-intro", "sections/appendix/upload_Measures_data_to_bucket", "sections/ice_flow/ablation_accumulation", "sections/ice_flow/antarctic-ice-flow", "sections/ice_flow/depth_integrated_mass_balance", "sections/ice_flow/deviatoric_stress", "sections/ice_flow/driving_stress", "sections/ice_flow/gradient", "sections/ice_flow/ice-flow-intro", "sections/ice_flow/other-ice-flow-models", "sections/ice_flow/rheology", "sections/ice_flow/sia_derivation", "sections/ice_flow/strain_velocity", "sections/ice_flow/stress_balance_eqns", "sections/ice_flow/stress_strain_tensors", "sections/ice_flow/u_bar_and_lliboutry", "sections/ice_flow/vec_calc", "sections/radar/apres/apres-intro", "sections/radar/apres/apres_data_1", "sections/radar/apres/beat-frequency", "sections/radar/apres/theory_1", "sections/radar/impulse/impulse-radar", "sections/temperature/analytical_solution", "sections/temperature/heat_equation", "sections/temperature/heat_intro", "sections/temperature/numerical_solutions"], "filenames": ["bibliography.md", "book-intro.md", "sections/appendix/upload_Measures_data_to_bucket.ipynb", "sections/ice_flow/ablation_accumulation.md", "sections/ice_flow/antarctic-ice-flow.ipynb", "sections/ice_flow/depth_integrated_mass_balance.md", "sections/ice_flow/deviatoric_stress.md", "sections/ice_flow/driving_stress.md", "sections/ice_flow/gradient.ipynb", "sections/ice_flow/ice-flow-intro.md", "sections/ice_flow/other-ice-flow-models.md", "sections/ice_flow/rheology.md", "sections/ice_flow/sia_derivation.md", "sections/ice_flow/strain_velocity.md", "sections/ice_flow/stress_balance_eqns.md", "sections/ice_flow/stress_strain_tensors.md", "sections/ice_flow/u_bar_and_lliboutry.md", "sections/ice_flow/vec_calc.md", "sections/radar/apres/apres-intro.md", "sections/radar/apres/apres_data_1.ipynb", "sections/radar/apres/beat-frequency.ipynb", "sections/radar/apres/theory_1.ipynb", "sections/radar/impulse/impulse-radar.md", "sections/temperature/analytical_solution.ipynb", "sections/temperature/heat_equation.ipynb", "sections/temperature/heat_intro.ipynb", "sections/temperature/numerical_solutions.ipynb"], "titles": ["Bibliography", "The Glaciology Data Analysis and Modeling book", "Adding the MEASURES data to the google bucket", "Ice flow, accumulation and ablation", "Flow of the Antarctic Ice sheet", "Depth-integrated mass balance", "Deviatoric stress", "Driving stress", "The gradient of Antarctic Ice Sheet", "Introduction to ice flow", "Two other ice flow models", "Ice rheology (under construction)", "The Shallow Ice Approximation model", "Strain rate and velocity fields", "Stress balance equations", "Stress and strain tensors (under construction)", "Building on the Shallow Ice Approximation", "Vector calculus background", "Autonomous phase-sensitive Radio Echo Sounder", "A first look at ApRES data", "Beat frequency", "Autonomous phase-sensitive radio-echo sounder theory", "Impulse Radar", "An analytical solution", "Heat equation", "Heat flow", "Numerical solutions"], "terms": {"blnc14": 0, "paul": 0, "v": [0, 5, 10, 13, 14, 17, 20, 21, 23, 24], "brennan": [0, 21], "lai": 0, "bun": 0, "lok": 0, "keith": 0, "nichol": [0, 21], "hugh": 0, "corr": 0, "phase": [0, 19, 20], "sensit": [0, 19, 20], "fmcw": 0, "radar": [0, 18, 19, 20, 21], "system": [0, 2, 3, 4, 8, 9, 12, 19, 21, 24], "high": [0, 3, 19, 20], "precis": [0, 3, 4, 19, 21], "antarct": [0, 9, 19], "ic": [0, 2, 5, 6, 7, 13, 14, 17, 18, 19, 21, 23, 24, 25], "shelf": [0, 4, 10], "profil": [0, 4, 16, 19], "monitor": 0, "iet": 0, "sonar": 0, "navig": [0, 1, 4], "8": [0, 2, 4, 7, 8, 19, 20, 24], "7": [0, 2, 8, 19, 24], "776": 0, "786": 0, "2014": [0, 8, 21], "_eprint": 0, "http": [0, 1, 2, 21], "onlinelibrari": 0, "wilei": 0, "com": [0, 1, 21], "doi": [0, 19], "pdf": 0, "10": [0, 2, 4, 8, 19, 24], "1049": 0, "rsn": 0, "2013": [0, 2, 4], "0053": 0, "url": 0, "ab": [0, 8, 19, 21], "visit": 0, "2022": [0, 2, 19], "01": [0, 2, 4, 19, 21], "14": [0, 19, 24], "collabor": [1, 19], "effort": 1, "across": [1, 5, 7, 9, 10, 12, 19, 20, 24], "intern": [1, 10, 18, 19], "commun": [1, 10], "document": [1, 2, 10, 19], "kei": [1, 9, 10, 21], "concept": [1, 2, 3, 8, 20, 21], "comput": [1, 2, 4, 12, 16, 17, 19, 20, 23, 24], "approach": [1, 4, 5, 13, 14, 21, 24], "observ": [1, 3, 19], "understand": [1, 3, 5, 9, 12, 13, 16, 24], "them": [1, 2, 3, 5, 8, 12, 17, 19, 20, 21, 24], "we": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 23, 24, 25], "aim": [1, 19], "do": [1, 2, 4, 8, 13, 17, 19, 20, 21, 24], "an": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 17, 18, 19, 21, 24, 25], "open": [1, 2, 8, 19], "wai": [1, 2, 3, 5, 9, 12, 17, 19, 24], "By": [1, 20, 21], "mean": [1, 5, 6, 8, 10, 12, 14, 17, 19, 21, 24], "free": [1, 2, 4], "resourc": 1, "everyon": 1, "anyon": 1, "can": [1, 2, 3, 4, 5, 6, 7, 10, 12, 14, 16, 17, 18, 19, 20, 21, 23, 24], "see": [1, 3, 5, 10, 12, 19, 20, 21, 24], "section": [1, 4, 8, 10, 21, 23, 24], "below": [1, 2, 5, 10, 19, 20, 21, 24], "also": [1, 5, 7, 8, 10, 12, 14, 16, 17, 18, 19, 21, 24], "all": [1, 2, 3, 5, 10, 12, 16, 18, 21, 24], "us": [1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 23, 24], "exampl": [1, 4, 13, 16, 17, 19, 21, 24], "ar": [1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 23, 24], "openli": 1, "access": [1, 2, 4, 8, 19], "onlin": 1, "often": [1, 3, 4, 6, 12, 16, 19, 24], "cloud": [1, 2, 8, 9, 19], "optim": [1, 2], "readi": [1, 12], "format": [1, 2, 19], "It": [1, 2, 5, 6, 8, 9, 12, 13, 16, 19, 20, 21, 24], "sourc": [1, 5, 8, 21], "base": [1, 3, 4, 5, 10, 12, 16, 18, 19, 24], "python": [1, 4, 19, 20], "scientif": 1, "ecosystem": 1, "explain": [1, 11, 19, 21, 24], "procedur": [1, 14], "suffici": 1, "detail": [1, 2, 3, 4, 21], "those": [1, 3, 10, 12, 19, 24], "just": [1, 5, 7, 9, 12, 16, 17, 19, 20, 21, 24], "start": [1, 5, 9, 10, 12, 13, 14, 19, 20, 21], "career": 1, "abl": [1, 21], "fulli": 1, "comprehend": 1, "other": [1, 4, 14, 17, 19, 20, 21, 24], "word": [1, 17, 19, 20, 21, 24], "endeavor": 1, "assum": [1, 5, 6, 7, 10, 12, 16, 17, 20, 21, 24], "veri": [1, 3, 4, 12, 14, 16, 17, 19, 20, 21, 24], "littl": [1, 10, 19, 24], "prior": 1, "knowledg": 1, "about": [1, 2, 4, 9, 10, 12, 19, 21, 22], "advanc": 1, "mathemat": [1, 3, 5, 16, 21], "undergradu": 1, "earli": [1, 4], "graduat": 1, "student": 1, "look": [1, 2, 4, 8, 9, 14, 16, 20, 21, 24], "learn": 1, "some": [1, 2, 3, 4, 8, 9, 10, 12, 17, 18, 19, 20, 21], "teacher": 1, "professor": 1, "lectur": 1, "design": [1, 18, 21], "cours": [1, 3], "materi": [1, 6, 13, 14, 18, 21], "glaciologist": [1, 4, 9, 24], "inspir": 1, "how": [1, 2, 3, 4, 5, 9, 12, 13, 14, 16, 17, 19, 20, 24], "dataset": [1, 2, 4, 8], "sever": [1, 3, 4, 5, 14, 19], "semin": 1, "textbook": 1, "e": [1, 3, 5, 6, 10, 12, 16, 17, 19, 20, 21, 23, 24], "g": [1, 7, 10, 12, 14, 16, 17, 19, 20], "cuffei": 1, "paterson": 1, "s": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 16, 17, 19, 20, 21, 24], "physic": [1, 16, 23, 25], "glacier": [1, 3, 4, 9, 13, 14, 19, 24, 25], "have": [1, 2, 5, 7, 10, 11, 12, 14, 16, 17, 18, 19, 20, 21, 23], "instrument": 1, "train": 1, "gener": [1, 2, 5, 7, 14, 16, 19, 21, 23, 24, 25], "cannot": [1, 5, 12, 24], "hope": [1, 3, 12, 19], "comprehens": 1, "mani": [1, 4, 9, 17, 19, 21, 25], "doe": [1, 2, 3, 5, 6, 10, 12, 16, 23, 24], "cover": [1, 4], "similar": [1, 9, 10, 14, 16, 19, 20], "so": [1, 2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 16, 17, 19, 20, 21, 24], "despit": [1, 3], "overlap": 1, "compliment": [1, 10], "exist": [1, 2, 3, 4], "avail": [1, 4], "anytim": 1, "cost": 1, "remov": [1, 3, 5, 6, 19], "ani": [1, 3, 5, 14, 19, 21, 23, 24], "barrier": 1, "entri": 1, "usual": [1, 12, 17, 21], "associ": [1, 12, 14, 24], "driven": [1, 3, 7], "multipl": [1, 4, 19, 21, 24], "contributor": 1, "share": 1, "time": [1, 2, 4, 5, 7, 12, 13, 14, 17, 18, 19, 20, 23, 24], "expertis": 1, "more": [1, 2, 3, 7, 10, 11, 12, 16, 17, 24], "evenli": [1, 21], "distribut": [1, 2, 21, 25], "both": [1, 2, 3, 5, 8, 12, 19, 20, 24], "work": [1, 19], "load": [1, 4, 20], "credit": [1, 4], "creat": [1, 2, 19, 20, 21], "enabl": [1, 20], "larger": [1, 5, 16, 21, 24], "divers": 1, "topic": 1, "than": [1, 2, 7, 9, 10, 12, 14, 16, 17, 19, 21, 24], "standard": [1, 2, 4], "introductori": 1, "easili": [1, 19], "updat": 1, "scienc": [1, 2, 4, 8, 19], "develop": [1, 19], "includ": [1, 3, 4, 5, 12, 19, 21, 24], "execut": 1, "embed": 1, "stress": [1, 4, 10, 11, 16, 17, 24], "equat": [1, 4, 5, 7, 10, 13, 16, 17, 19, 21, 23, 25], "mass": [1, 3, 4, 9, 12, 14, 16, 17], "conserv": [1, 3, 17], "from": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 16, 18, 19, 20, 21, 24], "close": [1, 4, 21, 24], "first": [1, 3, 4, 6, 8, 9, 10, 12, 16, 17, 20, 21, 24], "principl": [1, 21, 24], "A": [1, 3, 4, 7, 10, 11, 12, 16, 17, 20, 21], "great": [1, 21], "advantag": 1, "write": [1, 17, 24], "jupyterbook": 1, "accompani": 1, "order": [1, 4, 10], "aid": 1, "line": [1, 8, 12, 19], "block": [1, 13], "even": [1, 19], "better": 1, "reader": 1, "allow": [1, 19, 21, 24], "you": [1, 2, 3, 5, 9, 12, 13, 16, 19, 21, 24], "experi": [1, 4, 9, 19], "gain": [1, 3, 9, 19, 25], "intuit": [1, 3, 7, 23, 24], "being": [1, 5, 12, 16, 17, 21, 24], "describ": [1, 4, 5, 10, 11, 14, 18, 19, 20, 21, 24], "least": [1, 3, 17, 19], "three": [1, 4, 10, 12, 13, 14, 17, 19, 24], "ll": [1, 21], "most": [1, 3, 4, 9, 11, 18, 19, 24], "straight": 1, "forward": 1, "project": [1, 2, 4, 8, 19], "call": [1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 16, 17, 19, 20, 21, 24], "hebe": 1, "one": [1, 2, 3, 7, 9, 10, 12, 17, 19, 20, 21, 23, 24], "hover": 1, "over": [1, 3, 4, 5, 7, 9, 14, 17, 18, 24], "rocket": 1, "icon": 1, "top": [1, 4, 14, 19, 20], "right": [1, 2, 5, 7, 8, 10, 12, 13, 14, 16, 17, 19, 20, 21, 23, 24], "screen": 1, "click": 1, "live": [1, 9], "menu": 1, "item": 1, "appear": [1, 6, 19, 20, 24], "button": 1, "label": [1, 5, 19, 21], "restart": 1, "each": [1, 2, 4, 7, 14, 17, 19, 20, 21, 24], "cell": [1, 2, 8, 19, 21], "after": [1, 2, 13, 19, 20], "short": [1, 4, 21], "delai": [1, 19, 21], "dure": [1, 19, 20, 21], "which": [1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 23, 24], "spun": 1, "up": [1, 3, 4, 5, 10, 14, 19, 21, 24], "turn": [1, 2, 14, 20, 24], "note": [1, 3, 4, 5, 6, 7, 8, 12, 14, 16, 17, 19, 20, 21], "edit": 1, "here": [1, 2, 3, 4, 7, 9, 10, 12, 14, 16, 19, 20, 21, 24], "same": [1, 3, 5, 6, 8, 9, 10, 12, 13, 14, 17, 19, 20, 21, 24], "rest": 1, "between": [1, 3, 5, 6, 7, 10, 13, 16, 17, 18, 20, 21], "disadvantag": 1, "flexibl": 1, "termin": [1, 3], "instal": [1, 4], "new": [1, 2, 8, 13, 19, 20, 21], "packag": [1, 4, 20, 21], "download": [1, 4], "result": [1, 3, 8, 12, 16, 17, 19, 20, 21, 24], "figur": [1, 7, 19, 20], "anoth": [1, 3, 5, 10, 16, 19, 20], "make": [1, 2, 3, 4, 5, 7, 9, 12, 16, 19, 21, 24], "lost": 1, "when": [1, 7, 9, 10, 16, 17, 18, 19, 20, 21, 24, 25], "shut": 1, "down": [1, 2, 3, 5, 14, 19, 24], "second": [1, 3, 5, 8, 9, 10, 11, 12, 14, 16, 19, 20, 21, 24], "option": [1, 8, 19, 21], "jupyterlab": 1, "binder": 1, "insid": [1, 10, 19], "session": 1, "suppli": [1, 4], "mybind": 1, "org": [1, 2], "notebook": [1, 2], "etc": [1, 20, 24], "abov": [1, 2, 5, 7, 8, 10, 12, 14, 16, 19, 20, 21, 24], "lose": [1, 3, 9], "chang": [1, 3, 5, 6, 7, 9, 12, 13, 14, 17, 18, 19, 21, 24], "third": [1, 20], "full": [1, 5, 12, 19, 21, 23], "save": [1, 2, 19, 21], "easiest": 1, "clone": 1, "github": [1, 19], "repo": 1, "where": [1, 3, 4, 5, 7, 10, 11, 12, 13, 14, 16, 19, 20, 21, 24], "follow": [1, 2, 7, 10, 13, 18, 19, 20, 21, 24], "git": 1, "ldeo": [1, 2, 4, 8, 19], "intro": 1, "If": [1, 2, 3, 5, 7, 21, 24], "try": [1, 2], "depend": [1, 5, 7, 9, 12, 21, 24], "permiss": 1, "setup": 1, "mai": [1, 2, 3, 10], "necessari": 1, "version": [1, 4, 5, 8], "next": [1, 4, 10, 12, 14, 19, 20, 21, 24], "need": [1, 2, 4, 5, 7, 9, 10, 12, 16, 17, 20, 21], "conda": 1, "instruct": 1, "websit": 1, "env": 1, "f": [1, 2, 4, 7, 10, 19, 20, 21], "path": [1, 19], "yml": 1, "final": [1, 4, 5, 10, 12, 19, 20, 21, 24], "jupyt": 1, "lab": 1, "now": [1, 3, 4, 7, 10, 13, 14, 16, 19, 20, 21, 24], "best": [1, 2], "engag": 1, "through": [1, 3, 13, 14, 16, 19, 20, 21, 24], "repositori": [1, 19], "store": [1, 2, 8, 19], "found": [1, 2, 4, 10, 20, 21, 23], "suggest": [1, 12, 19], "addit": [1, 3, 4, 5, 12, 19], "content": [1, 19, 21, 24], "correct": [1, 19, 24], "thought": 1, "welcom": 1, "form": [1, 3, 4, 5, 10, 14, 24], "issu": [1, 19, 21], "pleas": [1, 2], "hesit": 1, "pull": [1, 14], "request": [1, 2], "entir": 1, "chapter": [1, 2, 3, 17, 19, 24, 25], "But": [1, 3, 20], "stop": 1, "want": [1, 16, 19, 21], "someth": [1, 19], "should": [1, 3, 12, 16, 24], "probabl": [1, 12], "know": [1, 10, 19, 21], "what": [1, 3, 5, 12, 16, 20, 21, 24], "els": [1, 5, 21], "interest": [1, 4, 19, 24], "under": [1, 4, 9, 10, 23, 24], "mit": 1, "In": [2, 3, 4, 5, 8, 10, 12, 13, 14, 16, 17, 18, 19, 20, 21, 23, 24, 25], "flow": [2, 5, 6, 7, 12, 16, 17, 19, 24], "wide": [2, 10], "antarcitc": 2, "surfac": [2, 3, 4, 5, 7, 8, 9, 10, 12, 16, 17, 18, 19, 21, 23, 24], "veloc": [2, 3, 4, 5, 10, 17, 24], "thi": [2, 3, 4, 5, 7, 8, 9, 10, 12, 14, 16, 17, 19, 20, 23, 24, 25], "demonstr": [2, 4, 19, 20, 21], "manipul": 2, "effici": 2, "upload": 2, "To": [2, 4, 5, 7, 9, 10, 12, 13, 14, 16, 19, 20, 21, 24], "actual": [2, 24], "your": [2, 9], "own": [2, 9], "nsidc": 2, "credenti": 2, "token": 2, "local": [2, 4, 19, 21, 24], "machin": 2, "run": [2, 20], "command": 2, "account": [2, 5, 7], "nasa": [2, 4], "earthdata": 2, "login": 2, "Then": [2, 10, 19, 20, 24], "replac": [2, 7, 24], "usernam": 2, "password": 2, "wget": 2, "user": [2, 19], "n5eil01u": 2, "ec": 2, "0484": 2, "002": 2, "1996": 2, "antarctica_ice_velocity_450m_v2": 2, "nc": 2, "12": [2, 4, 8, 19], "46": [2, 19], "24": [2, 19], "resolv": [2, 5, 12], "128": 2, "138": 2, "97": [2, 19], "102": 2, "connect": 2, "443": 2, "sent": 2, "await": 2, "respons": [2, 20], "302": 2, "locat": [2, 3, 4, 9, 10, 12, 17, 18, 19, 24], "ur": 2, "gov": 2, "oauth": 2, "author": [2, 8], "app_typ": 2, "401": 2, "client_id": 2, "_jluwmhxb2xx6nwytb4dra": 2, "response_typ": 2, "code": [2, 19, 21], "redirect_uri": 2, "3a": 2, "2f": 2, "2fn5eil01u": 2, "2fop": 2, "2fredirect": 2, "state": [2, 10, 14], "ahr0chm6ly9unwvpbdaxds5ly3mubnnpzgmub3jnl01fqvnvukvtl05tsurdlta0odqumdaylze5otyumdeumdevyw50yxjjdgljyv9py2vfdmvsb2npdhlfnduwbv92mi5uyw": 2, "198": 2, "118": 2, "243": 2, "33": [2, 8, 19], "unauthor": 2, "authent": 2, "select": [2, 19, 21], "basic": [2, 4, 12], "realm": 2, "enter": [2, 24], "reus": 2, "op": 2, "redirect": 2, "22ade1fdebe174b1ee00d376b4166731b0aed7ee1cc461732d93296ecf4bef39": 2, "25": [2, 8, 9, 19], "No": [2, 4, 8], "receiv": [2, 4, 19, 20], "retri": 2, "26": [2, 4, 19], "2": [2, 4, 7, 10, 11, 12, 13, 16, 17, 19, 20, 24], "200": [2, 21], "ok": 2, "length": [2, 7, 13, 14, 17, 19, 21, 24], "6814851561": 2, "6": [2, 4, 8, 19], "3g": 2, "applic": [2, 4, 10, 12, 21], "x": [2, 3, 4, 5, 7, 8, 10, 13, 16, 17, 19, 20, 21, 23, 24], "netcdf": 2, "antarctica_ice_velo": 2, "100": [2, 19], "35g": 2, "1mb": 2, "16m": 2, "54": [2, 19], "11": [2, 19, 24], "03": [2, 19], "20": [2, 4, 19, 24], "41": [2, 19], "mb": 2, "lazili": [2, 19], "isnt": 2, "memori": [2, 8, 19], "onc": 2, "xarrai": [2, 4, 8, 19], "import": [2, 3, 4, 12, 19, 20, 21, 24], "xr": [2, 4, 8], "ds": [2, 10, 19], "open_dataset": 2, "inspect": 2, "size": [2, 4, 8, 24], "take": [2, 4, 5, 19, 20, 21, 24], "coordin": [2, 4, 7, 8, 10, 12, 13, 16, 17, 19, 24], "variabl": [2, 4, 5, 8, 17, 19, 24], "dimens": [2, 4, 5, 7, 8, 10, 17, 19], "print": [2, 4, 19, 21], "nbyte": [2, 19], "1e9": [2, 19], "gb": 2, "814832221": 2, "lt": [2, 4, 8, 19], "gt": [2, 4, 8, 19], "12445": [2, 4], "y": [2, 4, 5, 7, 8, 10, 12, 13, 16, 17, 19, 23, 24], "float64": [2, 4, 19], "8e": [2, 4], "06": [2, 4, 19, 21], "799e": [2, 4], "lat": [2, 4], "67": [2, 19], "68": [2, 19], "lon": [2, 4], "315": 2, "0": [2, 4, 5, 8, 10, 12, 13, 14, 16, 17, 19, 20, 21, 24], "135": [2, 21], "coord_system": [2, 4], "s1": [2, 4, 20], "b": [2, 3, 4, 5, 10, 17, 19, 21], "x27": [2, 4, 19], "vx": [2, 4], "float32": [2, 4, 8], "nan": 2, "vy": [2, 4], "stdx": [2, 4], "stdy": [2, 4], "errx": [2, 4], "erri": [2, 4], "cnt": [2, 4], "int32": [2, 4, 8], "attribut": [2, 4, 8, 19], "convent": [2, 4, 8, 14, 19], "cf": [2, 4, 8], "1": [2, 4, 6, 7, 9, 10, 11, 12, 13, 16, 17, 19, 20, 23, 24], "metadata_convent": [2, 4], "unidata": [2, 4], "discoveri": [2, 4], "v1": [2, 4, 8], "gd": [2, 4], "v2": [2, 4], "standard_name_vocabulari": [2, 4], "name": [2, 4, 8, 19], "tabl": [2, 4], "v22": [2, 4], "februari": [2, 4], "id": 2, "vel_nsidc": [2, 4], "cf16": [2, 4], "titl": [2, 4, 8, 19], "antarctica": [2, 3, 4, 8, 19, 20], "map": [2, 4], "450m": [2, 4], "space": [2, 4, 5, 8, 17, 24], "product_vers": [2, 4], "spatial_resolut": [2, 4], "time_coverage_start": [2, 4], "1995": [2, 4], "time_coverage_end": [2, 4], "2016": [2, 4], "31": [2, 4, 19], "creator_nam": [2, 4], "j": [2, 4, 7, 24], "mouginot": [2, 4, 8], "licens": [2, 4, 8], "restrict": [2, 4, 8, 21], "usexarrai": 2, "datasetdimens": [2, 4, 8, 19], "12445y": 2, "12445coordin": [2, 4], "4": [2, 4, 10, 16, 19, 24], "06long_nam": 2, "cartesian": [2, 4, 8, 24], "coordinatestandard_nam": [2, 4, 8], "projection_x_coordinateaxi": 2, "xunit": 2, "marrai": [2, 4], "2800000": [2, 4], "2799550": [2, 4], "2799100": [2, 4], "2798900": [2, 4], "2799350": [2, 4], "2799800": [2, 4], "float642": [2, 4], "projection_y_coordinateaxi": 2, "yunit": 2, "68unit": 2, "degrees_northlong_nam": 2, "latitud": [2, 4, 19], "latitudearrai": 2, "673529": 2, "676197": 2, "678865": 2, "680051": 2, "677383": 2, "674715": 2, "678866": 2, "681534": 2, "68272": 2, "680052": 2, "684203": 2, "685388": 2, "686574": 2, "683906": 2, "681237": 2, "681238": 2, "678569": 2, "675901": 2, "float64315": 2, "0unit": [2, 19], "degrees_eastlong_nam": 2, "longitud": [2, 4, 19], "longitudearrai": 2, "004604": 2, "009209": 2, "44": [2, 4, 19], "988744": 2, "993349": 2, "997954": 2, "314": 2, "995395": 2, "004605": 2, "993348": 2, "45": [2, 19], "002558": 2, "99079": 2, "995394": 2, "997953": 2, "002559": 2, "007164": 2, "225": 2, "011256": 2, "006651": 2, "002046": 2, "000001": 2, "134": 2, "990791": 2, "00665": 2, "224": 2, "99744": 2, "004607": 2, "995396": 2, "002045": 2, "997441": 2, "992836": 2, "009211": 2, "004606": 2, "s1b": 2, "ellipsoid": [2, 4, 8], "wgs84false_east": [2, 4], "0false_north": [2, 4], "0grid_mapping_nam": [2, 4], "polar_stereographiclongitude_of_projection_origin": 2, "0latitude_of_projection_origin": 2, "90": [2, 4, 8, 19], "0standard_parallel": [2, 4], "71": [2, 4, 8, 19], "0straight_vertical_longitude_from_pol": [2, 4], "0arrai": [2, 4], "dtype": [2, 4, 8, 19], "float32nan": 2, "nanlong_nam": 2, "directionstandard_nam": [2, 4], "land_ice_x_velocityunit": [2, 4], "meter": [2, 4, 5, 8, 13, 24], "yeargrid_map": 2, "coord_systemarrai": 2, "land_ice_y_velocityunit": [2, 4], "std": [2, 4], "std_ice_x_velocityunit": [2, 4], "std_ice_y_velocityunit": [2, 4], "err": [2, 4], "err_ice_x_velocityunit": [2, 4], "err_ice_y_velocityunit": [2, 4], "int320": 2, "0long_nam": [2, 19], "velocitystandard_nam": [2, 4], "cnt_ice_velocityunit": [2, 4], "countgrid_map": 2, "6metadata_convent": [2, 4], "0standard_name_vocabulari": 2, "nctitl": 2, "spacingproduct_vers": 2, "summari": [2, 4], "keyword": 2, "keywords_vocabulari": [2, 4], "platform": 2, "sensor": 2, "date_cr": [2, 4], "2017": [2, 4], "04": [2, 4, 19], "06t17": [2, 4], "47": [2, 4, 19], "00004923343322zinstitut": 2, "depart": [2, 4, 8], "earth": [2, 4, 8, 19], "univers": [2, 4, 8, 19], "california": [2, 4, 8], "irvinecdm_data_typ": 2, "gridgeospatial_lat_unit": 2, "degrees_northgeospatial_lon_unit": 2, "degrees_eastgeospatial_lat_min": 2, "90geospatial_lat_max": 2, "60geospatial_lon_min": 2, "180geospatial_lon_max": 2, "180spatial_resolut": 2, "450mtime_coverage_start": 2, "01time_coverage_end": 2, "31project": 2, "measurescreator_nam": 2, "mouginotlicens": 2, "zarr": [2, 8], "multi": [2, 4, 8, 19], "dimension": [2, 4, 5, 8, 12, 17, 19, 24], "fast": [2, 4, 20], "chunk": [2, 4, 8, 9], "smallest": 2, "unit": [2, 3, 4, 5, 7, 8, 10, 12, 19, 20, 21, 24], "smaller": [2, 12, 16, 19, 20, 21, 24], "total": [2, 5, 6, 10, 12, 19, 21, 24], "fo": 2, "becaus": [2, 4, 5, 6, 9, 10, 13, 14, 16, 17, 19, 20, 21, 24], "avoid": [2, 4, 21], "everi": [2, 4, 5, 9, 13, 17, 19, 24], "too": [2, 19], "small": [2, 4, 5, 10, 13, 14, 16, 19, 21, 24], "introduc": [2, 8, 11], "overhead": 2, "slow": [2, 4], "thing": [2, 5, 9, 17], "The": [2, 4, 5, 7, 9, 10, 13, 16, 18, 20, 24, 25], "ha": [2, 3, 7, 12, 13, 16, 17, 18, 19, 20, 21, 24], "default": [2, 21], "did": [2, 20, 21, 24], "ideal": 2, "nessesari": 2, "For": [2, 4, 10, 13, 16, 17, 19, 20, 21, 24], "out": [2, 5, 16, 17, 19, 20, 21, 24], "split": 2, "four": [2, 5, 14], "get": [2, 3, 5, 8, 10, 12, 14, 16, 17, 19, 20, 21, 24], "numpi": [2, 4, 8, 19, 20, 21], "np": [2, 4, 8, 19, 20, 21], "nx": [2, 8], "shape": [2, 4, 6, 8, 12, 16, 24], "ny": [2, 8], "ds_rechunk": 2, "ceil": 2, "dask": [2, 4, 8], "arrai": [2, 4, 8, 19, 20, 21], "chunksiz": [2, 4, 8], "6223": 2, "meta": [2, 4, 8], "ndarrai": [2, 4, 8], "float64dask": [2, 4], "byte": [2, 4, 8], "15": [2, 4, 19, 20, 24], "gib": [2, 4], "295": 2, "mib": [2, 4, 8], "count": [2, 4, 8, 19], "graph": [2, 8], "layer": [2, 8, 16, 19, 24], "type": [2, 3, 4, 8], "float32dask": [2, 4, 8], "long_nam": [2, 4, 8, 19], "590": [2, 4], "81": [2, 4, 19], "147": 2, "73": [2, 19], "int32dask": [2, 4], "elsewher": 2, "book": [2, 3], "requir": [2, 3, 8, 16, 17, 19, 21, 23, 24], "privat": 2, "yourself": 2, "specif": [2, 3, 7, 17, 21, 24], "json": 2, "gcsf": 2, "file": [2, 17, 19], "like": [2, 5, 9, 12, 16, 18, 19, 21, 24], "object": [2, 19], "mapper": [2, 8], "method": [2, 19, 23], "to_zarr": 2, "jkingslak": [2, 19], "glaciolog": [2, 4, 6, 8, 11, 17, 19, 24], "bc97b12df06b": 2, "token_fil": 2, "gc": [2, 19], "gcsfilesystem": 2, "get_mapp": [2, 4, 8], "gs": [2, 4, 8, 19], "mapper_rechunk": 2, "measures_rechunk": 2, "backend": 2, "zarrstor": 2, "0x145e98270": 2, "check": 2, "wa": [2, 4, 19, 21, 24], "correctli": 2, "syntax": 2, "main": [2, 5], "page": [2, 5, 8, 10, 16, 18, 19, 20, 21, 23, 24], "fsspec": [2, 4, 8], "mapper_reload": 2, "ds_reload": 2, "open_zarr": [2, 4, 8], "389": [2, 4], "778": [2, 4], "cdm_data_typ": [2, 4], "grid": [2, 4, 8], "00004923343322z": [2, 4], "geospatial_lat_max": [2, 4], "60": [2, 4, 19], "spacingxarrai": [2, 4], "12445x": [2, 4], "latitudeunit": [2, 4], "degrees_north": [2, 4], "512": [2, 4], "longitudeunit": [2, 4], "degrees_east": [2, 4], "06axi": [2, 4], "xlong_nam": [2, 4], "projection_x_coordinateunit": [2, 4, 8], "ylong_nam": [2, 4], "projection_y_coordinateunit": [2, 4, 8], "grid_map": [2, 4, 8], "coord_systemlong_nam": [2, 4], "256": [2, 4], "year": [2, 3, 4, 9, 19], "polar_stereographiclatitude_of_projection_origin": [2, 4], "0longitude_of_projection_origin": [2, 4], "0cdm_data_typ": [2, 4], "gridcreator_nam": [2, 4], "mouginotdate_cr": [2, 4], "00004923343322zgeospatial_lat_max": [2, 4], "60geospatial_lat_min": [2, 4], "90geospatial_lat_unit": [2, 4], "degrees_northgeospatial_lon_max": [2, 4], "180geospatial_lon_min": [2, 4], "180geospatial_lon_unit": [2, 4], "degrees_eastid": [2, 4], "ncinstitut": [2, 4], "irvinekeyword": [2, 4], "useplatform": [2, 4], "measuressensor": [2, 4], "450mstandard_name_vocabulari": [2, 4], "31time_coverage_start": [2, 4], "01titl": [2, 4], "ds_rechunked_reload": 2, "whole": [3, 5, 16, 17, 19, 21], "dedic": 3, "futur": 3, "discuss": [3, 9, 19, 20], "context": [3, 5], "build": [3, 4, 5, 9, 23], "affect": [3, 6, 19, 20, 24], "sheet": [3, 5, 7, 9, 10, 12, 14, 17, 18, 19, 21, 23, 24, 25], "grow": [3, 9], "shrink": [3, 9], "process": [3, 8, 19, 24], "collect": [3, 4, 19, 20, 21], "known": [3, 14, 19, 20], "These": [3, 4, 12, 16, 17, 21, 24], "deposit": 3, "water": [3, 5, 9, 18], "vapor": 3, "condens": 3, "freez": [3, 24], "rain": 3, "meltwat": [3, 25], "avalanch": 3, "importantli": 3, "far": [3, 11, 19, 21], "snowfal": 3, "scour": 3, "wherebi": 3, "wind": 3, "snow": [3, 5, 9, 24, 25], "sublim": 3, "melt": [3, 5, 16, 18, 24, 25], "calv": 3, "iceberg": 3, "particular": [3, 13, 17, 19, 20, 24], "net": [3, 5, 24], "minu": [3, 24], "sum": [3, 5, 17, 20, 21, 24], "period": [3, 4, 19], "balanc": [3, 4, 10, 12, 21, 24], "b_n": 3, "quantiti": [3, 4, 7, 17, 24], "per": [3, 5, 7, 8, 10, 12, 20, 21, 24], "area": [3, 4, 5, 7, 14, 24], "function": [3, 4, 5, 8, 10, 12, 16, 17, 19, 20, 21, 24], "annual": 3, "posit": [3, 4, 5, 13, 14, 16, 19, 21, 24], "zone": [3, 19], "neg": [3, 5, 10, 12, 14, 16, 24], "add": [3, 4, 7, 8, 14, 19], "integr": [3, 4, 7, 10, 16], "spatial": [3, 4, 5, 13, 16, 17, 24], "refer": [3, 4, 5, 9, 12, 16, 17, 18, 21, 24], "simpli": [3, 4, 13, 14, 16, 17, 19, 21, 24], "m": [3, 4, 5, 7, 8, 12, 19, 21, 24], "appli": [3, 5, 10, 14, 16, 17, 19, 21, 23, 24], "our": [3, 5, 6, 9, 10, 12, 14, 16, 17, 19, 20, 21, 23, 24], "mention": [3, 21], "One": [3, 4, 9, 17, 19], "appreci": 3, "consid": [3, 5, 7, 10, 12, 13, 14, 16, 17, 19, 21, 24], "would": [3, 5, 9, 12, 19, 21, 24], "happen": [3, 24], "hypothet": 3, "while": [3, 18, 19, 21, 24], "experienc": 3, "fall": [3, 5, 9], "due": [3, 5, 14, 16, 24], "its": [3, 4, 6, 9, 10, 13, 14, 16, 17, 19, 20, 21, 24], "thicken": 3, "indefinit": 3, "long": [3, 4, 12, 13, 19, 21], "continu": [3, 5, 16, 18, 20, 21], "soon": 3, "ceas": 3, "Of": 3, "natur": [3, 8], "stark": 3, "contrast": [3, 11, 18], "pictur": [3, 24], "disappear": 3, "respect": [3, 5, 14, 16, 24], "pattern": [3, 24], "stai": [3, 19], "constant": [3, 7, 19, 21, 24], "thick": [3, 5, 7, 8, 10, 12, 16], "attain": 3, "dynam": 3, "equilibrium": 3, "reason": [3, 12, 19], "possibl": [3, 19], "show": [3, 4, 5, 10, 12, 13, 16, 17, 19, 20, 21, 24], "caus": [3, 20, 21, 24], "thin": [3, 4, 16], "counteract": [3, 21], "view": 3, "act": [3, 7, 17], "concert": 3, "control": [3, 4, 9, 16, 19, 24], "consider": 3, "let": [3, 4, 8, 13, 14, 17, 19, 20, 21, 24], "two": [3, 4, 5, 7, 14, 16, 17, 19, 20, 24], "separ": [3, 18, 24], "mountain": [3, 9], "vallei": 3, "side": [3, 5, 7, 12, 13, 14, 19, 24], "low": [3, 19, 20, 21, 24], "elev": [3, 5, 7, 8, 10, 17], "air": [3, 7, 8, 12, 24], "temperatur": [3, 17, 19, 23, 24, 25], "rel": [3, 4, 10, 19, 20, 21, 24], "fact": [3, 5, 9, 10, 16, 21, 24], "densiti": [3, 5, 7, 12, 14, 16, 18, 24], "decreas": [3, 5, 12, 16, 19, 20, 21, 24], "altitud": 3, "atmospher": 3, "move": [3, 4, 5, 10, 13, 14, 16, 24], "therefor": [3, 5, 10, 12, 16, 17, 21, 24], "domin": 3, "convers": 3, "higher": [3, 7, 10, 16, 19, 20, 21, 24], "proport": [3, 12, 17, 19, 20, 21, 24], "precipit": 3, "tend": [3, 19, 21], "increas": [3, 5, 7, 12, 13, 16, 19, 20, 21, 24], "until": [3, 12, 19], "yo": 3, "reach": [3, 20, 24, 25], "effect": [3, 5, 10, 11, 12, 16, 19, 24], "come": [3, 7, 10, 12, 21, 24], "previous": [3, 12], "addition": [3, 5, 12], "graviti": [3, 4, 7, 8, 9, 12, 16], "vast": 3, "major": 3, "case": [3, 7, 8, 10, 12, 14, 16, 17, 19, 21, 24, 25], "i": [3, 5, 6, 7, 10, 12, 16, 17, 19, 20, 21, 23, 24], "lower": [3, 19, 20, 21], "warmer": [3, 24, 25], "scenario": [3, 12, 23, 24], "seen": [3, 19], "cold": [3, 24], "interior": 3, "howev": [3, 5, 7, 21, 24], "ocean": [3, 8], "interfac": [3, 14, 18], "mechan": [3, 21], "onli": [3, 4, 5, 6, 13, 14, 17, 19, 20, 21, 24], "minor": [3, 5], "extend": [3, 7], "marin": 3, "thei": [3, 4, 5, 10, 12, 17, 19, 20, 24], "edg": 3, "facilit": 3, "basal": [3, 5, 10, 18], "later": [3, 4, 5, 12, 17, 19, 21, 24], "dig": 3, "insight": 3, "interact": [3, 8], "deriv": [3, 10, 12, 14, 16, 17, 23, 25], "descript": [3, 12, 19, 21], "deform": [3, 11, 12, 13, 16, 18, 25], "rheologi": [3, 4, 10, 16], "properti": [3, 10, 12, 18, 21], "data": [3, 4, 9, 17, 20], "As": [4, 5, 8, 12, 16, 19, 20, 21, 24], "previou": [4, 8, 10, 14, 16, 19, 20, 21, 23], "viscou": [4, 11], "fluid": [4, 5, 9], "prece": 4, "differ": [4, 6, 7, 11, 13, 14, 16, 18, 19, 20, 24], "rate": [4, 5, 10, 11, 16, 17, 18, 19, 21, 24], "differnt": 4, "depth": [4, 10, 12, 16, 19, 21, 24], "within": [4, 5, 13, 19, 21], "techniqu": 4, "measur": [4, 12, 18, 19, 20, 24], "straightforward": [4, 21], "involv": [4, 11, 14, 19, 24], "marker": [4, 19], "aluminium": 4, "pole": 4, "sometim": [4, 5], "glacio": 4, "datum": 4, "done": [4, 20, 21], "global": 4, "satellit": 4, "gnss": 4, "tradition": 4, "achiev": [4, 21], "theodelit": 4, "frame": 4, "fig": [4, 19, 20, 21, 24], "recevi": 4, "scientist": 4, "secur": 4, "repeat": [4, 20, 24], "approxim": [4, 6, 10, 19], "took": [4, 21], "around": [4, 14, 19, 21], "minut": [4, 19], "divid": [4, 12, 13, 16, 19], "kingslak": 4, "et": [4, 8, 19, 21], "photo": 4, "iain": 4, "rudkin": 4, "altern": 4, "identifi": 4, "featur": [4, 8], "alreadi": [4, 19, 24], "present": 4, "track": [4, 18], "movement": 4, "earliest": 4, "perform": [4, 14], "john": 4, "nye": 4, "1956": 4, "expedit": 4, "austerdalsbreen": 4, "outlet": 4, "jostedalsbreen": 4, "cap": 4, "norwai": 4, "photograph": 4, "upstream": [4, 5, 24], "30": [4, 19, 20, 21], "dai": [4, 9], "team": [4, 19], "carefulli": 4, "record": [4, 18, 19, 21], "motion": 4, "promin": 4, "crevass": 4, "serac": 4, "along": [4, 12, 17, 18, 19, 24], "talk": 4, "histori": 4, "laps": 4, "video": [4, 21], "austerdahlsbreen": 4, "imag": [4, 9, 21], "thirti": 4, "eight": 4, "modern": 4, "determin": [4, 12, 16, 21], "speed": [4, 13, 14, 17, 19, 21], "obtain": [4, 10, 16, 19], "imageri": 4, "appar": 4, "There": [4, 19], "relat": [4, 5, 12, 13, 14, 19, 20, 21, 24], "produc": [4, 12, 19, 20, 21, 25], "complimentari": 4, "collat": 4, "nearli": [4, 19], "complet": [4, 10, 11, 19, 24], "variat": [4, 10, 12, 24], "public": 4, "appendix": 4, "link": [4, 5, 21], "examin": [4, 8, 19], "structur": 4, "help": [4, 12, 19, 21, 24], "tha": [4, 19], "plot": [4, 11, 20, 24], "513": 4, "task": [4, 17], "257": 4, "contain": [4, 19, 21, 24], "variou": 4, "might": [4, 24], "orthogon": 4, "direct": [4, 5, 6, 7, 8, 10, 12, 13, 14, 17, 24], "correspond": [4, 12, 16, 17, 19, 20, 21, 24], "lot": [4, 24], "inform": [4, 12, 21], "individu": [4, 17, 19, 21, 24], "dataarrai": [4, 19], "overal": 4, "compon": [4, 5, 6, 9, 10, 12, 13, 14, 17, 20, 21, 24], "pythagora": 4, "theorem": 4, "5": [4, 9, 12, 16, 19, 20], "attr": [4, 8], "pow": 4, "chunktyp": 4, "speedxarrai": 4, "12445dask": 4, "1538": 4, "yearlong_nam": 4, "larg": [4, 10, 12, 16, 17, 19, 24], "8th": 4, "point": [4, 5, 7, 8, 17, 19, 24, 25], "relatvi": 4, "speed_subset": 4, "isel": [4, 8, 19], "slice": [4, 8, 12, 19], "4000": [4, 8], "5800": 4, "3800": 4, "5400": 4, "arbitrari": 4, "portion": [4, 14], "part": [4, 7, 12, 21], "ronn": 4, "filchner": 4, "rise": 4, "adjac": [4, 19], "strick": 4, "charaterist": 4, "vari": [4, 5, 6, 10, 12, 13, 16, 17, 21, 23, 24], "magnitud": [4, 8, 14, 19], "distanc": [4, 5, 13, 14, 21, 24], "fastest": [4, 7], "arrang": [4, 19], "corridor": 4, "aar": 4, "ground": [4, 8, 12, 18], "stream": [4, 10], "histogram": 4, "hist": 4, "bin": [4, 19, 21], "40": [4, 19, 20], "minimum": [4, 24], "maximum": [4, 24], "valu": [4, 8, 11, 16, 17, 19, 21, 24], "slowest": 4, "subset": [4, 8], "min": 4, "max": [4, 21], "1e3": 4, "km": 4, "013": 4, "few": [4, 10, 12, 19, 21], "theoret": 4, "tool": [4, 19], "simpl": [4, 9, 12, 16, 19, 21, 25], "model": [4, 5, 8, 9, 17], "fundament": [4, 17, 21, 24, 25], "vector": [4, 5, 20, 21, 24], "calculu": 4, "strain": [4, 10, 11, 16, 24], "tensor": [4, 6, 10, 11, 12, 14], "deviator": [4, 10, 11], "drive": [4, 10], "combin": [4, 12, 19, 20, 21, 24], "simplifi": [4, 10, 12, 14, 16, 19, 23, 24], "shallow": [4, 10, 19], "subsequ": [4, 19], "solv": [4, 12, 25], "numer": [4, 23, 25], "broad": 4, "scale": [4, 17, 19, 24], "topographi": [4, 7, 8], "h": [5, 7, 8, 10, 12, 16, 17, 24], "dot": [5, 10, 11, 12, 13, 17, 24], "nabla_h": 5, "cdot": [5, 10, 16, 17, 24], "underlin": [5, 6, 7, 10, 11, 12, 13, 14, 16, 17], "q": [5, 10, 12, 16, 24], "frac": [5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 17, 19, 20, 21, 23, 24], "partial": [5, 7, 8, 10, 12, 13, 14, 16, 17, 23, 24], "t": [5, 10, 13, 17, 19, 20, 21, 23, 24], "equival": [5, 12, 21], "del": [5, 24], "oper": [5, 24], "horizont": [5, 7, 10, 14, 17, 19, 21], "flux": [5, 10, 16, 24], "volum": [5, 6, 12, 14, 24], "column": [5, 7, 19], "diagram": [5, 21], "delta": [5, 7, 13, 14, 24], "text": [5, 7, 22], "accumul": 5, "upper": [5, 12, 14], "q_x": [5, 24], "q_y": 5, "express": [5, 10, 12, 13, 14, 16, 19, 24], "instantan": 5, "compact": [5, 24, 25], "commonli": [5, 10, 18], "defin": [5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 17, 19, 20, 24], "int": [5, 10, 12, 16, 19, 21], "h_0": [5, 10, 12], "u": [5, 10, 12, 13, 16, 17, 20, 23, 24], "z": [5, 7, 10, 13, 16, 17, 23, 24], "dz": [5, 7, 10, 12], "quad": 5, "width": [5, 7, 8, 10, 12, 21], "treat": 5, "scalar": [5, 24], "field": [5, 7, 8, 10, 19], "befor": [5, 10, 12, 17, 19, 21, 24], "opposit": [5, 7, 16, 24], "face": 5, "bring": [5, 10, 12], "togeth": [5, 10, 14, 19, 21], "left": [5, 7, 8, 10, 12, 13, 14, 16, 17, 19, 20, 21, 23, 24], "cancel": [5, 19, 21, 24], "leav": [5, 6, 10, 12, 16, 19, 24], "repres": [5, 10, 21, 24], "nabla": [5, 7, 10, 16, 17, 24], "impli": [5, 10], "incompress": [5, 6, 10, 17], "diverg": [5, 24], "zero": [5, 10, 12, 14, 16, 17, 19, 20, 21, 24], "term": [5, 10, 16, 24], "deplet": 5, "infinitesim": 5, "region": [5, 9, 19, 24], "rho": [5, 7, 10, 12, 14, 16, 23, 24], "shift": [5, 13, 19, 20], "w": [5, 10, 12, 13, 16, 17, 19, 23, 24], "_": [5, 10, 13], "rearrang": [5, 10, 12, 13, 16, 19, 21], "give": [5, 10, 12, 13, 14, 16, 17, 19, 20, 21, 24], "bed": [5, 7, 8, 12, 16, 19], "w_": [5, 16], "w_b": [5, 16], "dw": [5, 16], "vertic": [5, 7, 10, 17, 21, 24], "goe": [5, 20], "advect": [5, 23], "height": [5, 7, 8, 10, 17], "u_": [5, 10, 12, 16], "last": [5, 21], "slope": [5, 7, 12, 16, 17, 21], "much": [5, 9, 10, 12, 13, 16, 20, 21, 24], "kinemat": 5, "non": [5, 16, 21], "argument": [5, 8, 24], "bottom": [5, 14, 16, 19], "contact": 5, "rock": [5, 8], "sediment": [5, 18], "u_b": 5, "evalu": [5, 10, 12, 16], "substitut": [5, 10, 20, 21, 24], "care": 5, "limit": [5, 10, 12, 16], "differenti": [5, 10, 14, 16, 17, 24], "progress": 5, "leibniz": [5, 10], "rule": [5, 7, 10, 16, 24], "lead": [5, 24], "sai": [5, 10, 12, 13, 24], "equal": [5, 10, 17, 21, 24], "sens": [5, 7, 12, 16, 17, 24], "less": [5, 16], "rapidli": [5, 12], "exactli": [5, 16, 20, 21, 24], "recogn": [5, 10, 21, 24], "definit": [5, 16], "had": [5, 21, 24], "except": [5, 12, 19, 21], "slightli": [5, 12, 14, 20, 21], "rigor": 5, "flat": [5, 7, 10], "isn": 5, "obviou": 5, "simpler": [5, 19, 24], "averag": [5, 10, 12, 16, 19, 20], "highlight": [5, 12, 19], "inde": [5, 17, 24], "condit": [5, 10, 12, 16, 24], "given": [6, 7, 21, 24], "normal": [6, 10, 12, 13, 14, 16, 21], "sigma_m": [6, 12], "3": [6, 7, 12, 16, 19, 24], "sigma_": [6, 10, 12, 14], "xx": [6, 10, 11, 12, 13, 14], "yy": [6, 10, 11, 12, 14], "zz": [6, 10, 11, 12, 14], "tau": [6, 11, 12, 19, 21], "sigma": [6, 12, 14, 17], "begin": [6, 10, 14], "bmatrix": [6, 14], "tau_": [6, 10, 11, 12, 14, 16], "xy": [6, 10, 11, 12, 14], "xz": [6, 10, 11, 12, 14], "yx": [6, 10, 12, 14], "yz": [6, 10, 11, 12, 14], "zx": [6, 10, 12, 14, 16], "zy": [6, 10, 12, 14], "end": [6, 13, 14, 16, 19, 21, 24], "ij": [6, 10, 11, 12, 13, 14], "shear": [6, 10, 12, 13, 14, 16, 24], "isotrop": 6, "tri": 6, "particularli": [6, 19], "wherea": 6, "law": [6, 10, 12, 14, 16, 24], "tau_d": 7, "9": [7, 19, 24], "17": [7, 8, 19, 24], "kg": [7, 8, 24], "gravit": 7, "acceler": [7, 14, 16], "orient": [7, 19], "teh": 7, "directon": 7, "perpendicula": 7, "pressur": [7, 10], "p": [7, 10, 19], "upward": [7, 14], "hydrostat": [7, 8, 10, 12], "d": [7, 10, 12, 17, 24], "todo": 7, "caption": 7, "calcul": [7, 20], "forc": [7, 8, 24], "blue": [7, 9, 20], "arrow": [7, 24], "ppressur": 7, "rather": [7, 17, 19, 21, 24], "multipli": [7, 14, 21], "hand": 7, "f_1": [7, 19, 21], "int_0": 7, "hz": [7, 19, 21], "neglig": [7, 10], "compar": [7, 10, 14, 19, 21], "relev": 7, "either": [7, 19, 24], "imagin": 7, "dh": 7, "dx": [7, 10], "f_2": [7, 19, 21], "invok": 7, "chain": [7, 16], "rewrit": 7, "stre": 7, "imbal": 7, "perpendicular": [7, 17, 24], "thicker": 7, "steeper": 7, "hat": 7, "vec": [7, 24], "asid": 8, "bedmachin": 8, "hvplot": 8, "storag": [8, 19], "cam": 8, "bm": 8, "bm_mapper": 8, "mode": 8, "13333": 8, "3333000": 8, "3332500": 8, "3332000": 8, "3000": 8, "errb": 8, "firn": [8, 24, 25], "geoid": 8, "int16": 8, "mask": 8, "int8": 8, "mathieu": 8, "morlighem": 8, "data_cit": 8, "al": [8, 19, 21], "2019": 8, "deep": [8, 21], "polar": 8, "stereograph": 8, "south": 8, "0e": 8, "500": [8, 19], "standard_parallel": 8, "straight_vertical_longitude_from_pol": 8, "05": [8, 19, 21], "nov": 8, "38": [8, 19], "xmin": 8, "ymax": 8, "13333x": 8, "13333coordin": 8, "3333000long_nam": 8, "meterarrai": 8, "int323333000": 8, "mappinglong_nam": 8, "topographysourc": 8, "ibcso": 8, "morlighemstandard_nam": 8, "bedrock_altitudeunit": 8, "678": 8, "13": [8, 19, 24], "34": [8, 19], "errorsourc": 8, "morlighemunit": 8, "contentsourc": 8, "fac": 8, "ligtenberg": 8, "2011": 8, "racmo2": 8, "3p2": 8, "van": 8, "wessem": 8, "2018": 8, "int16dask": 8, "eigen": 8, "6c4": 8, "forst": 8, "ec4": 8, "wgs84": 8, "differencestandard_nam": 8, "geoid_height_above_reference_ellipsoidunit": 8, "339": 8, "07": [8, 19, 21], "int8dask": 8, "flag_mean": 8, "ice_free_land": 8, "grounded_ic": 8, "floating_ic": 8, "lake_vostokflag_valu": 8, "masksourc": 8, "digit": [8, 19], "databas": 8, "outcrop": 8, "jeremi": 8, "comm": 8, "valid_rang": 8, "169": 8, "53": [8, 19], "58": [8, 19, 21], "rema_ibcso": 8, "mass_conserv": 8, "interpol": 8, "streamline_diffus": 8, "seismic": 8, "multibeamflag_valu": 8, "sourcesourc": 8, "morlighemvalid_rang": 8, "elevationsourc": 8, "rema": 8, "byrd": 8, "climat": 8, "research": 8, "center": [8, 21], "geospati": 8, "standard_nam": 8, "surface_altitudeunit": 8, "thicknesssourc": 8, "land_ice_thicknessunit": 8, "morlighemconvent": 8, "7data_cit": 8, "glacial": [8, 9], "trough": 8, "stabil": 8, "ridg": 8, "unveil": 8, "beneath": [8, 21], "margin": 8, "geoscienc": 8, "accept": 8, "irvineproject": 8, "antarcticafalse_east": 8, "false_north": 8, "grid_mapping_nam": 8, "polar_stereographicice_dens": 8, "917": 8, "inverse_flatten": 8, "298": 8, "2794050428205": 8, "latitude_of_projection_origin": 8, "useno_data": 8, "9999": [8, 19], "proj4": 8, "init": 8, "epsg": 8, "3031sea_water_dens": 8, "1027": 8, "semi_major_axi": 8, "6378273": 8, "were": [8, 9, 19, 21], "dhdy": 8, "dhdx": 8, "sqrt": [8, 19, 21], "zeros_lik": 8, "orderof": 8, "subset_of_slop": 8, "2000": [8, 19], "5000": 8, "dict": 8, "clim": 8, "001": [8, 19], "800": 8, "cmap": 8, "viridi": 8, "6000": 8, "7000": 8, "vmin": 8, "vmax": 8, "005": 8, "all_slope_coars": 8, "coarsen": [8, 19], "boundari": [8, 10, 12, 16], "trim": 8, "persist": 8, "remark": 9, "certain": 9, "circumst": [9, 14], "weight": 9, "excit": 9, "subject": [9, 21], "exot": 9, "famili": 9, "softer": 9, "frozen": 9, "freezer": 9, "behav": [9, 16], "threw": 9, "hard": 9, "shatter": 9, "walk": 9, "fell": 9, "hurt": 9, "concret": 9, "And": [9, 24], "yet": [9, 19], "enough": [9, 13], "gather": 9, "place": [9, 12, 16, 19, 24], "influenc": 9, "fifteen": 9, "landsat": 9, "anim": 9, "compress": [9, 12, 16, 24], "reveal": 9, "complex": [9, 19, 21], "behaviour": 9, "surg": 9, "panmah": 9, "karakoram": 9, "rang": [9, 19, 20], "asia": 9, "shown": [9, 20], "pale": 9, "light": [9, 19, 21], "cyan": 9, "white": 9, "dark": 9, "veget": 9, "green": [9, 20], "bare": 9, "terrain": 9, "pink": 9, "brown": 9, "curios": 9, "theori": [9, 18, 19, 20], "pn": 10, "simplest": 10, "blatter": 10, "pattyn": 10, "retain": [10, 12], "ignor": [10, 12, 24], "simplic": 10, "2d": [10, 19], "assumpt": [10, 12], "infinit": [10, 12], "motiv": 10, "shelv": [10, 12, 18], "wider": [10, 12, 21], "neglect": [10, 12], "gradient": [10, 13, 16, 24], "bridg": 10, "valid": [10, 13], "bodi": 10, "homogen": 10, "0_p": 10, "dp": 10, "s_z": 10, "0_": [10, 12], "impos": [10, 12], "remembr": 10, "epsilon_": [10, 11, 12, 13], "ii": 10, "u_i": 10, "x_i": 10, "align": [10, 19], "glen": [10, 12, 16], "n": [10, 11, 12, 16, 19, 21], "paramet": [10, 16, 21], "expon": [10, 16], "invers": 10, "viscos": [10, 12], "eta": 10, "invari": [10, 11, 12], "epsilon": [10, 11, 12, 13, 19, 21], "relationship": [10, 16], "_i": [10, 13], "_j": [10, 13], "remain": [10, 19, 24], "consist": [10, 19, 20, 21], "further": [10, 24], "longitudin": [10, 24], "s_b": 10, "step": [10, 12, 21, 24], "tau_b": 10, "db": [10, 19], "r": [10, 19, 21], "aspect": [10, 12], "ratio": [10, 12], "henc": 10, "uniform": [10, 16, 19, 20, 21, 24], "becom": [10, 16], "overlin": [10, 16], "sinc": 10, "symmetr": 10, "propto": [10, 24], "made": [10, 24], "rememb": [10, 16, 17, 24], "2h": 10, "extenst": 10, "again": [10, 12, 19, 20, 24], "intergr": 10, "zeta": [10, 12, 16], "2a": [10, 12, 16], "alpha": [10, 12, 16, 20], "elast": 11, "power": [11, 16, 24], "vs": 11, "common": [11, 17, 24], "written": [11, 24], "without": [11, 12, 19], "specifi": [11, 19], "formul": [11, 24], "element": [11, 12, 13, 19, 20], "past": [12, 19], "hint": 12, "although": [12, 24], "nine": 12, "unknown": [12, 19], "stoke": [12, 14], "simplif": [12, 24], "think": [12, 16, 17, 24], "helpfulli": 12, "latter": 12, "good": [12, 19], "real": [12, 19, 20, 21], "world": 12, "seem": 12, "math": [12, 19], "ident": [12, 19, 20], "wise": 12, "tall": 12, "seriou": 12, "slipperi": 12, "realist": 12, "simul": 12, "nonetheless": 12, "back": [12, 18, 20, 21, 24], "sophist": 12, "challeng": [12, 21], "h_z": 12, "expect": [12, 20, 21, 24], "strength": [12, 19], "exert": 12, "solut": 12, "linearli": [12, 13, 16, 19, 21, 24], "ultim": 12, "week": [12, 19], "ago": 12, "yield": [12, 14, 21, 24], "u_0": 12, "du": 12, "z_0": 12, "zeta_1": [12, 16], "product": [12, 17, 20, 24], "0_1": 12, "box": [12, 24], "strongli": 12, "fraction": [13, 16], "piec": 13, "l": 13, "denot": [13, 14, 17, 24], "segment": 13, "sit": 13, "arbitrarili": [13, 19, 24], "inth": 13, "exercis": 13, "essenti": 14, "slowli": [14, 16], "newton": 14, "f_i": 14, "ma": 14, "must": 14, "idea": [14, 21], "set": [14, 19, 21, 24], "push": 14, "downward": [14, 16, 21], "stretch": [14, 16, 24], "accord": [14, 16, 24], "sign": [14, 16, 24], "At": [14, 16, 17, 19, 21, 24], "why": [14, 21], "On": [14, 16, 19, 21], "six": 14, "analysi": [14, 17, 19], "static": [14, 16], "summar": 16, "dimensionless": 16, "could": [16, 17, 19, 24], "alwai": [16, 19, 21], "nonlinear": 16, "linear": [16, 21], "understood": [16, 19, 21, 24], "deviat": [16, 19], "curv": [16, 19, 21], "translat": 16, "concentr": 16, "highest": 16, "extens": [16, 18, 19], "lliboutri": 16, "explicitli": 16, "provid": [16, 20], "put": 16, "perhap": 16, "easier": 16, "accret": 16, "spring": 16, "initi": [16, 19, 24], "releas": 16, "held": 16, "albeit": 16, "seccond": 16, "bracket": [16, 24], "plastic": 16, "uniformli": 16, "throughout": [16, 20, 21], "viscous": 16, "spread": 16, "go": [17, 19, 24], "ag": 17, "complic": 17, "typic": [17, 18], "symbol": [17, 24], "axi": [17, 19, 20, 21, 24], "potenti": [17, 19, 24], "confus": [17, 24], "verbos": 17, "notat": [17, 24], "comma": 17, "middl": [17, 19, 21], "themselv": 17, "instead": [17, 24], "been": [17, 18, 19, 21], "insert": 17, "grad": 17, "steepest": 17, "ascent": 17, "analyz": [17, 24], "subscript": [17, 24], "a_x": 17, "a_i": 17, "b_x": 17, "b_y": 17, "poros": 17, "phi": 17, "everywher": 17, "bulk": 17, "heat": [17, 23], "apr": [18, 20], "frequenc": 18, "modul": [18, 20], "wave": [18, 21], "penetr": 18, "emit": [18, 21], "travel": [18, 19], "subsurfac": 18, "reflect": [18, 19, 21], "toward": [18, 24], "occur": [18, 20], "discret": [18, 21], "interpret": 18, "dielectr": 18, "reflector": [18, 19, 20], "primarili": 18, "sub": [18, 19, 21], "englaci": [18, 19, 20], "origin": [18, 19, 20], "chemistri": 18, "strong": 18, "underli": 18, "bedrock": 18, "estim": [18, 19, 20, 21], "float": 18, "ref": 18, "predecessor": 18, "pre": [18, 19], "constrain": 18, "crystal": 18, "fabric": 18, "behind": [18, 19, 20, 21], "earlier": [19, 21], "autonom": [19, 20], "radio": [19, 20], "echo": [19, 20], "sounder": [19, 20], "british": 19, "survei": 19, "ba": 19, "signal": [19, 20], "tell": [19, 24], "fourier": [19, 20, 24], "transform": [19, 20], "thwait": 19, "itgc": 19, "well": [19, 20], "matplotlib": [19, 20, 21], "built": 19, "pyplot": [19, 20, 21], "plt": [19, 20, 21], "os": 19, "sy": 19, "append": 19, "xa": 19, "west": 19, "elizabeth": 19, "ghost": 19, "overland": 19, "travers": 19, "2023": 19, "season": 19, "alex": 19, "brisbourn": 19, "sierra": 19, "melton": 19, "2024": 19, "taken": 19, "repeatedli": 19, "burst": 19, "250": 19, "waypoint": 19, "binari": 19, "dat": 19, "from_dat": 19, "fd": 19, "max_rang": 19, "2500": 19, "googl": 19, "bucket": 19, "list": 19, "root_directori": 19, "filenam": 19, "list_fil": 19, "directori": 19, "remote_load": 19, "true": [19, 20], "len": [19, 21], "2301": 19, "thousand": [19, 21], "chose": 19, "random": [19, 21], "file_numbers_to_process": 19, "ensur": 19, "dirnam": 19, "load_al": 19, "chirp_tim": 19, "40001": 19, "chirp_num": 19, "attenuator_setting_pair": 19, "profile_rang": 19, "11889": 19, "datetime64": 19, "ns": 19, "31t09": 19, "18": [19, 20, 21, 24], "5e": 19, "2103": 19, "int64": 19, "93": 19, "94": 19, "95": 19, "96": 19, "98": 19, "99": 19, "u86": 19, "po": 19, "burst_numb": 19, "afgain": 19, "attenu": 19, "u7": 19, "complex128": 19, "battery_voltag": 19, "2296": 19, "temperature_1": 19, "505": 19, "temperature_2": 19, "0xarrai": 19, "1chirp_tim": 19, "40001chirp_num": 19, "100attenuator_setting_pair": 19, "1profile_rang": 19, "11889coordin": 19, "13long_nam": 19, "burstarrai": 19, "000000000": 19, "float640": 19, "sampl": [19, 21], "chirpsnam": 19, "chirpsunit": 19, "secondsarrai": 19, "00000e": 19, "00": 19, "50000e": 19, "99950e": 19, "99975e": 19, "03long_nam": 19, "depthunit": 19, "metersarrai": 19, "000000e": 19, "102896e": 19, "205791e": 19, "499502e": 19, "499712e": 19, "499922e": 19, "int640": 19, "99long_nam": 19, "numberdescript": 19, "number": [19, 21, 24], "16": [19, 24], "19": [19, 24], "21": 19, "22": 19, "23": 19, "27": 19, "28": 19, "29": 19, "32": 19, "35": 19, "36": 19, "37": 19, "39": 19, "42": 19, "43": 19, "48": 19, "49": 19, "50": [19, 20], "51": 19, "52": 19, "55": 19, "56": 19, "57": 19, "59": 19, "61": 19, "62": 19, "63": 19, "64": 19, "65": 19, "66": 19, "69": 19, "70": 19, "72": 19, "74": 19, "75": 19, "76": 19, "77": 19, "78": 19, "79": 19, "80": [19, 21], "82": 19, "83": 19, "84": 19, "85": 19, "86": 19, "87": 19, "88": 19, "89": 19, "91": 19, "92": 19, "g1": [19, 20], "31_091750_g1_25_05": 19, "int640descript": 19, "filearrai": 19, "4long_nam": 19, "audio": [19, 21], "settingunit": 19, "decibelsarrai": 19, "float6426": 19, "hh": 19, "hv": 19, "vh": 19, "vv": 19, "antenna": [19, 20, 21], "ersahadi": 19, "5194": 19, "tc": 19, "1719": 19, "2022arrai": 19, "0006866": 19, "04704": 19, "913": 19, "9113long_nam": 19, "de": 19, "ramp": 19, "chirpunit": 19, "voltsdescript": 19, "voltag": 19, "analog": 19, "convert": [19, 21], "mix": [19, 21], "transmit": [19, 20], "comppon": 19, "tx": [19, 21], "rx": [19, 21], "signalsarrai": 19, "86645508e": 19, "70352173e": 19, "02": 19, "73840332e": 19, "42230225e": 19, "36892700e": 19, "51605225e": 19, "48718262e": 19, "32421875e": 19, "11334229e": 19, "80325317e": 19, "21524048e": 19, "84301758e": 19, "23443604e": 19, "06375122e": 19, "13945007e": 19, "46319580e": 19, "30624390e": 19, "40542603e": 19, "31985474e": 19, "68606567e": 19, "67953491e": 19, "78198242e": 19, "02993774e": 19, "90023804e": 19, "29603577e": 19, "34638977e": 19, "12284851e": 19, "14497375e": 19, "12971497e": 19, "11254883e": 19, "008066033999802286": 19, "0j": 19, "profileunit": 19, "chirparrai": 19, "06603400e": 19, "00000000e": 19, "00j": 19, "07940852e": 19, "08329945e": 19, "87768584e": 19, "87594119e": 19, "87459025e": 19, "52107813e": 19, "10555396e": 19, "03j": 19, "72940525e": 19, "11666760e": 19, "85705403e": 19, "12022005e": 19, "47652015e": 19, "93914621e": 19, "68113803e": 19, "08": 19, "93753080e": 19, "27284038e": 19, "93647589e": 19, "79448288e": 19, "25607073e": 19, "07j": 19, "80077629e": 19, "39410889e": 19, "06j": 19, "80349024e": 19, "95869522e": 19, "02697146e": 19, "22529112e": 19, "35110626e": 19, "10069002e": 19, "27965540e": 19, "23008753e": 19, "08147690e": 19, "45114390e": 19, "08853745e": 19, "53234360e": 19, "71406780e": 19, "67500209e": 19, "29367044e": 19, "52795793e": 19, "53912520e": 19, "69351826e": 19, "74707407e": 19, "00887419e": 19, "79700582e": 19, "42066038e": 19, "49994703e": 19, "63471267e": 19, "18292828e": 19, "66460009e": 19, "20046284e": 19, "94710976e": 19, "57887009e": 19, "27841670e": 19, "16019899e": 19, "51614282e": 19, "degreeslong_nam": 19, "2296unit": 19, "voltslong_nam": 19, "batteri": 19, "voltagearrai": 19, "229614": 19, "float64505": 19, "5unit": 19, "celsiuslong_nam": 19, "locationarrai": 19, "477": 19, "504": 19, "953": 19, "index": [19, 21], "timepandasindexpandasindex": 19, "datetimeindex": 19, "09": 19, "freq": 19, "none": 19, "chirp_timepandasindexpandasindex": 19, "500000000000001e": 19, "0001": 19, "000125": 19, "00015000000000000001": 19, "000175": 19, "0002": 19, "00022500000000000002": 19, "9997750000000001": 19, "9998": 19, "9998250000000001": 19, "99985": 19, "9998750000000001": 19, "9999250000000001": 19, "99995": 19, "9999750000000001": 19, "profile_rangepandasindexpandasindex": 19, "2102895577845166": 19, "4205791155690332": 19, "6308686733535498": 19, "8411582311380664": 19, "051447788922583": 19, "2617373467070996": 19, "4720269044916163": 19, "6823164622761329": 19, "8926060200606494": 19, "2498": 19, "029656922273": 19, "2399464800574": 19, "450236037842": 19, "6605255956265": 19, "870815153411": 19, "2499": 19, "081104711195": 19, "2913942689797": 19, "5016838267643": 19, "711973384549": 19, "9222629423334": 19, "chirp_numpandasindexpandasindex": 19, "deramp": 19, "tranmsit": 19, "squeez": 19, "singleton": 19, "49841309e": 19, "29928589e": 19, "91040039e": 19, "45120239e": 19, "97055054e": 19, "74548340e": 19, "volt": 19, "rece": 19, "1000": [19, 20], "003738": 19, "006981": 19, "9156": 19, "9145": 19, "9113arrai": 19, "ev": 19, "superfici": 19, "reminisc": 19, "synthet": 19, "randomli": [19, 21], "figsiz": [19, 20, 21], "hue": 19, "add_legend": 19, "fals": 19, "evid": 19, "degre": 19, "zoom": [19, 21], "xlim": 19, "clear": [19, 21], "still": 19, "mean_chirp": 19, "dim": 19, "interv": 19, "signific": 19, "manual": [19, 21], "peak": [19, 21], "125": 19, "f_d": [19, 21], "c": [19, 21, 23, 24], "k": [19, 20, 21, 23, 24], "permitt": [19, 21], "return": [19, 20, 21], "2r": [19, 21], "elimin": 19, "125hz": 19, "durat": [19, 21], "200e6": [19, 21], "400e6": [19, 21], "bandwidth": 19, "chnge": 19, "300000000": 19, "lightin": 19, "vacuum": [19, 21], "ep": [19, 21], "def": [19, 20, 21], "57238944612915": 19, "amplitud": [19, 20, 21], "infom": 19, "seri": [19, 21], "plai": [19, 21], "extract": [19, 21], "s_one_chirp": 19, "unnecessari": 19, "execpt": 19, "dt": 19, "sampling_frequ": [19, 21], "no_of_sampl": [19, 21], "arang": [19, 21], "xlabel": [19, 20], "ylabel": [19, 20], "difficult": [19, 21], "me": 19, "logarithm": 19, "decibel": 19, "log10": 19, "steadili": 19, "intepret": 19, "spike": 19, "detect": [19, 21], "nois": 19, "background": 19, "environ": 19, "reduc": [19, 21, 24], "level": 19, "former": 19, "acorss": 19, "s_stack": 19, "feed": 19, "s_all": 19, "verifi": 19, "numeic": 19, "assert": 19, "allclos": 19, "singl": [19, 21, 24], "add_gridspec": 19, "height_ratio": 19, "ax1": [19, 21], "add_subplot": 19, "subplot": [19, 21], "span": 19, "ax2": [19, 21], "ax3": [19, 21], "ax": [19, 21], "set_xlabel": [19, 21], "set_ylabel": [19, 21], "legend": [19, 20, 21], "set_titl": [19, 21], "1200": 19, "set_xlim": [19, 21], "550": 19, "1250": 19, "unstack": 19, "500m": 19, "significantli": 19, "agre": 19, "disagre": 19, "deeper": 19, "visibl": 19, "2200m": 19, "weak": 19, "4400": 19, "journei": 19, "incred": [19, 21], "trace": 19, "tg": 19, "flowlin": 19, "thesi": 19, "directli": 19, "softwar": 19, "blackman": 19, "abotaininga": 19, "clreaer": 19, "displac": [19, 21, 24], "round": 19, "sure": [19, 21], "rdi": 19, "nearest": 19, "integ": [19, 21], "floor": 19, "rdei": 19, "integerr": 19, "s_t": 19, "suffix": 19, "stand": 19, "t_t": 19, "multipi": 19, "output": 19, "s_tw": 19, "window": 19, "resolut": [19, 21], "prower": 19, "factor": 19, "000": 19, "pad_factor": 19, "s_twp": 19, "pad_width": 19, "80000": 19, "s_twpr": 19, "r_twpr": 19, "ragn": 19, "4205686013539993": 19, "0x17fe36050": 19, "upcom": 19, "remedi": 19, "improv": 19, "comparison": 19, "greenland": 19, "ablat": 19, "led": 19, "meredith": 19, "nettl": 19, "lamont": 19, "doherti": 19, "observatori": 19, "laura": 19, "steven": 19, "oxford": 19, "georg": 19, "lu": 19, "staci": 19, "larochel": 19, "mariann": 19, "okal": 19, "earthscop": 19, "kristin": 19, "arnold": 19, "iri": 19, "alpin": 19, "josh": 19, "rine": 19, "stanford": 19, "fund": 19, "nation": 19, "foundat": 19, "2003464": 19, "supraglaci": 19, "lake": 19, "drain": 19, "month": 19, "quickli": 19, "aw": 19, "ds_gr": 19, "load_zarr": 19, "202": 19, "513838596": 19, "bean": 19, "servic": 19, "cryocloud": 19, "timeslic": 19, "pair": 19, "300": [19, 21], "150": 19, "yincreas": 19, "chosen": [19, 24], "juli": 19, "1100": 19, "doesnt": 19, "matter": 19, "coput": 19, "freqenc": 20, "superimpos": 20, "gradual": 20, "interfer": [20, 21], "construct": 20, "destruct": 20, "descreas": 20, "explor": [20, 21], "feel": [20, 21], "s_1": 20, "s_2": 20, "a_1": 20, "sin": 20, "omega_1": 20, "a_2": 20, "omega_2": 20, "Their": 20, "angular": 20, "omega": 20, "increa": 20, "radian": 20, "pi": [20, 21], "linspac": [20, 21], "num": 20, "input": [20, 24], "desir": 20, "rad": 20, "omega1": 20, "a1": 20, "omega2": 20, "a2": 20, "s2": 20, "against": [20, 21], "lag": 20, "orang": 20, "cycl": [20, 21], "approx": 20, "anti": 20, "regularli": 20, "autoscal": 20, "tight": 20, "loc": 20, "similarli": 20, "antiphas": 20, "interf": 20, "instant": 20, "trignometr": 20, "beta": 20, "co": 20, "recong": 20, "find": [20, 21], "subsitut": 20, "answer": 20, "half": 20, "clariti": [20, 24], "g_1": 20, "g_2": 20, "g2": 20, "promis": 20, "realli": [20, 24], "2g_1": 20, "2g_2": 20, "chirp": [20, 21], "megahertz": 20, "kilohertz": 20, "frequneci": 20, "pass": [20, 21], "activ": 20, "slide": 20, "khz": 20, "preferenti": 20, "amplifi": 20, "distant": 20, "target": 20, "tranmit": [20, 21], "arriv": [20, 21], "componet": 20, "proprtion": 20, "demonst": 20, "encod": 21, "2015": 21, "durin": 21, "emmit": 21, "f1": 21, "f2": 21, "partli": 21, "contin": 21, "tranmist": 21, "upto": 21, "micro": 21, "reciev": 21, "ppli": 21, "scipi": 21, "default_rng": 21, "argrelextrema": 21, "suppos": [21, 24], "deploi": 21, "realiti": 21, "hundr": 21, "110": 21, "dialectr": 21, "299792458": 21, "\u03c4": 21, "3e": 21, "292e": 21, "mhz": 21, "f_c": 21, "40000": 21, "1e6": 21, "c0": 21, "c1": 21, "set_ylim": 21, "microsecond": 21, "ey": 21, "292060425871348e": 21, "moment": 21, "geometri": 21, "horozont": 21, "1f": 21, "258": 21, "audibl": 21, "human": 21, "don": 21, "apriori": 21, "beat": 21, "brief": 21, "sine": 21, "electron": 21, "filter": 21, "mixer": 21, "disk": 21, "2i": 21, "exp": 21, "1j": 21, "imaginari": 21, "argand": 21, "plane": 21, "im": 21, "re": 21, "explan": 21, "fft": 21, "domain": 21, "spectrum": 21, "absolut": 21, "depict": 21, "impuls": 21, "send": 21, "puls": 21, "energi": 21, "greater": 21, "maxima": [21, 24], "3f": 21, "109": 21, "825": 21, "prescrib": 21, "quantiz": 21, "increment": 21, "retriev": 21, "hertz": 21, "coars": 21, "bit": 21, "impact": 21, "amp_range_plot": 21, "200000000": 21, "400000000": 21, "397e": 21, "187": 21, "027": 21, "fewer": 21, "crop": 21, "quantum": 21, "heisenberg": 21, "uncertainti": 21, "www": 21, "youtub": 21, "watch": 21, "mbnnxbom5s4": 21, "graphic": 21, "interestingli": 21, "notic": [21, 24], "sight": 21, "surpris": 21, "longer": 21, "narrow": 21, "keep": 21, "independ": 21, "descrb": 21, "simultan": 21, "ten": 21, "redefin": 21, "linewidth": 21, "rng": 21, "seed": 21, "4321": 21, "enumer": 21, "rx_rnd": 21, "37514327": 21, "889": 21, "26122168": 21, "586": 21, "31305979": 21, "63533655": 21, "101": 21, "12516631": 21, "961": 21, "89128611": 21, "38920621": 21, "963": 21, "510313": 21, "556": 21, "00188035": 21, "288": 21, "82637573": 21, "practic": 21, "thoughout": 21, "moreov": 21, "chirp_list": 21, "chirp_arrai": 21, "stack": 21, "0x146ff4ad0": 21, "correspondong": 21, "40541349": 21, "31770596": 21, "31105123": 21, "79086279": 21, "289": 21, "03446969": 21, "555": 21, "93375172": 21, "15679641": 21, "23859674": 21, "962": 21, "02931002": 21, "73201676": 21, "sort": 21, "03027021": 21, "07150025": 21, "18588493": 21, "15552623": 21, "20809396": 21, "06812864": 21, "15626338": 21, "02262495": 21, "13802391": 21, "22170375": 21, "estiamt": 21, "frequnci": 21, "sinusoid": 23, "condict": 23, "test": 23, "conveni": 24, "enthalpi": 24, "simipl": 24, "equivel": 24, "tempor": 24, "opportun": 24, "cooridin": 24, "paralel": 24, "pore": 24, "room": 24, "convens": 24, "distinguish": 24, "cubic": 24, "fill": 24, "guess": 24, "transport": 24, "question": 24, "contribut": 24, "prove": 24, "conduct": 24, "warm": 24, "proportoin": 24, "mismatch": 24, "cool": 24, "curvatur": 24, "Or": 24, "a_": 24, "c_": 24, "capac": 24, "kj": 24, "expand": 24, "focu": 24, "wall": 24, "x_": 24, "superscript": 24, "fine": 24, "trick": 24, "plu": 24, "eq": 24, "a_in1": 24, "varibl": 24, "modifi": 24, "omit": 24, "rasi": 24, "vanishinglsi": 24, "mechansim": 24, "parenthes": 24, "faster": [24, 25], "colder": 24, "brought": 24, "temperatu": 24, "y_": 24, "z_": 24, "thermal": 24, "squar": 24, "cross": 24, "zk": 24, "hte": 24, "schemat": 24, "indic": 24, "red": 24, "immedi": 24, "minima": 24, "revers": 24, "anywher": 24, "tempeatur": 24, "outlin": 24, "unaffect": 24, "m_": 24, "statement": 24, "densif": 24, "familiar": 24, "compactli": 24, "reduct": 24, "situat": 24, "tern": 24, "divereg": 24, "ammount": 24, "counterbal": 24, "doubl": 24, "maintain": 24, "temeratur": 25, "behaivour": 25, "consequ": 25, "analyt": 25, "intut": 25}, "objects": {}, "objtypes": {}, "objnames": {}, "titleterms": {"bibliographi": 0, "The": [1, 3, 8, 12, 14, 17, 19, 21], "glaciolog": 1, "data": [1, 2, 8, 19], "analysi": 1, "model": [1, 10, 12], "book": 1, "introduct": [1, 9, 25], "who": 1, "thi": [1, 13, 21], "compar": [1, 20], "previou": 1, "text": 1, "run": 1, "code": 1, "interact": 1, "1": [1, 8, 21], "In": 1, "temporari": 1, "environ": 1, "page": 1, "2": [1, 8, 21], "separ": 1, "window": 1, "3": [1, 8, 21], "On": 1, "your": 1, "local": 1, "machin": 1, "contribut": 1, "licens": 1, "ad": 2, "measur": [2, 21], "googl": 2, "bucket": 2, "download": 2, "load": [2, 8, 19], "rechunk": 2, "write": 2, "reload": 2, "ic": [3, 4, 8, 9, 10, 11, 12, 16], "flow": [3, 4, 9, 10, 11, 25], "accumul": 3, "ablat": 3, "vari": 3, "space": 3, "time": [3, 21], "role": 3, "antarct": [4, 8], "sheet": [4, 8], "depth": 5, "integr": [5, 12], "mass": [5, 24], "balanc": [5, 14], "simpl": 5, "deriv": [5, 7, 24], "A": [5, 13, 19, 24], "more": [5, 19, 21], "complet": 5, "complic": 5, "deviator": [6, 12], "stress": [6, 7, 12, 14, 15], "drive": 7, "gradient": [8, 12, 17], "import": 8, "packag": [8, 19], "lazili": 8, "comput": [8, 21], "two": [8, 10, 12, 21], "compon": 8, "4": [8, 21], "slope": 8, "take": 8, "pythagorean": 8, "sum": [8, 14], "5": [8, 21], "plot": [8, 19, 21], "other": 10, "full": 10, "stoke": 10, "bp": 10, "ssa": 10, "sia": 10, "rheologi": [11, 12], "under": [11, 15], "construct": [11, 15], "glen": 11, "s": 11, "law": 11, "shallow": [12, 16], "approxim": [12, 16], "reduc": 12, "dimens": 12, "x": [12, 14], "z": [12, 14], "substitut": 12, "drop": 12, "term": 12, "equat": [12, 14, 24], "vertic": [12, 14, 16], "differenti": 12, "horizont": [12, 16], "strain": [12, 13, 15], "rate": [12, 13], "veloc": [12, 13, 16], "flux": 12, "field": [13, 17, 24], "proof": 13, "relationship": 13, "gener": 13, "setup": [14, 24], "forc": 14, "act": 14, "cube": 14, "graviti": 14, "face": 14, "y": 14, "all": [14, 19], "tensor": 15, "build": 16, "mean": 16, "vector": 17, "calculu": 17, "background": 17, "scalar": 17, "del": 17, "oper": [17, 19], "diverg": 17, "autonom": [18, 21], "phase": [18, 21], "sensit": [18, 21], "radio": [18, 21], "echo": [18, 21], "sounder": [18, 21], "first": 19, "look": 19, "apr": [19, 21], "chirp": 19, "agreement": 19, "between": 19, "promin": 19, "frequenc": [19, 20, 21], "power": 19, "stack": 19, "order": 19, "reveal": 19, "detail": 19, "preprocess": 19, "trim": 19, "filter": [19, 20], "pad": 19, "roll": 19, "perform": 19, "fft": 19, "step": 19, "xapr": 19, "part": 19, "much": 19, "larger": 19, "dataset": 19, "summari": [19, 20, 21], "beat": 20, "numer": [20, 26], "addit": 20, "wave": 20, "trignometri": 20, "tell": 20, "us": [20, 21], "theoret": 20, "predict": 20, "isol": 20, "theori": 21, "overview": 21, "defin": 21, "reflector": 21, "wai": 21, "travel": 21, "transmit": 21, "signal": 21, "receiv": 21, "differ": 21, "6": 21, "how": 21, "doe": 21, "7": 21, "deramp": 21, "fourier": 21, "transform": 21, "8": 21, "rang": 21, "9": 21, "effect": 21, "bandwidth": 21, "10": 21, "add": 21, "11": 21, "componet": 21, "12": 21, "impuls": 22, "radar": 22, "an": 23, "analyt": 23, "solut": [23, 26], "heat": [24, 25], "note": 24, "about": 24, "advect": 24, "diffus": 24, "bring": 24, "everyth": 24, "togeth": 24, "conserv": 24}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinxcontrib.bibtex": 9, "sphinx": 56}}) \ No newline at end of file diff --git a/src/_build/html/sections/appendix/upload_Measures_data_to_bucket.html b/_build/html/sections/appendix/upload_Measures_data_to_bucket.html similarity index 99% rename from src/_build/html/sections/appendix/upload_Measures_data_to_bucket.html rename to _build/html/sections/appendix/upload_Measures_data_to_bucket.html index 6667961..55b702f 100644 --- a/src/_build/html/sections/appendix/upload_Measures_data_to_bucket.html +++ b/_build/html/sections/appendix/upload_Measures_data_to_bucket.html @@ -66,7 +66,7 @@ - + @@ -196,9 +196,9 @@ @@ -4127,12 +4127,12 @@

Reload

previous

-

Stacking ApRES data

+

A first look at ApRES data

  • Impulse Radar
  • Autonomous phase-sensitive Radio Echo Sounder
  • diff --git a/src/_build/html/sections/ice_flow/antarctic-ice-flow.html b/_build/html/sections/ice_flow/antarctic-ice-flow.html similarity index 99% rename from src/_build/html/sections/ice_flow/antarctic-ice-flow.html rename to _build/html/sections/ice_flow/antarctic-ice-flow.html index af3b248..304a9b2 100644 --- a/src/_build/html/sections/ice_flow/antarctic-ice-flow.html +++ b/_build/html/sections/ice_flow/antarctic-ice-flow.html @@ -198,9 +198,9 @@ diff --git a/src/_build/html/sections/ice_flow/depth_integrated_mass_balance.html b/_build/html/sections/ice_flow/depth_integrated_mass_balance.html similarity index 99% rename from src/_build/html/sections/ice_flow/depth_integrated_mass_balance.html rename to _build/html/sections/ice_flow/depth_integrated_mass_balance.html index 4060271..12d5f2a 100644 --- a/src/_build/html/sections/ice_flow/depth_integrated_mass_balance.html +++ b/_build/html/sections/ice_flow/depth_integrated_mass_balance.html @@ -198,9 +198,9 @@ diff --git a/src/_build/html/sections/ice_flow/deviatoric_stress.html b/_build/html/sections/ice_flow/deviatoric_stress.html similarity index 99% rename from src/_build/html/sections/ice_flow/deviatoric_stress.html rename to _build/html/sections/ice_flow/deviatoric_stress.html index 9dc3086..725be89 100644 --- a/src/_build/html/sections/ice_flow/deviatoric_stress.html +++ b/_build/html/sections/ice_flow/deviatoric_stress.html @@ -198,9 +198,9 @@ diff --git a/src/_build/html/sections/ice_flow/driving_stress.html b/_build/html/sections/ice_flow/driving_stress.html similarity index 99% rename from src/_build/html/sections/ice_flow/driving_stress.html rename to _build/html/sections/ice_flow/driving_stress.html index 7139e62..9f0ee88 100644 --- a/src/_build/html/sections/ice_flow/driving_stress.html +++ b/_build/html/sections/ice_flow/driving_stress.html @@ -198,9 +198,9 @@ diff --git a/src/_build/html/sections/ice_flow/gradient.html b/_build/html/sections/ice_flow/gradient.html similarity index 99% rename from src/_build/html/sections/ice_flow/gradient.html rename to _build/html/sections/ice_flow/gradient.html index a741b60..b571773 100644 --- a/src/_build/html/sections/ice_flow/gradient.html +++ b/_build/html/sections/ice_flow/gradient.html @@ -198,9 +198,9 @@ diff --git a/src/_build/html/sections/ice_flow/ice-flow-intro.html b/_build/html/sections/ice_flow/ice-flow-intro.html similarity index 99% rename from src/_build/html/sections/ice_flow/ice-flow-intro.html rename to _build/html/sections/ice_flow/ice-flow-intro.html index 403bc2e..a854d1e 100644 --- a/src/_build/html/sections/ice_flow/ice-flow-intro.html +++ b/_build/html/sections/ice_flow/ice-flow-intro.html @@ -196,9 +196,9 @@ diff --git a/src/_build/html/sections/ice_flow/other-ice-flow-models.html b/_build/html/sections/ice_flow/other-ice-flow-models.html similarity index 99% rename from src/_build/html/sections/ice_flow/other-ice-flow-models.html rename to _build/html/sections/ice_flow/other-ice-flow-models.html index 6d6c0b6..66f5706 100644 --- a/src/_build/html/sections/ice_flow/other-ice-flow-models.html +++ b/_build/html/sections/ice_flow/other-ice-flow-models.html @@ -198,9 +198,9 @@ diff --git a/src/_build/html/sections/ice_flow/rheology.html b/_build/html/sections/ice_flow/rheology.html similarity index 99% rename from src/_build/html/sections/ice_flow/rheology.html rename to _build/html/sections/ice_flow/rheology.html index 47d3a62..f64285a 100644 --- a/src/_build/html/sections/ice_flow/rheology.html +++ b/_build/html/sections/ice_flow/rheology.html @@ -198,9 +198,9 @@ diff --git a/src/_build/html/sections/ice_flow/sia_derivation.html b/_build/html/sections/ice_flow/sia_derivation.html similarity index 99% rename from src/_build/html/sections/ice_flow/sia_derivation.html rename to _build/html/sections/ice_flow/sia_derivation.html index 99769de..c23fd5e 100644 --- a/src/_build/html/sections/ice_flow/sia_derivation.html +++ b/_build/html/sections/ice_flow/sia_derivation.html @@ -198,9 +198,9 @@ diff --git a/src/_build/html/sections/ice_flow/strain_velocity.html b/_build/html/sections/ice_flow/strain_velocity.html similarity index 99% rename from src/_build/html/sections/ice_flow/strain_velocity.html rename to _build/html/sections/ice_flow/strain_velocity.html index d4dadb0..a634ce2 100644 --- a/src/_build/html/sections/ice_flow/strain_velocity.html +++ b/_build/html/sections/ice_flow/strain_velocity.html @@ -198,9 +198,9 @@ diff --git a/src/_build/html/sections/ice_flow/stress_balance_eqns.html b/_build/html/sections/ice_flow/stress_balance_eqns.html similarity index 99% rename from src/_build/html/sections/ice_flow/stress_balance_eqns.html rename to _build/html/sections/ice_flow/stress_balance_eqns.html index 87ffb87..649f5af 100644 --- a/src/_build/html/sections/ice_flow/stress_balance_eqns.html +++ b/_build/html/sections/ice_flow/stress_balance_eqns.html @@ -198,9 +198,9 @@ diff --git a/src/_build/html/sections/ice_flow/stress_strain_tensors.html b/_build/html/sections/ice_flow/stress_strain_tensors.html similarity index 99% rename from src/_build/html/sections/ice_flow/stress_strain_tensors.html rename to _build/html/sections/ice_flow/stress_strain_tensors.html index 49bedb8..6bf849e 100644 --- a/src/_build/html/sections/ice_flow/stress_strain_tensors.html +++ b/_build/html/sections/ice_flow/stress_strain_tensors.html @@ -196,9 +196,9 @@ diff --git a/src/_build/html/sections/ice_flow/u_bar_and_lliboutry.html b/_build/html/sections/ice_flow/u_bar_and_lliboutry.html similarity index 99% rename from src/_build/html/sections/ice_flow/u_bar_and_lliboutry.html rename to _build/html/sections/ice_flow/u_bar_and_lliboutry.html index 9d3761e..0a456b2 100644 --- a/src/_build/html/sections/ice_flow/u_bar_and_lliboutry.html +++ b/_build/html/sections/ice_flow/u_bar_and_lliboutry.html @@ -198,9 +198,9 @@ diff --git a/src/_build/html/sections/ice_flow/vec_calc.html b/_build/html/sections/ice_flow/vec_calc.html similarity index 99% rename from src/_build/html/sections/ice_flow/vec_calc.html rename to _build/html/sections/ice_flow/vec_calc.html index 2380dbd..10df20c 100644 --- a/src/_build/html/sections/ice_flow/vec_calc.html +++ b/_build/html/sections/ice_flow/vec_calc.html @@ -198,9 +198,9 @@ diff --git a/src/_build/html/sections/radar/apres/apres-intro.html b/_build/html/sections/radar/apres/apres-intro.html similarity index 98% rename from src/_build/html/sections/radar/apres/apres-intro.html rename to _build/html/sections/radar/apres/apres-intro.html index 0aed27e..47a8295 100644 --- a/src/_build/html/sections/radar/apres/apres-intro.html +++ b/_build/html/sections/radar/apres/apres-intro.html @@ -65,7 +65,7 @@ - + @@ -196,9 +196,9 @@ @@ -475,7 +475,7 @@

    Autonomous phase-sensitive Radio Echo Sounder

    title="next page">

    next

    -

    ApRES theory

    +

    Autonomous phase-sensitive radio-echo sounder theory

    diff --git a/src/_build/html/sections/radar/apres/apres_data_1.html b/_build/html/sections/radar/apres/apres_data_1.html similarity index 100% rename from src/_build/html/sections/radar/apres/apres_data_1.html rename to _build/html/sections/radar/apres/apres_data_1.html diff --git a/src/_build/html/sections/radar/apres/beat-frequency.html b/_build/html/sections/radar/apres/beat-frequency.html similarity index 93% rename from src/_build/html/sections/radar/apres/beat-frequency.html rename to _build/html/sections/radar/apres/beat-frequency.html index 1908959..e508b22 100644 --- a/src/_build/html/sections/radar/apres/beat-frequency.html +++ b/_build/html/sections/radar/apres/beat-frequency.html @@ -67,8 +67,8 @@ - - + + @@ -198,9 +198,9 @@ @@ -474,6 +474,7 @@

    Contents

  • Trignometry tells us the frequencies
  • Compare the theoretical and numerical predictions
  • Filtering to isolate the beat frequency
  • +
  • Summary
  • @@ -540,9 +541,9 @@

    Numerical addition of wavesA1 = 1 s1 = wave(A1,omega1) -omega1 = 1.8 +omega2 = 1.8 A2 = 1 -s2 = wave(A1,omega1) +s2 = wave(A1,omega2) @@ -627,8 +628,8 @@

    Compare the theoretical and numerical predictions
    -../../../_images/0e0d424f07c60c0358c1925c7d16a1b5e2ae9fda81354e7f2ce2d2ec45a80755.png +../../../_images/5c060ba8860d4535b4d74b945c122fbe432b242c75f93d532531a0345d6ee83b.png

    As expected, the lower frequency signal, \(g_2\), modulates the higher frequency signal, \(g_1\). Note that the increase and decrease in amplitude occurs where \(g_2 > 0\) or \(g_2<0\), so the modulation has a frequency of \(2g_2\), i.e. \(\omega_1 - \omega_2\). This is called the beat frequency.

    @@ -684,6 +675,12 @@

    Filtering to isolate the beat frequency +

    Summary#

    +

    During measurements ApRES continuously combines the signal it receives from the receiving antenna with the signal it is tranmitting. Because it takes some time for the transmitted signal to arrive back at the radar, the frequencies of the transmitted and received signals are very slightly different, so they combine to create a signal with a frequnecy componet that is proportional to the difference in the frequencies - the beat frequency. This difference is proprtional to the range to the reflector, so to estimate the range, we just need to estimate the beat frequency.

    +

    The previous page describes how this is done in theory using a fourier transform.

    +

    The next page demonstates how this is done with real ApRES data collected from Antarctica.

    + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    - - - - - - - - - - - -
    -
    -
    -
    -
    - - - -
    -
    - - - -
    - - - -
    - -
    -
    - -
    -
    - -
    - -
    - -
    - - -
    - -
    - -
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    - -
    - -
    -
    - - - - - - - - -
    - -
    -

    Solving our ice sheet model numercially#

    -

    In tthe preceding pages we derived an ice sheet model using the Shallow Ice Approximation. On this page we will try to get some insight into how ice sheets operate by solving this simple ice-sheet model numerically.

    -
    -

    The SIA ice sheet model#

    -

    As with most mathematical models, we will define the model equations, the boundary conditions, the initial conditions and the forcing.

    -
    -
    -

    Model equations#

    -

    Applying mass conservation led to a depth-integrated mass balance equation (Eqn (1)), which describes how the ice thickness changes as a function of the ice-equivelent accumulation rate \(a\) and ice flux \(q\): -$\( -\frac{\partial H}{\partial t} = a - \frac{\partial q}{\partial x}, -\)$

    -

    where \(x\) is the horizontal coordinate, \(H\) is the ice thickness, \(t\) is time, \(q\) is the depth-intergrated flux per unit width (hereafter, flux),

    -

    Appling a stress balance and Glen’s flow law (i.e. the power law rheology of ice) led to an expression for the ice flux as a function of ice thickness (Eqn (2)):

    -
    -\[ -q = -\frac{2A}{n+2} \left(\rho g \alpha \right)^n H^{n+2} -\]
    -

    where \(A\) is the flow parameter from the flow law, \(n\) is the exponent from the flow law, \(\rho\) is the density of ice, \(g\) is acceleration due to gravity, and \(\alpha\) is the surface slope \(\left(= - \frac{\partial H}{\partial x}\right)\).

    -
    -

    Boundary conditions#

    -

    We will also impose a no-flow boundary condition on the right hand side. Let’s think about what this looks like in our model as we go along.

    -

    We will also assume a flat bed topography.

    -
    -
    -

    Initial conditions#

    -

    We will start with an ice sheet with no ice, i.e. \(H=0\) everywhere.

    -
    -
    -

    Forcing#

    -

    As a starting point we will impose the surface mass balance (SMB) as a simple linear function of distance:

    -
    -\[ -a = 10^{-4}\left(\frac{X}{3}-x\right), -\]
    -

    where \(X\) is the length of the spatial domain. We will discuss this choice of forcing in more detila below.

    -
    -
    -
    -

    Numerical methods#

    -

    We will use a a simple finite-difference scheme. We descritize the space adn time domains into grids, where variables are defined at spatial grid points and at time steps. Then we approximate the derivatives as differences, e.g.

    -
    -\[ -\frac{\partial H}{\partial t} = \frac{H^{j+1}-H^{j}}{\Delta t} -\]
    -

    where \(j\) refers to which time step and \(\Delta t\) is the time interval between time steps.

    -

    Applying this approximation (or more precisly a ‘centered-difference version of the approximation) to the spatial derivatives gives

    -
    -\[ -\frac{\partial q}{\partial x}\bigg\rvert^j = \frac{ q^j_{i+1} - q^j_{i-1}}{2 \Delta x} -\]
    -

    and

    -
    -\[ -\frac{\partial H}{\partial x}\bigg\rvert^j = \frac{ H^j_{i+1} - H^j_{i-1}}{2 \Delta x}, -\]
    -

    where \(i\) refers to the spatial gridpoint.

    -

    Substituting these into our model gives

    -
    -\[ -\frac{H^{j+1}-H^{j}}{\delta t} = a - \frac{q^j_{i+1} - q^j_{i-1}}{2 \Delta x}, -\]
    -
    -\[ -q^j_i = -\frac{2A}{n+2} \left(\rho g \right)^n {H^j_i}^{n+2} \left(\frac{H^j_{i+1} - H^j_{i-1}}{2\Delta x}\right)^n. -\]
    -
    -
    -

    Imports#

    -
    -
    -
    import numpy as np
    -import matplotlib.pyplot as plt
    -%matplotlib widget
    -from matplotlib import animation, rc
    -from IPython.display import HTML
    -from tqdm import tqdm
    -
    -
    -
    -
    -
    -
    -

    Set up time and space grids#

    -

    The first step is to set up our descritized time and space domains. We will use units of years for time and meters for distance. Setting up the grid involves choosing a time step, a total number of years the simulation should last, a grid spacing, and a domain length:

    -
    -
    -
    # time domain
    -dt = 0.004                        # time step, units [years]
    -T = 3000                          # total length of simulation, units [years]
    -t = np.linspace(0,T,round(T/dt))  # the time grid, units [years]
    -Lt = t.size                       # record the length of the time grid for use later
    -
    -
    -
    -
    -
    -
    -
    # space domain
    -dx = 200                          # grid spacing, units [m]
    -X = 40000                         # domain length, units [m]
    -x = np.linspace(0,X,round(X/dx))  # spatial grid, units [m]
    -Lx = x.size                       # record the length of the spatial grid for use later
    -
    -
    -
    -
    -

    The numerical scheme is a more stable if we evaluate the flux \(q\) on a staggered grid. This is a grid of points that lie at the midpoints of all the normal grid points. This will allow us to easily evaluate the gradient of \(q\) back on the normal grid to evolve \(H\) forward in time.

    -
    -
    -
    x_stag = x[0:-1] + 0.5*dx
    -
    -
    -
    -
    -

    Note that the staggered grid has one less element that the normal grid:

    -
    -
    -
    print(f'The staggered grid has {x_stag.size} elements,')
    -print(f'whereas the normal grid has {Lx} elements.')
    -
    -
    -
    -
    -
    The staggered grid has 199 elements,
    -whereas the normal grid has 200 elements.
    -
    -
    -
    -
    -

    Let’s visualize the two grids to make sure we understand their arrangement.

    -
    -
    -
    def grid_plotting_arrays(x):
    -    # Create two arrays with the same number of columns as the spatial grid. This is simply for plotting the grids.
    -    stacked_x = np.stack([x, x])      # the first one has each column made up of two instances of each grid point. 
    -    zero_one = np.stack([0*x, 0*x+1]) # the second one has each column made up of a zero and a one. 
    -    return stacked_x, zero_one
    -
    -plt.figure(figsize=(10, 0.5))
    -
    -h1 = plt.plot(grid_plotting_arrays(x)[0],
    -         grid_plotting_arrays(x)[1], 
    -         color = 'red', 
    -         label = 'normal grid')
    -
    -h2 = plt.plot(grid_plotting_arrays(x_stag)[0],
    -         grid_plotting_arrays(x_stag)[1], 
    -         color = 'blue', 
    -         label = 'staggered grid')
    -
    -plt.xlabel('distance, $x$ [m]', size = 25)
    -plt.xlim(x[0]-100, x[30])
    -plt.legend(handles=[h1[0], h2[0]], loc=(1.01,0))
    -plt.yticks([], []);
    -plt.xticks(size = 20);
    -
    -
    -
    -
    -
    -
    -

    The red lines in the plot above show the locations of the grid point in the normal, unstaggered grid and the blue lines show the staggered grid. They alternate and are evenly spaced.

    -
    -
    -

    Define physical constants#

    -

    These are the parameters that we will not be varying in our model.

    -

    We include a small numerical parameter e. In places where \(H = 0\), the physics that our model describes do not apply, so a simple (but crude) way to avoid this is to never allow \(H\) to go below this small value e.

    -
    -
    -
    n = 3.0                              # The flow law exponent
    -seconds_per_year = 365*24*60*60      # approximate number of seconds in year
    -A = 24*10**(-25) * seconds_per_year  # The flow law parameter, units [Pa a] (original value from Cuffey and Paterson 24e-25, units Pa s
    -rho = 917                            # ice density,  units [kg/m^3]
    -g = 10                               # acceleration due to gravity, units [m/s^2]
    -e = 0.0001                           # used to prevent ice thickness from reaching zero
    -
    -
    -
    -
    -
    -
    -

    Preallocate the ice thickness array#

    -

    For simplicity, we will save the ice thickness at every time step. To do this most efficiently, we ‘pre-allocate’ the memory for the array by creating an array the right width and height consisting of zeros. Notice that the time domain will correspond to the first index of H and the spatial domain will correspond to the second.

    -
    -
    -
    H = np.zeros((Lt,Lx))
    -
    -
    -
    -
    -
    -
    -

    Define initial conditions#

    -

    Because our model contains a time derivative of ice thickness \(H\), we need to assign \(H\) an initial condition. This will be arbitrary, so we better make sure that the conclusions we draw from simulations do not rely on this arbitrary choice.

    -

    For simicity we will make \(H\) uniform initally and equal to e.

    -
    -
    -
    H[0,:] = e
    -
    -
    -
    -
    -
    -
    -

    Prescribe the surface mass balance#

    -

    The model is forced by the surface mass balance \(a\). For simplicity, we will prescribe \(a\) as a simple linear function of distance.

    -
    -\[ -a = 10^{-4} \left( \frac{X}{3} - x \right) -\]
    -
    -
    -
    a = 10**-4 * (X/3-x)
    -
    -
    -
    -
    -

    Let’s plot the surface mass balance as a function of \(x\):

    -
    -
    -
    plt.figure()
    -plt.plot(x,a);
    -plt.xlabel('distance, $x$ [m]')
    -plt.ylabel('surface mass balance, $a$ [m/yr]')
    -plt.show()
    -
    -
    -
    -
    -
    -
    -

    This function says that \(a\) is positive on the left of our model domain and decreases linearly with \(x\), passing zero at \(x=15000\) m. This is probably not how SMB really works; \(a\) is more likely to be a function of elevation \(\left(a(H)\right)\) rather than distance \(\left(a(x)\right)\), but with a flat bed like this, \(a(H)\) leads to unstable ice sheet growth or decay, so the only steady state we can reach is \(H(x) = 0\), which isn’t very interesting. So we will stick with this unrealistic way of imposing $a for now and we can always come back to this later and look at what happens when it is prescribed in a more realistic way.

    -
    -
    -

    Run the simulation#

    -

    Finally, we are ready to run our simulation.

    -

    We will loop through every time step. In each iteration, \(j\) we will use the ice thickness from the previous time, \(H^{j-1}\) step to compute the following:

    -
      -
    1. the ice thickness on the staggered grid,

    2. -
    3. the surface slope, \(\alpha\), on the staggered grid, using (1)

    4. -
    5. the flux on the staggered grid, using (1) and (2), and

    6. -
    7. the ice thickness at the current time step on the normal grid, using (3) and \(\dot{b_i}\)

    8. -
    -

    The code in cell below is numbered to show where each step is happening.

    -

    The code in the cell below also times the executiono the model with %%time and applies the boundary conditions.

    -
    -
    -
    %%time
    -
    -for timestep in tqdm(range(1, Lt)):
    -    # save the old thickness vector
    -    H_old  = H[timestep-1,:]
    -    
    -    # (1) compute H on the staggered grid
    -    H_stag = (H_old[1:] + H_old[:-1])/2
    -    
    -    # (2) compute the surface slope on the staggered grid.
    -    alpha = -(H_old[1:] - H_old[:-1])/dx 
    -    
    -    # (3) compute the flux on the staggered grid
    -    q = 2*A/(n+2) * (rho * g * alpha)**n * H_stag**(n+2)  
    -    
    -    # (4) compute the ice thickness at the current time step
    -    H[timestep,1:-1] = np.maximum(e, H_old[1:-1] + dt * ( a[1:-1] - (q[1:]-q[:-1])/dx ))    
    -
    -    # apply the boundary conditions at x = 0 and x = X
    -    H[timestep,0] = H[timestep,1]
    -    H[timestep,-1] = e
    -
    -
    -
    -
    -
    100%|████████████████████████████████| 749999/749999 [00:10<00:00, 73261.28it/s]
    -
    -
    -
    CPU times: user 9.99 s, sys: 450 ms, total: 10.4 s
    -Wall time: 10.2 s
    -
    -
    -
    
    -
    -
    -
    -
    -
    -
    -

    Plot the results#

    -

    The simplest result to plot is the final ice thickness, \(H(x,T)\):

    -
    -
    -
    plt.figure()
    -plt.plot(x,H[-1,:], 
    -         color = 'green', 
    -         label = 'final ice thickness, $H(x,T)$');
    -plt.xlabel('distance, $x$ [m]', size = 20)
    -plt.ylabel('final ice thickness, $H(x,T)$', size = 20)
    -plt.show()
    -
    -
    -
    -
    -
    -
    -

    We can also plot the thickness profile \(H(x)\) from every 10,000th timestep. We see that the glacier grows from the initial conditions of \(H(t=0,x) = e\) and advances until we get a characteristic convex ice-sheet shape. This is caused by the interplay of thinning towards the terminus, the dependence of flux on thickness, and the spatial variability of flux.

    -
    -
    -
    plt.figure()
    -plt.plot(x,np.transpose(H[0:-1:10000,:]), color = 'black');
    -plt.xlabel('distance, $x$ [m]')
    -plt.ylabel('ice thickness, $H(x)$ [m]')
    -plt.show()
    -
    -
    -
    -
    -
    -
    -

    Another kind of plot we can make is a time series of ice thickness from a particular location. In this case we will plot the ice thickness on the left side of the domain - the ice divide.

    -
    -
    -
    plt.figure()
    -plt.plot(t[0:-1:10000],np.transpose(H[0:-1:10000,0]), color = 'black');
    -plt.xlabel('time, $t$ [years]')
    -plt.ylabel('ice thickness at the left of the domain, $H(x=0,t)$ [m]')
    -plt.show()
    -
    -
    -
    -
    -
    -
    -

    We can also plot the final ice flux as follows.

    -
    -
    -
    plt.figure()
    -plt.plot(x_stag,q, color = 'red');
    -plt.xlabel('distance, $x$ [m]', size = 10)
    -plt.ylabel('final ice flux, $q(x,T)$', size = 10)
    -plt.show()
    -
    -
    -
    -
    -
    -
    -
    -
    - - - - -
    - - - - - - - - -
    - - - - - - -
    -
    - - -
    - - -
    -
    -
    - - - - - -
    -
    - - \ No newline at end of file diff --git a/src/_build/html/sections/radar/apres/apres-range-frequency.html b/src/_build/html/sections/radar/apres/apres-range-frequency.html deleted file mode 100644 index f531d52..0000000 --- a/src/_build/html/sections/radar/apres/apres-range-frequency.html +++ /dev/null @@ -1,620 +0,0 @@ - - - - - - - - - - - - Frequency and range — The Glaciology Data Analysis and Modeling book - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    - - - - - - - - - - - -
    -
    -
    -
    -
    - - - -
    -
    - - - -
    - - - -
    - -
    -
    - -
    -
    - -
    - -
    - -
    - - -
    - -
    - -
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    - -
    - -
    -
    - - - - - - - - -
    - -
    -

    Frequency and range#

    -

    Many of the material on this and following pages can be found in the ApRES manual, Brennan et al., ????, and Nicholls et al. 2015.

    -

    ApRES emits ‘chirps’, which consist of continuous radio waves lasting 1 second. Due each chirp the frequency of the emmitted radio wave increased linearly with time from \(f1\) to \(f2\) where the bandwidth \(B = f2-f1\). The signal is transmitted downwards into the ice sheet and is partly reflected back to the radar’s receiving antenna where it is compared to the transmitted signal to determine the travel time of the signal and hence the range to sub-surface reflectors. Specifically, at every moment during a chirp the radar measures the difference between the frequency of the reveived signal and signal being tranmistted in that instant. Because the transmitted signal is always increasing in frequency and because the reveived signal was tranmitted a few milliseconds earlier than it is received, the recieved signal is always lower frequency than the transmitted signal.

    -
    -

    TO do: add cartoon of chirp and delay in received signal#

    -
    -
    -

    To do: derive Equation 1 from Brennan et al.#

    -

    This expression describes how the frequency difference between the transmitted signal and the received signal relates to the range to a reflector detected by ApRES. What we havent discussed is how this frequency difference is calculated. Next, we discuss how combining and summing the received and transmitted signals, then filtering the result, allows this to be computed using the concept of beat frequency

    -
    -
    - - - - -
    - - - - - - - - -
    - - - - - - -
    -
    - - -
    - - -
    -
    -
    - - - - - -
    -
    - - \ No newline at end of file diff --git a/src/_build/html/sections/radar/apres/chirps.html b/src/_build/html/sections/radar/apres/chirps.html deleted file mode 100644 index 1f1c857..0000000 --- a/src/_build/html/sections/radar/apres/chirps.html +++ /dev/null @@ -1,929 +0,0 @@ - - - - - - - - - - - - The fundamental operation of ApRES — The Glaciology Data Analysis and Modeling book - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    - - - - - - - - - - - -
    -
    -
    -
    -
    - - - -
    -
    - - - -
    - - - -
    - -
    -
    - -
    -
    - -
    - -
    - -
    - - -
    - -
    - -
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    - -
    - -
    -
    - - - -
    -

    The fundamental operation of ApRES

    - -
    -
    - -
    -

    Contents

    -
    - -
    -
    -
    - - - - -
    - -
    -

    The fundamental operation of ApRES#

    -

    This ppage describes the fundemental operation of the Autonomous Radio-echo sounder, including

    -
      -
    • a description of the linear chirps the system emits,

    • -
    • how individual and multiple reflectors are represented in the returned signal,

    • -
    • how the range to these reflectors is encoded in the frequency content of returned signal, and

    • -
    • how to extract the range to reflectors using a fourier transform.

    • -
    -
    -
    -
    import numpy as np
    -import matplotlib.pyplot as plt
    -import scipy
    -from numpy.random import default_rng
    -
    -#%matplotlib widget
    -
    -
    -
    -
    -

    Define a function which returns a sawtooth signal with a period of 1 s. So that we can demonstrate what it looks like when the return is delayed by a given time, we add to the function an optional delay in seconds. The bandwidth \(B\) the center frequency \(f_c\) are set by the radar.

    -
    -
    -
    t_sawtooth = np.linspace(0,3,900)
    -def sawtooth_with_delay(delay = 0):
    -    B = 200e6      # bandwidth
    -    f_c = 300e6 3  # center frequency
    -    return (scipy.signal.sawtooth(2*np.pi*(t_sawtooth-delay))+1)/2 * B + (f_c-B/2)
    -
    -
    -
    -
    -

    Next we use this function to create two sawtooth signals: one with zero delay and the other with a delay of 0.1 s.

    -
    -
    -
    tx = sawtooth_with_delay()
    -rx = sawtooth_with_delay(delay = 0.1)
    -
    -
    -
    -
    -

    A delay of 0.1s says that it took the radio waves 0.1s to travel from the radar, to some reflector, and back to the radar. This is the ‘two-way travel time’, often shortened to TWTT, but we will use \(T\). To compute the range \(R\), from the TWTT we use

    -
    -\[ -T = 2R\frac{\sqrt\epsilon}{c}, -\]
    -
    -\[ -R = \frac{cT}{2\sqrt\epsilon} -\]
    -

    where \(c\) is the speed of light in a vacuum and \(\epsilon\) is the dialectric constant of ice.

    -
    -
    -
    def range_to_reflector(T):
    -    ep = 3.1
    -    c = 299792458
    -    return c*T/2/ep**0.5
    -
    -
    -
    -
    -

    Let’s quickly use this function to compute how deep in the ice a reflector would need to be to cause a delay of 0.1s in the return of the radio-wave.

    -
    -
    -
    print(f"Depth to refletor in ice: ~{range_to_reflector(0.1)/1e3:.0f} km")
    -
    -
    -
    -
    -
    Depth to refletor in ice: ~8514 km
    -
    -
    -
    -
    -

    This is obvious MUCH deeper than any ice we will ever encounter; we choose 0.1s purely so that we can see the delay in the plots below.

    -
    -

    Plotting the frequency ramps and returns#

    -

    Let’s first plot the frequency of the transmitted signal as a function of time.

    -
    -
    -
    fig, ax = plt.subplots()
    -ax.plot(t_sawtooth,tx/1e6,'.', label ='transmitted signal')
    -ax.set_xlabel('time, $t$ [s]')
    -ax.set_ylabel('frequency, $f$ [MHz]')
    -ax.legend()
    -ax.set_xlim(0, 3);
    -
    -
    -
    -
    -../../../_images/22e62d19dd2bf56124e7fb2edf3759d5045a8e65516f667cce9093c9cd46922c.png -
    -
    -

    Then we can add to the plot the returned signal after a delay of 0.1s (as resulting from a reflection from a ~9000 km deep reflector)

    -
    -
    -
    fig, ax = plt.subplots()
    -ax.plot(t_sawtooth,tx/1e6,'.C0', label ='transmitted signal')
    -ax.plot(t_sawtooth,rx/1e6,'.C1', label ='received signal')
    -ax.set_xlabel('time, $t$ [s]')
    -ax.set_ylabel('frequency, $f$ [MHz]')
    -ax.legend()
    -ax.set_xlim(0, 3);
    -
    -
    -
    -
    -../../../_images/a6b28dfc4e3b3d343ea6ff37d02bdcc98e173c94b5abba9b224c189bc579f5a9.png -
    -
    -

    In orange above is the frequency of a signal received from a single reflector as a function of time. But in general we simultaneously receive signals from a whole range of depth. To give a feel for what this looks like, below is plotted the frequency of ten signals with random delays (i.e. depths).

    -
    -
    -
    # plot the same transmitted and received signals we plotted above
    -fig, ax = plt.subplots()
    -#t = np.linspace(0,3,900)
    -ax.plot(t_sawtooth,tx/1e6,'.', label ='transmitted signal')
    -ax.plot(t_sawtooth,rx/1e6,'.', label ='received signal')
    -
    -# produce some randomly delayed signals
    -rng = default_rng(seed = 4321)
    -delays = np.absolute(rng.uniform(0.05, 0.15, 10))
    -
    -
    -print(f"The time delays associated with these signals are {delays} s")
    -for delay in delays:
    -    rx_rnd = sawtooth_with_delay(delay)
    -    ax.plot(t_sawtooth,rx_rnd/1e6,'.', label ='received signal', markersize = 0.3)
    -
    -# finish off the plots
    -ax.set_xlabel('time, $t$ [s]')
    -ax.set_ylabel('frequency, $f$ [MHz]')
    -#ax.legend()
    -ax.set_xlim(0, 3);   
    -
    -
    -
    -
    -
    The time delays associated with these signals are [0.05030683 0.13084193 0.10330119 0.06233049 0.0591932  0.13744466
    - 0.05530811 0.13759185 0.10054563 0.07625694] s
    -
    -
    -../../../_images/a61b493e6b3be4a99d944f7a3f48fbedc4cceb18e6df021e1bbcd766500f7a68.png -
    -
    -

    Let’s construct what signal we would get if we mixed and filtered the three different signals plotted above.

    -

    In the case when there was only one received signal, delayed by 0.1s, we use the geometry of the figure to see that

    -
    -\[ -\Delta f = K \Delta t -\]
    -

    where \(K = 200 \times10^6\) Hz/s is the rate of increase in the transmitted frequency.

    -

    So the signal recorded in the chirps will have this frequency.

    -
    -
    -
    t = np.linspace(0.0, 1e-4, 100000)
    -def wave(A,omega):
    -    print(f"period of {2*np.pi/omega} s")
    -    print(f"frequency of {omega/2/np.pi/1e3} kHz")
    -    return A*np.sin(omega*t)
    -K = 100e6
    -
    -chirp_1 = wave(1,2*np.pi*K*0.1)
    -
    -
    -fig, ax = plt.subplots()
    -ax.plot(t,chirp_1, label ='chirp from single reflector')
    -# finish off the plots
    -ax.set_xlabel('time, $t$ [s]')
    -ax.set_ylabel('chirp voltage [V]')
    -ax.set_xlim(0, 1e-5)
    -ax.legend()
    -
    -
    -
    -
    -
    period of 1.0000000000000001e-07 s
    -frequency of 10000.0 kHz
    -
    -
    -
    <matplotlib.legend.Legend at 0x1460fdbd0>
    -
    -
    -../../../_images/133bd05449a96d07aac2c6e8fb07509535208b8fea5cc5c78fbdaa1b56e38b69.png -
    -
    -

    Notice that in the plot above we have only plotted out a very short section of the chirp from the very beginning, because it is quite high frequency (a consequence of choosing \(\Delta t = 0.1\) for the first plot above) and the oscillations would not be visible if we plotted out the whole 1 s chirp.

    -

    Next let’s see what the chirp from the other scenario above would look like.

    -

    We will sum together al the other signals we obtained above to make one signal.

    -
    -
    -
    chirp_list = [wave(1,2*np.pi*K*delay) for delay in delays]
    -chirp_array = np.stack(chirp_list,axis=1)
    -chirp_2 = chirp_array.sum(axis=1)
    -chirp_2.shape
    -
    -
    -
    -
    -
    period of 1.987801608678434e-07 s
    -frequency of 5030.683120660306 kHz
    -period of 7.642809959916334e-08 s
    -frequency of 13084.19292439069 kHz
    -period of 9.680430850628307e-08 s
    -frequency of 10330.118725398417 kHz
    -period of 1.604351382373305e-07 s
    -frequency of 6233.048514102363 kHz
    -period of 1.689383327387361e-07 s
    -frequency of 5919.319693692636 kHz
    -period of 7.275655400007502e-08 s
    -frequency of 13744.466237350507 kHz
    -period of 1.8080531159565972e-07 s
    -frequency of 5530.810965533633 kHz
    -period of 7.267872511660287e-08 s
    -frequency of 13759.18466367757 kHz
    -period of 9.94573354295474e-08 s
    -frequency of 10054.562548665604 kHz
    -period of 1.3113559990751453e-07 s
    -frequency of 7625.69432484593 kHz
    -
    -
    -
    (100000,)
    -
    -
    -
    -
    -
    -
    -
    fig, ax = plt.subplots()
    -
    -ax.plot(t, chirp_2, label ='chirp from multiple reflectors')
    -ax.set_xlabel('time, $t$ [s]')
    -ax.set_ylabel('chirp voltage [V]')
    -ax.set_xlim(0, 1e-5)
    -ax.legend()
    -
    -
    -
    -
    -
    <matplotlib.legend.Legend at 0x14636d600>
    -
    -
    -../../../_images/b0f191624c64ddf47e401bbdd4e944b2a4fcdfbb59f842e1833270f789fc6964.png -
    -
    -

    Finally, let’s check that we can extract the frequency information from the chirps and use it get the time delays we used to produce them.

    -
    -
    -
    def chirp_fft(t,chirp):
    -    sampling_interval = t[1]-t[0]
    -    sampling_frequency = 1/ sampling_interval
    -    no_of_samples = len(chirp)  
    -    S = np.fft.fft(chirp)/no_of_samples         
    -    indexes = np.arange(no_of_samples) 
    -    frequencies  = indexes * sampling_frequency/no_of_samples
    -    dT = frequencies/K
    -    return S, frequencies, dT
    -
    -
    -
    -
    -
    -
    -
    S, frequencies, dT = chirp_fft(t, chirp_1)
    -fig,ax = plt.subplots(1,2, figsize = (6,3))
    -ax[0].set_title('as a function of frequency')
    -ax[0].plot(frequencies, np.abs(S))
    -ax[0].set_xlabel('frequency [Hz]')
    -ax[0].set_ylabel('amplitude')
    -ax[0].set_xlim(0, 0.2e8);
    -
    -ax[1].set_title('as a function of time delay')
    -ax[1].plot(dT, np.abs(S))
    -ax[1].set_xlabel('time delay [s]')
    -ax[1].set_ylabel('amplitude')
    -ax[1].set_xlim(0, 0.2);
    -
    -
    -
    -
    -../../../_images/0194b7d3a76e0d6a701f781a0ff0a53c3cf23f5698e18f09fdbcce765e8d738c.png -
    -
    -

    And do the same for the multi-delay chirp

    -
    -
    -
    S, frequencies, dT = chirp_fft(t, chirp_2)
    -fig,ax = plt.subplots(1, 2, figsize = (6,3))
    -ax[0].set_title('as a function of frequency')
    -ax[0].plot(frequencies, np.abs(S))
    -ax[0].set_xlabel('frequency [Hz]')
    -ax[0].set_ylabel('amplitude')
    -ax[0].set_xlim(0, 0.2e8);
    -
    -ax[1].set_title('as a function of time delay')
    -ax[1].plot(dT, np.abs(S))
    -ax[1].set_xlabel('time delay [s]')
    -ax[1].set_ylabel('amplitude')
    -ax[1].set_xlim(0, 0.2);
    -
    -
    -
    -
    -../../../_images/c3b3d658079656308ce0d5a36f03f77894c1b85ef55d09d025b78bf7ebd2e0c2.png -
    -
    -
    -
    -
    sorted_delays = np.sort(delays)
    -sorted_delays
    -
    -
    -
    -
    -
    array([0.05030683, 0.05530811, 0.0591932 , 0.06233049, 0.07625694,
    -       0.10054563, 0.10330119, 0.13084193, 0.13744466, 0.13759185])
    -
    -
    -
    -
    -
    -
    - - - - -
    - - - - - - - - -
    - - - -
    - - -
    -
    - - -
    - - -
    -
    -
    - - - - - -
    -
    - - \ No newline at end of file diff --git a/src/_build/html/sections/radar/apres/coarse-range.html b/src/_build/html/sections/radar/apres/coarse-range.html deleted file mode 100644 index c9fea5d..0000000 --- a/src/_build/html/sections/radar/apres/coarse-range.html +++ /dev/null @@ -1,957 +0,0 @@ - - - - - - - - - - - - Discrete fourier transforms and phase — The Glaciology Data Analysis and Modeling book - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    - - - - - - - - - - - -
    -
    -
    -
    -
    - - - -
    -
    - - - -
    - - - -
    - -
    -
    - -
    -
    - -
    - -
    - -
    - - -
    - -
    - -
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    - -
    - -
    -
    - - - - - - - - -
    - -
    -

    Discrete fourier transforms and phase#

    -

    (under construction)

    -

    This page demonstrates the use of a fourier transform to compute the range to reflectors in ApRES data.

    -

    The idealized sinusoidal signals used in these demonstrations are intended to be simplified version of the signals recorded by ApRES. Specifically, they represent the signal obtained when the received signal is differenced with the transmitted signal. In general this results in a signal with a wide range of different frequencies. However, we will construct our synthetic signal with only two frequencies.

    -
    -
    -
    import numpy as np
    -import matplotlib.pyplot as plt
    -from scipy.signal import argrelextrema
    -
    -
    -
    -
    -
    -

    1. Define some reflectors#

    -

    Suppose that there are just two reflectors beneath you when you deploy ApRES. In reality there are hundreds, but we will assume there are just two.

    -

    Let’s use \(R\) as the range, and define the range to the two reflectors as

    -
    -
    -
    R1 = 50.0  # units [m]
    -R2 = 120.0  # units [m]
    -
    -
    -
    -
    -
    -
    -

    2. Compute the two-way travel time to the reflectors#

    -

    The two-way radio-wave travel time in ice \(\tau\) is given by

    -
    -(22)#\[\tau = 2R\frac{\sqrt\epsilon}{c},\]
    -

    where \(c\) is the speed of light in a vacuum and \(\epsilon\) is the dielactric constant of ice.

    -

    Next, let’s use constants from [Brennan et al., 2014], to compute \(\tau\) for our two reflectors:

    -
    -
    -
    ep = 3.1
    -c = 299792458
    -tau1 = 2*R1*np.sqrt(ep)/c
    -tau2 = 2*R2*np.sqrt(ep)/c
    -print(f'tau1 is {tau1:.3e} s.')
    -print(f'tau2 is {tau2:.3e} s.')
    -
    -
    -
    -
    -
    tau1 is 5.873e-07 s.
    -tau2 is 1.410e-06 s.
    -
    -
    -
    -
    -
    -
    -

    3. Compute the beat frequencies we would receive from these reflectors#

    -

    Equation 1 from Brennan et al. relates the difference in frequency between the transmitted and received signals (the beat frequency; \(f_d\)) to \(\tau\) using some configuration parameters related to how the frequency changes during each chirp:

    -
    -(23)#\[f_d = K\tau = \frac{2\pi B \tau}{T}, \]
    -

    where \(K\) is the rate of frequency increase in Hz s\(^{-1}\), \(B\) is the bandwidth (the difference between the lowest and highest frequency covered by each chirp), and \(T\) is the chirp duration.

    -

    Again using parameters from Brennan et al., let’s compute the beat frequencies we expect to receive from our two reflectors:

    -
    -
    -
    B = 200e6           # [Hz]
    -T = 1               # [s]
    -K = B/T             # [Hz/s^2]
    -
    -f1 = K*tau1     # [Hz]
    -f2 = K*tau2     # [Hz]
    -
    -print(f'f1 = {f1:.2f} Hz.')
    -print(f'f2 = {f2:.2f} Hz.')
    -
    -
    -
    -
    -
    f1 = 117.46 Hz.
    -f2 = 281.90 Hz.
    -
    -
    -
    -
    -
    -
    -

    4. Construct our signal#

    -

    The signal ApRES recieves is the sum of two sinusoids. One has a frequency of f1 and the other f2.

    -

    Before computing the received signal, we need to define a sampling frequncy, which is controlled by the ApRES system (Brennan used 12 kHz),

    -
    -
    -
    sampling_frequency = 12e3    # [Hz]
    -
    -
    -
    -
    -

    and define a sampling vector,

    -
    -
    -
    samplingInterval       = 1 / sampling_frequency;   # [s]
    -t = np.arange(0,T,samplingInterval)                # [s]
    -
    -
    -
    -
    -

    Now we can define the signal ApRES receives

    -
    -
    -
    s = np.exp(1j*2*np.pi*f1*t)  + np.exp(1j*(2*np.pi*f2*t))     
    -
    -
    -
    -
    -

    Plot the signal to convince ourselves that this is an oscillatory signal.

    -

    The code below plots a small section of the real and imaginary parts of s on the left and both components against each other in the complex plane (on an Argand diagram) on the right.

    -
    -
    -
    f, (ax1, ax2) = plt.subplots(1, 2, figsize=(18,5))
    -
    -# the real and imaginary components of the signal in the plot on the left
    -ax1.plot(t,s.real,label='real')
    -ax1.set_title('received signal time series')
    -ax1.set_xlabel('t [s]')
    -ax1.set_xlim(0, 0.05)
    -ax1.plot(t,s.imag,label='imaginary')
    -ax1.legend()
    -
    -# The Argand diagram on the right
    -ax2.plot(s.real,s.imag)
    -ax2.set_title('received signal complex plane')
    -ax2.set_ylabel('Im(s)');
    -ax2.set_xlabel('Re(s)');
    -
    -
    -
    -
    -../../../_images/31b8c3ac1d02121b0bb757584fe680048af2ca7de412ebfed2ba71519cebc04d.png -
    -
    -
    -
    -

    5. Compute frequencies with a fourier transform#

    -

    The signal recieved by ApRES is a combination of signals from every reflector. The frequencies of these signals is directly proportional -to the range to the reflectors. The frequencies that make up a signal can be extracted using a fourier transform. This video is an incredibly clear explanation of how fourier transforms achieve this.

    -

    The cell below computes the discrete fourier transform of s and the frequency bins. By default np.fft.fft produces as many freqency bins as there are time-domain samples (=len(s)), evenly distributed between 0 Hz and the sampling frequency (12x10\(^3\)). Therefore the value of the frequencies is computed by multiplying the indexes by sampling_frequency/no_of_samples, which is equal to \(1/T = 1\)s. Note also that the frequency spectrum is normalized by the number of samples.

    -
    -
    -
    no_of_samples = len(s)
    -S = np.fft.fft(s)/no_of_samples         
    -indexes      = np.arange(no_of_samples) 
    -frequencies  = indexes * sampling_frequency/no_of_samples
    -
    -
    -
    -
    -

    Next we compute the absolute value of the complex numbers in S and plot them against the frequencies yielding the usual depiction of frequency domain.

    -
    -
    -
    fig,ax = plt.subplots(figsize=(18,3))
    -ax.set_title('frequency domain')
    -ax.plot(frequencies, np.abs(S))
    -ax.set_xlabel('frequency [Hz]')
    -ax.set_ylabel('amplitude')
    -ax.set_xlim(0, 800);
    -
    -
    -
    -
    -../../../_images/fb197378dd2edec4c0e616f3f30cbc0e625ae828aa4bcf85d5fd7181f0c075af.png -
    -
    -

    The plot displays two peaks in spectral energy at

    -
    -
    -
    peaks = argrelextrema(np.abs(S), np.greater)      # this function finds local maxima  
    -print(f' first peak detected at {frequencies[peaks[0][0]]:.3f} Hz.')
    -print(f'second peak detected at {frequencies[peaks[0][1]]:.3f} Hz.')
    -
    -
    -
    -
    -
     first peak detected at 117.000 Hz.
    -second peak detected at 282.000 Hz.
    -
    -
    -
    -
    -

    Notice how the frequencies are close to the frequencies we computed above (f1 and f2) but because frequencies is quantized and (in our case) increases in 1 Hz increments, the retrieved spectral peaks are restricted to be an integer number of Hz. This is why Brennan et al. call this the coarse range measurment.

    -
    -
    -

    6. Convert frequency to range#

    -

    Next we convert frequencies to depths using a combination of (22) and (23),

    -

    \( -f_d = 2KR\frac{\sqrt\epsilon}{c}, -\)

    -

    Rearranging this expression for \(R\) gives

    -
    -
    -
    range = frequencies * c /(2*K*np.sqrt(ep))
    -
    -
    -
    -
    -

    which allows us to produce the amplitude-range plot:

    -
    -
    -
    fig,ax = plt.subplots(figsize=(18,3))
    -ax.set_title('amplitude-range plot showing our two reflectors')
    -ax.plot(range, np.abs(S))
    -ax.set_xlabel('range [m]')
    -ax.set_ylabel('amplitude')
    -ax.set_xlim(0, R2*1.2);
    -
    -
    -
    -
    -../../../_images/afc472000fe1a120d3116a9225ae7010b7924a0195fcff2357b107ccb450007a.png -
    -
    -

    …and compute the range of the reflectors:

    -
    -
    -
    print(f' first reflector detected at {range[peaks[0][0]]:.3f} m.')
    -print(f'second reflector detected at {range[peaks[0][1]]:.3f} m.')
    -
    -
    -
    -
    -
     first reflector detected at 49.804 m.
    -second reflector detected at 120.041 m.
    -
    -
    -
    -
    -

    The retrieved ranges to the two reflectors are close to the prescribed values:

    -
    -
    -
    print(R1) 
    -print(R2)
    -
    -
    -
    -
    -
    50.0
    -120.0
    -
    -
    -
    -
    -

    but, again, they are a coarse measurement due to the resolution of the frequency spectrum, which in turn derives from the bandwidth, \(B\) and the rate of increase in frequencies \(K\).

    -
    -
    -

    below this is scrap#

    -
    -
    -
    phase = np.angle(S)
    -print(f' first reflector detected at {phase[peaks[0][0]]:.3f} rad.')
    -print(f'second reflector detected at {phase[peaks[0][1]]:.3f} rad.')
    -
    -
    -
    -
    -
     first reflector detected at 1.446 rad.
    -second reflector detected at -0.303 rad.
    -
    -
    -
    -
    -
    -
    -
    fig,ax = plt.subplots(figsize=(18,3))
    -ax.set_title('amplitude-range plot showing our two reflectors')
    -ax.plot(range, np.angle(S))
    -ax.set_xlabel('range [m]')
    -ax.set_ylabel('phase')
    -ax.set_xlim(0, R2*1.2);
    -ax.set_ylim(-np.pi, np.pi);
    -
    -
    -
    -
    -../../../_images/f265efc8cdcdda2808f53627df2ce35724519d677c67678851b2f65e0eba5911.png -
    -
    -
    -
    -
    f_c = 300e6       # [Hz]
    -lam = c/np.sqrt(ep) / f_c
    -Rfine1 = lam * phase[peaks[0][0]]/(4*np.pi)
    -Rfine2 = lam * phase[peaks[0][1]]/(4*np.pi)
    -print(Rfine1)
    -print(Rfine2)
    -
    -
    -
    -
    -
    0.06530727388987519
    --0.013693240278268263
    -
    -
    -
    -
    -
    -
    -
    # this does not recreate the phase analysis here: https://www.gaussianwaves.com/2015/11/interpreting-fft-results-obtaining-magnitude-and-phase-information/
    -
    -
    -#X2=X;%store the FFT results in another array
    -#%detect noise (very small numbers (eps)) and ignore them
    -#threshold = max(abs(X))/10000; %tolerance threshold
    -#X2(abs(X)<threshold) = 0; %maskout values that are below the threshold
    -#phase=atan2(imag(X2),real(X2))*180/pi; %phase information
    -#plot(f,phase); %phase vs frequencies
    -phi_shift = 30*np.pi/180
    -s = np.cos(2*np.pi*f1*t + phi_shift)
    -
    -no_of_samples = len(s)
    -S = np.fft.fft(s)/no_of_samples         
    -indexes      = np.arange(no_of_samples) 
    -frequencies  = indexes * sampling_frequency/no_of_samples
    -
    -range = frequencies * c /(2*K*np.sqrt(ep))
    -
    -S2 = S
    -threshold =np.abs(S).max()/1000
    -S2[np.abs(S)<threshold] = 0
    -phase = np.arctan2(S2.imag,S2.real)*180/np.pi
    -
    -
    -fig,ax = plt.subplots(figsize=(18,3))
    -ax.set_title('amplitude-range plot showing our two reflectors')
    -ax.plot(range, phase)
    -ax.set_xlabel('range [m]')
    -ax.set_ylabel('amplitude')
    -ax.set_xlim(0, R2*1.2);
    -
    -
    -
    -
    -../../../_images/b43ee104525b3082a7b6594b0eb73ace60ccc5d69872bdb0c78721052a73aae3.png -
    -
    -
    -
    - - - - -
    - - - - - - - - -
    - - - - - - -
    -
    - - -
    - - -
    -
    -
    - - - - - -
    -
    - - \ No newline at end of file diff --git a/src/_build/html/sections/radar/apres/phase-frequency.html b/src/_build/html/sections/radar/apres/phase-frequency.html deleted file mode 100644 index fb35276..0000000 --- a/src/_build/html/sections/radar/apres/phase-frequency.html +++ /dev/null @@ -1,545 +0,0 @@ - - - - - - - - - - - - Phase and Frequency — The Glaciology Data Analysis and Modeling book - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    - - - - - - - - - - - -
    -
    -
    -
    -
    - - - -
    -
    - - - -
    - - - -
    - -
    -
    - -
    -
    - -
    - -
    - -
    - - -
    - -
    - -
    - - - - - - - - - - - - - - - - - - - - - - - - -
    - -
    - -
    -
    - - - -
    -

    Phase and Frequency

    - -
    -
    - -
    -
    -
    - - - - -
    - -
    -

    Phase and Frequency#

    -

    (under construction)

    -

    Purpose of this page:

    -
      -
    • explain the relationship between phase, frequency and angular frequency

    • -
    -

    This is an equation relating phase and angular frequency:

    -
    -\[ -\frac{d\phi}{dt} = \omega_c, -\]
    -

    where \(t\) is time [s], \(\phi\) is the phase of a radio wave [rad], \(\omega\) is the angular frequency [rad s\(^{-1}\)]

    -
    - - - - -
    - - - - - - - - -
    - - - - -
    -
    - - -
    - - -
    -
    -
    - - - - - -
    -
    - - \ No newline at end of file diff --git a/src/_build/html/sections/radar/apres/stacking.html b/src/_build/html/sections/radar/apres/stacking.html deleted file mode 100644 index 695e429..0000000 --- a/src/_build/html/sections/radar/apres/stacking.html +++ /dev/null @@ -1,587 +0,0 @@ - - - - - - - - - - - - Stacking ApRES data — The Glaciology Data Analysis and Modeling book - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    - - - - - - - - - - - -
    -
    -
    -
    -
    - - - -
    -
    - - - -
    - - - -
    - -
    -
    - -
    -
    - -
    - -
    - -
    - - -
    - -
    - -
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    - -
    - -
    -
    - - - -
    -

    Stacking ApRES data

    - -
    -
    - -
    -
    -
    - - - - -
    - -
    -

    Stacking ApRES data#

    -

    Inspired by Joel’s question here.

    -

    A page to describe

    -
      -
    • the purpose of stacking the data you get from ApRES chirps

    • -
    • how its done

    • -
    • a demostration of how it reduces the noise floor, potentially using Impdar.

    • -
    -
    - - - - -
    - - - - - - - - -
    - - - - -
    -
    - - -
    - - -
    -
    -
    - - - - - -
    -
    - - \ No newline at end of file diff --git a/src/_build/jupyter_execute/0194b7d3a76e0d6a701f781a0ff0a53c3cf23f5698e18f09fdbcce765e8d738c.png b/src/_build/jupyter_execute/0194b7d3a76e0d6a701f781a0ff0a53c3cf23f5698e18f09fdbcce765e8d738c.png deleted file mode 100644 index 87628dc..0000000 Binary files a/src/_build/jupyter_execute/0194b7d3a76e0d6a701f781a0ff0a53c3cf23f5698e18f09fdbcce765e8d738c.png and /dev/null differ diff --git a/src/_build/jupyter_execute/0cb258c5e256fde64782a02230999c4af21f433a17327f07eb0d7a5a6c0bda16.png b/src/_build/jupyter_execute/0cb258c5e256fde64782a02230999c4af21f433a17327f07eb0d7a5a6c0bda16.png deleted file mode 100644 index 0655f0b..0000000 Binary files a/src/_build/jupyter_execute/0cb258c5e256fde64782a02230999c4af21f433a17327f07eb0d7a5a6c0bda16.png and /dev/null differ diff --git a/src/_build/jupyter_execute/0e0d424f07c60c0358c1925c7d16a1b5e2ae9fda81354e7f2ce2d2ec45a80755.png b/src/_build/jupyter_execute/0e0d424f07c60c0358c1925c7d16a1b5e2ae9fda81354e7f2ce2d2ec45a80755.png deleted file mode 100644 index d726b46..0000000 Binary files a/src/_build/jupyter_execute/0e0d424f07c60c0358c1925c7d16a1b5e2ae9fda81354e7f2ce2d2ec45a80755.png and /dev/null differ diff --git a/src/_build/jupyter_execute/133bd05449a96d07aac2c6e8fb07509535208b8fea5cc5c78fbdaa1b56e38b69.png b/src/_build/jupyter_execute/133bd05449a96d07aac2c6e8fb07509535208b8fea5cc5c78fbdaa1b56e38b69.png deleted file mode 100644 index 21e2534..0000000 Binary files a/src/_build/jupyter_execute/133bd05449a96d07aac2c6e8fb07509535208b8fea5cc5c78fbdaa1b56e38b69.png and /dev/null differ diff --git a/src/_build/jupyter_execute/13ccee22e9df16370ec26cb26a7e0fa7b1766e5ab500c6c6c7c2220f965f5dc4.png b/src/_build/jupyter_execute/13ccee22e9df16370ec26cb26a7e0fa7b1766e5ab500c6c6c7c2220f965f5dc4.png deleted file mode 100644 index e904679..0000000 Binary files a/src/_build/jupyter_execute/13ccee22e9df16370ec26cb26a7e0fa7b1766e5ab500c6c6c7c2220f965f5dc4.png and /dev/null differ diff --git a/src/_build/jupyter_execute/22e62d19dd2bf56124e7fb2edf3759d5045a8e65516f667cce9093c9cd46922c.png b/src/_build/jupyter_execute/22e62d19dd2bf56124e7fb2edf3759d5045a8e65516f667cce9093c9cd46922c.png deleted file mode 100644 index 60ebe52..0000000 Binary files a/src/_build/jupyter_execute/22e62d19dd2bf56124e7fb2edf3759d5045a8e65516f667cce9093c9cd46922c.png and /dev/null differ diff --git a/src/_build/jupyter_execute/26455da865e5fc05c9b452b82327722e6529384da47a8455443b0cfd3ad77f11.png b/src/_build/jupyter_execute/26455da865e5fc05c9b452b82327722e6529384da47a8455443b0cfd3ad77f11.png deleted file mode 100644 index 3ff0e70..0000000 Binary files a/src/_build/jupyter_execute/26455da865e5fc05c9b452b82327722e6529384da47a8455443b0cfd3ad77f11.png and /dev/null differ diff --git a/src/_build/jupyter_execute/31b8c3ac1d02121b0bb757584fe680048af2ca7de412ebfed2ba71519cebc04d.png b/src/_build/jupyter_execute/31b8c3ac1d02121b0bb757584fe680048af2ca7de412ebfed2ba71519cebc04d.png deleted file mode 100644 index 84260e6..0000000 Binary files a/src/_build/jupyter_execute/31b8c3ac1d02121b0bb757584fe680048af2ca7de412ebfed2ba71519cebc04d.png and /dev/null differ diff --git a/src/_build/jupyter_execute/59d245470170c594ecf2ac26bca5ac212d44e0eaace1cef960f27b458b591528.png b/src/_build/jupyter_execute/59d245470170c594ecf2ac26bca5ac212d44e0eaace1cef960f27b458b591528.png deleted file mode 100644 index b5880d9..0000000 Binary files a/src/_build/jupyter_execute/59d245470170c594ecf2ac26bca5ac212d44e0eaace1cef960f27b458b591528.png and /dev/null differ diff --git a/src/_build/jupyter_execute/620a1a61d97f59b411f3978f7d7a8ecb28708cba77ded73c1876eef4920c9a91.png b/src/_build/jupyter_execute/620a1a61d97f59b411f3978f7d7a8ecb28708cba77ded73c1876eef4920c9a91.png deleted file mode 100644 index 38c05a4..0000000 Binary files a/src/_build/jupyter_execute/620a1a61d97f59b411f3978f7d7a8ecb28708cba77ded73c1876eef4920c9a91.png and /dev/null differ diff --git a/src/_build/jupyter_execute/6318dfa30bfad7846422cb0feba2271628bc5f3d99823a43c76e96a7316987bf.png b/src/_build/jupyter_execute/6318dfa30bfad7846422cb0feba2271628bc5f3d99823a43c76e96a7316987bf.png deleted file mode 100644 index a361f27..0000000 Binary files a/src/_build/jupyter_execute/6318dfa30bfad7846422cb0feba2271628bc5f3d99823a43c76e96a7316987bf.png and /dev/null differ diff --git a/src/_build/jupyter_execute/6a74891c345a04f058274ada190d2b31f4267e3f9080d0cedd07143ad739fceb.png b/src/_build/jupyter_execute/6a74891c345a04f058274ada190d2b31f4267e3f9080d0cedd07143ad739fceb.png deleted file mode 100644 index 961f18a..0000000 Binary files a/src/_build/jupyter_execute/6a74891c345a04f058274ada190d2b31f4267e3f9080d0cedd07143ad739fceb.png and /dev/null differ diff --git a/src/_build/jupyter_execute/9a34c3c97ff7a2fe63aa3e7b672abea9665fa76ffe5fb13e58c0f1693e6a3e32.png b/src/_build/jupyter_execute/9a34c3c97ff7a2fe63aa3e7b672abea9665fa76ffe5fb13e58c0f1693e6a3e32.png deleted file mode 100644 index 5b48712..0000000 Binary files a/src/_build/jupyter_execute/9a34c3c97ff7a2fe63aa3e7b672abea9665fa76ffe5fb13e58c0f1693e6a3e32.png and /dev/null differ diff --git a/src/_build/jupyter_execute/a61b493e6b3be4a99d944f7a3f48fbedc4cceb18e6df021e1bbcd766500f7a68.png b/src/_build/jupyter_execute/a61b493e6b3be4a99d944f7a3f48fbedc4cceb18e6df021e1bbcd766500f7a68.png deleted file mode 100644 index 50347d4..0000000 Binary files a/src/_build/jupyter_execute/a61b493e6b3be4a99d944f7a3f48fbedc4cceb18e6df021e1bbcd766500f7a68.png and /dev/null differ diff --git a/src/_build/jupyter_execute/a6b28dfc4e3b3d343ea6ff37d02bdcc98e173c94b5abba9b224c189bc579f5a9.png b/src/_build/jupyter_execute/a6b28dfc4e3b3d343ea6ff37d02bdcc98e173c94b5abba9b224c189bc579f5a9.png deleted file mode 100644 index 1cebe5d..0000000 Binary files a/src/_build/jupyter_execute/a6b28dfc4e3b3d343ea6ff37d02bdcc98e173c94b5abba9b224c189bc579f5a9.png and /dev/null differ diff --git a/src/_build/jupyter_execute/afc472000fe1a120d3116a9225ae7010b7924a0195fcff2357b107ccb450007a.png b/src/_build/jupyter_execute/afc472000fe1a120d3116a9225ae7010b7924a0195fcff2357b107ccb450007a.png deleted file mode 100644 index 56b652c..0000000 Binary files a/src/_build/jupyter_execute/afc472000fe1a120d3116a9225ae7010b7924a0195fcff2357b107ccb450007a.png and /dev/null differ diff --git a/src/_build/jupyter_execute/b0f191624c64ddf47e401bbdd4e944b2a4fcdfbb59f842e1833270f789fc6964.png b/src/_build/jupyter_execute/b0f191624c64ddf47e401bbdd4e944b2a4fcdfbb59f842e1833270f789fc6964.png deleted file mode 100644 index e5ec3da..0000000 Binary files a/src/_build/jupyter_execute/b0f191624c64ddf47e401bbdd4e944b2a4fcdfbb59f842e1833270f789fc6964.png and /dev/null differ diff --git a/src/_build/jupyter_execute/b43ee104525b3082a7b6594b0eb73ace60ccc5d69872bdb0c78721052a73aae3.png b/src/_build/jupyter_execute/b43ee104525b3082a7b6594b0eb73ace60ccc5d69872bdb0c78721052a73aae3.png deleted file mode 100644 index 78b33b7..0000000 Binary files a/src/_build/jupyter_execute/b43ee104525b3082a7b6594b0eb73ace60ccc5d69872bdb0c78721052a73aae3.png and /dev/null differ diff --git a/src/_build/jupyter_execute/c3b3d658079656308ce0d5a36f03f77894c1b85ef55d09d025b78bf7ebd2e0c2.png b/src/_build/jupyter_execute/c3b3d658079656308ce0d5a36f03f77894c1b85ef55d09d025b78bf7ebd2e0c2.png deleted file mode 100644 index 3425b71..0000000 Binary files a/src/_build/jupyter_execute/c3b3d658079656308ce0d5a36f03f77894c1b85ef55d09d025b78bf7ebd2e0c2.png and /dev/null differ diff --git a/src/_build/jupyter_execute/c4afc66a1370a78207a509ef17f176f7caf1ee3725c2c6f53e485844a144f680.png b/src/_build/jupyter_execute/c4afc66a1370a78207a509ef17f176f7caf1ee3725c2c6f53e485844a144f680.png deleted file mode 100644 index fdc1b69..0000000 Binary files a/src/_build/jupyter_execute/c4afc66a1370a78207a509ef17f176f7caf1ee3725c2c6f53e485844a144f680.png and /dev/null differ diff --git a/src/_build/jupyter_execute/da72ffd963c17d0404ea5a940214c9c58151a9cb9a130ed8a7ffb0e540704808.png b/src/_build/jupyter_execute/da72ffd963c17d0404ea5a940214c9c58151a9cb9a130ed8a7ffb0e540704808.png deleted file mode 100644 index eaf5783..0000000 Binary files a/src/_build/jupyter_execute/da72ffd963c17d0404ea5a940214c9c58151a9cb9a130ed8a7ffb0e540704808.png and /dev/null differ diff --git a/src/_build/jupyter_execute/f265efc8cdcdda2808f53627df2ce35724519d677c67678851b2f65e0eba5911.png b/src/_build/jupyter_execute/f265efc8cdcdda2808f53627df2ce35724519d677c67678851b2f65e0eba5911.png deleted file mode 100644 index 336eef5..0000000 Binary files a/src/_build/jupyter_execute/f265efc8cdcdda2808f53627df2ce35724519d677c67678851b2f65e0eba5911.png and /dev/null differ diff --git a/src/_build/jupyter_execute/f7208a9e030f28656eb649d48429b2d23c714a02b3dd80ef39e57564ef40faa2.png b/src/_build/jupyter_execute/f7208a9e030f28656eb649d48429b2d23c714a02b3dd80ef39e57564ef40faa2.png deleted file mode 100644 index 5d49579..0000000 Binary files a/src/_build/jupyter_execute/f7208a9e030f28656eb649d48429b2d23c714a02b3dd80ef39e57564ef40faa2.png and /dev/null differ diff --git a/src/_build/jupyter_execute/fb197378dd2edec4c0e616f3f30cbc0e625ae828aa4bcf85d5fd7181f0c075af.png b/src/_build/jupyter_execute/fb197378dd2edec4c0e616f3f30cbc0e625ae828aa4bcf85d5fd7181f0c075af.png deleted file mode 100644 index 3ff7e2c..0000000 Binary files a/src/_build/jupyter_execute/fb197378dd2edec4c0e616f3f30cbc0e625ae828aa4bcf85d5fd7181f0c075af.png and /dev/null differ diff --git a/src/_build/jupyter_execute/sections/ice_flow/SIA_numerical.ipynb b/src/_build/jupyter_execute/sections/ice_flow/SIA_numerical.ipynb deleted file mode 100644 index 55d75be..0000000 --- a/src/_build/jupyter_execute/sections/ice_flow/SIA_numerical.ipynb +++ /dev/null @@ -1,734 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "70431dfb-70d9-4019-bc96-8480ab89e592", - "metadata": {}, - "source": [ - "# Solving our ice sheet model numercially\n", - "\n", - "In tthe preceding pages we derived an ice sheet model using the Shallow Ice Approximation. On this page we will try to get some insight into how ice sheets operate by solving this simple ice-sheet model numerically. \n", - "\n", - "## The SIA ice sheet model\n", - "As with most mathematical models, we will define the model equations, the boundary conditions, the initial conditions and the forcing. \n", - "## Model equations\n", - "Applying mass conservation led to a depth-integrated mass balance equation (Eqn {eq}`eq:depth_int_mass_balance`), which describes how the ice thickness changes as a function of the ice-equivelent accumulation rate $a$ and ice flux $q$:\n", - "$$\n", - "\\frac{\\partial H}{\\partial t} = a - \\frac{\\partial q}{\\partial x},\n", - "$$\n", - "\n", - "where $x$ is the horizontal coordinate, $H$ is the ice thickness, $t$ is time, $q$ is the depth-intergrated flux per unit width (hereafter, flux),\n", - "\n", - "Appling a stress balance and Glen's flow law (i.e. the power law rheology of ice) led to an expression for the ice flux as a function of ice thickness (Eqn {eq}`eq:SIA_flux`): \n", - "\n", - "$$\n", - "q = -\\frac{2A}{n+2} \\left(\\rho g \\alpha \\right)^n H^{n+2} \n", - "$$\n", - "\n", - "where $A$ is the flow parameter from the flow law, $n$ is the exponent from the flow law, $\\rho$ is the density of ice, $g$ is acceleration due to gravity, and $\\alpha$ is the surface slope $\\left(= - \\frac{\\partial H}{\\partial x}\\right)$.\n" - ] - }, - { - "cell_type": "markdown", - "id": "5eaec166", - "metadata": {}, - "source": [ - "\n", - "### Boundary conditions\n", - "We will also impose a no-flow boundary condition on the right hand side. Let's think about what this looks like in our model as we go along.\n", - "\n", - "We will also assume a flat bed topography.\n", - "\n", - "### Initial conditions\n", - "\n", - "We will start with an ice sheet with no ice, i.e. $H=0$ everywhere.\n", - "\n", - "### Forcing\n", - "As a starting point we will impose the surface mass balance (SMB) as a simple linear function of distance:\n", - "\n", - "$$\n", - "a = 10^{-4}\\left(\\frac{X}{3}-x\\right), \n", - "$$\n", - "\n", - "where $X$ is the length of the spatial domain. We will discuss this choice of forcing in more detila below. " - ] - }, - { - "cell_type": "markdown", - "id": "413d74c8-73d6-4277-9df8-441afadb9b35", - "metadata": {}, - "source": [ - "## Numerical methods \n", - "We will use a a simple finite-difference scheme. We descritize the space adn time domains into grids, where variables are defined at spatial grid points and at time steps. Then we approximate the derivatives as differences, e.g.\n", - "\n", - "$$\n", - "\\frac{\\partial H}{\\partial t} = \\frac{H^{j+1}-H^{j}}{\\Delta t}\n", - "$$\n", - "\n", - "where $j$ refers to which time step and $\\Delta t$ is the time interval between time steps. \n", - "\n", - "Applying this approximation (or more precisly a 'centered-difference version of the approximation) to the spatial derivatives gives\n", - "\n", - "$$\n", - "\\frac{\\partial q}{\\partial x}\\bigg\\rvert^j = \\frac{ q^j_{i+1} - q^j_{i-1}}{2 \\Delta x}\n", - "$$ \n", - "\n", - "and\n", - "\n", - "$$\n", - "\\frac{\\partial H}{\\partial x}\\bigg\\rvert^j = \\frac{ H^j_{i+1} - H^j_{i-1}}{2 \\Delta x},\n", - "$$\n", - "\n", - "where $i$ refers to the spatial gridpoint.\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "id": "28dfb322-621d-436b-8f18-03f15195217c", - "metadata": {}, - "source": [ - "Substituting these into our model gives\n", - "\n", - "$$\n", - "\\frac{H^{j+1}-H^{j}}{\\delta t} = a - \\frac{q^j_{i+1} - q^j_{i-1}}{2 \\Delta x},\n", - "$$\n", - "\n", - "\n", - "$$\n", - "q^j_i = -\\frac{2A}{n+2} \\left(\\rho g \\right)^n {H^j_i}^{n+2} \\left(\\frac{H^j_{i+1} - H^j_{i-1}}{2\\Delta x}\\right)^n.\n", - "$$\n" - ] - }, - { - "cell_type": "markdown", - "id": "b529a38f-b625-4d03-9c48-229a03cc7463", - "metadata": {}, - "source": [ - "## Imports" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "id": "45e88ddf-4e84-47b5-96a9-aa4999a2ed37", - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "%matplotlib widget\n", - "from matplotlib import animation, rc\n", - "from IPython.display import HTML\n", - "from tqdm import tqdm\n" - ] - }, - { - "cell_type": "markdown", - "id": "746cc0f1-4591-431a-9d9d-528b1dd2bb72", - "metadata": {}, - "source": [ - "## Set up time and space grids\n", - "The first step is to set up our descritized time and space domains. We will use units of years for time and meters for distance. Setting up the grid involves choosing a time step, a total number of years the simulation should last, a grid spacing, and a domain length:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "57cc9a13-fb50-4366-a4bc-fadd18d730be", - "metadata": {}, - "outputs": [], - "source": [ - "# time domain\n", - "dt = 0.004 # time step, units [years]\n", - "T = 3000 # total length of simulation, units [years]\n", - "t = np.linspace(0,T,round(T/dt)) # the time grid, units [years]\n", - "Lt = t.size # record the length of the time grid for use later" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "9182827c-e286-478f-8f1a-2b2e53d4c953", - "metadata": {}, - "outputs": [], - "source": [ - "# space domain\n", - "dx = 200 # grid spacing, units [m]\n", - "X = 40000 # domain length, units [m]\n", - "x = np.linspace(0,X,round(X/dx)) # spatial grid, units [m]\n", - "Lx = x.size # record the length of the spatial grid for use later" - ] - }, - { - "cell_type": "markdown", - "id": "ce6264eb-0c3a-4624-8374-a0c2f3e1bc1a", - "metadata": {}, - "source": [ - "The numerical scheme is a more stable if we evaluate the flux $q$ on a staggered grid. This is a grid of points that lie at the midpoints of all the normal grid points. This will allow us to easily evaluate the gradient of $q$ back on the normal grid to evolve $H$ forward in time. " - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "8eda2394-0e10-4663-a515-8b29815cddfa", - "metadata": {}, - "outputs": [], - "source": [ - "x_stag = x[0:-1] + 0.5*dx" - ] - }, - { - "cell_type": "markdown", - "id": "b9e46472-a734-4e1d-80bf-307408fccc5f", - "metadata": {}, - "source": [ - "Note that the staggered grid has one less element that the normal grid:\n" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "9791b5fe-f310-4783-9509-713bcdb32a7c", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The staggered grid has 199 elements,\n", - "whereas the normal grid has 200 elements.\n" - ] - } - ], - "source": [ - "print(f'The staggered grid has {x_stag.size} elements,')\n", - "print(f'whereas the normal grid has {Lx} elements.')" - ] - }, - { - "cell_type": "markdown", - "id": "a4a1aec6-a76f-4ffa-a8d9-13e491c581fa", - "metadata": {}, - "source": [ - "Let's visualize the two grids to make sure we understand their arrangement." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "50718cfa-5dbc-422c-b55b-845ea4ef716a", - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "1c2a52023d0345e98c9ba27ebbf3d3f9", - "version_major": 2, - "version_minor": 0 - }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+gAAAAyCAYAAADP7vEwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAMbUlEQVR4nO3de0zV9R/H8dfheOPIOUAMNJJLhBkUUIZuSoUtkC5zSXNWWoolrZlSEkmmGE2aiyXRDivbWsrMJQ0Va1oikmmaYOtim0YzL7hh2h/JdSCX7+8P5vl5vIGk8B3n+fjrfL/f9+f63WF7n8/n+8ViGIYhAAAAAAAu0tnZqT///FNBQUEKCAgY6O54BK+B7gAAAAAAwHza29slSTabbYB74jlI0AEAAAAAV2WxWAa6Cx6DBB0AAAAAABMgQQcAAAAAYACFh4ersLBQQwa6I+hfXV1dqqurk91uZ6sKAAAA4MEMw1BjY6OCg4Pl5cXarRmQoHuYuro6hYSEDHQ3AAAAAJjEqVOnNGbMmIHuhqm1t7dr6NChN70dEnQPY7fbJXV/CR0OR88Fmpul4ODuz3V10siRNzK8z4Wuu0h/tNFf7Zh0LKadrz4UMu1YmC/PHQvz5bljMel89amIScdi2vnqQyHTjoX5Mu1YGoKDFaL/5wiDxZQpUxQbG6sRI0bo008/1bBhw/Tyyy8rNzfXFVNbW6tFixZp165d8vLy0qOPPiqn06lRo0ZJknJzc1VWVqaMjAzl5eXpxIkT6uzslJeXl9asWaOvv/5alZWVCgsL02effabAwEDNnz9fBw8eVGxsrD7//HPdcccdkqS//vpLmZmZOnDggJqbmxUVFaVVq1YpKSnpsr6ToHuYC9vaHQ5H7xJ0q/X/nx2OHr/t1xne50LXXaQ/2uivdkw6FtPOVx8KmXYszNdNb8e0Y2G+bno7ph2LSeerT0VMOhbTzlcfCpl2LMzXTW/nv7bR60dfDUNqaeld7I1ms0nX8YhucXGxMjMzVVVVpR9//FFpaWlKSEhQcnKyDMPQ9OnTNXLkSH3//ffq6OjQggUL9PTTT2v37t2uOo4ePaovv/xSmzZtkvWi+Vq5cqUKCgpUUFCg7OxszZo1SxEREVq6dKlCQ0P1wgsvaOHChfrmm28kSU1NTXr88ceVl5enESNGqLi4WNOmTVNNTY1CQ0Pd+k2CDgAAAADoWUuL5OMzMG03NfXyl4dusbGxevvttyVJY8eOVVFRkXbt2qXk5GRVVFTo0KFDOn78uOvx3/Xr1+vuu+/WwYMHNWHCBEnS+fPntX79egUGBrrVPW/ePM2cOVOSlJ2drUmTJiknJ0cpKSmSpFdffVXz5s1zxcfFxSkuLs51nJeXpy1btuirr77SwoUL3ermTQAAAAAAgEElNjbW7fjWW2/V2bNnJUlHjhxRSEiI27u5oqOj5efnpyNHjrjOhYWFXZacX1r3hS3xMTExbudaW1vV0NAgSWpubtaSJUtcbfj4+OiPP/5QbW3tZXWzgg4AAAAA6JnN1r2SPVBtX4dLX+hmsVjU1dUlqfvt9Vfa1n/p+ZFXWbG/uO4L8Vc6d6G9N954Qzt27ND777+vyMhIeXt7a8aMGTp//vxldZOgAwAAAAB6ZrFc1zZzs4qOjlZtba1OnTrlWkU/fPiw6uvrFRUVdcPb27t3r9LS0pSamiqp+5n0EydOXDGWLe4AAAAAAI+RlJSk2NhYzZ49Wz///LOqq6s1Z84cJSYmKj4+/oa3FxkZqc2bN+vXX3/Vb7/9plmzZrlW1y9Fgg4AAAAA8BgWi0VlZWXy9/fXQw89pKSkJEVERKikpOSmtPfBBx/I399fkydP1rRp05SSkqLx48dfMZYt7gAAAACAQePif5V2QVlZmdtxaGiotm7detU6cnNz3f5v+gWGYbgdh4eHX3ZuypQpbufCw8NVWVnpFvPKK6+4HV/Y8s4KOgAAAAAAJkCCDgAAAACACZCgAwAAAABgAiToAAAAAACYAAk6AAAAAAAmQIIOAAAAAIAJkKADAAAAAGACJOgAAAAAAJgACToAAAAAACZAgg4AAAAAgAmQoAMAAAAAPEJaWpqmT58+0N24KhJ0AAAAAABMgAQdAAAAADBolJaWKiYmRt7e3goICFBSUpKam5uVm5ur4uJibd26VRaLRRaLRbt375YkZWdn684775TNZlNERIRycnLU3t7uVm9eXp6CgoJkt9s1f/58vfnmm7r33ntd1zs6OpSRkSE/Pz8FBAQoOztbc+fOdVuxNwxD+fn5ioiIkLe3t+Li4lRaWuq6PuRmTgwAAAAAYHAwDKmlZWDattkki6XnuNOnT+vZZ59Vfn6+UlNT1djYqL1798owDGVlZenIkSNqaGjQ2rVrJUm33HKLJMlut2vdunUKDg7W77//rvT0dNntdi1ZskSStGHDBr377rv66KOPlJCQoI0bN2r16tW6/fbbXW2/99572rBhg9auXauoqCh9+OGHKisr08MPP+yKWb58uTZv3qyPP/5YY8eO1Z49e/Tcc88pMDBQiYmJJOgAAAAAgJ61tEg+PgPTdlOTNHJkz3GnT59WR0eHnnrqKYWFhUmSYmJiXNe9vb3V1tam0aNHu5Vbvny563N4eLhef/11lZSUuBJ0p9OpF198UfPmzZMkrVixQuXl5WpqanKVczqdWrp0qVJTUyVJRUVF2r59u+t6c3OzCgoKVFlZqUmTJkmSIiIi9MMPP+iTTz4hQQcAAAAADB5xcXF65JFHFBMTo5SUFE2dOlUzZsyQv7//NcuVlpaqsLBQR48eVVNTkzo6OuRwOFzXa2pqtGDBArcyEydOVGVlpSSpvr5eZ86c0cSJE13XrVar7r//fnV1dUmSDh8+rNbWViUnJ7vVc/78ed13332S2OIOAAAAAOgFm617JXug2u4Nq9WqnTt3av/+/SovL5fT6dSyZctUVVXlth39YgcOHNAzzzyjd955RykpKfL19XVtYb+Y5ZI99oZhXFbXtWIuJOrbtm3Tbbfd5hY3fPhwSSToAAAAAIBesFh6t818oFksFiUkJCghIUErVqxQWFiYtmzZoszMTA0bNkydnZ1u8fv27VNYWJiWLVvmOnfy5Em3mHHjxqm6ulrPP/+869xPP/3k+uzr66tRo0apurpaDz74oCSps7NTv/zyi+tFctHR0Ro+fLhqa2uVmJh4xb6ToAMAAAAABoWqqirt2rVLU6dOVVBQkKqqqvTPP/8oKipKUvfz5Tt27FBNTY0CAgLk6+uryMhI1dbWauPGjZowYYK2bdumLVu2uNW7aNEipaenKz4+XpMnT1ZJSYkOHTqkiIgIt5hVq1YpMjJSd911l5xOp/7991/XqrrdbldWVpYWL16srq4uPfDAA2poaND+/fvl4+OjuXPnkqADAAAAAAYHh8OhPXv2qLCwUA0NDQoLC9Pq1av12GOPSZLS09O1e/duxcfHq6mpSd99952efPJJLV68WAsXLlRbW5ueeOIJ5eTkKDc311Xv7NmzdezYMWVlZam1tVUzZ85UWlqaqqurXTHZ2dn6+++/NWfOHFmtVr300ktKSUmR1Wp1xaxcuVJBQUFatWqVjh07Jj8/P40fP15vvfWWJFbQAQAAAACDRFRUlL799turXg8MDFR5efll5/Pz85Wfn+927rXXXnM7zsnJUU5Ojus4OTlZkZGRruMhQ4bI6XTK6XRK6n7mPCoqSjNnznTFWCwWZWRkKCMj44r9I0EHAAAAAOAaWlpatGbNGteK+BdffKGKigrt3LnTFXPy5EmVl5crMTFRbW1tKioq0vHjxzVr1qxet0OCDgAAAADANVgsFm3fvl15eXlqa2vTuHHjtGnTJiUlJblivLy8tG7dOmVlZckwDN1zzz2qqKhwPf/eGyToAAAAAABcg7e3tyoqKq4ZExISon379v2ndrz+U2kAAAAAAHBDkKADAAAAAGACJOgAAAAAgKsyDGOgu+AxSNABAAAAAJcZOnSopO43mKN/WAx+DvEo9fX18vPz06lTp+RwOHouYBjShS+kzSZZLDcyvM+FrrtIf7TRX+2YdCymna8+FDLtWJgvzx0L8+W5YzHpfPWpiEnHYtr56kMh046F+TLtWBrOnFHIuHE6d+6cfH19rxh2+vRpnTt3TkFBQbLZbLL0qnL0FW9x9zCNjY2Sut8wCAAAAACNjY1XTdBHjx4tSTp79mx/dsljsYLuYbq6ulRXVye73d7rX78aGhoUEhLS+1V3DArcd8/Effdc3HvPxH33XNx7z3TpfTcMQ42NjQoODpaX17Wffu7s7FR7e3s/9dRzsYLuYby8vDRmzJg+lXU4HPwB90Dcd8/Effdc3HvPxH33XNx7z3Txfb/ayvmlrFarrFbrzewWxEviAAAAAAAwBRJ0AAAAAABM4H+cjHgEYe+tUwAAAABJRU5ErkJggg==", - "text/html": [ - "\n", - "
    \n", - "
    \n", - " Figure\n", - "
    \n", - " \n", - "
    \n", - " " - ], - "text/plain": [ - "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "def grid_plotting_arrays(x):\n", - " # Create two arrays with the same number of columns as the spatial grid. This is simply for plotting the grids.\n", - " stacked_x = np.stack([x, x]) # the first one has each column made up of two instances of each grid point. \n", - " zero_one = np.stack([0*x, 0*x+1]) # the second one has each column made up of a zero and a one. \n", - " return stacked_x, zero_one\n", - "\n", - "plt.figure(figsize=(10, 0.5))\n", - "\n", - "h1 = plt.plot(grid_plotting_arrays(x)[0],\n", - " grid_plotting_arrays(x)[1], \n", - " color = 'red', \n", - " label = 'normal grid')\n", - "\n", - "h2 = plt.plot(grid_plotting_arrays(x_stag)[0],\n", - " grid_plotting_arrays(x_stag)[1], \n", - " color = 'blue', \n", - " label = 'staggered grid')\n", - "\n", - "plt.xlabel('distance, $x$ [m]', size = 25)\n", - "plt.xlim(x[0]-100, x[30])\n", - "plt.legend(handles=[h1[0], h2[0]], loc=(1.01,0))\n", - "plt.yticks([], []);\n", - "plt.xticks(size = 20);" - ] - }, - { - "cell_type": "markdown", - "id": "9840c584-c298-45dd-86d9-5d14129aa0f7", - "metadata": {}, - "source": [ - "The red lines in the plot above show the locations of the grid point in the normal, unstaggered grid and the blue lines show the staggered grid. They alternate and are evenly spaced." - ] - }, - { - "cell_type": "markdown", - "id": "7b4927ff-def4-4b67-bca8-b53e3873ff3d", - "metadata": {}, - "source": [ - "## Define physical constants\n", - "These are the parameters that we will not be varying in our model.\n", - "\n", - "We include a small numerical parameter `e`. In places where $H = 0$, the physics that our model describes do not apply, so a simple (but crude) way to avoid this is to never allow $H$ to go below this small value `e`." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "id": "640e61ff-56ee-4e75-a2e8-049da1843654", - "metadata": {}, - "outputs": [], - "source": [ - "n = 3.0 # The flow law exponent\n", - "seconds_per_year = 365*24*60*60 # approximate number of seconds in year\n", - "A = 24*10**(-25) * seconds_per_year # The flow law parameter, units [Pa a] (original value from Cuffey and Paterson 24e-25, units Pa s\n", - "rho = 917 # ice density, units [kg/m^3]\n", - "g = 10 # acceleration due to gravity, units [m/s^2]\n", - "e = 0.0001 # used to prevent ice thickness from reaching zero" - ] - }, - { - "cell_type": "markdown", - "id": "66344fc7-c9fb-4a6a-a7ac-1a83c6d53399", - "metadata": {}, - "source": [ - "## Preallocate the ice thickness array\n", - "For simplicity, we will save the ice thickness at every time step. To do this most efficiently, we 'pre-allocate' the memory for the array by creating an array the right width and height consisting of zeros. Notice that the time domain will correspond to the first index of `H` and the spatial domain will correspond to the second. " - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "id": "af0e4e46-d9a7-45d4-ab2a-b4ec751f1e79", - "metadata": {}, - "outputs": [], - "source": [ - "H = np.zeros((Lt,Lx))" - ] - }, - { - "cell_type": "markdown", - "id": "fb371f6f-88fb-4358-963c-af9a8f65ec85", - "metadata": {}, - "source": [ - "## Define initial conditions\n", - "Because our model contains a time derivative of ice thickness $H$, we need to assign $H$ an initial condition. This will be arbitrary, so we better make sure that the conclusions we draw from simulations do not rely on this arbitrary choice. \n", - "\n", - "For simicity we will make $H$ uniform initally and equal to `e`." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "id": "57ce4129-259d-4be1-a4d7-9d17ef829495", - "metadata": {}, - "outputs": [], - "source": [ - "H[0,:] = e" - ] - }, - { - "cell_type": "markdown", - "id": "d8784e28-ae03-40d3-9863-0c59af4abb07", - "metadata": {}, - "source": [ - "## Prescribe the surface mass balance\n", - "The model is forced by the surface mass balance $a$. For simplicity, we will prescribe $a$ as a simple linear function of distance. \n", - "\n", - "$$\n", - "a = 10^{-4} \\left( \\frac{X}{3} - x \\right)\n", - "$$" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "id": "7b9a9158-9b9f-4307-a843-b95d8fc646df", - "metadata": {}, - "outputs": [], - "source": [ - "a = 10**-4 * (X/3-x)" - ] - }, - { - "cell_type": "markdown", - "id": "bad57f1d-1275-4772-8b39-6b0b6a5da863", - "metadata": {}, - "source": [ - "Let's plot the surface mass balance as a function of $x$:" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "id": "3882d5b0-9662-44a0-8ef2-bcd5fbf24ce4", - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "7649489a40b748c488b2fad62fd7bef4", - "version_major": 2, - "version_minor": 0 - }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAABk3ElEQVR4nO3deXgNZ/8/8PecLCd7iOwECWoLEVERTWpr7bGV2mppy0OJWKpVbanqkoe2WqG1llYfW1UpFUQRQmJPiCCWyEISkZBdcpKc+f3h53ybCiWZZM7yfl3XXJfMmZn7M+Yw78w9c48giqIIIiIiIjIYCrkLICIiIqLaxQBIREREZGAYAImIiIgMDAMgERERkYFhACQiIiIyMAyARERERAaGAZCIiIjIwDAAEhERERkYBkAiIiIiA8MASERERGRgGACJiIiIDAwDIBEREZGBYQAkIiIiMjAMgEREREQGhgGQiIiIyMAwABIREREZGAZAIiIiIgPDAEhERERkYBgAiYiIiAwMAyARERGRgWEAJCIiIjIwDIBEREREBoYBkIiIiMjAMAASERERGRgGQCIiIiIDwwBIREREZGAYAImIiIgMDAMgERERkYFhACQiIiIyMAyARERERAaGAZCIiIjIwDAAEhERERkYBkAiIiIiA8MASERERGRgGACJiIiIDAwDIBEREZGBYQAkIiIiMjAMgEREREQGhgGQiIiIyMAwABIREREZGAZAIiIiIgPDAEhERERkYBgAiYiIiAwMAyARERGRgWEAJCIiIjIwDIBEREREBoYBkIiIiMjAMAASERERGRgGQCIiIiIDwwBIREREZGAYAImIiIgMDAMgERERkYFhACQiIiIyMAyARERERAaGAZCIiIjIwOhNADx69CgCAwPh6uoKQRCwc+fOpy4fEREBQRAem65cuVI7BRMRERHJxFjuAqRSWFgILy8vvPnmm3jttdeeeb2EhATY2NhofnZwcHjmddVqNdLS0mBtbQ1BEJ6rXiIiIpKHKIrIz8+Hq6srFAq9uRb2XPQmAPbp0wd9+vR57vUcHR1Rp06dKrWZlpYGNze3Kq1LRERE8kpNTUWDBg3kLkMWehMAq8rb2xvFxcVo1aoVPv74Y3Tr1u2Jy5aUlKCkpETzsyiKAB5+gf5+FZGIiIi0V15eHtzc3GBtbS13KbIx2ADo4uKC1atXw8fHByUlJfjll1/Qo0cPRERE4OWXX650nZCQEHz66aePzbexsWEAJCIi0jGGfPuWID66jKVHBEHAjh07MGjQoOdaLzAwEIIgYNeuXZV+/s8rgI9+g8jNzWUAJCIi0hF5eXmwtbU16PO3Yd75+ASdOnXCtWvXnvi5UqnUXO3jVT8iIiLSVQyAfxMTEwMXFxe5yyAiIiKqUXpzD2BBQQGuX7+u+fnmzZuIjY2FnZ0dGjZsiLlz5+L27dvYsGEDAOC7775D48aN0bp1a6hUKvzvf//D9u3bsX37drl2gYiIiKhW6E0APHPmTIUneGfNmgUAGDduHH766Sekp6cjJSVF87lKpcLs2bNx+/ZtmJubo3Xr1tizZw/69u1b67UTERER1Sa9fAiktvAmUiIiIt3D8zfvASQiIiIyOAyARERERAaGAZCIiIjIwDAAEhERERkYBkAiIiIiA8MAqKX4cDYRERHVFAZALXQzqxB9lkYiNjVH7lKIiIhIDzEAaqFFe6/gSkY+hq6IwtrIRF4NJCIiIkkxAGqhxcPaom8bZ5SpRXy+5zImbjiDnCKV3GURERGRnmAA1EI2Zib4flR7fDawNUyNFPjrcib6Lo3E2eR7cpdGREREeoABUEsJgoAxfo3x+5TOaFzPAmm5xXh91QmsiLgBtZpdwkRERFR1DIBazrO+Lf4MDsAAL1eUq0Us2ncFb/18GtkFJXKXRkRERDqKAVAHWCmNsXREO4QMaQOlsQIRCXfRNzQSJxOz5S6NiIiIdBADoI4QBAEjOzbEH0EvoYmDJe7klWDkmhNYdvAaytklTERERM+BAVDHtHC2wa4gfwxpXx9qEfjmwFWMW3cKd/PZJUxERETPhgFQB1kqjbHk9Xb4amhbmJsY4dj1LPRZGomo61lyl0ZEREQ6gAFQhw3r4IZdQS/hBScrZBWUYPSPJ7HkwFV2CRMREdFTMQDquGZO1vhjqj+Gd3CDKAKhB69h9NoTuJNXLHdpREREpKUYAPWAuakRFg1ti++Gt4OFqRFOJN5D36WROHr1rtylERERkRZiANQjg7zrY/c0f7RwtkZ2oQpj153C4n1XUFaulrs0IiIi0iIMgHqmiYMVdk59CaN9GwIAfoi4gZFrTiA994HMlREREZG2YADUQ2YmRvhicBssH+UNK6UxTifdR9+lkTh8JVPu0oiIiEgLMADqsf5tXfHnNH941rfB/aJSvPnTaYSEXUYpu4SJiIgMGgOgnmtsb4nt73TG+M6NAQCrjibi9VXRuHW/SN7CiIiISDYMgAZAaWyEBQNaY+Ub7WFtZoyYlBz0XRqJ8PgMuUsjIiIiGTAAGpDeni4ICw6AVwNb5BWX4T+/nMWnu+OhKmOXMBERkSFhADQwbnYW2Da5Myb4uwMA1h9PwtCVUUjJZpcwERGRoWAANECmxgp83L8V1o7tAFtzE1y4lYt+oZEIi0uXuzQiIiKqBQyABuyVVk4Imx6A9g3rIL+kDFM2nsO8nRdRXFoud2lERERUgxgADVz9OubYOskPk7p4AAB+OZGM11ZE4WZWocyVERERUU1hACSYGCkwt09LrH/zRdhZmiI+LQ/9QyOx63ya3KURERFRDdCbAHj06FEEBgbC1dUVgiBg586d/7rOkSNH4OPjAzMzM3h4eGDlypU1X6gW69bcEWHBAejY2A6FqnIEb47B3N/j2CVMRESkZ/QmABYWFsLLywvLly9/puVv3ryJvn37IiAgADExMfjwww8RHByM7du313Cl2s3Z1gybJvpiWvemEARg86kUDPr+OK5nFshdGhEREUlEEEVRlLsIqQmCgB07dmDQoEFPXGbOnDnYtWsXLl++rJk3efJknD9/HtHR0c/UTl5eHmxtbZGbmwsbG5vqlq11Iq/dxcytscgqUMHC1AifD/LEkPYN5C6LiIioWvT9/P0s9OYK4POKjo5Gz549K8zr1asXzpw5g9LS0krXKSkpQV5eXoVJnwU0c0BYcAD8POqhSFWOWb+ex+xt51GkKpO7NCIiIqoGgw2AGRkZcHJyqjDPyckJZWVlyMrKqnSdkJAQ2NraaiY3N7faKFVWjjZm+N8EX8x85QUoBOC3s7cwcPlxXL2TL3dpREREVEUGGwCBh13Ff/eoN/yf8x+ZO3cucnNzNVNqamqN16gNjBQCpr/SDBsndIKDtRLXMgswYPkx/Ho6FXp4BwEREZHeM9gA6OzsjIyMjArzMjMzYWxsjHr16lW6jlKphI2NTYXJkPg1qYe90wMQ0MwexaVqvL/9AmZujUVhCbuEiYiIdInBBkA/Pz8cOHCgwrzw8HB06NABJiYmMlWl/eytlPj5zY54r1dzKARgZ2waApcdw6U0/b4fkoiISJ/oTQAsKChAbGwsYmNjATwc5iU2NhYpKSkAHnbfjh07VrP85MmTkZycjFmzZuHy5ctYt24dfvzxR8yePVuO8nWKQiFgarem2PIfPzjbmCExqxCDfjiOjSeT2SVMRESkA/QmAJ45cwbe3t7w9vYGAMyaNQve3t6YP38+ACA9PV0TBgHA3d0dYWFhiIiIQLt27fDZZ58hNDQUr732miz166KO7nYImx6Abs0doCpT46MdFzFtcwzyiyt/ipqIiIi0g16OA1hbOI7QQ2q1iLXHErF4XwLK1CIa1bPA96Paw7O+rdylERERPYbnbz26AkjyUSgE/OflJtg6yQ/165gjObsIQ36Iws9RSewSJiIi0kIMgCQZn0Z1sSfYH6+0dIKqXI1PdsXjnf+dQ+4DdgkTERFpEwZAklQdC1OsGeuD+f1bwcRIwL74DPQLjURsao7cpREREdH/xwBIkhMEAW/5u+O3yZ3hZmeOW/cfYNjKKKyNTGSXMBERkRZgAKQa4+VWB39OC0AfT2eUlov4fM9lTNxwBjlFKrlLIyIiMmgMgFSjbM1N8MPo9lg4sDVMjRT463Im+i6NxNnke3KXRkREZLAYAKnGCYKAsX6N8fuUzmhczwJpucV4fdUJrDxyA2o1u4SJiIhqGwMg1RrP+rbYPc0fgV6uKFeL+O/eK3jr59PILiiRuzQiIiKDwgBItcrazAShI9rhy8FtoDRWICLhLvqGRuLUTXYJExER1RYGQKp1giBglG9D7Jz6EjwcLHEnrwQjVkdj+aFr7BImIiKqBQyAJJuWLjbYHeSPId71oRaBr8OvYtz6U7ibzy5hIiKimsQASLKyVBrjm9e9sHhoW5iZKBB5LQt9QyMRdT1L7tKIiIj0FgMgyU4QBLzewQ27g/zRzNEKd/NLMPrHk/j2wFWUs0uYiIhIcgyApDWaOVljV5A/Xu/QAKIILD14DaPXnkBmXrHcpREREekVBkDSKuamRlg81AvfDveChakRTiTeQ5+lkTh69a7cpREREekNBkDSSoO9G2BXkD9aOFsju1CFcetP4av9V1BWrpa7NCIiIp3HAEhaq6mjFXZOfQmjfBtCFIHvD9/AqDUnkZ77QO7SiIiIdBoDIGk1MxMjfDm4DUJHesNKaYxTSffQd2kkDl/JlLs0IiIincUASDphgJcr/pzmD8/6NrhfVIo3fzqNkLDLKGWXMBER0XNjACSd0djeEtvf6Yxxfo0AAKuOJmL4qmjczmGXMBER0fNgACSdojQ2wqcDPbFidHtYmxnjXEoO+i6NxIFLd+QujYiISGcwAJJO6tPGBWHBAfBqYIvcB6WYuOEMFu6+BFUZu4SJiIj+DQMg6Sw3Owtsm9wZb/u7AwDWHb+JYSujkHqvSObKiIiItBsDIOk0U2MF5vVvhTVjO8DW3ATnb+Wib2gk9saly10aERGR1mIAJL3waisn7An2R/uGdZBfXIZ3Np7D/D8uori0XO7SiIiItA4DIOmNBnUtsHWSHyZ18QAAbIhOxmsropCUVShzZURERNqFAZD0iomRAnP7tMT68S+iroUJ4tPy0H/ZMew6nyZ3aURERFpDEEVRrMqKu3bteu51Xn31VZibm1elOa2Ul5cHW1tb5ObmwsbGRu5y6B/Scx8geHMMTifdBwCM7NgQnwS2gpmJkcyVERGRnHj+rkYAVCie7+KhIAi4du0aPDw8qtKcVuIXSPuVlavx3V/X8H3EdYgi0MLZGt+Pbo8mDlZyl0ZERDLh+buaXcAZGRlQq9XPNFlYWEhVM9EzMzZSYHav5tjwVkfYW5niSkY+Apcdw46YW3KXRkREJJsqB8Bx48Y9V3fuG2+8YbApm+QX0MwBYcEB8POohyJVOWZuPY/3tp1HkapM7tKIiIhqXZUD4Pr162Ftbf3My69YsQL29vZVbe6Z/PDDD3B3d4eZmRl8fHwQGRn5xGUjIiIgCMJj05UrV2q0RpKPo40Z/jfBFzNeaQZBALadvYWBy4/j6p18uUsjIiKqVdV+Cri0tBTdunXD1atXpainyrZu3YoZM2bgo48+QkxMDAICAtCnTx+kpKQ8db2EhASkp6drpmbNmtVSxSQHI4WAGa+8gI0TfOFgrcS1zAIMWH4Mv55JRRVvhyUiItI51Q6AJiYmuHjxIgRBkKKeKluyZAnefvttTJgwAS1btsR3330HNzc3rFix4qnrOTo6wtnZWTMZGfEJUUPQuYk9woIDENDMHsWlarz/2wXM+vU8CkvYJUxERPpPknEAx44dix9//FGKTVWJSqXC2bNn0bNnzwrze/bsiaioqKeu6+3tDRcXF/To0QOHDx9+6rIlJSXIy8urMJHucrBW4uc3O+K9Xs2hEIAdMbcRuPwYLqfzuBIRkX4zlmIjKpUKa9euxYEDB9ChQwdYWlpW+HzJkiVSNPNEWVlZKC8vh5OTU4X5Tk5OyMjIqHQdFxcXrF69Gj4+PigpKcEvv/yCHj16ICIiAi+//HKl64SEhODTTz+VvH6Sj0IhYGq3pnixsR2CN8cg8W4hBn5/HAsCW2NkRzfZr2wTERHVhCqPA/h33bp1e3IDgoBDhw5Vt4mnSktLQ/369REVFQU/Pz/N/C+++AK//PLLMz/YERgYCEEQnjjIdUlJCUpKSjQ/5+Xlwc3NzaDHEdIn9wpVmPVrLCIS7gIAAr1c8eVgT1ibmchcGRERSYnjAEp0BfDfuk5rmr29PYyMjB672peZmfnYVcGn6dSpE/73v/898XOlUgmlUlnlOkm72VmaYt24F7EmMhGL9ydg9/k0xN3KwfJR7eFZ31bu8oiIiCQjyT2A48ePx9GjR6XYVJWYmprCx8cHBw4cqDD/wIED6Ny58zNvJyYmBi4uLlKXRzpEoRAwqUsT/DrJD/XrmCMpuwhDfojChugkPiVMRER6Q5IAmJ+fj549e6JZs2b48ssvcfv2bSk2+1xmzZqFtWvXYt26dbh8+TJmzpyJlJQUTJ48GQAwd+5cjB07VrP8d999h507d+LatWuIj4/H3LlzsX37dgQFBdV67aR9fBrVxZ5gf7zS0gmqcjXm/xGPKRvPIfdBqdylERERVZskAXD79u24ffs2goKCsG3bNjRu3Bh9+vTBb7/9htLS2jlhDh8+HN999x0WLlyIdu3a4ejRowgLC0OjRo0AAOnp6RXGBFSpVJg9ezbatm2LgIAAHDt2DHv27MGQIUNqpV7SfnUsTLFmrA/m9W8FEyMBey9moP+ySJxPzZG7NCIiomqR5CGQf4qJicG6deuwdu1aWFlZ4Y033sCUKVP0bpBl3kRqOM6n5mDqpnO4df8BTIwEfNCnJd56qTGfEiYi0kE8f0t0BfDv0tPTER4ejvDwcBgZGaFv376Ij49Hq1at8O2330rdHFGt8HKrgz3BAejd2hml5SI++/MSJm44i5wildylERERPTdJrgCWlpZi165dWL9+PcLDw9G2bVtMmDABo0eP1rwveMuWLXjnnXdw//79ahetLfgbhOERRRG/nEjG539ehqpcjfp1zBE60hs+jerKXRoRET0jnr8lGgbGxcUF5eXlGDVqFE6dOoV27do9tkyvXr1Qp04dKZojko0gCBjr1xjtG9bF1E3nkJxdhOGrovFer+aYGOABhYJdwkREpP2qdQXwww8/xMCBA3H16lUMGzYMZmZmUtam9fgbhGHLLy7F3N/j8OeFdABAt+YO+Ob1drCzNJW5MiIiehqev6t5D2B6ejoCAwPx/vvvIzg4GGFhYRXelEGkz6zNTLBspDe+HNwGpsYKHE64i75LI3Hq5j25SyMiInqqat8DKIoijh8/jl27dmHXrl24ffs2Xn31VQwYMAD9+/eHvb29VLVqHf4GQY9cTs/D1I3nkJhVCCOFgFmvvoB3ujRhlzARkRbi+bsGhoG5fPkydu/ejT/++ANnzpyBr68vBgwYgJEjR6J+/fpSNiU7foHo7wpLyvDxzovYEfNwIPSAZvb4dng72Fvx9YFERNqE5+8aGgfwkczMTOzevRu7du1CQEAAZs+eXVNNyYJfIPonURSx7ewtzP/jIopL1XCwVmLpiHbo3ER/r4QTEekanr9rOADqO36B6Emu3snH1I3ncC2zAAoBCO7RDNO6N4MRu4SJiGTH87eEAbC4uBgXLlxAZmYm1Gp1hc8GDBggRRNah18gepoiVRk++SMe287eAgD4edTD0hHt4GhjWE/LExFpG56/JQqA+/btw9ixY5GVlfV4A4KA8vLy6jahlfgFomfx+7lb+HjnRRSpymFvZYpvh7dDQDMHucsiIjJYPH9L9Cq4oKAgDBs2DOnp6VCr1RUmfQ1/RM9qSPsG2BXkjxbO1sgqUGHsulP4en8CysrV/74yERFRDZAkAGZmZmLWrFlwcnKSYnNEeqepoxV2Tn0JIzs2hCgCyw9fx6g1J5Ge+0Du0oiIyABJEgCHDh2KiIgIKTZFpLfMTIwQMqQNQkd6w9LUCKeS7qHv0kgcTsiUuzQiIjIwktwDWFRUhGHDhsHBwQFt2rSBiYlJhc+Dg4Or24RW4j0EVFU3swoRtOkc4tPyAACTunhgds/mMDGS5HcyIiJ6Cp6/JQqAa9euxeTJk2Fubo569epBEP5vqAtBEJCYmFjdJrQSv0BUHcWl5fgy7DI2RCcDANo3rINlo9qjfh1zmSsjItJvPH9LFACdnZ0RHByMDz74AAqF4VzB4BeIpLA3Lh3vb7+A/OIy2Jqb4OthXni1Fe+nJSKqKTx/S3QPoEqlwvDhww0q/BFJpU8bF+yZFgCvBrbIfVCKiRvO4LM/L0FVxqeEiYioZkiS2MaNG4etW7dKsSkig9SwngW2Te6Mt15yBwD8eOwmhq2KRuq9IpkrIyIifWQsxUbKy8uxePFi7N+/H23btn3sIZAlS5ZI0QyRXjM1VmB+YCt08rDD7G3ncT41B31DI/HV0Lbo7ekid3lERKRHJLkHsFu3bk9uQBBw6NCh6jahlXgPAdWUW/eLMG1zDGJScgAA4/wa4cN+LaE0NpK3MCIiPcDzt4TvAjZE/AJRTSotV+Pr/QlYdfThU/Se9W2wfGR7NLa3lLkyIiLdxvN3Ne4BvHDhAtTqZ79JPT4+HmVlZVVtjsjgmBgpMLdvS6wb3wF1LUxw8XYe+i87ht3n0+QujYiIdFyVA6C3tzeys7OfeXk/Pz+kpKRUtTkig9W9hRPCpgfgxcZ1UVBShmmbY/DhjjgUl/I920REVDVVfghEFEXMmzcPFhYWz7S8SqWqalNEBs/F1hybJ3bCt39dxQ8RN7DpZArOJd/H96Pbo4mDldzlERGRjqnyPYBdu3at8MaPZ7Fp0ya4uOjP04y8h4DkcPTqXczcGovsQhUsTI3wxWBPDPZuIHdZREQ6g+dvPgRSLfwCkVzu5BVj+pYYnEi8BwB4vUMDfDrAE+amfEqYiOjf8Pwt0UDQRFS7nGzMsHFCJ0zv0QyCAPx65hYGfn8M1+7ky10aERHpAAZAIh1lpBAw89UXsPFtXzhYK3H1TgEClx/Dr2dSwQv7RET0NAyARDquc1N7hAUHwL+pPYpL1Xj/twt499fzKCzhsEtERFQ5BkAiPeBgrcSGtzpids8XoBCA32NuY8DyY7icnid3aUREpIX0KgD+8MMPcHd3h5mZGXx8fBAZGfnU5Y8cOQIfHx+YmZnBw8MDK1eurKVKiaSnUAgI6t4Mmyd2gpONEjfuFmLQ98ex6WQKu4SJiKgCSQJgeXk5Vq1ahZkzZ+Kbb77BwYMHn2uQaCls3boVM2bMwEcffYSYmBgEBASgT58+Txx8+ubNm+jbty8CAgIQExODDz/8EMHBwdi+fXut1k0kNV+PeggLDkCXFxxQUqbGhzviELwlFvnFpXKXRkREWkKSYWCmTJmC3377Da+++iq2bdsGhUKB0tJS1K9fH+3atcOuXbukqPWpfH190b59e6xYsUIzr2XLlhg0aBBCQkIeW37OnDnYtWsXLl++rJk3efJknD9/HtHR0c/UJh8jJ22mVotYHZmIr/YnoFwtonE9Cywf1R6e9W3lLo2ISFY8f0t0BfD333/HL7/8go0bN0KpVOLMmTMIDQ1FcXExGjVqJEUTT6VSqXD27Fn07NmzwvyePXsiKiqq0nWio6MfW75Xr144c+YMSksrv1JSUlKCvLy8ChORtlIoBEzu0gS/TuoEV1szJGUXYcgPUfglOoldwkREBk6SAFhQUIBWrVoBAExMTGBkZISpU6di7ty5MDMzk6KJp8rKykJ5eTmcnJwqzHdyckJGRkal62RkZFS6fFlZGbKysipdJyQkBLa2tprJzc1Nmh0gqkE+jeywJzgAr7R0hKpcjXl/xGPqpnPIY5cwEZHBkiQAenh4IC0tDQBQv3593L59GwAQGBiI//3vf1I08Uz++Wo6URSf+rq6ypavbP4jc+fORW5urmZKTU2tZsVEtaOupSnWjO2Aj/u1hImRgLC4DPQLjcT51By5SyMiIhlIEgCHDRuGffv2AXj4juB169YBAC5duoQHDx5I0cRT2dvbw8jI6LGrfZmZmY9d5XvE2dm50uWNjY1Rr169StdRKpWwsbGpMBHpCkEQMCHAA9smd0aDuuZIvfcAQ1dGYd2xm+wSJiIyMJIEwHnz5uGTTz4BALz33ns4dOgQHBwcMGzYMIwaNUqKJp7K1NQUPj4+OHDgQIX5Bw4cQOfOnStdx8/P77Hlw8PD0aFDB5iYmNRYrURya+dWB3uCA9C7tTNKy0Us/PMS/vPLWeQUqeQujYiIaokkTwH/U3Z2NsLCwmBnZ4d+/fpJvflKbd26FWPGjMHKlSvh5+eH1atXY82aNYiPj0ejRo0wd+5c3L59Gxs2bADwcBgYT09PTJo0CRMnTkR0dDQmT56MzZs347XXXnumNvkUEekyURSxIToZX+y5DFW5GvXrmGPZKG+0b1hX7tKIiGoUz981FADl8sMPP2Dx4sVIT0+Hp6cnvv32W7z88ssAgPHjxyMpKQkRERGa5Y8cOYKZM2ciPj4erq6umDNnDiZPnvzM7fELRPog7lYugjafQ3J2EYwVAt7r1RwTAzygUDz5/lkiIl3G87eeBcDaxi8Q6Yv84lJ88Hsc9lxIBwB0b+GIr4d5wc7SVObKiIikx/O3nr0KjoiqxtrMBMtHeuOLwZ4wNVbg0JVM9F0aidNJ9+QujYiIagADIBEBePiU8GjfRtg55SV42FsiI68YI1afwPeHr0OtZkcBEZE+YQAkogpaudpg1zR/DGrninK1iK/2J2Dc+lPIKiiRuzQiIpIIAyARPcZKaYxvh7fD4tfawsxEgchrWei7NBLRN7LlLo2IiCRQ4wFQoVCge/fuOHv2bE03RUQSEgQBr7/ohj+m+qOpoxUy80sweu0JLP3rGsrZJUxEpNNqPACuW7cOXbp0QXBwcE03RUQ1oLmzNXYFvYRhPg2gFoFv/7qKMT+eRGZ+sdylERFRFXEYmGrgY+RkaH4/dwsf7biIB6XlsLcyxXfDveHfzF7usoiIngvP37wHkIiew5D2DbB7mj9aOFsjq0CFMetO4uv9CSgrV8tdGhERPQfJAmBkZCTeeOMN+Pn54fbt2wCAX375BceOHZOqCSLSAk0drbBz6ksY2dENoggsP3wdo9aeREYuu4SJiHSFJAFw+/bt6NWrF8zNzRETE4OSkofDReTn5+PLL7+Uogki0iJmJkYIGdIWS0e0g6WpEU7dvIe+oZGISMiUuzQiInoGkgTAzz//HCtXrsSaNWtgYmKimd+5c2ecO3dOiiaISAsNbFcffwYHoJWLDe4VqjB+/Wn8d+8VlLJLmIhIq0kSABMSEvDyyy8/Nt/GxgY5OTlSNEFEWsrd3hK/T+mMMZ0aAQBWHrmBEatP4HbOA5krIyKiJ5EkALq4uOD69euPzT927Bg8PDykaIKItJiZiRE+G+SJH0a3h7XSGGeT76NfaCT+unRH7tKIiKgSkgTASZMmYfr06Th58iQEQUBaWho2btyI2bNnY8qUKVI0QUQ6oG8bF+wJDkDbBrbIKSrFhA1n8Pmfl6AqY5cwEZE2kWwcwI8++gjffvstiosfPgmoVCoxe/ZsfPbZZ1JsXitxHCGiypWUlWPR3gSsO34TAODlVgfLR3rDzc5C5sqIiHj+BiQeCLqoqAiXLl2CWq1Gq1atYGVlJdWmtRK/QERPFx6fgdnbziOvuAzWZsb4aqgXens6y10WERk4nr8lCoAhISFwcnLCW2+9VWH+unXrcPfuXcyZM6e6TWglfoGI/t2t+0WYtjkGMSk5AIDxnRtjbt8WUBobyVsYERksnr8lugdw1apVaNGixWPzW7dujZUrV0rRBBHpqAZ1LfDrJD/85+WHD4T9FJWE11ZEISmrUObKiIgMlyQBMCMjAy4uLo/Nd3BwQHp6uhRNEJEOMzFS4MO+LbFufAfUtTDBxdt56L/sGP68kCZ3aUREBkmSAOjm5objx48/Nv/48eNwdXWVogki0gPdWzghbHoAOjSqi4KSMgRtisFHO+JQXFoud2lERAZFkgA4YcIEzJgxA+vXr0dycjKSk5Oxbt06zJw5ExMnTpSiCSLSEy625tjyn06Y0rUJAGDjyRQM+v44btwtkLkyIiLDIclDIKIo4oMPPkBoaChUKhUAwMzMDHPmzMH8+fOrXaS24k2kRNVz5OpdzNoai+xCFSxMjfDl4DYY5F1f7rKISM/x/C3xMDAFBQW4fPkyzM3N0axZMyiVSqk2rZX4BSKqvjt5xZi+JQYnEu8BAIZ3cMOCAa1hbsqnhImoZvD8LXEANDT8AhFJo1wtYunBa1h26BpEEXjByQrfj2qPZk7WcpdGRHqI528JA+DBgwdx8OBBZGZmQq2u+NqndevWSdGE1uEXiEhaUdezELwlFlkFJTA3McLCga0xrIOb3GURkZ7h+Vuih0A+/fRT9OzZEwcPHkRWVhbu379fYSIiehadm9pj7/QA+De1x4PScrz32wXM+jUWhSVlcpdGRKRXJLkC6OLigsWLF2PMmDFS1KQz+BsEUc0oV4v44fB1fPvXVahFoImDJb4f3R4tnPnvjIiqj+dvia4AqlQqdO7cWYpNERHBSCFgWo9m2DSxE5xslLhxtxADlx/H5lMp4G3LRETVJ9k4gJs2bZJiU0REGp086iEsOABdXnBASZkac3+Pw/QtsShglzARUbUYS7GR4uJirF69Gn/99Rfatm0LExOTCp8vWbJEimaIyADVs1Ji/fgXsepoIr4OT8Cu82m4cCsHy0e1h2d9W7nLIyLSSZLcA9itW7cnNyAIOHToUHWb0Eq8h4Codp1Juodpm2OQnlsMU2MF5vVriTc6NYIgCHKXRkQ6hOdvPRkH8P79+wgODsauXbsAAAMGDMCyZctQp06dJ64zfvx4/PzzzxXm+fr64sSJE8/cLr9ARLXvfqEKs7edx8ErmQCAvm2c8d/X2sLGzORf1iQieojnb4nuAZTbqFGjEBsbi3379mHfvn2IjY19pieSe/fujfT0dM0UFhZWC9USUXXUtTTF2nEd8HG/ljBWCAiLy0D/0GO4cCtH7tKIiHSGJPcAPnLp0iWkpKRo3gf8yIABA6RspoLLly9j3759OHHiBHx9fQEAa9asgZ+fHxISEtC8efMnrqtUKuHs7FxjtRFRzRAEARMCPODTqC6CNsUg5V4RXlsRhbl9WuLNlxqzS5iI6F9IEgATExMxePBgxMXFQRAEzTANj/4TLi8vl6KZSkVHR8PW1lYT/gCgU6dOsLW1RVRU1FMDYEREBBwdHVGnTh106dIFX3zxBRwdHZ+4fElJCUpKSjQ/5+XlSbMTRFQl3g3rIiw4AO9vP4/98Xew8M9LOJGYja+GesHWgl3CRERPIkkX8PTp0+Hu7o47d+7AwsIC8fHxOHr0KDp06ICIiAgpmniijIyMSkObo6MjMjIynrhenz59sHHjRhw6dAjffPMNTp8+je7du1cIeP8UEhICW1tbzeTmxldUEcnN1sIEK9/wwYLAVjA1UiD80h30DY1ETArfQkRE9CSSBMDo6GgsXLgQDg4OUCgUUCgU8Pf3R0hICIKDg6u0zQULFkAQhKdOZ86cAYBKu3tEUXxqN9Dw4cPRr18/eHp6IjAwEHv37sXVq1exZ8+eJ64zd+5c5ObmaqbU1NQq7RsRSUsQBIx/yR3b3+mMhnYWuJ3zAMNWRmPN0USo1Tr/nBsRkeQk6QIuLy+HlZUVAMDe3h5paWlo3rw5GjVqhISEhCptMygoCCNGjHjqMo0bN8aFCxdw586dxz67e/cunJycnrk9FxcXNGrUCNeuXXviMkqlEkql8pm3SUS1q00DW/wZ7I+5v8dhz4V0fBF2GdGJ2fhmmBfqWprKXR4RkdaQJAB6enriwoUL8PDwgK+vLxYvXgxTU1OsXr0aHh4eVdqmvb097O3t/3U5Pz8/5Obm4tSpU+jYsSMA4OTJk8jNzX2u19NlZ2cjNTUVLi4uVaqXiLSDjZkJlo/0hp9HPSz88xIOXclE39BIhI70xouN7eQuj4hIK0jSBfzxxx9DrVYDAD7//HMkJycjICAAYWFhCA0NlaKJJ2rZsiV69+6NiRMn4sSJEzhx4gQmTpyI/v37V3gApEWLFtixYwcAoKCgALNnz0Z0dDSSkpIQERGBwMBA2NvbY/DgwTVaLxHVPEEQ8EanRtgxpTPc7S2RnluMEatP4PvD19klTESEGhwI+t69e6hbt26tDMdw7969xwaCXr58eYWBoAVBwPr16zF+/Hg8ePAAgwYNQkxMDHJycuDi4oJu3brhs88+e64HOziQJJH2Kygpw0c74vBHbBoA4OUXHLDkdS/YW/F2DiJDxfO3nrwJRC78AhHpBlEU8euZVMz/Ix4lZWo4WisROtIbnTzqyV0aEcmA5+9qBMBZs2Y987JLliypShNaj18gIt2SkJGPqZvO4XpmARQCML3HCwjq3hRGCg4cTWRIeP6uxkMgMTExz7QcR+QnIm3R3Nkau4Jewvw/4vHb2Vv49q+rOJWUjW+Ht4OjtZnc5RER1Rp2AVcDf4Mg0l3bz97Cxzsv4kFpOeytlFg6oh1eavrvIw8Qke7j+VviAFjZu4AFQUBgYKBUTWgVfoGIdNv1zHxM3RiDhDv5EARgWremCO7RDMZGkgyQQERaiudviQKgnO8ClhO/QES6r7i0HJ/ujsfmUw/f7NPR3Q6hI7zhbMsuYSJ9xfO3HrwLmIioOsxMjBAypC2WjmgHS1MjnLp5D31DIxGRkCl3aURENUZr3wVMRFSbBrarj93T/NHSxQb3ClUYv/40Fu27gtJytdylERFJTpIAWNm7gAFU613ARES1zcPBCjumdMaYTo0AACsibmDE6hNIy3kgc2VERNKSJAA+ehcwAM27gI8fP46FCxdW+V3ARERyMDMxwmeDPPH9qPawVhrjbPJ99A2NxMHLd+QujYhIMjr/LmAioprQr60L/gz2R5v6tsgpKsXbP5/B539egqqMXcJEpPv04l3AcuFTRET6r6SsHCFhV/BTVBIAoJ1bHSwb6Q03Owt5CyOiKuP5W6IrgH8niiJEUYSdnZ1ehz8iMgxKYyMsGNAaq8b4wMbMGLGpOegXGon98Rlyl0ZEVGWSBcAff/wRnp6eMDMzg5mZGTw9PbF27VqpNk9EJKterZ2xJzgA7dzqIK+4DJN+OYsFu+JRUqaf45wSkX6TJADOmzcP06dPR2BgILZt24Zt27YhMDAQM2fOxMcffyxFE0REsnOzs8Cvk/wwMcAdAPBTVBKGrohGcnahzJURET0fSe4BtLe3x7JlyzBy5MgK8zdv3oxp06YhKyuruk1oJd5DQGS4Dl6+g3e3nUdOUSmslcb472tt0a+ti9xlEdEz4PlbwnEAO3To8Nh8Hx8flJWVSdEEEZFW6dHSCWHBAejQqC7yS8owddM5fLwzDsWl7BImIu0nSQB84403sGLFisfmr169GqNHj5aiCSIireNaxxyb/9MJU7o2AQD870QKBv8QhcS7BTJXRkT0dMZVXXHWrFmaPwuCgLVr1yI8PBydOnUCAJw4cQKpqakYO3Zs9askItJSJkYKvN+7BXw96mHm1lhcTs9D4LJj+HJIGwxsV1/u8oiIKlXlewC7dev2bA0IAg4dOlSVJrQe7yEgor+7k1eM4M0xOHnzHgBgxItu+CSwNcxNjWSujIj+jufvGhwI2hDwC0RE/1RWrkbowWtYdvg6RBFo7mSN70d7o6mjtdylEdH/x/N3DQwETURkyIyNFJjVszl+ecsX9lZKJNzJR+Cy4/jt7C25SyMi0mAAJCKqAf7N7BE23R8vNa2HB6XlmL3tPN799TyKVBwZgYjkxwBIRFRDHK3NsOEtX8x69QUoBGD7uVsIXHYMCRn5cpdGRAaOAZCIqAYZKQQE92iGTRM7wclGiRt3CzFg+TFsOZUC3oJNRHKRJAA+ePAARUVFmp+Tk5Px3XffITw8XIrNExHpvE4e9RAWHICXX3BASZkaH/wehxlbY1FQwi5hIqp9kgTAgQMHYsOGDQCAnJwc+Pr64ptvvsHAgQMrHSCaiMgQ1bNS4qfxL+L93s1hpBDwR2waApcdQ3xartylEZGBkSQAnjt3DgEBAQCA3377DU5OTkhOTsaGDRsQGhoqRRNERHpBoRAwpWtTbP1PJ7jYmuFmViEG/xCFX04ks0uYiGqNJAGwqKgI1tYPx7gKDw/HkCFDoFAo0KlTJyQnJ0vRBBGRXunQ2A5hwQHo0cIRqjI15u28iKBNMcgrLpW7NCIyAJIEwKZNm2Lnzp1ITU3F/v370bNnTwBAZmamwQ6wSET0b+pammLtuA74qG9LGCsE7IlLR//QY7hwK0fu0ohIz0kSAOfPn4/Zs2ejcePG8PX1hZ+fH4CHVwO9vb2laIKISC8JgoCJL3vg18l+qF/HHCn3ivDaiiisP36TXcJEVGMkexVcRkYG0tPT4eXlBYXiYa48deoUbGxs0KJFCyma0Dp8lQwRSSm3qBTv/XYe4ZfuAAB6tXbC4te8YGthInNlRPqF528JxwF0dnaGt7e3JvwBQMeOHWsl/H3xxRfo3LkzLCwsUKdOnWdaRxRFLFiwAK6urjA3N0fXrl0RHx9fs4USET2FrYUJVo3xwSeBrWBiJGB//B30DY1ETMp9uUsjIj2jF+MAqlQqDBs2DO+8884zr7N48WIsWbIEy5cvx+nTp+Hs7IxXX30V+fkcoZ+I5CMIAt58yR3b3+mMhnYWuJ3zAMNWRmPN0UR2CRORZCTpAu7ZsyeGDBmCyZMnIycnBy1atICJiQmysrKwZMmS5wpm1fHTTz9hxowZyMnJeepyoijC1dUVM2bMwJw5cwAAJSUlcHJywqJFizBp0qRnao+XkImoJuUVl2Lu9jjsiUsHAPRo4Yivh3mhrqWpzJUR6Taevw10HMCbN28iIyND87QyACiVSnTp0gVRUVFPXK+kpAR5eXkVJiKimmJjZoLlo7zx2SBPmBorcPBKJvqFRuJM0j25SyMiHWeQ4wBmZGQAAJycnCrMd3Jy0nxWmZCQENja2momNze3Gq2TiEgQBIzp1Ag7pnSGu70l0nKLMXz1CfwQcR1qNbuEiahqtHYcwAULFkAQhKdOZ86cqVbdgiBU+FkUxcfm/d3cuXORm5urmVJTU6vVPhHRs2rtaovd0/wxsJ0rytUiFu9LwJs/nUZ2QYncpRGRDjKWYiPz58/HqFGjMHPmTHTv3l2ScQCDgoIwYsSIpy7TuHHjKm3b2dkZwMMrgS4uLpr5mZmZj10V/DulUgmlUlmlNomIqstKaYzvhreDn0c9fLIrHkeu3kXf0EgsHeGNTh715C6PiHSIJAFw6NCh8Pf314wD+EiPHj0wePDgKm3T3t4e9vb2UpT3GHd3dzg7O+PAgQOagKpSqXDkyBEsWrSoRtokIpKCIAgY0bEh2jWsg6kbz+HG3UKMWnMCM155AVO7NYWR4sm9GEREj0g6DqBSqUR4eDh27dqFXbt2ISMjA1evXpWqiSdKSUlBbGwsUlJSUF5ejtjYWMTGxqKgoECzTIsWLbBjxw4AD/8DnTFjBr788kvs2LEDFy9exPjx42FhYYFRo0bVeL1ERNXVwtkGu6f547X2DaAWgSUHrmLsupPIzC+WuzQi0gGSXAFMTEzE4MGDERcXB0EQNGNVPbqfrry8XIpmnmj+/Pn4+eefNT8/uqp3+PBhdO3aFQCQkJCA3NxczTLvv/8+Hjx4gClTpuD+/fvw9fVFeHi45mEWIiJtZ2FqjG9e94Jfk3qYt/Mijl/PRt+lx7B0RDu81LRmelCISD9IMg5gYGAgjIyMsGbNGnh4eODUqVPIzs7Gu+++i6+//lozRIy+4ThCRKQtrt3JR9CmGCTcyYcgANO6N8P0Hs3YJUxUCZ6/JeoCjo6OxsKFC+Hg4ACFQgGFQgF/f3+EhIQgODhYiiaIiOgpmjlZY+fUlzDiRTeIIhB68BpGrTmBO3nsEiaix0kSAMvLy2FlZQXg4cMbaWlpAIBGjRohISFBiiaIiOhfmJsa4b+vtcXSEe1gaWqEkzfvoe/SSBy5elfu0ohIy0gSAD09PXHhwgUAgK+vLxYvXozjx49j4cKF8PDwkKIJIiJ6RgPb1cfuaf5o6WKD7EIVxq07hUX7rqCsXC13aUSkJSQJgB9//DHU6of/sXz++edITk5GQEAAwsLCtPJVcERE+s7DwQo7pnTGG50aAgBWRNzAiNUnkJbzQObKiEgbSPIQSGXu3buHunXrPvXNGrqON5ESkS7480IaPtgeh4KSMtSxMMGS173QvcWTB70n0nc8f0s4DuA/2dnZ6XX4IyLSFf3bumJPsD/a1LdFTlEp3vrpDL7Ycwml7BImMliSXQEsLi7GhQsXkJmZqekOfmTAgAFSNKF1+BsEEemSkrJyhIRdwU9RSQCAdm51sGykN9zsLOQtjKiW8fwtUQDct28fxo4di6ysrMcbEIQaHwhaLvwCEZEu2ncxA+//dh55xWWwMTPGV8O80Ku1s9xlEdUanr8l6gIOCgrCsGHDkJ6eDrVaXWHS1/BHRKSrens6Y09wALzc6iCvuAyTfjmLT3fHo6SM/18TGQpJAmBmZiZmzZoFJyfeVExEpAvc7CywbZIfJga4AwDWH0/C0BXRSMkukrkyIqoNkgTAoUOHIiIiQopNERFRLTE1VuCjfq2wdmwH1LEwQdztXPQLjURYXLrcpRFRDZPkHsCioiIMGzYMDg4OaNOmDUxMTCp8rq+vg+M9BESkL9JyHmDa5hicTb4PABjTqRE+6tcSZiZGMldGJD2evyUKgGvXrsXkyZNhbm6OevXqVRj+RRAEJCYmVrcJrcQvEBHpk9JyNZYcuIoVETcAAK1cbPD96PZwt7eUuTIiafH8LVEAdHZ2RnBwMD744AMoFDU2tKDW4ReIiPRRREImZv16HvcKVbA0NcKXQ9pgYLv6cpdFJBmevyW6B1ClUmH48OEGFf6IiPRV1+aOCAsOQEd3OxSqyjF9Syw+2H4BxaV8SphIX0iS2MaNG4etW7dKsSkiItICzrZm2DTBF9O6N4UgAFtOp2Lg8uO4npkvd2lEJAFjKTZSXl6OxYsXY//+/Wjbtu1jD4EsWbJEimaIiKgWGRsp8G7P5vB1r4cZW2ORcCcfgcuO4/NBnnjNp4Hc5RFRNUhyD2C3bt2e3IAg4NChQ9VtQivxHgIiMhSZ+cWYsSUWUTeyAQBDfRpg4cDWsDCV5DoCUa3i+VvCdwEbIn6BiMiQlKtFLD90HUsPXoVaBJo6WuH7Ue3R3Nla7tKIngvP3xLdA0hERPrPSCFg+ivNsHFCJzhaK3E9swADvz+GradTwGsJRLqFAZCIiJ6LX5N6CJsegIBm9iguVWPO9jjM3BqLgpIyuUsjomfEAEhERM/N3kqJn9/siPd7N4eRQsDO2DQMWHYMl9Ly5C6NiJ4BAyAREVWJQiFgStem2PKfTnCxNUNiViEG/XAc/zuRzC5hIi3HAEhERNXyYmM77AkOQPcWjlCVqfHxzosI2hyDvOJSuUsjoieQLABGRkbijTfegJ+fH27fvg0A+OWXX3Ds2DGpmiAiIi1lZ2mKtWM74MO+LWCsELDnQjoClx1D3K1cuUsjokpIEgC3b9+OXr16wdzcHDExMSgpKQEA5Ofn48svv5SiCSIi0nIKhYD/vNwEv072Q/065kjOLsJrK6Lw0/Gb7BIm0jKSBMDPP/8cK1euxJo1ayq8BaRz5844d+6cFE0QEZGOaN+wLsKCA/BqKyeoytVYsPsSJv/vLHKL2CVMpC0kCYAJCQl4+eWXH5tvY2ODnJwcKZogIiIdYmthgtVjfDC/fyuYGAnYH38H/ZZFIjY1R+7SiAgSBUAXFxdcv379sfnHjh2Dh4eHFE0QEZGOEQQBb/m747fJneFmZ45b9x9g6IoorI1MZJcwkcwkCYCTJk3C9OnTcfLkSQiCgLS0NGzcuBGzZ8/GlClTpGiCiIh0lJdbHewJDkDfNs4oU4v4fM9lTNxwBjlFKrlLIzJYkr0L+KOPPsK3336L4uJiAIBSqcTs2bPx2WefSbF5rcR3CRIRPTtRFPG/kyn47M9LUJWp4WprhmWjvOHTyE7u0sjA8PwtYQAEgKKiIly6dAlqtRqtWrWClZWVVJt+qi+++AJ79uxBbGwsTE1Nn+m+w/Hjx+Pnn3+uMM/X1xcnTpx45nb5BSIien7xabkI2hSDm1mFMFIImN2zOSa97AGFQpC7NDIQPH9L1AUcEhKCdevWwcLCAh06dEDHjh1hZWWFdevWYdGiRVI08VQqlQrDhg3DO++881zr9e7dG+np6ZopLCyshiokIqJHWrvaYvc0fwzwckW5WsSifVfw5k+nkV1QIndpRAZDkgC4atUqtGjR4rH5rVu3xsqVK6Vo4qk+/fRTzJw5E23atHmu9ZRKJZydnTWTnR27IYiIaoOV0hhLR7RDyJA2UBorcOTqXfQNjcTJxGy5SyMyCJIEwIyMDLi4uDw238HBAenp6VI0USMiIiLg6OiIF154ARMnTkRmZuZTly8pKUFeXl6FiYiIqkYQBIzs2BB/BL2EJg6WuJNXgpFrTmDZwWsoV/MpYaKaJEkAdHNzw/Hjxx+bf/z4cbi6ukrRhOT69OmDjRs34tChQ/jmm29w+vRpdO/eXfMWk8qEhITA1tZWM7m5udVixURE+qmFsw12BfljSPv6UIvANweuYty6U7ibzy5hopoiSQCcMGECZsyYgfXr1yM5ORnJyclYt24dZs6ciYkTJ1ZpmwsWLIAgCE+dzpw5U+Wahw8fjn79+sHT0xOBgYHYu3cvrl69ij179jxxnblz5yI3N1czpaamVrl9IiL6P5ZKYyx5vR2+GtoW5iZGOHY9C32WRiLqepbcpRHpJWMpNvL+++/j3r17mDJlClSqh+M6mZmZYc6cOZg7d26VthkUFIQRI0Y8dZnGjRtXaduVcXFxQaNGjXDt2rUnLqNUKqFUKiVrk4iIKhrWwQ3t3Opg6qZzuHqnAKN/PIlp3Ztheo9mMOJTwkSSkSQACoKARYsWYd68ebh8+TLMzc3RrFmzaoUle3t72NvbS1HeM8nOzkZqamql9zISEVHtaeZkjT+m+mPBrnhsPZOK0IPXcOpmNpaO8IaTjZnc5RHpBUm6gB+xsrLCiy++CE9Pz1q9UpaSkoLY2FikpKSgvLwcsbGxiI2NRUFBgWaZFi1aYMeOHQCAgoICzJ49G9HR0UhKSkJERAQCAwNhb2+PwYMH11rdRERUOXNTIywa2hbfDW8HC1MjnEi8h75LI3H06l25SyPSC5JcAXzk0qVLSElJ0XQDPzJgwAApm3nM/PnzKwzq7O3tDQA4fPgwunbtCgBISEhAbm4uAMDIyAhxcXHYsGEDcnJy4OLigm7dumHr1q2wtrau0VqJiOjZDfKuj7YNbDF1Uwwup+dh7LpTmNK1CWa9+gKMjSS9hkFkUCR5E0hiYiIGDx6MuLg4CIKgecm3IDy8X6O8vLy6TWgljiRORFQ7ikvL8dmfl7DxZAoA4MXGdRE60hsutuYyV0a6iOdvibqAp0+fDnd3d9y5cwcWFhaIj4/H0aNH0aFDB0REREjRBBERGTAzEyN8MbgNlo/yhpXSGKeT7qPv0kgcunJH7tKIdJIkATA6OhoLFy6Eg4MDFAoFFAoF/P39ERISguDgYCmaICIiQv+2rvhzmj8869vgflEp3vrpDL4Mu4zScrXcpRHpFEkCYHl5OaysrAA8fHo3LS0NANCoUSMkJCRI0QQREREAoLG9Jba/0xnjOzcGAKw+mojXV0Xj1v0ieQsj0iGSBEBPT09cuHABAODr64vFixfj+PHjWLhwITw8PKRogoiISENpbIQFA1pj5RvtYW1mjJiUHPRdGonw+Ay5SyPSCZIEwI8//hhq9cPL759//jmSk5MREBCAsLAwhIaGStEEERHRY3p7uiAsOABeDWyRV1yG//xyFp/ujoeqjF3CRE9T5aeAL1y4AE9PTygUlWfIe/fuoW7dupongfURnyIiItIOqjI1Fu+7grXHbgIA2jawxfKR7dGwnoXMlZE24vm7GlcAvb29kZX18B2NHh4eyM7OrvC5nZ2dXoc/IiLSHqbGCnzcvxXWju0AW3MTXLiVi36hkQiLS5e7NCKtVOUAWKdOHdy8+fA3raSkJE0XMBERkVxeaeWEsOkBaN+wDvJLyjBl4znM23kRxaX6OR4tUVVV+U0gr732Grp06QIXFxcIgoAOHTrAyMio0mUTExOrXCAREdHzqF/HHFsn+eGb8KtYeeQGfjmRjHMp97F8VHu421vKXR6RVqjWm0D27duH69evIzg4GAsXLnzia9SmT59e5QK1Ge8hICLSbocTMvHur+dxr1AFS1MjfDmkDQa2qy93WSQznr8leBVcaWkpmjVrht27d6NNmzZS1aUT+AUiItJ+GbnFCN4cg1NJ9wAAIzu64ZPA1jAzqbzXivQfz98SDANjYmKCwsJCmJmZSVEPERGRpJxtzbBpoi+mdW8KQQA2n0rFoO+P43pmgdylEclGknEAx44dix9//FGKTREREUnO2EiBd3s2x4a3OsLeyhRXMvIRuOwYtp+9JXdpRLKo8kMgf6dSqbB27VocOHAAHTp0gKVlxZtslyxZIkUzRERE1RLQzAFhwQGYviUW0YnZeHfbeUQnZmPhwNawMJXklEikE6p9DyAAdOvW7ckNCAIOHTpU3Sa0Eu8hICLSTeVqEcsPXcfSg1ehFoFmjlb4fnR7vOBU+cOMpF94/pYoABoqfoGIiHRb9I1sBG+Jwd38EpiZKLBwgCeGdWjAFxnoOZ6/JboHkIiISBf5NamHvdMDENDMHsWlary//QJmbo1FYUmZ3KUR1ShJrgAuXLjwqZ/Pnz+/uk1oJf4GQUSkH9RqESuO3MCSA1dRrhbhYW+J5aPao5Ur/2/XRzx/SxQAvb29K/xcWlqKmzdvwtjYGE2aNMG5c+eq24RW4heIiEi/nE66h2mbYpCRVwxTYwU+CWyFUR0bsktYz/D8XYP3AObl5WH8+PEYPHgwxowZUxNNyI5fICIi/XOvUIV3f43F4YS7AID+bV0QMqQNrM1MZK6MpMLzdw0/BHLx4kX0798fSUlJNdWErPgFIiLST2q1iLXHErF4XwLK1CIa1bPA96Paw7O+rdylkQR4/q7hh0BycnKQm5tbk00QERFJTqEQ8J+Xm2DrJD/Ur2OO5OwiDPkhCj9HJYGDZ5A+kGTUy9DQ0Ao/i6KI9PR0/PLLL+jdu7cUTRAREdU6n0Z1sSfYH7O3XcBfl+/gk13xiL6RjUVD28LWnF3CpLsk6QJ2d3ev8LNCoYCDgwO6d++OuXPnwtpaPwfW5CVkIiLDIIoi1h9PQsjeyygtF9GgrjmWj2qPdm515C6NqoDnbw4EXS38AhERGZbzqTkI2nwOqfcewMRIwJzeLfC2vzufEtYxPH9LdA/ggwcPUFRUpPk5OTkZ3333HcLDw6XYPBERkVbwcquDP6cFoI+nM0rLRXy+5zImbjiDnCKV3KURPRdJAuDAgQOxYcMGAA8f/OjYsSO++eYbDBw4ECtWrJCiCSIiIq1ga26CH0a3x8KBrWFqpMBflzPRd2kkzibfk7s0omcmSQA8d+4cAgICAAC//fYbnJ2dkZycjA0bNjz2gAgREZGuEwQBY/0a4/cpndG4ngXScovx+qoTWHnkBtRq3llF2k+SAFhUVKR50CM8PBxDhgyBQqFAp06dkJycLEUTREREWsezvi12T/NHoJcrytUi/rv3Ct76+TSyC0rkLo3oqSQJgE2bNsXOnTuRmpqK/fv3o2fPngCAzMxMg725koiIDIO1mQlCR7RDyJA2UBorEJFwF31DI3EyMVvu0oieSJIAOH/+fMyePRuNGzeGr68v/Pz8ADy8GvjP9wQTERHpG0EQMLJjQ+yc+hI8HCxxJ68EI9ecwPJD19glTFpJkgA4dOhQpKSk4MyZM9i3b59mfo8ePfDtt99K0cQTJSUl4e2334a7uzvMzc3RpEkTfPLJJ1Cpnv5EliiKWLBgAVxdXWFubo6uXbsiPj6+RmslIiL91tLFBruD/DHEuz7UIvB1+FWMW38Kd/PZJUzaRbJXwTk7O8Pb2xsKxf9tsmPHjmjRooVUTVTqypUrUKvVWLVqFeLj4/Htt99i5cqV+PDDD5+63uLFi7FkyRIsX74cp0+fhrOzM1599VXk5+fXaL1ERKTfLJXG+OZ1Lywe2hZmJgpEXstC39BIRF3Pkrs0Ig29HAj6q6++wooVK5CYmFjp56IowtXVFTNmzMCcOXMAACUlJXBycsKiRYswadKkZ2qHA0kSEdHTXLuTjykbz+FaZgEEAQju3gzBPZrBSMGBo+XE87eEVwC1SW5uLuzs7J74+c2bN5GRkaF5WAUAlEolunTpgqioqCeuV1JSgry8vAoTERHRkzRzssauIH+83qEBRBFYevAaRq89gcy8YrlLIwOndwHwxo0bWLZsGSZPnvzEZTIyMgAATk5OFeY7OTlpPqtMSEgIbG1tNZObm5s0RRMRkd4yNzXC4qFe+Ha4FyxMjXAi8R76LI3E0at35S6NDJjWBsAFCxZAEISnTmfOnKmwTlpaGnr37o1hw4ZhwoQJ/9rGP9/dKIriU9/nOHfuXOTm5mqm1NTUqu0cEREZnMHeDbAryB8tnK2RXajCuPWn8NX+KygrV8tdGhkgY7kLeJKgoCCMGDHiqcs0btxY8+e0tDR069YNfn5+WL169VPXc3Z2BvDwSqCLi4tmfmZm5mNXBf9OqVRCqVQ+Q/VERESPa+pohZ1TX8LCPy9h08kUfH/4Bk7fvI+lI9vBxdZc7vLIgGhtALS3t4e9vf0zLXv79m1069YNPj4+WL9+fYUnkSvj7u4OZ2dnHDhwQDNOoUqlwpEjR7Bo0aJq105ERPQkZiZG+HJwG/h51MPc3+NwKuke+i6NxJLX26FbC0e5yyMDobVdwM8qLS0NXbt2hZubG77++mvcvXsXGRkZj93L16JFC+zYsQPAw67fGTNm4Msvv8SOHTtw8eJFjB8/HhYWFhg1apQcu0FERAYm0MsVf07zh2d9G9wvKsWbP51GSNhllLJLmGqB1l4BfFbh4eG4fv06rl+/jgYNGlT47O8j3CQkJCA3N1fz8/vvv48HDx5gypQpuH//Pnx9fREeHq55pzEREVFNa2xvie3vdMaXey7j5+hkrDqaiFNJ97BspDca1LWQuzzSY3o5DmBt4ThCREQklb1x6Xh/+wXkF5fB1twEXw1ti56tneUuSy/x/K0HXcBERET6oE8bF4QFB8CrgS1yH5TiP7+cxcLdl6AqY5cwSY8BkIiISEu42Vlg2+TOeNvfHQCw7vhNDFsZhdR7RTJXRvqGAZCIiEiLmBorMK9/K6wZ2wG25iY4fysXfUMjsTcuXe7SSI8wABIREWmhV1s5YU+wP9o3rIP84jK8s/Ec5v9xEcWl5XKXRnqAAZCIiEhLNahrga2T/DCpiwcAYEN0Ml5bEYWkrEKZKyNdxwBIRESkxUyMFJjbpyXWj38RdS1MEJ+Wh/7LjmHX+TS5SyMdxgBIRESkA7q1cETY9AB0bGyHgpIyBG+Owdzf49glTFXCAEhERKQjXGzNsWmiL4K6NYUgAJtPpWDQ98dxPbNA7tJIxzAAEhER6RBjIwVm92qODW91hL2VKa5k5GPA8mP4/dwtuUsjHcIASEREpIMCmjkgLDgAfh71UKQqx6xfz+O9bedRpCqTuzTSAQyAREREOsrRxgz/m+CLGa80gyAA287ewsDlx3H1Tr7cpZGWYwAkIiLSYUYKATNeeQEbJ/jCwVqJa5kFGLD8GH49kwpRFOUuj7QUAyAREZEe6NzEHmHBAQhoZo/iUjXe/+0CZv16HoUl7BKmxzEAEhER6QkHayV+frMj3uvVHAoB2BFzG4HLj+Fyep7cpZGWYQAkIiLSIwqFgKndmmLLf/zgbGOGxLuFGPj9cWw6mcIuYdJgACQiItJDHd3tEDY9AF2bO0BVpsaHO+IQvCUW+cWlcpdGWoABkIiISE/ZWZpi3bgXMbdPCxgpBOw+n4bAZcdw8Xau3KWRzBgAiYiI9JhCIWBSlyb4dZIf6tcxR1J2EYb8EIUN0UnsEjZgDIBEREQGwKdRXewJ9scrLZ2gKldj/h/xmLLxHHIfsEvYEDEAEhERGYg6FqZYM9YH8/q3gomRgL0XM9B/WSTOp+bIXRrVMgZAIiIiAyIIAt72d8dvkzujQV1zpN57gKEro/DjsZvsEjYgDIBEREQGyMutDvYEB6B3a2eUlov47M9LmLjhLHKKVHKXRrWAAZCIiMhA2ZqbYMUb7bFwYGuYGinw1+U76Bd6DGeT78tdGtUwBkAiIiIDJggCxvo1xu9TOqNRPQvcznmA4auiserIDajV7BLWVwyAREREBM/6tvhzmj/6t3VBmVpEyN4rePvn07hXyC5hfcQASERERAAAazMTLBvpjS8Ht4GpsQKHE+6i79JInLp5T+7SSGIMgERERKQhCAJG+TbEH1NfgoeDJTLyijFyzQl8f/g6u4T1CAMgERERPaaliw12B/ljsHd9lKtFfLU/AePWn8Ld/BK5SyMJMAASERFRpSyVxljyuhcWD20LMxMFIq9loW9oJKJuZMldGlUTAyARERE9kSAIeL2DG3YF+aOZoxXu5pfgjbUn8d1fV1HOLmGdxQBIRERE/+oFJ2v8EfQShvk0gFoEvvvrGt5YexKZecVyl0ZVoPMBMCkpCW+//Tbc3d1hbm6OJk2a4JNPPoFK9fTH1sePHw9BECpMnTp1qqWqiYiIdI+FqTG+GuaFJa97wcLUCNGJ2egbGonIa3flLo2ek7HcBVTXlStXoFarsWrVKjRt2hQXL17ExIkTUVhYiK+//vqp6/bu3Rvr16/X/GxqalrT5RIREem8Ie0boG2DOgjadA5XMvIxdt0pTO3aFDNeaQZjI52/tmQQBFEP3/z81VdfYcWKFUhMTHziMuPHj0dOTg527txZ5Xby8vJga2uL3Nxc2NjYVHk7REREuqi4tByf7r6EzadSAAAdG9th6ch2cLE1l7myp+P5Ww+6gCuTm5sLOzu7f10uIiICjo6OeOGFFzBx4kRkZmY+dfmSkhLk5eVVmIiIiAyVmYkRQoa0QehIb1iaGuFU0j30XRqJwwlPP5+S/PQuAN64cQPLli3D5MmTn7pcnz59sHHjRhw6dAjffPMNTp8+je7du6Ok5MnjG4WEhMDW1lYzubm5SV0+ERGRzhng5Yo/gwPQ2tUG94tK8eb60wjZexml5Wq5S6Mn0Nou4AULFuDTTz996jKnT59Ghw4dND+npaWhS5cu6NKlC9auXftc7aWnp6NRo0bYsmULhgwZUukyJSUlFQJiXl4e3NzcDPoSMhER0SPFpeX4MuwyNkQnAwDaN6yDZaPao34d7eoSZhewFgfArKwsZGU9faDJxo0bw8zMDMDD8NetWzf4+vrip59+gkLx/Bc3mzVrhgkTJmDOnDnPtDy/QERERI/bG5eO97dfQH5xGWzNTfD1MC+82spJ7rI0eP7W4qeA7e3tYW9v/0zL3r59G926dYOPjw/Wr19fpfCXnZ2N1NRUuLi4PPe6RERE9H/6tHFBa1dbTNt8Dudv5WLihjN4298dc3q3gKmx3t19ppN0/iikpaWha9eucHNzw9dff427d+8iIyMDGRkZFZZr0aIFduzYAQAoKCjA7NmzER0djaSkJERERCAwMBD29vYYPHiwHLtBRESkVxrWs8C2yZ3x1kvuAIAfj93EsJVRSL1XJHNlBGjxFcBnFR4ejuvXr+P69eto0KBBhc/+3rudkJCA3NxcAICRkRHi4uKwYcMG5OTkwMXFBd26dcPWrVthbW1dq/UTERHpK1NjBeYHtkInDzvM3nYe52/lom9oJL4a2ha9PdnjJietvQdQF/AeAiIiomdz634Rpm2OQUxKDgBgnF8jfNivJZTGRrVeC8/fetAFTERERNqvQV0L/DrJD5Ne9gAA/BydjNdWRCEpq1DmygwTAyARERHVChMjBeb2bYl14zugroUJLt7OQ/9lx7D7fJrcpRkcBkAiIiKqVd1bOCFsegBebFwXBSVlmLY5Bh/uiENxabncpRkMBkAiIiKqdS625tg8sROmdmsCQQA2nUzBoO+P48bdArlLMwgMgERERCQLYyMF3uvVAj+/2RH1LE1xJSMfgcuOYUfMLblL03sMgERERCSrl19wwN7pAejkYYciVTlmbj2P9387jwcqdgnXFAZAIiIikp2jjRk2TuiE6T2aQRCAX8/cwoDlx3DtTr7cpeklBkAiIiLSCkYKATNffQEb3/aFg7US1zILsPzwdbnL0ksMgERERKRVOje1R1hwAIb6NMDCgZ5yl6OXdP5VcERERKR/HKyV+HqYl9xl6C1eASQiIiIyMAyARERERAaGAZCIiIjIwDAAEhERERkYBkAiIiIiA8MASERERGRgGACJiIiIDAwDIBEREZGBYQAkIiIiMjAMgEREREQGhgGQiIiIyMAwABIREREZGAZAIiIiIgNjLHcBukwURQBAXl6ezJUQERHRs3p03n50HjdEDIDVkJ+fDwBwc3OTuRIiIiJ6Xvn5+bC1tZW7DFkIoiHH32pSq9VIS0uDtbU1BEGQdNt5eXlwc3NDamoqbGxsJN22NuD+6T5930fun+7T933k/lWdKIrIz8+Hq6srFArDvBuOVwCrQaFQoEGDBjXaho2NjV7+w36E+6f79H0fuX+6T9/3kftXNYZ65e8Rw4y9RERERAaMAZCIiIjIwDAAaimlUolPPvkESqVS7lJqBPdP9+n7PnL/dJ++7yP3j6qDD4EQERERGRheASQiIiIyMAyARERERAaGAZCIiIjIwDAAEhERERkYBkAt9MMPP8Dd3R1mZmbw8fFBZGSk3CU9ZsGCBRAEocLk7Oys+VwURSxYsACurq4wNzdH165dER8fX2EbJSUlmDZtGuzt7WFpaYkBAwbg1q1bFZa5f/8+xowZA1tbW9ja2mLMmDHIycmpkX06evQoAgMD4erqCkEQsHPnzgqf1+Y+paSkIDAwEJaWlrC3t0dwcDBUKlWN7t/48eMfO6adOnXSmf0LCQnBiy++CGtrazg6OmLQoEFISEiosIwuH8Nn2T9dP4YrVqxA27ZtNQP/+vn5Ye/evZrPdfn4Pcv+6frx+6eQkBAIgoAZM2Zo5un6MdQrImmVLVu2iCYmJuKaNWvES5cuidOnTxctLS3F5ORkuUur4JNPPhFbt24tpqena6bMzEzN5//9739Fa2trcfv27WJcXJw4fPhw0cXFRczLy9MsM3nyZLF+/frigQMHxHPnzondunUTvby8xLKyMs0yvXv3Fj09PcWoqCgxKipK9PT0FPv3718j+xQWFiZ+9NFH4vbt20UA4o4dOyp8Xlv7VFZWJnp6eordunUTz507Jx44cEB0dXUVg4KCanT/xo0bJ/bu3bvCMc3Ozq6wjDbvX69evcT169eLFy9eFGNjY8V+/fqJDRs2FAsKCjTL6PIxfJb90/VjuGvXLnHPnj1iQkKCmJCQIH744YeiiYmJePHiRVEUdfv4Pcv+6frx+7tTp06JjRs3Ftu2bStOnz5dM1/Xj6E+YQDUMh07dhQnT55cYV6LFi3EDz74QKaKKvfJJ5+IXl5elX6mVqtFZ2dn8b///a9mXnFxsWhrayuuXLlSFEVRzMnJEU1MTMQtW7Zolrl9+7aoUCjEffv2iaIoipcuXRIBiCdOnNAsEx0dLQIQr1y5UgN79X/+GZBqc5/CwsJEhUIh3r59W7PM5s2bRaVSKebm5tbI/oniw5PPwIEDn7iOLu2fKIpiZmamCEA8cuSIKIr6dwz/uX+iqH/HUBRFsW7duuLatWv17vj9c/9EUX+OX35+vtisWTPxwIEDYpcuXTQBUF+Poa5iF7AWUalUOHv2LHr27Flhfs+ePREVFSVTVU927do1uLq6wt3dHSNGjEBiYiIA4ObNm8jIyKiwH0qlEl26dNHsx9mzZ1FaWlphGVdXV3h6emqWiY6Ohq2tLXx9fTXLdOrUCba2trX+91Gb+xQdHQ1PT0+4urpqlunVqxdKSkpw9uzZGt3PiIgIODo64oUXXsDEiRORmZmp+UzX9i83NxcAYGdnB0D/juE/9+8RfTmG5eXl2LJlCwoLC+Hn56d3x++f+/eIPhy/qVOnol+/fnjllVcqzNe3Y6jrjOUugP5PVlYWysvL4eTkVGG+k5MTMjIyZKqqcr6+vtiwYQNeeOEF3LlzB59//jk6d+6M+Ph4Ta2V7UdycjIAICMjA6ampqhbt+5jyzxaPyMjA46Ojo+17ejoWOt/H7W5TxkZGY+1U7duXZiamtbofvfp0wfDhg1Do0aNcPPmTcybNw/du3fH2bNnoVQqdWr/RFHErFmz4O/vD09PT027j+r9Z/26dgwr2z9AP45hXFwc/Pz8UFxcDCsrK+zYsQOtWrXSnNh1/fg9af8A/Th+W7Zswblz53D69OnHPtOnf4P6gAFQCwmCUOFnURQfmye3Pn36aP7cpk0b+Pn5oUmTJvj55581Ny1XZT/+uUxly8v591Fb+yTHfg8fPlzzZ09PT3To0AGNGjXCnj17MGTIkCeup437FxQUhAsXLuDYsWOPfaYPx/BJ+6cPx7B58+aIjY1FTk4Otm/fjnHjxuHIkSNPbFfXjt+T9q9Vq1Y6f/xSU1Mxffp0hIeHw8zM7InL6fox1BfsAtYi9vb2MDIyeuy3k8zMzMd+k9E2lpaWaNOmDa5du6Z5Gvhp++Hs7AyVSoX79+8/dZk7d+481tbdu3dr/e+jNvfJ2dn5sXbu37+P0tLSWt1vFxcXNGrUCNeuXdPUpQv7N23aNOzatQuHDx9GgwYNNPP15Rg+af8qo4vH0NTUFE2bNkWHDh0QEhICLy8vLF26VG+O35P2rzK6dvzOnj2LzMxM+Pj4wNjYGMbGxjhy5AhCQ0NhbGys2bauH0N9wQCoRUxNTeHj44MDBw5UmH/gwAF07txZpqqeTUlJCS5fvgwXFxe4u7vD2dm5wn6oVCocOXJEsx8+Pj4wMTGpsEx6ejouXryoWcbPzw+5ubk4deqUZpmTJ08iNze31v8+anOf/Pz8cPHiRaSnp2uWCQ8Ph1KphI+PT43u599lZ2cjNTUVLi4uALR//0RRRFBQEH7//XccOnQI7u7uFT7X9WP4b/tXGV07hpURRRElJSU6f/z+bf8qo2vHr0ePHoiLi0NsbKxm6tChA0aPHo3Y2Fh4eHjo5THUWTX8kAk9p0fDwPz444/ipUuXxBkzZoiWlpZiUlKS3KVV8O6774oRERFiYmKieOLECbF///6itbW1ps7//ve/oq2trfj777+LcXFx4siRIyt91L9BgwbiX3/9JZ47d07s3r17pY/6t23bVoyOjhajo6PFNm3a1NgwMPn5+WJMTIwYExMjAhCXLFkixsTEaIbgqa19ejR8QY8ePcRz586Jf/31l9igQYNqD1/wtP3Lz88X3333XTEqKkq8efOmePjwYdHPz0+sX7++zuzfO++8I9ra2ooREREVhtEoKirSLKPLx/Df9k8fjuHcuXPFo0ePijdv3hQvXLggfvjhh6JCoRDDw8NFUdTt4/dv+6cPx68yf38KWBR1/xjqEwZALfT999+LjRo1Ek1NTcX27dtXGOZBWzwau8nExER0dXUVhwwZIsbHx2s+V6vV4ieffCI6OzuLSqVSfPnll8W4uLgK23jw4IEYFBQk2tnZiebm5mL//v3FlJSUCstkZ2eLo0ePFq2trUVra2tx9OjR4v3792tknw4fPiwCeGwaN25cre9TcnKy2K9fP9Hc3Fy0s7MTg4KCxOLi4hrbv6KiIrFnz56ig4ODaGJiIjZs2FAcN27cY7Vr8/5Vtm8AxPXr12uW0eVj+G/7pw/H8K233tL83+fg4CD26NFDE/5EUbeP37/tnz4cv8r8MwDq+jHUJ4IoimLtXW8kIiIiIrnxHkAiIiIiA8MASERERGRgGACJiIiIDAwDIBEREZGBYQAkIiIiMjAMgEREREQGhgGQiIiIyMAwABIREREZGAZAIiIiIgPDAEhENa5r166YMWPGY3+mx3Xt2hWCIEAQBMTGxlZrW+PHj9dsa+fOnZLUR0T6gQGQiGrV77//js8+++yZljXUsDhx4kSkp6fD09OzWttZunQp0tPTJaqKiPSJsdwFEJFhsbOzk7sErWdhYQFnZ+dqb8fW1ha2trYSVERE+oZXAIlIUoWFhRg7diysrKzg4uKCb775psLn/7yq99tvv6FNmzYwNzdHvXr18Morr6CwsBDjx4/HkSNHsHTpUk03ZlJSEgBg37598Pf3R506dVCvXj30798fN27cqNBGcHAw3n//fdjZ2cHZ2RkLFiyoUIdarcaiRYvQtGlTKJVKNGzYEF988YXmc1EUsXjxYnh4eMDc3BxeXl747bffnuvvYvPmzTAzM8Pt27c18yZMmIC2bdsiNzf3mbfTtWtXTJs2DTNmzEDdunXh5OSE1atXo7CwEG+++Sasra3RpEkT7N2797nqIyLDxQBIRJJ67733cPjwYezYsQPh4eGIiIjA2bNnK102PT0dI0eOxFtvvYXLly8jIiICQ4YMgSiKWLp0Kfz8/DTdoenp6XBzcwPwMGTOmjULp0+fxsGDB6FQKDB48GCo1WrNtn/++WdYWlri5MmTWLx4MRYuXIgDBw5oPp87dy4WLVqEefPm4dKlS9i0aROcnJw0n3/88cdYv349VqxYgfj4eMycORNvvPEGjhw58sx/FyNGjEDz5s0REhICAPj000+xf/9+7N2797mvzP3888+wt7fHqVOnMG3aNLzzzjsYNmwYOnfujHPnzqFXr14YM2YMioqKnmu7RGSgRCIiieTn54umpqbili1bNPOys7NFc3Nzcfr06aIoimKXLl00fz579qwIQExKSqp0e39f9mkyMzNFAGJcXJxmPX9//wrLvPjii+KcOXNEURTFvLw8UalUimvWrKl0ewUFBaKZmZkYFRVVYf7bb78tjhw58l/r+bvdu3eLSqVS/OKLL8S6deuKFy9efOryle3zP/enrKxMtLS0FMeMGaOZl56eLgIQo6OjH9smAHHHjh3PVTcR6TfeA0hEkrlx4wZUKhX8/Pw08+zs7NC8efNKl/fy8kKPHj3Qpk0b9OrVCz179sTQoUNRt27df21n3rx5OHHiBLKysjRX/lJSUjQPTrRt27bCOi4uLsjMzAQAXL58GSUlJejRo0el27906RKKi4vx6quvVpivUqng7e391Nr+qX///mjVqhU+/fRThIeHo3Xr1s+1/iN/3x8jIyPUq1cPbdq00cx7dPXy0T4SET0NAyARSUYUxeda3sjICAcOHEBUVBTCw8OxbNkyfPTRRzh58iTc3d2fuF5gYCDc3NywZs0auLq6Qq1Ww9PTEyqVSrOMiYlJhXUEQdAERXNz86fW9Wi5PXv2oH79+hU+UyqVz7WP+/fvx5UrV1BeXl6hi/l5VbY/f58nCAIAVOgGJyJ6Et4DSESSadq0KUxMTHDixAnNvPv37+Pq1atPXEcQBLz00kv49NNPERMTA1NTU+zYsQMAYGpqivLy8grLZ2dn4/Lly/j444/Ro0cPtGzZEvfv33+uOps1awZzc3McPHiw0s9btWoFpVKJlJQUNG3atML06D7EZ3Hu3DkMGzYMq1atQq9evTBv3rznqpOIqKbwCiARScbKygpvv/023nvvPdSrVw9OTk746KOPoFBU/rvmyZMncfDgQfTs2ROOjo44efIk7t69i5YtWwIAGjdujJMnTyIpKQlWVlaws7ND3bp1Ua9ePaxevRouLi5ISUnBBx988Fx1mpmZYc6cOXj//fdhamqKl156CXfv3kV8fDzefvttWFtbY/bs2Zg5cybUajX8/f2Rl5eHqKgoWFlZYdy4cf/aRlJSEvr164cPPvgAY8aMQatWrfDiiy/i7Nmz8PHxea56iYikxgBIRJL66quvUFBQgAEDBsDa2hrvvvvuE4c8sbGxwdGjR/Hdd98hLy8PjRo1wjfffIM+ffoAAGbPno1x48ahVatWePDgAW7evInGjRtjy5YtCA4OhqenJ5o3b47Q0FB07dr1ueqcN28ejI2NMX/+fKSlpcHFxQWTJ0/WfP7ZZ5/B0dERISEhSExMRJ06ddC+fXt8+OGHAICffvoJb775ZqXd3vfu3UOfPn0wYMAAzfI+Pj4IDAzERx99hH379j1XrUREUhPE571ph4iIsGDBAkRERCAiIkLS7Xbt2hXt2rXDd999J9k2BUHAjh07MGjQIMm2SUS6jfcAEhFVwf79+7F48eIa2fYPP/wAKysrxMXFVWs7kydPhpWVlURVEZE+4RVAIiItcvv2bTx48AAA0LBhQ5iamlZ5W5mZmcjLywPwcBgcS0tLSWokIt3HAEhERERkYNgFTERERGRgGACJiIiIDAwDIBEREZGBYQAkIiIiMjAMgEREREQGhgGQiIiIyMAwABIREREZmP8H2p0syuEnfDIAAAAASUVORK5CYII=", - "text/html": [ - "\n", - "
    \n", - "
    \n", - " Figure\n", - "
    \n", - " \n", - "
    \n", - " " - ], - "text/plain": [ - "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure()\n", - "plt.plot(x,a);\n", - "plt.xlabel('distance, $x$ [m]')\n", - "plt.ylabel('surface mass balance, $a$ [m/yr]')\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "id": "bf4adcc5-5a59-4a74-9328-791eec7625c6", - "metadata": {}, - "source": [ - "This function says that $a$ is positive on the left of our model domain and decreases linearly with $x$, passing zero at $x=15000$ m. This is probably not how SMB really works; $a$ is more likely to be a function of elevation $\\left(a(H)\\right)$ rather than distance $\\left(a(x)\\right)$, but with a flat bed like this, $a(H)$ leads to unstable ice sheet growth or decay, so the only steady state we can reach is $H(x) = 0$, which isn't very interesting. So we will stick with this unrealistic way of imposing $a for now and we can always come back to this later and look at what happens when it is prescribed in a more realistic way. \n" - ] - }, - { - "cell_type": "markdown", - "id": "6f4cf618-e728-4fff-bbd3-28a2ff5cbab2", - "metadata": {}, - "source": [ - "## Run the simulation\n", - "Finally, we are ready to run our simulation. \n", - "\n", - "We will loop through every time step. In each iteration, $j$ we will use the ice thickness from the previous time, $H^{j-1}$ step to compute the following:\n", - "\n", - "1. the ice thickness on the staggered grid,\n", - "2. the surface slope, $\\alpha$, on the staggered grid, using (1) \n", - "3. the flux on the staggered grid, using (1) and (2), and \n", - "4. the ice thickness at the current time step on the normal grid, using (3) and $\\dot{b_i}$ \n", - "\n", - "The code in cell below is numbered to show where each step is happening. \n", - "\n", - "The code in the cell below also times the executiono the model with `%%time` and applies the boundary conditions. " - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "id": "e6c292df-ffca-48e9-8e14-fe5dee65bb1a", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "100%|████████████████████████████████| 749999/749999 [00:10<00:00, 73261.28it/s]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CPU times: user 9.99 s, sys: 450 ms, total: 10.4 s\n", - "Wall time: 10.2 s\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "%%time\n", - "\n", - "for timestep in tqdm(range(1, Lt)):\n", - " # save the old thickness vector\n", - " H_old = H[timestep-1,:]\n", - " \n", - " # (1) compute H on the staggered grid\n", - " H_stag = (H_old[1:] + H_old[:-1])/2\n", - " \n", - " # (2) compute the surface slope on the staggered grid.\n", - " alpha = -(H_old[1:] - H_old[:-1])/dx \n", - " \n", - " # (3) compute the flux on the staggered grid\n", - " q = 2*A/(n+2) * (rho * g * alpha)**n * H_stag**(n+2) \n", - " \n", - " # (4) compute the ice thickness at the current time step\n", - " H[timestep,1:-1] = np.maximum(e, H_old[1:-1] + dt * ( a[1:-1] - (q[1:]-q[:-1])/dx )) \n", - "\n", - " # apply the boundary conditions at x = 0 and x = X\n", - " H[timestep,0] = H[timestep,1]\n", - " H[timestep,-1] = e" - ] - }, - { - "cell_type": "markdown", - "id": "d3651693-9785-4c1f-b3e2-b1a657657687", - "metadata": {}, - "source": [ - "## Plot the results\n", - "The simplest result to plot is the final ice thickness, $H(x,T)$:" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "id": "9551ad8f-0c6e-4efe-8bda-4529bf2f8aaf", - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "094e30bbe6164bcb8fcefea219846428", - "version_major": 2, - "version_minor": 0 - }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAABzv0lEQVR4nO3dd1gU1/s28HtoSxEQpCsqKhYEFTD23ok19pLEFmNPiEaN5puoSRTT1CS2WGKLPUqMvYsFjYoiosaKigpiQYrA0s77hy/7cwUU2IVhd+/Pdc11wcyZOc9hVufZMzPnSEIIASIiIiIyGEZyB0BEREREJYsJIBEREZGBYQJIREREZGCYABIREREZGCaARERERAaGCSARERGRgWECSERERGRgmAASERERGRgmgEREREQGhgkgERERkYFhAkhERERkYJgAEhERERkYJoBEREREBoYJIBEREZGBYQJIREREZGCYABIREREZGCaARERERAaGCSARERGRgWECSERERGRgmAASERERGRgmgEREREQGhgkgERERkYFhAkhERERkYJgAEhERERkYJoBEREREBoYJIBEREZGBYQJIREREZGCYABIREREZGCaARERERAaGCSARERGRgWECSERERGRgmAASERERGRgmgEREREQGhgkgERERkYFhAkhERERkYJgAEhERERkYJoBEREREBoYJIBEREZGBYQJIREREZGCYABIREREZGCaARERERAaGCSARERGRgWECSERERGRgmAASERERGRgmgEREREQGhgkgERERkYFhAkhERERkYJgAEhERERkYJoBEREREBoYJIBEREZGBYQJIREREZGCYABIREREZGCaARERERAaGCSARERGRgWECSERERGRgmAASERERGRgTuQPQZdnZ2Xj48CGsra0hSZLc4RAREVEBCCGQlJQENzc3GBkZZl8YE0ANPHz4EO7u7nKHQUREREUQHR2NChUqyB2GLJgAasDa2hrAyw+QjY2NzNEQERFRQSQmJsLd3V11HTdETAA1kHPb18bGhgkgERGRjjHkx7cM88Y3ERERkQFjAkhERERkYJgAEhERERkYJoBEREREBoYJIBEREZGB0epbwE+ePMGDBw/w+PFjPH36FBYWFnB0dISjoyOqVKlisIMtEhEREZUmGiWASUlJ2L59O44ePYrjx4/j5s2b+Za1srJCo0aN0Lx5c3Tu3Bl+fn6aVE1ERERERSQJIURhdwoLC8Mvv/yCrVu3Ii0tDcDLaVXeWtkr4+3UqFEDY8eOxZAhQ2BlZVXYEEqFxMRE2NraIiEhgeMAEhER6QhevwuZAIaFheF///sf9u/fD+D/kj5XV1e888478Pf3h5OTE+zt7WFnZ4fU1FQ8e/YM8fHxuH79Os6ePYuIiAhkZGS8rFySYG9vj0mTJuHTTz+FQqEohiYWH36AiIiIdA+v34VIAIcOHYq1a9ciOzsbAODn54dBgwahV69eqFixYoErTE9Px7Fjx7B+/XoEBwcjISEBkiShYsWKWLt2LZo1a1a0lsiAHyAiIiLdw+t3Id4CXr16NUxMTDBixAj8999/OHfuHD777LNCJX8AYGZmhnbt2uGPP/5AbGws1qxZgxo1auDu3bs4fPhwoRtARERERIVT4JdARo8ejWnTpqF8+fJaq1yhUOD999/HoEGDsGXLFmRlZWnt2ERERESUt0I9A9i/f3/4+flh9OjRsLa2Ls64dEJxdSFvu7oN265uU/3uZu2GOs51UMe5Dmo61ISZsZnW6iIiIjI0vAVcyGFgNm/ejC1btqBLly7w8vIqrpgM3qVHl7Du0ro8t5kYmaCWQy00dW+K5pWao3nF5nC3dS/hCImIiEiXaXUgaNKODlU7wEbx8htJtshG1PMoRDyKQMSjCCQoE3Ap7hIuxV3CkrAlAIDKZSujTeU2CPAMQPsq7WFrbitn+ERERFTKFeoWsJGRESRJwqVLl9gDiJLvQhZCIDoxGucensPxu8dx/N5xXIi9gGyRrSpjLBmjacWmCKgWgHc934WPk4/a+ItERESGjreAmQBqpDR8gJKUSQiNDsW+W/uw+8ZuXHt6TW17eevy6FajG3p79UaLSi1gYsROXyIiMmyl4fotNyaAGiiNH6Co+CjsubkHu2/sxuGow0jNTFVtc7R0xHs130Nvr95o7dGaySARERmk0nj9LmlMADVQ2j9AaZlpOBJ1BFuvbkXwf8F4lvpMta2cRTn0qNkDA30GolXlVjCSCjwkJBERkU4r7dfvklCkq75SqdR2HIVSuXJlSJKUaxk7diyAl8/KzZgxA25ubrCwsECrVq1w+fJltWMolUqMHz8eDg4OsLKyQrdu3XD//n05mlNszE3MEeAZgOXdliN2Yiz2v78fH/t9DAdLBzxNfYoVF1ag7Zq2qDy/MqYenIorj6/IHTIRERGVgCL1AEqShCpVqqBu3bpqS2FnBSmqx48fqw0aHRkZifbt2+PIkSNo1aoVvv/+e8yaNQurVq1C9erV8d133+HYsWO4du2aavzC0aNHY8eOHVi1ahXKlSuHiRMn4tmzZwgLC4OxsXGB4tDVbxCZ2Zk4dvcYNkZuxObLm5GgTFBt83P1wwd1PsAA7wFwLuMsY5RERETFQ1ev39pUpAQwZ5fX3y61tbXNlRTWrl0bCoVCu1G/JjAwEDt37sSNGzcAAG5ubggMDMSUKVMAvOztc3Z2xvfff4+RI0ciISEBjo6OWLt2Lfr16wcAePjwIdzd3bF792507NixQPXqwwcoLTMNO6/vxNqItdh9YzcyszMBvHybuGuNrhjhNwIdq3aEsVHBkmIiIqLSTh+u35oqUgLYpEkT3L17N89bpq8nhcbGxqhevTrq1aunlhg6O2undyk9PR1ubm6YMGECpk2bhtu3b6Nq1ao4f/48fH19VeW6d++OsmXLYvXq1Th8+DDatm2LZ8+ewc7OTlWmbt266NGjB2bOnFmguvXtA/T4xWNsurwJayPW4syDM6r17jbuGOY7DMN8h6Gibcn08hIRERUXfbt+F0WRXgP9/fff4eXlhfj4eFy8eFG1hIeH48qVK0hPT1eVzczMxNWrV3H16lVs2LBBtd7R0RH16tXD3r17NWrA33//jefPn2PIkCEAgNjYWADIlWA6Ozvj7t27qjJmZmZqyV9OmZz986JUKtWef0xMTNQo9tLG0coR4xqMw7gG4xAZF4nl55djbcRaRCdGY2bITHwT8g06VuuIj/0+RtcaXfkWMRERkY7S6ApuZ2eHVq1aoVWrVqp1WVlZuHr1qlpiePHiRcTFxantGxcXhwMHDmhSPQBgxYoVCAgIgJubm9r613sihRBvHRD5bWWCgoIK3Duo67ydvDG/03zMaTcHwVeDsez8Mhy5cwR7b+7F3pt7UdG2IkbXH42P/D6Cg6WD3OESERFRIZTYMDCxsbG5ksJr164hIyOj0EHnuHv3LqpUqYJt27ahe/fuAFCst4Dz6gF0d3c3mC7kG09vYMWFFVh+fjmepj4F8PJN4wHeAzC+wXj4uvq+5QhERETy4y3gIg4DUxQuLi7o2LEjJk+ejHXr1iEyMhLJyckaHXPlypVwcnJC586dVes8PDzg4uKi1ruYnp6OkJAQNGnSBADg7+8PU1NTtTIxMTGIjIxUlcmLQqGAjY2N2mJIPMt5Yk67Obg/4T5Wdl8JP1c/pGWmYWX4Svgt9UOzP5phU+QmZGQVPaknIiKi4ifrQ1yavB2cnZ2NlStXYvDgwTAx+b9mSJKEwMBAzJ49G56envD09MTs2bNhaWmJgQMHAnj5tvLw4cMxceJElCtXDvb29vj888/h4+ODdu3aadwufWduYo4h9YZgcN3BOHX/FH478xv+uvIXTkafxMnok3CzdsPo+qMxuv5olLMsJ3e4RERE9BqdnQlk//796NixI65du4bq1aurbRNCYObMmfj9998RHx+Phg0bYuHChfD29laVSUtLw6RJk7B+/Xqkpqaibdu2WLRoEdzd3QscA7uQ/8/DpIf4/dzv+D3sdzx68QgAYGlqiWH1hmFC4wnwsPOQOUIiIqKXeP0uZAL4/fff49y5c/jxxx9RuXLlYgxLN/ADlFt6Vjq2XN6Cn0/9jAuxFwAARpIRenv1xqQmk1Dfrb7MERIRkaHj9buQCSCp4wcof0IIHI46jB9Df8S+W/tU61tXbo1JTSahU7VOb30rm4iIqDjw+s0EUCP8ABXMxdiL+OnUT9gYuVE104i3kzcmNZmEAd4DYGpsKnOERERkSHj9ZgKoEX6ACic6IRrzT8/H0vNLkZz+8g1wj7Ie+KLZFxhSbwjMjM1kjpCIiAwBr99MADXCD1DRPE97jiXnlmDe6XmIe/FygHB3G3dMaToFw/2Gw9zEXOYIiYhIn/H6zQRQI/wAaSYlIwXLwpbhh9Af8DDpIQDAtYwrJjWZhJH1R8LS1FLmCImISB/x+s0EUCP8AGlHWmYaVl5YiaATQYhOjAYAOFo6YmLjiRjzzhhYK6xljpCIiPQJr99MADXCD5B2pWelY83FNQg6EYTb8bcBAPYW9pjcZDLGNRgHKzMrmSMkIiJ9wOs3E0CN8ANUPDKzM7H+0nrMOj4L159eBwA4Wznjy+Zf4mP/j6EwKfoMMkRERLx+y5AA3rt3DwBgY2ODsmXLlmTVWscPUPHKys7CukvrMOPoDEQ9jwLw8mWRr1p8hSH1hnD4GCIiKhJevwGjkq6wcuXK8PDwgIuLC0aOHIk7d+6UdAikI4yNjPFh3Q9xbdw1LOm8BOWtyyM6MRof7/wYtRbWwp8RfyIrO0vuMImIiHROifcAGhn9X84pSRJMTEzw/vvvY9q0aahatWpJhqIxfoMoWWmZaVhybglmH5+NxymPAQC1HWvjm9bf4L2a73FmESIiKhBev2VIAFu1agVJkpCamorw8HCkp6cDAExNTaFUKksyFI3xAySP5PRk/Pbvb/gh9Ac8T3sOAGhYviF+bP8jmldqLm9wRERU6vH6LfNLIEqlEqdPn8bRo0dx/PhxHDx4UK5QioQfIHk9T3uOn0N/xrzT8/Ai4wUAoFuNbpjTdg5qOdaSOToiIiqteP3mW8Aa4QeodIhJisHMkJlYfn45skQWjCQjfOT7EWa0mgFXa1e5wyMiolKG128tvARy7NgxbcRBVGSu1q5Y0mUJIsdEokfNHsgW2Vh6fimq/VYNXx/5GknKJLlDJCIiKlU0TgA7duyILVu2aCMWIo3UdKiJ4H7BOD70OBpVaISUjBR8e+xbVPutGhadXYSMrAy5QyQiIioVNE4AlUolBgwYgPnz52shHCLNNavYDKHDQvFXn79Qzb4a4l7EYezusai7pC723dwnd3hERESy0zgBbNKkCbKzszFx4kR8/vnnBd4vIiICXbt21bR6ojxJkoReXr1wZcwVLAhYgHIW5XD1yVV0WtcJXdZ3Uc0wQkREZIg0TgAPHTqEXr16QQiBefPmYcCAAcjIyP9W282bNzFgwAD4+flh9+7dmlZP9EamxqYY22Asbn5yE581+gwmRibYdWMXai+qjYn7JqqGkSEiIjIkGieACoUCW7ZsQWBgIIQQ2Lx5Mzp27IjExES1cvfv38eIESPg5eWFzZs3Izs7G8bGxppWT1QgZc3LYm7HuYgcHYnOnp2RmZ2JuafnwvM3T/x+7nfOKEJERAZFa1PBzZ07F/PmzYMkSQgJCUHz5s3x8OFDPHnyBJ999hmqV6+OP/74A5mZmZAkCf3798elS5e0VT1RgdRwqIGdA3di76C9qOVQC09SnmDUrlHwW+qHI1FH5A6PiIioRGh9HMBt27bh/fffh1KphJOTE168eIEXL15ACPHyuaxevTBjxgx4eXlps1pZcBwh3ZaRlYHF5xZjxtEZiE+LBwD08eqDuR3nooJNBZmjIyKi4sLrtxZ7AHN069YNgwYNghACcXFxSE5OBgD06NED4eHh2Lx5s14kf6T7TI1N8UnDT3Bj/A2MfWcsjCQjbLmyBTUX1MSPJ39Eela63CESEREVC631AGZmZuKPP/7A7NmzER0dDQDIObSDgwP279+PevXqaaOqUoPfIPTLxdiLGLN7DEKjQwEAtRxqYeG7C9Hao7XMkRERkTbx+q2FHsCsrCysWLEC1atXx+jRo3Hv3j0IIVC3bl0sXLgQDg4OePr0KVq1aoX9+/drI2aiYlHXpS6ODz2Old1XwtHSEVefXEWbNW0wcOtAPEx6KHd4REREWqNxAlijRg18/PHHuHPnDoQQqF69OjZu3Ijz589j9OjROHnyJCpXrozExER07doVK1eu1EbcRMXCSDLCkHpDcG3cNdVt4Q2RG1BzQU3MOzWPs4kQEZFe0DgBvH37NoQQqFixIpYvX44rV66gb9++qu2enp44ffo0/P39kZGRgY8++ggzZ87UtFqiYmVnYYcF7y7A2RFn0bB8QySlJ2HC/gnwW+qHk/dOyh0eERGRRjROAJ2cnPDLL7/g+vXrGDZsGIyMch/S0dERISEh6NSpE4QQ+OabbzB8+HBkZXHsNSrd/Fz9EDo8FMu7Lkc5i3KIjItEs5XNMHrnaA4iTUREOkvjl0BSUlJgaWlZoLJZWVkYOXIk/vjjD0iShPbt22Pv3r2aVC8rPkRqWJ6mPMWUg1Ow4sIKAIBLGRf8FvAbetXqBUmSZI6OiIgKitdvLfQAFjT5AwBjY2MsX74cX3/9NYQQOHDggKbVE5WYcpblsLzbchwdfBTVy1VHbHIs+mzpg24bu+Fewj25wyMiIiowrY8DWBAzZszAsmXLOBUc6aSWlVvi4qiL+LrF1zA1MsXO6zvhtdALv5z+hVPKERGRTtD6TCCFsWfPHgQEBMhVvcbYhUxXHl/Bxzs+xsnoly+G1Herj2Vdl6GeSz15AyMionzx+i1TD2AOXU7+iADAy9ELx4Yew5LOS2CrsMW5h+dQf2l9fHHwC6RlpskdHhERUZ4KnABu2bKlOOPA/fv3ERoaWqx1EBUHI8kII+uPxNWxV9HHqw+yRBa+P/k9fH/3xen7p+UOj4iIKJcCJ4D9+vWDj4+P1hPBe/fuYfTo0ahWrRoOHjyo1WMTlSRXa1ds7rMZwf2C4WzljP+e/IemfzTF5/s/R2pGqtzhERERqRQ4AfT09MTly5fRv39/VK5cGdOmTcPly5eLVOmLFy/w559/IiAgANWqVcPSpUuRlZWFatWqFel4RKVJj5o9cGXsFXxQ5wNki2z8fOpn1Pu9HgeQJiKiUqPACeDly5fx008/oVy5crh37x6+//571KlTBzVr1sSQIUOwcOFChIaG4ubNm3j69Cmys7Px4sULREdHIyIiAn/99RemTJmC1q1bw8nJCYMHD8a+ffuQmZmJTp064cKFCxg4cGCBA3/w4AHef/99lCtXDpaWlqhXrx7CwsJU24UQmDFjBtzc3GBhYYFWrVrlSliVSiXGjx8PBwcHWFlZoVu3brh//36BYyDKj72FPda8twY7BuyAm7Ubrj+9juYrmyNwbyBepL+QOzwiIjJwhX4L+MWLF1i0aBEWLlyIe/dejn1WmEFwc6ozNjZG9+7dMWnSJDRs2LAwISA+Ph6+vr5o3bo1Ro8eDScnJ9y6dQuVK1dG1apVAQDff/89Zs2ahVWrVqF69er47rvvcOzYMVy7dg3W1tYAgNGjR2PHjh1YtWoVypUrh4kTJ+LZs2cICwsr0BA1fIuICuJ52nNM2DcBK8NfzoNd1a4qVnRbgZaVW8ocGRGRYeL1W4NhYLKzs3HgwAFs3rwZR44cwZ07d966j4WFBRo0aIDOnTtj4MCBcHNzK0rV+OKLL3Dy5EkcP348z+1CCLi5uSEwMBBTpkwB8LK3z9nZGd9//z1GjhyJhIQEODo6Yu3atejXrx8A4OHDh3B3d8fu3bvRsWPHt8bBDxAVxt6bezFixwjcT3zZyzy+wXjMaTcHlqYFH0ydiIg0x+u3FscBfPDgAUJDQ3H//n08fvwYz549g7m5ORwdHeHo6AgfHx/Ur18fpqamGtfl5eWFjh074v79+wgJCUH58uUxZswYjBgxAgBw+/ZtVK1aFefPn4evr69qv+7du6Ns2bJYvXo1Dh8+jLZt2+LZs2ews7NTlalbty569OiBmTNn5qpXqVRCqVSqfk9MTIS7u7tBf4CocBKViZi0fxKWnl8KAKhRrgbWvrcW75R/R+bIiIgMBxNAwERbBypfvjz69OmjrcO90e3bt7F48WJMmDAB06ZNw5kzZ/DJJ59AoVDgww8/RGxsLADA2dlZbT9nZ2fcvXsXABAbGwszMzO15C+nTM7+rwsKCsozMSQqKBuFDX7v+jt61uqJoduH4trTa2i8ojG+avEVpjWfBlNjzb8gERERvY2sA0EXVXZ2Nvz8/DB79mz4+vpi5MiRGDFiBBYvXqxW7vVnE4UQb31e8U1lpk6dioSEBNUSHR2tWUPIYHWs1hGRYyLRr3Y/ZIkszAiZgaZ/NMW1J9fkDo2IiAxAoRLAFy9Kx9uLrq6u8PLyUltXq1Yt1UspLi4uAJCrJy8uLk7VK+ji4oL09HTEx8fnW+Z1CoUCNjY2agtRUdlb2GNj741Y33M9ypqXxdmHZ+H7uy8WnFmAbJEtd3hERKTHCpUA2traokaNGujXrx+CgoKwZ88exMTEFFds+WratCmuXVPvKbl+/ToqVaoEAPDw8ICLiwsOHDig2p6eno6QkBA0adIEAODv7w9TU1O1MjExMYiMjFSVISoJA3wG4NLoS2hfpT1SM1Mxfs94dPqzk+plESIiIm0r1EsgRkZGed4edXBwQL169dSWmjVrFmp4mMI4e/YsmjRpgpkzZ6Jv3744c+YMRowYgaVLl2LQoEEAXg4DExQUhJUrV8LT0xOzZ8/G0aNHcw0Ds3PnTqxatQr29vb4/PPP8fTpUw4DQ7LIFtlYeGYhJh+cjLTMNJQ1L4slnZegn3c/uUMjItIrvH4XMgHs0qULLl68iAcPHuQ+0GvJnrm5Oby9vdWSwjp16sDKykrzqAHs3LkTU6dOxY0bN+Dh4YEJEyao3gIGXj7LN3PmTPz++++Ij49Hw4YNsXDhQnh7e6vKpKWlYdKkSVi/fj1SU1PRtm1bLFq0CO7u7gWKgR8gKg7/PfkPHwZ/iLMPzwIAhtQbgt8CfkMZszIyR0ZEpB94/S7iMDDPnj1DeHi4arl48SL+++8/ZGRkqB/8taRQkiRUrVpVLSkMCAjQrAUy4geIiktGVga+CfkGs47PgoCAp70nNvbeCD9XP7lDIyLSebx+a3EcwIyMDMyfPx9TpkyBJElo3LgxIiIikJycnLvS/58YSpKEzMxMbVQvC36AqLiF3AnB+8Hv437ifZgamSKobRA+a/wZjCSdfIGfiKhU4PVbi8PAmJqaqs3sceLECSQmJuL69evYtGkTpk6dik6dOsHFxQVCCNVCRPlrWbklLo66iPdqvoeM7Ax8fuBzBKwLQGxy3mNVEhERFYTWBoLOT7Vq1VCtWjW1QaLj4uJw4cIFhIeHF3f1RDrP3sIeW/tuxdKwpfhs32fYf2s/6i6pi1XdVyHAU3cfoSAiIvnIch/JyckJHTt2VM3TS0RvJkkSRtYfiXMfn4OPkw/iXsTh3fXv4rO9n0GZqXz7AYiIiF7BB4mIdIiXoxfOjDiD8Q3GAwDm/zsfjVc0xq1nt2SOjIiIdAkTQCIdY25ijl8DfsWOATtQzqIcLsRegN9SP2y7uk3u0IiISEcwASTSUV2qd0H4qHA0dW+KRGUiem3uhcC9gUjPSpc7NCIiKuWYABLpsAo2FXBk8BFMajIJAPDLv7+g+crmuPv8rsyRERFRaVaoBHDDhg24evUqh28hKkVMjU3xQ/sf8E//f2BnboczD87A93df7Li2Q+7QiIiolCpUAjho0CB4e3ujTJkyaNiwIUaOHInFixfj9OnTSElJKa4YiagAutboivMjz6NB+QaIT4tHt43dMPnAZGRkZbx9ZyIiMiiFmgnEyOj/8sW8pnmzs7PD06dPIUkSdu3ahbp168LV1VV70ZYyHEmcSqP0rHRMPjAZv/z7CwCgqXtTbOy9ERVsKsgcGRFR6cDrdyETwCVLlqjm/42MjMzV6/d6UggAjo6OqFevHnx9fVXz/1avXj3PsrqGHyAqzbZe2Yph/wxDojIRjpaO2NxnM1pVbiV3WEREsuP1W4O5gIUQuHbtmiohDA8Px8WLF/Ho0aPclbyW7FlaWsLHxwe+vr5YuHBh0SIvBfgBotLu1rNb6L2lN8Jjw2EsGePH9j8isFGgXnwBIyIqKl6/NUgA8/Po0SPVNG85y82bN5GdnZ27cklCVlaWNqsvUfwAkS5IyUjByJ0j8WfEnwCAAd4DsKzrMliZWckcGRGRPHj9LoYEMC+pqam4ePGiWlIYGRmJ1NRUJoBEJUAIgQVnFmDC/gnIzM5EHec62NZ3G6raV5U7NCKiEsfrdwklgHkRQuD69euoUaOGHNVrBT9ApGuO3z2OPlv64NGLRyhrXhbre65HgGeA3GEREZUoXr9lHAhakiSdTv6IdFHzSs0R9nEYGlVohOdpz9F5fWd8d+w7ZIvcj2gQEZH+4kwgRAamvE15HB18FKP8R0FA4KsjX6Hnpp5ISEuQOzQiIiohTACJDJDCRIHFXRZjRbcVUBgrsP3adjRc3hA3nt6QOzQiIioBTACJDNgw32E4PvQ4KthUwLWn19BweUMcvH1Q7rCIiKiYMQEkMnDvlH8HZ0ecRaMKjRCfFo9Of3bCwjO6Oz4nERG9HRNAIoJLGRccGXwEH9T5AFkiC+P2jMOYXWM4jzARkZ5iAkhEAABzE3Os7rEa37f7HhIkLD63GB3/7IinKU/lDo2IiLSMCSARqUiShMlNJ2N7/+0oY1YGR+4cQcPlDXH18VW5QyMiIi1iAkhEuXSt0RWhw0JRuWxl3Iq/hUYrGmHPjT1yh0VERFrCBJCI8uTj7IMzH51B84rNkahMRJcNXTDv1DzINHkQERFpERNAIsqXo5UjDn54EMN9hyNbZGPC/gkYv2c8MrMz5Q6NiIg0UOIJ4L1793Dv3j08f/68pKsmoiIwMzbDsq7L8FP7nyBBwsKzC/HepvfwIv2F3KEREVERlXgCWLlyZXh4eMDFxQUjR47EnTt3SjoEIiokSZIwsclEbOmzBeYm5th5fSdarmqJmKQYuUMjIqIikOUWsBAC6enpWL58OWrUqIHhw4fj1q1bcoRCRIXQy6sXDn94GA6WDgiLCUOjFY1wOe6y3GEREVEhSaKEn+hu1aoVJElCamoqwsPDkZ6eDgAwNTWFUqksyVA0lpiYCFtbWyQkJMDGxkbucIhKzM1nN/Huundx49kN2Cpssa3fNrTxaCN3WEREBcLrtwwJ4KuUSiVOnz6No0eP4vjx4zh4ULfmIOUHiAzZ05Sn6L6xO05Gn4SpkSmWd1uOD+t+KHdYRERvxeu3zAmgruMHiAxdWmYaBv89GJsvbwYAzGw1E1+1+AqSJMkcGRFR/nj95jAwRKQBcxNzbOi1AVOaTgEATD86HcP+GcY5hImISrkSSwCVSiUePXqE7OzskqqSiEqAkWSEOe3mYEnnJTCSjLAqfBV6bOrBYWKIiEoxjRPA5ORk7N69G7t370ZycnKu7U+ePEGvXr1gY2MDNzc32NnZ4fPPP1e9/FEUM2bMgCRJaouLi4tquxACM2bMgJubGywsLNCqVStcvqz+pqJSqcT48ePh4OAAKysrdOvWDffv3y9yTESGbmT9kdjefzssTCyw+8ZutFvbDk9TnsodFhER5UHjBHDr1q3o0qULxowZA0tLS7Vt2dnZCAgIwN9//42MjAwIIZCUlIR58+bh/fff16je2rVrIyYmRrVcunRJte2HH37A3LlzsWDBApw9exYuLi5o3749kpKSVGUCAwMRHByMjRs34sSJE0hOTkaXLl2QlZWlUVxEhqxL9S44+OFB2Jnb4fT902i2shnuJdyTOywiInqNxgngvn37AAC9evWCkZH64TZt2oSwsDAAgJ+fHz777DP4+flBCIGtW7di7969Ra7XxMQELi4uqsXR0RHAy96/+fPn48svv0TPnj3h7e2N1atXIyUlBevXrwcAJCQkYMWKFfj555/Rrl07+Pr64s8//8SlS5d07k1kotKmiXsTnBh2AhVsKuC/J/+h6R9NOVYgEVEpo3ECGBkZCUmS0Lhx41zb1q5dCwDw9/fH6dOn8fPPP+PUqVNo0KABAGDNmjVFrvfGjRtwc3ODh4cH+vfvj9u3bwMAoqKiEBsbiw4dOqjKKhQKtGzZEqGhoQCAsLAwZGRkqJVxc3ODt7e3qgwRFZ2XoxdCh4WilkMt3E+8j+YrmyM0mv+2iIhKC40TwMePHwMAKlWqpLY+IyMDISEhkCQJY8aMgYmJCYCXAz6PGjUKQgj8+++/RaqzYcOGWLNmDfbt24dly5YhNjYWTZo0wdOnTxEbGwsAcHZ2VtvH2dlZtS02NhZmZmaws7PLt0xelEolEhMT1RYiypu7rTtODDuBxhUaIz4tHu3WtMPO6zvlDouIiKCFBPDZs2cAXiZ2rzp37hxSU1MBAAEBAWrbqlevDgBvTLbeJCAgAL169YKPjw/atWuHXbt2AQBWr16tKvP6OGRCiLeOTfa2MkFBQbC1tVUt7u7uRYqfyFDYW9jj4IcH0dmzM1IzU/Hepvew4dIGucMiIjJ4GieAFhYWAIC4uDi19SEhIQCAqlWr5uqNy9lHW6ysrODj44MbN26o3gZ+PbmMi4tTxeHi4oL09HTEx8fnWyYvU6dORUJCgmqJjo7WajuI9JGlqSWC+wXjgzofIDM7E4O2DcLSsKVyh0VEZNA0TgCrVq0KADh69Kja+uDgYEiShJYtW+baJ+e2sZOTk6bVA3h5a/bq1atwdXWFh4cHXFxccODAAdX29PR0hISEoEmTJgBePpNoamqqViYmJgaRkZGqMnlRKBSwsbFRW4jo7UyNTbGqxyqMqT8GAgIjd47ET6E/yR0WEZHB0jgBbN++PYQQWLRoEfbs2YPk5GT89ttvOHv2LACga9euufaJiIgA8PLFi6L4/PPPERISgqioKPz777/o3bs3EhMTMXjwYEiShMDAQMyePRvBwcGIjIzEkCFDYGlpiYEDBwIAbG1tMXz4cEycOBGHDh3ChQsX8P7776tuKROR9hlJRljw7gJ80fQLAMCkA5Pw9ZGvwdkoiYhKnommB/j000+xZMkSJCUloUuXLmrbatWqlWcCuGvXrnzfHC6I+/fvY8CAAXjy5AkcHR3RqFEjnD59WvUiyuTJk5GamooxY8YgPj4eDRs2xP79+2Ftba06xrx582BiYoK+ffsiNTUVbdu2xapVq2BsbFykmIjo7SRJQlC7INia22Lqoan49ti3SEhLwLxO82AkcWZKIqKSIgktfP0+fvw4+vfvj5iYGNW6KlWqYOfOnahZs6Za2Vu3bqFGjRoQQmD37t3o2LGjptXLhpNJExXdorOLMHb3WADA0HpDsazrMhgb8QsYERU/Xr+10AMIAM2bN0dUVBROnjyJ2NhYuLq6olmzZqqhX14VExODr776CgDyfD6QiAzDmHfGoIxZGQzdPhQrw1fiRcYL/PnenzA1Nn37zkREpBGt9AAaKn6DINJc8NVg9PurHzKyM9CzVk9s6LUBZsZmcodFRHqM128tvARCRKSJ92q9h239tsHM2Azbrm5Dny19oMxUyh0WEZFeK7EEUKlU4tGjR8jOzi6pKolIR3Sp3gXb+2+HwliBf679g16beyEtM03usIiI9JbGCWBycjJ2796N3bt3Izk5Odf2J0+eoFevXrCxsYGbmxvs7Ozw+eefIz09XdOqiUiPdKrWCTsH7oSFiQV23diFHht7IDUjVe6wiIj0ksbPAK5evRpDhw5FxYoVcfv2bRgZ/V9OmZ2djYYNG+L8+fNqY31JkoRevXph8+bNmlQtOz5DQKR9R6KOoMuGLkjJSEG7Ku2wvf92WJpayh0WEekRXr+10AO4b98+AECvXr3Ukj8A2LRpE8LCwgAAfn5++Oyzz+Dn5wchBLZu3Yq9e/dqWj0R6ZnWHq2xZ9AeWJla4eDtg+i8vjOS03PfXSAioqLTOAGMjIzMd1DntWvXAng59drp06fx888/49SpU2jQoAEAYM2aNZpWT0R6qEWlFtj/wX5Ym1nj6J2j6LqhK1IyUuQOi4hIb2icAObM65szC0eOjIwMhISEQJIkjBkzRjUmoKmpKUaNGgUhBP79919NqyciPdXEvQkOfHBAlQR239idL4YQEWmJxgngs2fPALxM7F517tw5pKa+fIA7ICBAbVv16tUBALGxsZpWT0R6rGGFhmq3g3tu6skhYoiItEDjBNDCwgIAEBcXp7Y+JCQEAFC1alU4OzvnuQ8R0ds0rdgUuwbugoWJBfbc3IM+W/ogPYujCBARaULjBLBq1aoAgKNHj6qtDw4OhiRJeU73lnPb2MnJSdPqicgAtKzcEjsG7IC5iTl2XN+B/n/1R0ZWhtxhERHpLI0TwPbt20MIgUWLFmHPnj1ITk7Gb7/9hrNnzwIAunbtmmufiIgIAICbm5um1RORgWhbpS3+7vc3zIzNEPxfMD4I/gCZ2Zlyh0VEpJM0TgA//fRT2NjYICkpCV26dIGtrS0CAwMBALVq1cozAdy1a1e+bw4TEeWnY7WO2NZ3G0yNTLHp8iYM+XsIsrKz5A6LiEjnaJwAurq6YseOHXBxcYEQQrVUqVIFf/31FyRJUit/69YtHD9+HMDL3kMiosLoXL0ztvTZAhMjE6y7tA5jdo2BhuPZExEZHI1nAsmRnp6OkydPIjY2Fq6urmjWrJlq6JdXnThxAocOHQIATJkyBebm5tqoXhYcSZxIPpsvb0b/v/pDQGBK0ymY026O3CERkY7g9VuLCaAh4geISF7Lzy/HiB0jAABBbYPwRbMvZI6IiHQBr99auAVMRCSXj/w+wk/tfwIATD00FYvPLpY5IiIi3ZD7Hq0GsrOzcfToUZw6dQqxsbFISUnBd999B1dXV1WZ9PR0ZGZmwtjYGAqFQpvVE5EBmthkIp6nPcd3x7/D2N1jYWtui4E+A+UOi4ioVNNaArhr1y588sknuHPnjtr6iRMnqiWAK1aswLhx41CmTBk8fPgQVlZW2gqBiAzUN62/wfO051hwdgE+DP4QNgobdKneRe6wiIhKLa3cAl6+fDm6deuGqKgoCCFQrly5fN/KGz58OMqWLYvk5GQEBwdro3oiMnCSJOGXgF/wfp33kSWy0GdLHxy9c1TusIiISi2NE8CbN29i7NixAIA2bdrgypUruaaFe5WZmRl69eoFIQT279+vafVERAAAI8kIK7uvRPca3ZGWmYZuG7ohPDZc7rCIiEoljRPA+fPnIyMjA7Vr18bu3btRs2bNt+7TvHlzAEB4eLim1RMRqZgYmWBj741oXbk1ktKTELAuAFHxUXKHRURU6micAB46dAiSJCEwMBBmZmYF2idn/uB79+5pWj0RkRpzE3ME9wtGHec6iE2ORad1nfAk5YncYRERlSoaJ4DR0dEAgHr16hV4n5wXP1JSUjStnogoF1tzW+wZtAcVbSvi+tPr6LqhK1Iy+P8NEVEOjRPAnKneCjOe9OPHjwHAYAdfJKLi52bthr2D9sLO3A6n759G/7/6IzM7U+6wiIhKBY0TQDc3NwDA9evXC7xPSEgIAKBy5cqaVk9ElK9ajrWwY8AOmJuYY8f1HZw3mIjo/9M4AWzRogWEEFi/fn2Byj958gS///47JElCmzZtNK2eiOiNmlZsig29NsBIMsKy88vwTcg3codERCQ7jRPAjz/+GACwe/durFy58o1l79+/j3fffRdPnjyBsbGxal8iouLUo2YPLHx3IQBgRsgMLAtbJnNERETy0jgBfOeddzBq1CgIIfDRRx+hT58+2Lx5s2p7REQENm3ahOHDh6NGjRoICwuDJEmYOHEiqlWrpmn1REQFMqr+KPyv+f8AAKN3jcaBWwdkjoiISD6S0MIDMVlZWRg2bBjWrl2reikkLzlVDRkyBCtWrHhjWV2QmJgIW1tbJCQk8IUWIh0ghMDgvwdjbcRa2ChscGr4KXg5eskdFhGVMF6/tTQVnLGxMVavXo0tW7bA19cXQog8Fy8vL6xfvx5//PGHzid/RKR7JEnCsq7L0LxicyQqE9F5fWfEvch/5iIiIn2llR7A1z18+BDnzp1DXFwcsrKyUK5cOfj6+qoGgNYX/AZBpJuepDxBo+WNcCv+FhpVaITDHx6GhamF3GERUQnh9buYEkBDwQ8Qke669uQaGq1ohOdpz9Hfuz/W91zPOxNEBoLXby3dAiYi0jU1HGpgW99tL+cPjtyIGUdnyB0SEVGJMdH2AZOSkhAVFYWkpCRkZWW9tXyLFi20HQIRUYG09miNpV2WYtg/w/DNsW/gWc4T79d5X+6wiIiKndZ6AJctWwZfX1+ULVsWvr6+aNGiBVq3bv3GRRsDQQcFBUGSJAQGBqrWCSEwY8YMuLm5wcLCAq1atcLly5fV9lMqlRg/fjwcHBxgZWWFbt264f79+xrHQ0S6ZajvUHzR9AsAwPB/huP43eMyR0REVPw0TgCzsrLQo0cPjBo1ChEREfm+AZzfoomzZ89i6dKlqFOnjtr6H374AXPnzsWCBQtw9uxZuLi4oH379khKSlKVCQwMRHBwMDZu3IgTJ04gOTkZXbp0KVCvJRHpl1ltZ6FXrV5Iz0pHr829cC/hntwhEREVK41vAS9ZsgT//PMPAMDZ2RlDhw6Fv78/7O3tYWRUfI8YJicnY9CgQVi2bBm+++471XohBObPn48vv/wSPXv2BACsXr0azs7OWL9+PUaOHImEhASsWLECa9euRbt27QAAf/75J9zd3XHw4EF07Nix2OImotLHSDLCmvfW4Fb8LYTHhuO9Te/h+NDjsDS1lDs0IqJioXECuGbNGgCAl5cXjh8/Djs7O42DKoixY8eic+fOaNeunVoCGBUVhdjYWHTo0EG1TqFQoGXLlggNDcXIkSMRFhaGjIwMtTJubm7w9vZGaGhovgmgUqmEUqlU/Z6YmFgMLSMiOViaWuLvfn+j/rL6OB9zHh/v+Bhr33vz4PZERLpK4y66q1evQpIkfPXVVyWW/G3cuBHnz59HUFBQrm2xsbEAXvZGvsrZ2Vm1LTY2FmZmZrnifbVMXoKCgmBra6ta3N3dNW0KEZUilcpWwpY+W2AsGWPdpXWYe2qu3CERERULrd2jrVGjhrYO9UbR0dH49NNP8eeff8Lc3Dzfcq9/axdCvPWb/NvKTJ06FQkJCaolOjq6cMETUanXqnIrzOs4DwAw+eBk7L+1X+aIiIi0T+ME0NPTEwDw7NkzjYMpiLCwMMTFxcHf3x8mJiYwMTFBSEgIfv31V5iYmKh6/l7vyYuLi1Ntc3FxQXp6OuLj4/MtkxeFQgEbGxu1hYj0z7gG4zC03lBki2z0/6s/bj27JXdIRERapXEC2L9/fwghsHPnTm3E81Zt27bFpUuXEB4erlrq16+PQYMGITw8HFWqVIGLiwsOHDig2ic9PR0hISFo0qQJAMDf3x+mpqZqZWJiYhAZGakqQ0SGS5IkLOq8CA3LN0R8Wjy6b+yOJGXS23ckItIRGieAn3zyCerUqYPFixfj+PHiHz/L2toa3t7eaouVlRXKlSsHb29v1ZiAs2fPRnBwMCIjIzFkyBBYWlpi4MCBAABbW1sMHz4cEydOxKFDh3DhwgW8//778PHxUb0VTESGzdzEHNv6bYNLGRdcfnwZg/8ejGyRLXdYRERaoXECqFAosH//fvj7+6N9+/aYPHkywsPDkZaWpo34imTy5MkIDAzEmDFjUL9+fTx48AD79++HtbW1qsy8efPQo0cP9O3bF02bNoWlpSV27NgBY2Nj2eImotLFzdoN2/pug5mxGYL/C8acE3PkDomISCskoeFozK8mTAV50UKtcklCZmamJtXLipNJExmGZWHL8PHOj2EkGeHgBwfR2qO13CERkQZ4/dZCD+Drs3qU5EwgREQl4SO/jzC47stbwAO2DkBMUozcIRERaUTjgaCnT5+ujTiIiEqtnJdCwmLCEBkXiQFbB+DghwdhYqTxf6FERLLQ+BawIWMXMpFhufbkGuovq4/k9GR80fQLBLXLPRg9EZV+vH5rcSBoIiJ9V8OhBpZ3XQ4AmHNyDnZeL5nhr4iItE3jBDAiIqLI+37//feaVk9EVKL6effDuHfGAQA+DP4Qd57fkTcgIqIi0DgB7NixI27fvl3o/b777jtMmzZN0+qJiErcTx1+wjtu7yA+LR59tvSBMlMpd0hERIWicQL46NEjtG/fHjExBX8rbubMmfj66681rZqISBYKEwW29NkCO3M7nHt4DhP3T5Q7JCKiQtE4AXR2dsadO3fQoUOHXHPr5uXrr7/GN998AwBo06aNptUTEcmiUtlKWPveWgDAwrML8deVv2SOiIio4DROAPft2wdbW1tcuXIF7777LlJSUvItO23aNMyaNQtCCHTo0AE7duzQtHoiItl0rt4ZU5pOAQCM2DEC9xLuyRwREVHBaJwA1qlTBzt27ICFhQXOnDmDHj16ICMjI1e5KVOm4Pvvv4cQAp06dcL27dthbm6uafVERLL6tvW3aFC+AZ6nPcegbYOQma27sxsRkeHQyjAwTZs2xZYtW2BiYoJDhw5hwIABarN8TJw4ET/99BOEEHj33Xfx999/Q6FQaKNqIiJZmRqbYkOvDbA2s8aJeyfw3bHv5A6JiOittDYOYEBAAFavXg1JkhAcHIwRI0YAAD755BPMnz8fQgh06dIF27Ztg5mZmbaqJSKSXRW7KljSZQkA4Ntj3+L43eMyR0RE9GZanwlk8eLFGDt2LCRJgre3NyIjIyGEQPfu3bF582aYmppqszpZcSRxInrVkL+HYPXF1XC3cUf4qHDYW9jLHRIR5YHX72KYCWT06NH49ttvIYRQJX89evTAli1b9Cr5IyJ63W8Bv8HT3hPRidH4eMfH4EybRFRaFctUcF9++SU+++wzCCHQu3dv1fOBRET6zFphjQ29NsDEyARbr27F2oi1codERJSnAt8CNjY21n7lkoTMTN19Y45dyESUl9nHZ+PLw1/CRmGDiFERqFS2ktwhEdEreP0uRA+gEKJYFiIifTO56WQ0rtAYicpEDNk+BNkiW+6QiIjUFPi+7PTp04szDiIivWFiZII1761BvSX1cPTOUcw/PR8TGk+QOywiIhWtvwVsSNiFTERvsixsGT7e+THMjM0Q9nEYvJ285Q6JiMDrN1BML4EQERHwkd9H6FK9C9Kz0vH+tveRnpUud0hERACYABIRFRtJkrCs6zI4WDrg4qOLnCWEiEoNJoBERMXIpYwLFndeDAAIOhGECzEXZI6IiEgLCWBSUhK++eYbfPPNN4iNjX1r+ZiYGFX51NRUTasnIir1env1Rm+v3sjMzsTQ7UN5K5iIZKdxAvj3339jxowZWLduHVxcXN5a3sXFBevWrcPMmTOxY8cOTasnItIJC99diHIW5XDx0UXMOTFH7nCIyMBpnABu27YNkiShb9++BSovSRL69+8PIQS2bNmiafVERDrBycoJC95dAAD49ti3iHgUIXNERGTINE4A//vvPwBAkyZNCrxP48aNAQBXrlzRtHoiIp3Rr3Y/9KjZQ3UrOCMrQ+6QiMhAaZwA3r9/HwDg6upa4H1ybhU/ePBA0+qJiHSGJElY3Hkx7MztcD7mPH44+YPcIRGRgdI4ATQyenmIlJSUAu+TU1aX5wEmIioKlzIu+DXgVwAvbwVff3pd5oiIyBBpnADm9PydO3euwPvklC3ISyNERPpmkM8gdKzaEcosJUbtHMV50YmoxGmcADZv3hxCCCxatAgZGW9/niUjIwOLFi2CJElo1qyZptUTEemcnFvBFiYWOHLnCNZcXCN3SERkYDROAIcOHQoAuHHjBgYOHPjGW8EpKSkYMGAArl+/rrYvEZGh8bDzwIxWMwAAE/dPxJOUJ/IGREQGRRJauPcwcOBAbNy4EZIkoXz58hgxYgRatGgBV1dXSJKEhw8f4tixY1i+fLnqpZHevXtj06ZNGjdATpxMmog0kZGVgfrL6iPiUQQ+rPshVvdYLXdIRAaB128tJYBpaWno1q0bDh48CEmS8i2XU1X79u2xfft2mJuba1q1rPgBIiJN/Xv/XzRe0RgCAgc/OIi2VdrKHRKR3uP1W0tzAZubm2Pfvn2YN28e3NzcIITIc3F3d8evv/6KvXv36nzyR0SkDQ0rNMSYd8YAAEbtGoW0zDSZIyIiQ6CVHsBXCSEQHh6OCxcu4MmTl8+0ODg4wM/PD3Xr1n1jD6Gu4TcIItKGRGUiai2shYdJDzGj5QxMbzVd7pCI9Bqv31rqAXyVJEnw9fXFsGHDMHnyZEyePBnDhg1DvXr1tJb8LV68GHXq1IGNjQ1sbGzQuHFj7NmzR7VdCIEZM2bAzc0NFhYWaNWqFS5fvqx2DKVSifHjx8PBwQFWVlbo1q2b6vlEIqKSZKOwwbyO8wAAc07OwZ3nd+QNiIj0ntYTwJJQoUIFzJkzB+fOncO5c+fQpk0bdO/eXZXk/fDDD5g7dy4WLFiAs2fPwsXFBe3bt0dSUpLqGIGBgQgODsbGjRtx4sQJJCcno0uXLsjKypKrWURkwPp49UHryq2RlpmGCfsmyB0OEem5At8CvnfvnurnihUr5rm+KF49libs7e3x448/YtiwYXBzc0NgYCCmTJkC4GVvn7OzM77//nuMHDkSCQkJcHR0xNq1a9GvXz8AwMOHD+Hu7o7du3ejY8eOBaqTXchEpE2X4y6j7pK6yBJZ2DtoLzpWK9j/RURUOLx+AyYFLejh4QHg5S3eV6dwy1lfFK8fqyiysrKwZcsWvHjxAo0bN0ZUVBRiY2PRoUMHVRmFQoGWLVsiNDQUI0eORFhYGDIyMtTKuLm5wdvbG6GhoQVOAImItKm2U2180vATzDs9D5/s/QSXRl+CmbGZ3GERkR4q8C3gV9/mzW99UZaiunTpEsqUKQOFQoFRo0YhODgYXl5eiI2NBQA4OzurlXd2dlZti42NhZmZGezs7PItkxelUonExES1hYhIm6a3nA5nK2dcf3od80/PlzscItJTBe4BXLlyZaHWF7caNWogPDwcz58/x9atWzF48GCEhISotr/+wokQ4q0vobytTFBQEGbOnKlZ4EREb2Brbosf2v+AwX8Pxjch32CQzyCUtykvd1hEpGe0PgyMXNq1a4eqVatiypQpqFq1Ks6fPw9fX1/V9u7du6Ns2bJYvXo1Dh8+jLZt2+LZs2dqvYB169ZFjx498k3ylEollEql6vfExES4u7sb9DMERKR92SIbzVc2R2h0KAZ4D8D6XuvlDolIr/AZQB19CzgvQggolUp4eHjAxcUFBw4cUG1LT09HSEgImjRpAgDw9/eHqampWpmYmBhERkaqyuRFoVCohp7JWYiItM1IMsKCgAWQIGFD5Aacvn9a7pCISM8U+BZwaTJt2jQEBATA3d0dSUlJ2LhxI44ePYq9e/dCkiQEBgZi9uzZ8PT0hKenJ2bPng1LS0sMHDgQAGBra4vhw4dj4sSJKFeuHOzt7fH555/Dx8cH7dq1k7l1RESAr6svhtYbij/C/8CEfRNwcthJvRpIn4jkpZMJ4KNHj/DBBx8gJiYGtra2qFOnDvbu3Yv27dsDACZPnozU1FSMGTMG8fHxaNiwIfbv3w9ra2vVMebNmwcTExP07dsXqampaNu2LVatWgVjY2O5mkVEpObbNt9i4+WNOHX/FP668hf61O4jd0hEpCe0/gxgUlISoqKikJSUVKBBlVu0aKHN6ksUnyEgouI24+gMzAyZiSp2VXBlzBUoTBRyh0Sk83j91mIP4LJly7Bo0SJEREQUeB9tjANIRKTPJjWZhKVhS3E7/jYWnl2ICY05SwgRaU7jl0CysrLQo0cPjBo1ChERESU2DiARkSGwMrPCt62/BQB8e+xbPE15KnNERKQPNO4BXLJkCf755x8ALwdSHjp0KPz9/WFvbw8jI715yZiISDZD6g3Br2d+RcSjCHx77FvM7zRf7pCISMdp/Axgw4YNcfbsWXh5eeH48eO5ZtfQZ3yGgIhKyoFbB9Dhzw4wMTLBlTFX4FnOU+6QiHQWr99auAV89epVSJKEr776yqCSPyKiktS+ant0qtYJmdmZ+Pro13KHQ0Q6Tmv3aGvUqKGtQxERUR6C2gYBADZGbkTEo4K/cEdE9DqNE0BPz5e3IZ49e6ZxMERElL96LvXQt3ZfAMBXR76SORoi0mUaJ4D9+/eHEAI7d+7URjxERPQGM1vNhJFkhH+u/YN/7/8rdzhEpKM0TgA/+eQT1KlTB4sXL8bx48e1ERMREeWjpkNNfFj3QwDA/478T+ZoiEhXaZwAKhQK7N+/H/7+/mjfvj0mT56M8PBwpKWlaSM+IiJ6zfSW02FqZIqDtw/i6J2jcodDRDqowMPAFGSOXCFEoSYr1/WZQPgaORHJZeyusVh0bhGauDfBiaEnCvV/L5Gh4/W7ED2ABZ3VgzOBEBEVvy9bfAlzE3OERodiz809codDRDqmwDOBTJ8+vTjjICKiQnCzdsO4d8bhp1M/4X+H/4eAagHsBSSiAtN4JhBDxi5kIpLTk5Qn8PjFA8npydg5YCc6V+8sd0hEOoHXby0OBE1ERCXLwdIBo/xHAQBmHZ/Fx2qIqMA0TgCPHTuGY8eOITU1tcD7pKWlqfYjIqKim9B4AhTGCpy6fwohd0PkDoeIdITGCWCrVq3Qpk0bREVFFXifBw8eqPYjIqKic7V2xXDf4QBe9gISERWEVm4BF/W2A29XEBFpblLTSTCWjHHw9kGceXBG7nCISAfI8gxgdnY2gIKNLUhERG9WuWxlvF/nfQDA7OOzZY6GiHSBLAngnTt3AAC2trZyVE9EpHemNpsKCRK2X9uOS48uyR0OEZVyBR4HMMe9e/fyXB8TE4MyZcq8cV+lUolbt27hq6++giRJqF27dmGrJyKiPNRwqIHeXr2x5coWBJ0Iwvpe6+UOiYhKsUKPA/j6bduc3YsyAOmyZcswbNiwQu9XWnAcISIqTS7EXIDfUj8YSUa4Nu4aqtlXkzskolKJ1+8i3ALObyq3wkz/plAoMGnSJJ1O/oiIShtfV1+86/kuskU2fg79We5wiKgUK3QP4OrVq9V+Hzp0KCRJwrfffovy5cvnX5EkwdzcHK6urvD19X3r7WJdwG8QRFTaHL1zFK1Xt4alqSXuf3YfdhZ2codEVOrw+q2FqeCMjIwgSRIuXboELy8vbcWlE/gBIqLSRgiBer/XQ8SjCPzQ7gdMajpJ7pCISh1ev7XwFvCRI0dw+PBheHh4aCMeIiLSgCRJCGwYCAD47cxvyMzOlDcgIiqVNE4AW7ZsiZYtW8LCwkIb8RARkYYG+AyAo6UjohOjEXw1WO5wiKgUkmUcQCIiKj7mJuYYVX8UAOCXf3+RORoiKo2YABIR6aHR9UfD1MgUJ6NP4uyDs3KHQ0SlDBNAIiI95Grtin7e/QCwF5CIcmMCSESkp3JeBtl8eTMeJj2UNxgiKlWYABIR6Sl/N380q9gMGdkZWHx2sdzhEFEpwgSQiEiPfdrwUwDAkrAlSMtMkzkaIiotmAASEemxHjV7oIJNBTxJeYJtV7fJHQ4RlRJMAImI9JiJkQk+8v0IALA0bKnM0RBRacEEkIhIzw33Gw4jyQghd0Pw35P/5A6HiEoBrSaA2dnZOHz4MGbNmoXx48dj+PDhiImJUSuTnp6OlJQUKJXKItcTFBSEd955B9bW1nByckKPHj1w7do1tTJCCMyYMQNubm6wsLBAq1atcPnyZbUySqUS48ePh4ODA6ysrNCtWzfcv3+/yHEREZVGFWwqoEv1LgDYC0hEL2ktAdy1axc8PT3Rvn17fP3111i0aBFWrVqF+Ph4tXIrVqxQJW4vXrwoUl0hISEYO3YsTp8+jQMHDiAzMxMdOnRQO94PP/yAuXPnYsGCBTh79ixcXFzQvn17JCUlqcoEBgYiODgYGzduxIkTJ5CcnIwuXbogKyuraH8EIqJSaqT/SADA6our+TIIEQFCC5YtWyaMjIyEJElCkiTh6OgoJEkSRkZG4vLly2pllUqlsLe3F0ZGRmLt2rXaqF7ExcUJACIkJEQIIUR2drZwcXERc+bMUZVJS0sTtra2YsmSJUIIIZ4/fy5MTU3Fxo0bVWUePHggjIyMxN69ewtUb0JCggAgEhIStNIOIqLikpmVKSrOqygwA2JdxDq5wyGSFa/fQmjcA3jz5k2MHTsWANCmTRtcuXIFcXFx+ZY3MzNDr169IITA/v37Na0eAJCQkAAAsLe3BwBERUUhNjYWHTp0UJVRKBRo2bIlQkNDAQBhYWHIyMhQK+Pm5gZvb29VmdcplUokJiaqLUREusDYyBhD6w0FAKwKXyVvMEQkO40TwPnz5yMjIwO1a9fG7t27UbNmzbfu07x5cwBAeHi4ptVDCIEJEyagWbNm8Pb2BgDExsYCAJydndXKOjs7q7bFxsbCzMwMdnZ2+ZZ5XVBQEGxtbVWLu7u7xvETEZWUwXUHAwAO3j6Iewn3ZI6GiOSkcQJ46NAhSJKEwMBAmJmZFWifqlWrAgDu3dP8P6Bx48YhIiICGzZsyLVNkiS134UQuda97k1lpk6dioSEBNUSHR1d9MCJiEqYh50HWlVuBQGBtRfXyh0OEclI4wQwJwmqV69egfexsrICAKSkpGhU9/jx4/HPP//gyJEjqFChgmq9i4sLAOTqyYuLi1P1Crq4uCA9PT3XSyqvlnmdQqGAjY2N2kJEpEuG1B0CAFh1cRWEEPIGQ0Sy0TgBzOktK8x/JI8fPwaAIidQQgiMGzcO27Ztw+HDh+Hh4aG23cPDAy4uLjhw4IBqXXp6OkJCQtCkSRMAgL+/P0xNTdXKxMTEIDIyUlWGiEjf9PbqjTJmZXDz2U2cuHdC7nCISCYaJ4Bubm4AgOvXrxd4n5CQEABA5cqVi1Tn2LFj8eeff2L9+vWwtrZGbGwsYmNjkZqaCgCqW9KzZ89GcHAwIiMjMWTIEFhaWmLgwIEAAFtbWwwfPhwTJ07EoUOHcOHCBbz//vvw8fFBu3btihQXEVFpZ2Vmhb5efQEAay6ukTkaIpKLxglgixYtIITA+vXrC1T+yZMn+P333yFJEtq0aVOkOhcvXoyEhAS0atUKrq6uqmXTpk2qMpMnT0ZgYCDGjBmD+vXr48GDB9i/fz+sra1VZebNm4cePXqgb9++aNq0KSwtLbFjxw4YGxsXKS4iIl3wfp33AQBbr26FMrPog/ITke6ShIYPgZw9exYNGzaEJElYvnw5hg59OcyAkZERJEnCpUuX4OXlBQC4f/8+evbsiXPnzsHExARXrlxBtWrVNG+FTBITE2Fra4uEhAQ+D0hEOiMrOwsV51fEw6SH2N5/O7rV6CZ3SEQlitdvLfQAvvPOOxg1ahSEEPjoo4/Qp08fbN68WbU9IiICmzZtwvDhw1GjRg2EhYVBkiRMnDhRp5M/IiJdZWxkjP61+wMA1l8q2N0bItIvGvcAAkBWVhaGDRuGtWvXvnGYlZyqhgwZghUrVrx1SJbSjt8giEhXhT0MQ/1l9WFhYoG4SXEoY1ZG7pCISgyv31qaC9jY2BirV6/Gli1b4OvrCyFEnouXlxfWr1+PP/74Q+eTPyIiXebn6ofq5aojNTMV2//bLnc4RFTCtNID+LqHDx/i3LlziIuLQ1ZWFsqVKwdfX1/VAND6gt8giEiXzTg6AzNDZuJdz3exa+AuucMhKjG8fhdTAmgo+AEiIl3235P/UGthLZgamSJuUhzKmpeVOySiEsHrt5ZuARMRke6p6VATXo5eyMjOwM7rO+UOh4hKkMYJYFJSEr755ht88803uaZey0tMTIyqfM7AzUREJI9etXoBeDkmIBEZDo0TwL///hszZszAunXrVHPwvomLiwvWrVuHmTNnYseOHZpWT0REGshJAPfe3Ivk9GSZoyGikqJxArht2zZIkoS+ffsWqLwkSejfvz+EENiyZYum1RMRkQbqONdBFbsqSMtMw96be+UOh4hKiMYJ4H///QcAaNKkSYH3ady4MQDgypUrmlZPREQakCSJt4GJDJDGCeD9+/cBAK6urgXeJ+dW8YMHDzStnoiINJSTAO68vhNpmWkyR0NEJUHjBNDI6OUhUlJSCrxPTtnMzExNqyciIg29U/4duFm7ITk9GcfuHpM7HCIqARongDk9f+fOnSvwPjllC/LSCBERFS8jyQjvVnsXALDrOgeEJjIEGieAzZs3hxACixYtQkZGxlvLZ2RkYNGiRZAkCc2aNdO0eiIi0oLO1TsDAHbd2AXOD0Ck/zROAIcOHQoAuHHjBgYOHPjGW8EpKSkYMGAArl+/rrYvERHJq61HW5gameJW/C1cf3pd7nCIqJhpnAA2adJENazLtm3bULNmTXz77bcICQnB9evXcePGDYSEhODbb79FrVq1EBwcDEmS0Lt3b7Rs2VIbbSAiIg1ZK6zRsvLL/5N339gtczREVNy0MhdwWloaunXrhoMHD0KSpHzL5VTVvn17bN++Hebm5ppWLSvOJUhE+mT+6fn4bN9naOvRFgc/PCh3OETFhtdvLc0FbG5ujn379mHevHlwc3ODECLPxd3dHb/++iv27t2r88kfEZG+6ez58jnAY3ePIUmZJHM0RFSctNID+CohBMLDw3HhwgU8efIEAODg4AA/Pz/UrVv3jT2EuobfIIhI31T/rTpuPLuBbX234b1a78kdDlGx4PUbMNH2ASVJgq+vL3x9fbV9aCIiKmYdq3bEjWc3cCjqEBNAIj2mlVvARESkH9p4tAEAHI46LHMkRFScmAASEZFKy8otIUHC1SdXEZMUI3c4RFRMCnwL+N69e6qfK1asmOf6onj1WEREJC97C3v4uvrifMx5HLlzBAN9BsodEhEVgwIngB4eHgBePuP36hy+OeuL4vVjERGR/NpUboPzMedxOOowE0AiPVXgW8CvDueS3/qiLEREVLq0rdIWAHAo6pDMkRBRcSlwD+DKlSsLtZ6IiHRTs4rNYGJkgjvP7yAqPgoedkW/00NEpZPWxwE0JBxHiIj0VbM/muFk9Eks77ocw/2Gyx0OkVbx+s23gImIKA85w8EcvXtU3kCIqFgwASQiolyaujcFAJyKPiVzJERUHJgAEhFRLg3KNwAA3Iq/hccvHsscDRFpGxNAIiLKxc7CDrUcagEATt8/LXM0RKRtTACJiChPjSo0AsAEkEgfMQEkIqI8Na7QGABw6j6fAyTSN0wAiYgoTzk9gGcenEFWdpbM0RCRNjEBJCKiPHk5esHazBovMl4gMi5S7nCISIt0MgE8duwYunbtCjc3N0iShL///lttuxACM2bMgJubGywsLNCqVStcvnxZrYxSqcT48ePh4OAAKysrdOvWDffv3y/BVhARlW7GRsaqt4H5HCCRftHJBPDFixeoW7cuFixYkOf2H374AXPnzsWCBQtw9uxZuLi4oH379khKSlKVCQwMRHBwMDZu3IgTJ04gOTkZXbp0QVYWb3MQEeXIuQ3M5wCJ9EuB5wIuTQICAhAQEJDnNiEE5s+fjy+//BI9e/YEAKxevRrOzs5Yv349Ro4ciYSEBKxYsQJr165Fu3btAAB//vkn3N3dcfDgQXTs2LHE2kJEVJrlvAjCHkAi/VLgBPDevXvFEkDFihW1eryoqCjExsaiQ4cOqnUKhQItW7ZEaGgoRo4cibCwMGRkZKiVcXNzg7e3N0JDQ5kAEhH9f36ufgCAG89uIDUjFRamFjJHRETaUOAE0MPDQ+uVS5KEzMxMrR4zNjYWAODs7Ky23tnZGXfv3lWVMTMzg52dXa4yOfvnRalUQqlUqn5PTEzUVthERKWSSxkXlLMoh6epT3Hl8RX4u/nLHRIRaUGBnwEUQhTLUlwkScoV/+vr8mrjm8oEBQXB1tZWtbi7u2slViKi0kqSJPg4+wAALsVdkjkaItKWAvcArly5sjjj0BoXFxcAL3v5XF1dVevj4uJUvYIuLi5IT09HfHy8Wi9gXFwcmjRpku+xp06digkTJqh+T0xMZBJIRHrPx8kHR+8cxaVHTACJ9EWBE8DBgwcXZxxa4+HhARcXFxw4cAC+vr4AgPT0dISEhOD7778HAPj7+8PU1BQHDhxA3759AQAxMTGIjIzEDz/8kO+xFQoFFApF8TeCiKgU8XFiDyCRvtHJt4CTk5Nx8+ZN1e9RUVEIDw+Hvb09KlasiMDAQMyePRuenp7w9PTE7NmzYWlpiYEDBwIAbG1tMXz4cEycOBHlypWDvb09Pv/8c/j4+KjeCiYiopdybgFzMGgi/aGTCeC5c+fQunVr1e85t2UHDx6MVatWYfLkyUhNTcWYMWMQHx+Phg0bYv/+/bC2tlbtM2/ePJiYmKBv375ITU1F27ZtsWrVKhgbG5d4e4iISrPajrUBADHJMXia8hTlLMvJHBERaUoSxfkmhp5LTEyEra0tEhISYGNjI3c4RETFpsovVRD1PApHBh9Bq8qt5A6HSCO8fmu5B1AIgfDwcFy8eBFPnjxBamrqW9/0/frrr7UZAhERFQNvJ29EPY/CpUeXmAAS6QGtJYCrV6/GzJkzVWPtFRQTQCKi0s/HyQc7ru/giyBEekIrCeCXX36JOXPmFGhcP0mSinX8PyIi0j6OBUikXwo8EHR+/v33XwQFBQEA2rdvj/DwcJw/fx7Ay2QvKysLT548wd69e9G9e3cIIdCsWTPExMQgOztb0+qJiKgE5AwFExkXyS/xRHpA4wRw8eLFAIBKlSph165dqFOnDkxNTVXbJUmCvb09OnTogODgYCxcuBAnTpxAp06dkJ6ermn1RERUAqqXqw5TI1MkpycjOjFa7nCISEMaJ4ChoaGQJAmffPIJTEzefkd59OjR6NWrFyIiIrBo0SJNqyciohJgamwK5zIvZ1N6/OKxzNEQkaY0TgBjYmIAALVr1/6/gxr932EzMjJy7fPBBx9ACIFNmzZpWj0REZWQsuZlAQDP057LGgcRaU7jBDAnwXNyclKtK1OmjOrnx49zf1PMmT/31dk8iIiodMtJAOPT4uUNhIg0pnEC6OjoCODloIo5nJ2dVTNqXL16Ndc+Ob2GSUlJmlZPREQlxM7cDgB7AIn0gcYJYM6t3//++0+1zszMTLU+r9u869atAwC4ublpWj0REZUQ3gIm0h8aJ4DNmzeHEAJHjhxRW9+vXz8IIfDHH3/g66+/xuXLl3H27FmMGzcOGzZsgCRJCAgI0LR6IiIqIUwAifSHxglgjx49AAA7d+5Uuw386aefonLlysjOzsasWbNQp04dNGrUSDVsjJ2dHaZOnapp9UREVEJUzwCm8hlAIl2nlVvAR44cQXBwMDIzM1XrLS0tceTIETRt2hRCCLXF29sbhw4dQoUKFTStnoiISojqGUDlc3kDISKNaWUquJYtW+a5vlKlSjh+/DiuXbuGy5cvIzMzE56envD19dVGtUREVIJ4C5hIf2glAXybGjVqoEaNGiVRFRERFRMmgET6Q+NbwEREZBj4DCCR/mACSEREBWJnwXEAifSF1m8BJyUlISoqCklJScjKynpr+RYtWmg7BCIiKga8BUykP7SWAC5btgyLFi1CREREgfeRJEntzWEiIiq9chLA1MxUKDOVUJgo5A2IiIpM4wQwKysLvXr1wo4dOwAAQgiNgyIiotLHRmEDCRIEBJ6nPYdzGWe5QyKiItI4AVyyZAn++ecfAC/nAB46dCj8/f1hb28PIyM+YkhEpC+MJCPYmtviedpzJoBEOk7jBHDNmjUAAC8vLxw/fhx2dnYaB0VERKVTWfOyqgSQiHSXxl10V69ehSRJ+Oqrr5j8ERHpOdVQMGkcCoZIl2ntHi0HeiYi0n98E5hIP2icAHp6egIAnj17pnEwRERUuqnmA2YCSKTTNE4A+/fvDyEEdu7cqY14iIioFGMPIJF+0DgB/OSTT1CnTh0sXrwYx48f10ZMRERUSnE6OCL9oHECqFAosH//fvj7+6N9+/aYPHkywsPDkZaWpo34iIioFOEtYCL9oPEwMMbGxqqfhRD4+eef8fPPPxdoX84EQkSkW1S3gJXPZY2DiDSjcQL4+swfnAmEiEh/8RlAIv2gcQI4ffp0bcRBREQ6gM8AEukHJoBERFRgdhZ8BpBIH3CyXiIiKjDeAibSD0wAiYiowF5NAPnMN5HuYgJIREQFlpMAZmRnICUjRd5giKjICvwM4L1791Q/V6xYMc/1RfHqsYiIqHSzMrWCiZEJMrMz8TztOazMrOQOiYiKoMAJoIeHB4DcY/flrC+K0jAO4KJFi/Djjz8iJiYGtWvXxvz589G8eXNZYyIiKq0kSUJZ87J4kvIEz9Oeo7xNeblDIqIiKPAtYCGEaslvfVEWOW3atAmBgYH48ssvceHCBTRv3hwBAQEa92oSEekzvghCpPsK3AO4cuXKQq3XBXPnzsXw4cPx0UcfAQDmz5+Pffv2YfHixQgKCpI5OiKi0kk1FmAaxwIk0lUFTgDt7F6O/dS2bVu19YMHD9ZuRCUkPT0dYWFh+OKLL9TWd+jQAaGhoXnuo1QqoVQqVb8nJiYWa4xERKVRznzAc07MwcbIjTJHQ/quZ62e6Fmrp9xh6J0CJ4A9evSAkZERIiIi4OXlpVo/bNgwSJKE7777Dq6ursUSZHF48uQJsrKy4OzsrLbe2dkZsbGxee4TFBSEmTNnlkR4RESlViXbSgCAk9EncTL6pMzRkL7ztPdkAlgMCjUTSF7P7K1atQqSJGHixIk6lQDmkCRJ7XchRK51OaZOnYoJEyaofk9MTIS7u3uxxkdEVNrMajsLvq6+UGYq316YSEONKjSSOwS9VOAEUKFQID09HcnJycUZT4lxcHCAsbFxrt6+uLi4XL2CORQKBRQKRUmER0RUajlZOWHMO2PkDoOINFDgt4DLl3/5qv/x48eLLZiSZGZmBn9/fxw4cEBt/YEDB9CkSROZoiIiIiIqfgXuAWzbti2WLVuGadOm4cyZM6hevTpMTU1V2xctWgQnJ6dCB/D1118Xeh9tmTBhAj744APUr18fjRs3xtKlS3Hv3j2MGjVKtpiIiIiIipskCjgYX3R0NPz8/PD06VO1Z+Ryds/vubm3ycrKKtJ+2rJo0SL88MMPiImJgbe3N+bNm4cWLVoUaN/ExETY2toiISEBNjY2xRwpERERaQOv34VIAIGXSeC3336LQ4cO4cGDB0hPT4ckSRoN6JydnV3kfeXGDxAREZHu4fW7kAlgXoyMjCBJEi5duqQ2PIwh4AeIiIhI9/D6XYiXQIiIiIhIPxRqHMC85EwFV6FCBY2DISIiIqLip3ECqKtTwREREREZKt4CJiIiIjIwTACJiIiIDAwTQCIiIiIDwwSQiIiIyMAwASQiIiIyMBq/BWzIcsbQTkxMlDkSIiIiKqic67aGc2HoNCaAGkhKSgIAuLu7yxwJERERFVZSUhJsbW3lDkMWGk8FZ8iys7Px8OFDWFtbQ5IkrR47MTER7u7uiI6O1stpatg+3afvbWT7dJ++t5HtKzohBJKSkuDm5gYjI8N8Go49gBowMjIq9hlQbGxs9PIfdg62T/fpexvZPt2n721k+4rGUHv+chhm2ktERERkwJgAEhERERkYJoCllEKhwPTp06FQKOQOpViwfbpP39vI9uk+fW8j20ea4EsgRERERAaGPYBEREREBoYJIBEREZGBYQJIREREZGCYABIREREZGCaApdCiRYvg4eEBc3Nz+Pv74/jx43KHlMuMGTMgSZLa4uLiotouhMCMGTPg5uYGCwsLtGrVCpcvX1Y7hlKpxPjx4+Hg4AArKyt069YN9+/fVysTHx+PDz74ALa2trC1tcUHH3yA58+fF0ubjh07hq5du8LNzQ2SJOHvv/9W216Sbbp37x66du0KKysrODg44JNPPkF6enqxtm/IkCG5zmmjRo10pn1BQUF45513YG1tDScnJ/To0QPXrl1TK6PL57Ag7dP1c7h48WLUqVNHNfBv48aNsWfPHtV2XT5/BWmfrp+/1wUFBUGSJAQGBqrW6fo51CuCSpWNGzcKU1NTsWzZMnHlyhXx6aefCisrK3H37l25Q1Mzffp0Ubt2bRETE6Na4uLiVNvnzJkjrK2txdatW8WlS5dEv379hKurq0hMTFSVGTVqlChfvrw4cOCAOH/+vGjdurWoW7euyMzMVJXp1KmT8Pb2FqGhoSI0NFR4e3uLLl26FEubdu/eLb788kuxdetWAUAEBwerbS+pNmVmZgpvb2/RunVrcf78eXHgwAHh5uYmxo0bV6ztGzx4sOjUqZPaOX369KlamdLcvo4dO4qVK1eKyMhIER4eLjp37iwqVqwokpOTVWV0+RwWpH26fg7/+ecfsWvXLnHt2jVx7do1MW3aNGFqaioiIyOFELp9/grSPl0/f686c+aMqFy5sqhTp4749NNPVet1/RzqEyaApUyDBg3EqFGj1NbVrFlTfPHFFzJFlLfp06eLunXr5rktOztbuLi4iDlz5qjWpaWlCVtbW7FkyRIhhBDPnz8XpqamYuPGjaoyDx48EEZGRmLv3r1CCCGuXLkiAIjTp0+rypw6dUoAEP/9918xtOr/vJ4glWSbdu/eLYyMjMSDBw9UZTZs2CAUCoVISEgolvYJ8fLi071793z30aX2CSFEXFycACBCQkKEEPp3Dl9vnxD6dw6FEMLOzk4sX75c787f6+0TQn/OX1JSkvD09BQHDhwQLVu2VCWA+noOdRVvAZci6enpCAsLQ4cOHdTWd+jQAaGhoTJFlb8bN27Azc0NHh4e6N+/P27fvg0AiIqKQmxsrFo7FAoFWrZsqWpHWFgYMjIy1Mq4ubnB29tbVebUqVOwtbVFw4YNVWUaNWoEW1vbEv97lGSbTp06BW9vb7i5uanKdOzYEUqlEmFhYcXazqNHj8LJyQnVq1fHiBEjEBcXp9qma+1LSEgAANjb2wPQv3P4evty6Ms5zMrKwsaNG/HixQs0btxY787f6+3LoQ/nb+zYsejcuTPatWuntl7fzqGuM5E7APo/T548QVZWFpydndXWOzs7IzY2Vqao8tawYUOsWbMG1atXx6NHj/Ddd9+hSZMmuHz5sirWvNpx9+5dAEBsbCzMzMxgZ2eXq0zO/rGxsXBycspVt5OTU4n/PUqyTbGxsbnqsbOzg5mZWbG2OyAgAH369EGlSpUQFRWFr776Cm3atEFYWBgUCoVOtU8IgQkTJqBZs2bw9vZW1ZsT7+vx69o5zKt9gH6cw0uXLqFx48ZIS0tDmTJlEBwcDC8vL9WFXdfPX37tA/Tj/G3cuBHnz5/H2bNnc23Tp3+D+oAJYCkkSZLa70KIXOvkFhAQoPrZx8cHjRs3RtWqVbF69WrVQ8tFacfrZfIqL+ffo6TaJEe7+/Xrp/rZ29sb9evXR6VKlbBr1y707Nkz3/1KY/vGjRuHiIgInDhxItc2fTiH+bVPH85hjRo1EB4ejufPn2Pr1q0YPHgwQkJC8q1X185ffu3z8vLS+fMXHR2NTz/9FPv374e5uXm+5XT9HOoL3gIuRRwcHGBsbJzr20lcXFyubzKljZWVFXx8fHDjxg3V28BvaoeLiwvS09MRHx//xjKPHj3KVdfjx49L/O9Rkm1ycXHJVU98fDwyMjJKtN2urq6oVKkSbty4oYpLF9o3fvx4/PPPPzhy5AgqVKigWq8v5zC/9uVFF8+hmZkZqlWrhvr16yMoKAh169bFL7/8ojfnL7/25UXXzl9YWBji4uLg7+8PExMTmJiYICQkBL/++itMTExUx9b1c6gvmACWImZmZvD398eBAwfU1h84cABNmjSRKaqCUSqVuHr1KlxdXeHh4QEXFxe1dqSnpyMkJETVDn9/f5iamqqViYmJQWRkpKpM48aNkZCQgDNnzqjK/Pvvv0hISCjxv0dJtqlx48aIjIxETEyMqsz+/fuhUCjg7+9frO181dOnTxEdHQ1XV1cApb99QgiMGzcO27Ztw+HDh+Hh4aG2XdfP4dvalxddO4d5EUJAqVTq/Pl7W/vyomvnr23btrh06RLCw8NVS/369TFo0CCEh4ejSpUqenkOdVYxv2RChZQzDMyKFSvElStXRGBgoLCyshJ37tyROzQ1EydOFEePHhW3b98Wp0+fFl26dBHW1taqOOfMmSNsbW3Ftm3bxKVLl8SAAQPyfNW/QoUK4uDBg+L8+fOiTZs2eb7qX6dOHXHq1Clx6tQp4ePjU2zDwCQlJYkLFy6ICxcuCABi7ty54sKFC6oheEqqTTnDF7Rt21acP39eHDx4UFSoUEHj4Qve1L6kpCQxceJEERoaKqKiosSRI0dE48aNRfny5XWmfaNHjxa2trbi6NGjasNopKSkqMro8jl8W/v04RxOnTpVHDt2TERFRYmIiAgxbdo0YWRkJPbv3y+E0O3z97b26cP5y8urbwELofvnUJ8wASyFFi5cKCpVqiTMzMyEn5+f2jAPpUXO2E2mpqbCzc1N9OzZU1y+fFm1PTs7W0yfPl24uLgIhUIhWrRoIS5duqR2jNTUVDFu3Dhhb28vLCwsRJcuXcS9e/fUyjx9+lQMGjRIWFtbC2trazFo0CARHx9fLG06cuSIAJBrGTx4cIm36e7du6Jz587CwsJC2Nvbi3Hjxom0tLRia19KSoro0KGDcHR0FKampqJixYpi8ODBuWIvze3Lq20AxMqVK1VldPkcvq19+nAOhw0bpvq/z9HRUbRt21aV/Amh2+fvbe3Th/OXl9cTQF0/h/pEEkKIkutvJCIiIiK58RlAIiIiIgPDBJCIiIjIwDABJCIiIjIwTACJiIiIDAwTQCIiIiIDwwSQiIiIyMAwASQiIiIyMEwAiYiIiAwME0AiIiIiA8MEkEiHrFq1CpIkQZIk3Llzp8DbiN5kyJAhqs/Oq4vcn6OjR4/mGdeMGTNkjYtIHzABJCIiIjIwTACJ6I3Ys2g43NzccOnSJdVSvnx5WeN555131OIhIu0xkTsAItKOIUOGYMiQIXKHQTrM1NQU3t7ecoehYmVlVariIdIn7AEkIiIiMjBMAImIiIgMDBNAolIkPj4eX3zxBWrWrAkLCws4OTmhXbt22LJly1v3Lcizeg8fPsQXX3wBPz8/2NrawszMDC4uLvDx8cGAAQOwatUqJCYmAvi/NzCHDh2q2t/DwyPXG5lHjx5VqyMyMhLfffcdOnbsiAoVKkChUKBMmTLw9PTE4MGDcfr06Te2Y8aMGapjA0BaWhp+/PFH+Pn5wdraGtbW1mjQoAEWLFiAzMzMt/5dAODkyZP46KOPUKNGDdjY2KBMmTKoWbMmevTogTVr1qjanJczZ85gxIgRqF69OsqUKQMrKyvUrFkTY8eOxY0bNwpUvyZevHgBZ2dnSJKEKlWqICMjI89yaWlpaNasGSRJgkKhyHVetOX185OYmIgZM2bAx8cHZcqUgbOzM959912Ehoaq7RcXF4f//e9/qF27NqysrFCuXDl0794dFy5cKJY4iegtBBGVCpcvXxaurq4CQJ7LsGHDxMqVK1W/R0VFqe3/pm1CCHHs2DFhY2OT7/Fzlh07dgghhDhy5MhbywIQR44cUdVR0H2++OKLfP8O06dPV5WLjY0VdevWzfc4Xbt2FVlZWfkeKyUlRQwYMOCt8UyfPj3XvhkZGWL06NFv3M/U1FQsXbr0jedVG+bPn6+qM6/6srOzRe/evQUAIUmS2LBhQ6GOP3jwYAFAVKpU6a1lXz0/9+7dE9WrV8/zb2NsbCw2b94shBDi4sWLonz58nmWUygU4tChQwWK803ni4gKhy+BEJUCCQkJ6NixI2JiYgAA/fr1w+DBg+Hk5ITr169j7ty5+OOPP4r8JqRSqUT//v2RmJgIa2trjB49Gq1bt4aTkxMyMjJw9+5dnDp1Clu3blXtk/MG5vbt2/G///0PALBv3z64ubmpHdvDw0P1c2ZmJqysrNC5c2e0adMGNWvWhI2NDeLi4nD58mX8+uuvuHv3LubMmYPq1aur9S7mpWfPnrh69So++eQTdO3aFfb29rh27Rq+/fZbXL16FTt27MCyZcswcuTIXPtmZ2eje/fuOHDgAADA09MTY8aMQf369WFpaYmYmBiEhoZi8+bNedY9fPhwrFmzBgAQEBCAQYMGoXr16pAkCeHh4Zg/fz4uX76Mjz/+GC4uLujatWsBzkTRjBo1CnPnzsW9e/cwa9YsDB48GGZmZqrtEydOxF9//QUA+PHHH9G/f/9ii+VVffr0wf379zF16lR06tQJlpaWOHHiBKZPn47ExEQMHz4c9evXR5cuXZCamopZs2ahZcuWMDU1xd69ezFr1iwolUoMHToUN27cUGsTERUzuTNQIhJiwoQJqt6N2bNn59qenp4uOnTooNZzUpgewEOHDuXq4ctLRkaGSEhIKPBxX/f48WMRHx+f73alUinat2+v6m3KzMzMVebVHiZTU1O1HsYcT58+Fc7OzgKAqFOnTp51vdpr9t5774m0tLQ8y2VlZYkHDx6orfvrr79U+y5btizP/VJTU0WbNm0EAFG5cmWRkZGRb7u1Yfny5aqYFi9erFr/ajsDAwOLdOyi9gAqFApx+vTpXGV27dqlKuPo6CgcHBzEzZs3c5VbuHChqty2bdveWndOWfYAEmmOCSCRzNLS0oSdnZ0qmcnvlmZ0dLQwNTUtUgK4bt061bbXE7y3KUwCWBDh4eGq4507dy7X9lcTjAkTJuR7nC+++EJV7vnz52rbsrKyVLccy5cvL5KSkgoVo7+/vypxfJMrV66oYjhw4ECh6iiszMxM1e1Wd3d3oVQqxdatW4WRkZEAIPr06fPG2+FvUtQEcMqUKfmWq1SpkqrckiVL8iyTkpIizM3NBQDx2WefvbVuJoBE2sOXQIhkFhYWhvj4eADA4MGDYWSU9z/LChUqoEOHDkWqw9XVVfXzypUri3SMolAqlbh37x6uXLmCyMhIREZGQgih2n7x4sU37j9o0KB8t/n7+6t+joqKUtsWHh6OBw8eAABGjBiBMmXKFDjmBw8eICwsDADQt2/fN5atVasWHBwcAACnTp0qcB1FYWxsjG+++QYAEB0djTFjxmDQoEHIzs5GixYtsHbt2nw/O8XlTbea69SpAwCQJCnfv6OFhQU8PT0BALdv39Z+gESULyaARDJ79bm+d955541lGzRoUKQ6mjVrhipVqgAAAgMD0aBBAwQFBSE0NBTp6elFOmZ+Xrx4gaCgINStWxdWVlaoVKkSateuDR8fH/j4+MDX11dV9smTJ288Vs2aNfPdZm9vr/o5KSlJbdurb5a2aNGiUPGfO3dO9fOAAQPynIv21SWnDbGxsYWqpyj69u2LevXqAQBWrFiBtLQ01K5dG9u3b4dCoSj2+l9XvXr1fLeVLVsWAODg4AA7O7u3lnv9HBJR8WICSCSznN4/AHBycnpjWWdn5yLVYWpqih07dqBWrVoAgLNnz2LatGlo2rQpypYti4CAAKxfvx5ZWVlFOn6OO3fuwMfHB9OmTUNERMRbj5eamvrG7ZaWlvlue7W36/V6Xk0sX+39LIi4uLhClc+RkpJSpP0KQ5IkjBgxQvW7k5MT9uzZo0qiSlpBzs+byrxaTtPPHhEVDt8CJpLZq7dEc8ZWK0jZwvLy8sKlS5ewY8cO7NixAyEhIbh16xZSU1Oxd+9e7N27F3PnzsXu3bvfmojm54MPPkBUVJRq/MD+/fujVq1acHR0VPVQZWdnw9jYWOP2FNTb/qavezURWbdunepW5tu8qZdLW27cuIHp06erfn/x4oUsPX9EpPuYABLJ7NVbmY8ePXrjbbWi9k7lMDY2Ro8ePdCjRw8AQExMDPbs2YNFixYhLCwMYWFhGDlyJIKDgwt97P/++w8nTpwAAEydOhWzZs3Ks9yrPZ7FJee5PODl4Nc1atQo8L7lypVT/SxJUqmZizYuLg6dOnXCkydPUK5cOTx9+hQvXrzArFmz8Msvv8gdHhHpGN4CJpKZj4+P6uezZ8++sezbtheWq6srhg0bhlOnTsHPzw8AsHPnTrVbswXtQbt8+bLq5ze9HPDqM3bFJactAHDs2LFC7fvqM4r79+/XWkyaePHiBTp37ozbt2+jTJky2L9/vyqJ//3333Hv3j15AyQincMEkEhm/v7+qtuHa9euzfe26IMHD4otITE1NUXLli0BvBzM+fnz56pt5ubmqp+VSmW+x3h1WrY3PQ+3ZMkSDSItmLp168Ld3R0AsHz5ciQnJxd432rVqsHLywsAsHHjRtmTq8zMTPTp0wfnzp2DiYkJNm/eDD8/P8ycOROSJEGpVGLmzJmyxkhEuocJIJHMFAqFakaM8PBw/Pjjj7nKZGZmYsSIEUV+Y/f48eO4efNmvtvT09MREhICAChTpgwcHR1V2159ieLWrVv5HiNnOA8AWL16dZ5lFi9ejL///rugYReZkZERJk2aBAC4f/8+Pvzww3z/dtnZ2Xj48KHaupyZT9LS0tCzZ088fvw437qUSiUWLVqEtLS0XNtatWr11vmZ32bUqFHYs2cPgJd/v4CAAAAvh1np1asXgJd/7+vXrxfp+ERkmJgAEpUCX3/9NSpUqAAAmDJlCgYOHIi9e/fi/Pnz2LhxI5o0aYI9e/a8dZiY/Bw6dAg1atRAq1at8OOPP2Lfvn04f/48Tp48iZUrV6J58+Y4f/48AOCjjz6Cicn/PR7s6+ur6gX86quvsH//fly/fh03b97EzZs3VbeLfX19Vc/LLV68GAMHDsSuXbtw/vx5bN++HX369MGYMWPQtGnTIv+dCmPs2LFo3749ACA4OBg+Pj745ZdfcPLkSVy4cAF79uzB9OnTUbNmTSxdulRt3wEDBmDw4MEAXo7T6OXlhf/97384cOAAwsPDcfLkSaxZswYjRoyAm5sbxo4dq9YDqi0zZszAihUrALz823/00Ue5thsZGSErKwtfffWV1usnIj0m6zDURKQSGRkpXFxc1KZ7e3UZOnToG2fleNO2V2dveNPSs2dPkZqamiu2yZMn57vPq1O1XbhwQTWrSV6Lj4+PePjw4RtndHg11jc5cuRInjG86sWLF6J3795vbXdecWRmZorJkycLY2Pjt+5vZWUlUlJSch2jQYMGqintnj59+sb2vO7Vqd8GDx6cb7n+/fsLAEKSJHHhwoVC1ZGjqDOBaOOYLVu2FABEy5Yt31r3m84XERUOewCJSonatWvj8uXLmDx5Mjw9PaFQKODg4IDWrVtj/fr1+OOPP4p87MmTJ2P37t347LPP0KhRI1SsWBHm5uYwNzdH5cqV0a9fP+zatQtbt25Ve+Yvx5w5c7Bs2TI0b94c9vb2qmFcXlevXj2Eh4dj1KhRqFSpEkxNTWFvb48GDRrgp59+wpkzZwo9Lp8mLC0tsWXLFhw+fBgffPABPDw8YGFhAWtra9SsWRM9e/bE+vXrVbeLX2VsbIzvv/8eV65cwcSJE+Hr6ws7OzsYGxvD2toatWvXxqBBg7B69WrExMTAwsJCbf+0tDSEh4cDAD788EO1t73fZvfu3Rg1ahQAoF27dli2bFm+ZadPnw5jY2MIIfDll18WuA4iMmz/D9HXnXI6ZJtKAAAAAElFTkSuQmCC", - "text/html": [ - "\n", - "
    \n", - "
    \n", - " Figure\n", - "
    \n", - " \n", - "
    \n", - " " - ], - "text/plain": [ - "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure()\n", - "plt.plot(x,H[-1,:], \n", - " color = 'green', \n", - " label = 'final ice thickness, $H(x,T)$');\n", - "plt.xlabel('distance, $x$ [m]', size = 20)\n", - "plt.ylabel('final ice thickness, $H(x,T)$', size = 20)\n", - "plt.show()\n" - ] - }, - { - "cell_type": "markdown", - "id": "a63f1985-ad05-4073-90bf-5780ec03173e", - "metadata": {}, - "source": [ - "We can also plot the thickness profile $H(x)$ from every 10,000th timestep. We see that the glacier grows from the initial conditions of $H(t=0,x) = e$ and advances until we get a characteristic convex ice-sheet shape. This is caused by the interplay of thinning towards the terminus, the dependence of flux on thickness, and the spatial variability of flux. " - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "id": "8d618a7e-60ec-4f1b-87a4-6ff307a71c40", - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "9992572154ee40fe827b67c49c5ce01f", - "version_major": 2, - "version_minor": 0 - }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddXgUV/v3z0rc3SAQElyCFXfX0uKUYkVL0VKKtaW4FClQ3ItbgVI8uFtwDQkQAgSJE8/u9/1j37l/e5IgfSBW7s91zfWwM2dmzs6ep/PNrSoAEAzDMAzDMMwngzqnJ8AwDMMwDMNkLywAGYZhGIZhPjFYADIMwzAMw3xisABkGIZhGIb5xGAByDAMwzAM84nBApBhGIZhGOYTgwUgwzAMwzDMJwYLQIZhGIZhmE8MFoAMwzAMwzCfGCwAGYZhGIZhPjFYADIMwzAMw3xisABkGIZhGIb5xGAByDAMwzAM84nBApBhGIZhGOYTgwUgwzAMwzDMJwYLQIZhGIZhmE8MFoAMwzAMwzCfGCwAGYZhGIZhPjFYADIMwzAMw3xisABkGIZhGIb5xGAByDAMwzAM84nBApBhGIZhGOYTgwUgwzAMwzDMJwYLQIZhGIZhmE8MFoAMwzAMwzCfGCwAGYZhGIZhPjFYADIMwzAMw3xisABkGIZhGIb5xGAByDAMwzAM84nBApBhGIZhGOYTgwUgwzAMwzDMJwYLQIZhGIZhmE8MFoAMwzAMwzCfGCwAGYZhGIZhPjFYADIMwzAMw3xisABkGIZhGIb5xGAByDAMwzAM84nBApBhGIZhGOYTgwUgwzAMwzDMJwYLQIZhGIZhmE8MFoAMwzAMwzCfGCwAGYZhGIZhPjFYADIMwzAMw3xisABkGIZhGIb5xGAByDAMwzAM84nBApBhGIZhGOYTgwUgwzAMwzDMJwYLQIZhGIZhmE8MFoAMwzAMwzCfGCwAGYZhGIZhPjFYADIMwzAMw3xisABkGIZhGIb5xGAByDAMwzAM84nBApBhGIZhGOYTgwUgwzAMwzDMJwYLQIZhGIZhmE8MbU5PIC+j1+vF06dPhY2NjVCpVDk9HYZhGIZh3gMAIi4uTnh6egq1+tO0hbEA/ACePn0q8ufPn9PTYBiGYRjmf+Dx48ciX758OT2NHIEF4AdgY2MjhDAsIFtb2xyeDcMwDMMw70NsbKzInz8/vcc/RVgAfgCK29fW1pYFIMMwDMPkMT7l8K1P0/HNMAzDMAzzCcMCkGEYhmEY5hODBSDDMAzDMMwnBgtAhmEYhmGYTwwWgAzDMAzDMJ8YLAAZhmEYhmE+MVgAMgzDMAzDfGKwAGQYhmEYhvnEYAHIMAzDMAzzicECkGEYhmEY5hODBSDDMAzDMMwnBgtAhmEYhmGYTwwWgLmQNm3aCAcHB9qKFi0qvvvuO3H8+HGRkpKS09NjGIZhGCaPowKAnJ5EXiU2NlbY2dmJmJgYYWtr+9Guq1arxdt+FpVKJTw8PETbtm3F4MGDRaFChT7avRmGYRjmv05Wvb/zEmwBzIW8S5MDEE+fPhVz584Vvr6+QqVSCVdXVzFq1CgRFRWVTbNkGIZhGCavwgLwP8LLly/F1KlThaOjozAxMRG1atUSR48efaeYZBiGYRjm04MFYC5Eo9F80PlpaWnixIkTom7dukKtVot8+fKJZcuWCZ1O95FmyDAMwzBMXoYFYC5Eq9V+1Os9efJE9O7dW2i1WuHp6SkWLlwo0tLSPuo9GIZhGIbJO7AAzIWYmJhk2bWfPXsm+vfvL0xMTISbm5tYunSp0Ov1WXY/hmEYhmFyH3lSABYsWFCoVKoM23fffSeEMCRJ/Prrr8LT01NYWFiIOnXqiJs3b0rXSE5OFgMHDhTOzs7CyspKfP755yIsLCwnvk4GzMzMsuU+L168EH369BEajUaULFlSnDp1KlvuyzAMwzBMzpInBeCFCxfEs2fPaDt48KAQQoh27doJIYSYPn26mDVrlvjjjz/EhQsXhLu7u2jYsKGIi4ujawwZMkRs375dbNy4UZw8eVK8fv1atGjRIlfEyVlYWGT7PW/duiVq1KghNBqNaN68ea4RwwzDMAzDfHz+E3UAhwwZIv755x8RFBQkhBDC09NTDBkyRIwYMUIIYbD2ubm5iWnTpom+ffuKmJgY4eLiItasWSM6dOgghBDi6dOnIn/+/GLPnj2icePG73XfrKoj5OvrK0JCQj7a9f5XrKysxLhx48SQIUM+ODGFYRiGYXILXAcwj1oAjUlJSRFr164V33zzjVCpVOLBgwciPDxcNGrUiMaYmZmJ2rVri9OnTwshhLh06ZJITU2Vxnh6eopSpUrRmJzE1NQ0p6cghBAiPj5e/PDDD0Kr1YqKFSuKe/fu5fSUGIZhGIb5COR5Abhjxw4RHR0tunfvLoQQIjw8XAghhJubmzTOzc2NjoWHhwtTU1Ph4ODwxjGZkZycLGJjY6UtK8jKJJD/lUuXLomiRYsKS0tLMW7cuFzhKmcYhmEY5n8jzwvA5cuXi6ZNmwpPT09pv0qlkj4DyLAvPe8aM2XKFGFnZ0db/vz5//eJvwUbG5ssue7HIDExUfz6669Cq9WKOnXqiOfPn+f0lBiGYRiG+ZfkaQH46NEjERAQIHr16kX73N3dhRAigyXvxYsXZBV0d3cXKSkpGdqmGY/JjFGjRomYmBjaHj9+/LG+ikRucQG/i2PHjgl3d3fh7u4uDhw4kNPTYRiGYRjmPcnTAnDlypXC1dVVNG/enPb5+PgId3d3ygwWwhAneOzYMVGtWjUhhBAVKlQQJiYm0phnz56JGzdu0JjMMDMzE7a2ttKWFWRXGZiPxfPnz0Xjxo2FqampGDFiBBeZZhiGYZhcTp4VgHq9XqxcuVJ069ZN6pyhUqnEkCFDxOTJk8X27dvFjRs3RPfu3YWlpaX46quvhBBC2NnZiZ49e4phw4aJQ4cOicuXL4uvv/5alC5dWjRo0CCnvhKR1wSgQmpqqpg+fbowMTER1atXZ/cwwzAMw+RSPm7PsWwkICBAhIaGim+++SbDsR9//FEkJiaK/v37i6ioKFG5cmVx4MABKbZu9uzZQqvVivbt24vExERRv359sWrVqlxR7iQ3JoH8W06fPi3c3d1FwYIFxd9//y1Kly6d01NiGIZhGOb/85+oA5hTZFUdoebNm4s9e/Z8tOvlBhwcHMSaNWskdz3DMAzD5ARcBzAPu4D/y5ibm+f0FD46UVFRokWLFsLc3FzMnTtX8N8dDMMwDJNzsADMhbi6ur71+LvK2eRmkpOTxeDBg4VWqxUDBgzghBGGYRiGyQFYAOZCMrOOqVQqSnb5L1jP9Hq9mD9/vjA1NRXdu3cXKSkpOT0lhmEYhvlkYAGYC0lISBCWlpa0mZiYCAAZrGWZJazkNesgALF69WphZmYmOnToIJKSknJ6SgzDMAzzn4cFYC7ExcVFJCQk0JaamiodNzExERqNJkM7NrVaLVkH85oY3Lx5s7CwsBCff/65SExMzOnpMAzDMMx/FhaAuZD0gk8IISwsLISNjY1QqVQiNTVVEn+mpqZCpVIJvV5P+zQaTZ4Vg7t27RKWlpaiUaNGIi4uLqenwzAMwzD/OVgA5kL0ej31G7a1tRUqlUokJiaKuLg4EnUqlUpYW1sLtVotUlJSaL9GoxFarVYSiHlVDB48eFDY2tqKRo0aiYSEhJyeDsMwDMP8Z2ABmAtxcXGhfsOxsbGSuHNychL29vYCgHj9+jVZ/bRarbCwsBA6nY5iBVUqVQZXcXoxmBc4ePCgsLKyEu3atRPJyck5PR2GYRiGyfOwAMyFJCYmCh8fH+Hj4yMKFiwo8uXLJ6ysrIROpxMREREiOjqaxjo4OAgrKyuRlpZGcXMqlUpYWVkJACT+NBpNBjFobAnMC1bBrVu3CnNzc9GrV68M8Y8MwzAMw7w/LABzIRYWFuLBgwfiwYMH4uHDhyIsLEzEx8cLIQzxfp6enlQrMCoqio6ZmZmRdVDZp1xPp9ORaEpfTiavJY8sX75cmJiYiGHDhklxjwzDMAzDvB8sAHMhAEThwoVpK168uPD19RUWFhYiJSVFPH36VLx48UIIYRCEXl5ewtraWiQnJ5N1UKPRCHt7eyGEIMugRqMRFhYWUjkZU1NTSUQZi8HcLAQBiFmzZgkTExMxYcKEPOfWZhiGYZichAVgLkSlUomgoCDabt++LYKDg0ViYqJQqVTCy8tLFC1aVNjb24uUlBTx5MkT8fr1ayGEoYuIs7Oz0Ol0JAZNTU2FnZ2d0Ol0JAZNTU2FRqOhAsxqtVpoNBoSg+mtgrkVvV4vfvnlF2FmZiY2btyY09NhGIZhmDyBNqcnwGTE0tJSVKxYUQhhsHQpQk2x/D158oTGajQa4e3tLQCI0NBQsgwKIYSTkxMJQUXoWVhYCLVaLbmILS0tpSxbExMTqRSNSqWSrIK5URimpqaKTp06iX79+okDBw6ISpUq5fSUGIZhGCbXwgIwF5KQkCAuXryY6TELCwvh4+MjLC0txbNnz8STJ0/EgwcP6Li7u7uwtrYWoaGhIiIigva7ubmJ+Ph4shQKIYSdnZ2Ii4sj8afVaqnOoBCCkkaMs5CVOMLcKgRjYmJE5cqVRcGCBcXx48dF/vz5c3pKDMMwDJPrYAGYC/Hw8BAtW7YUQhhcnKmpqeLVq1fizp07IiEhQdy6dYvG2tjYCF9fX5GWlibu3r0rwsPD6ZiLi4uwtrYWjx49Es+fPxdCGFy7bm5u4uXLlyImJkYIYbD4WVhYiNjYWDrXwsJC6sah1WopdlCtVuf65IuHDx8Kb29vUa1aNbF//35hbW2d01NiGIZhmFwDC8BcyLNnz8SuXbsy7Le0tBTly5cXjo6OIikpSdy4cUNER0eLK1euCCEMVrlixYoJCwsLcffuXfHy5Uvx8uVLIYQQ+fLlE2q1WoSGhopnz54JIYSwtrYWZmZmIiIigqx+tra24vXr1yT+zM3NRXJyMok/Y/dwbrUCGnP69GlhY2MjunTpIlauXJlp/2SGYRiG+dRQIbe/wXMxsbGxws7OTsTExAhbW9uPdt3169eLv//+WwghhE6nE8+ePRNXrlyR4vaEMIgxf39/4eDgIJ48eSJZBoUQokiRIsLU1FTcuXNHKg5dsGBBERUVJdUTdHd3F5GRkRQraGZmJjQaDbmHlSQRRfy9LU4wt6JWq8X8+fNFv379cnoqDMMwTA6SVe/vvAQLwA8gqxbQuHHjxK+//kqfVSqVKFq0qChSpAhZ6AIDA0VoaKh0no+PjyhUqJCIiooSV65ckbqEFC9eXCQnJ4t79+7ReDs7O+Hk5CQePHhA4s3KykqYmpqKqKgoGmdvby+JRWP3sJItbFxTULlvbhWFtra24ujRo6JcuXI5PRWGYRgmB2AByC7gXImFhYVwdHQUQhgsgDExMeLOnTvizp07NMbe3l40adJEODo6ivDwcHHq1CkqHi2EEJ6enqJIkSIiPDxc3LlzR1y/fl0IYXD7+vn5icePH4uIiAiKA/Tx8RExMTEiMjJSxMfHC7VaLVxdXUV4eDiJP1tbWxEXF0fiL332sLH4y81CMDY2VpQvX16UKVNGHD9+XNjZ2eX0lBiGYRgmW2EL4AeQVX9BbN68WWzatIk+Ozk5CTs7O5GUlCSCg4PF6dOnSbgplCpVShQvXlzExcWJEydOSO7iokWLCi8vL3Hnzh3x9OlT2q9kE9+6dYsEmp2dnbC3txePHj2ica6uriI2NlYkJSUJIQxWwpSUFHIBp08YMc4WzguZwz179hRLliwRajWXxWQYhvkUYAsgC8APIrtcwMY4OjqKihUriiJFigidTicCAwPFhQsXpKzcIkWKiNKlS4vo6Ghx/PhxKWmjYsWKwtTUVFy8eFEkJycLIQyWvGLFionQ0FDx6tUrIYTBbVywYEHx6NEjKUEEgIiLixNCGOIE1Wq1lDCiiETlGkrsYW4XghqNRqxcuVJ06dIlp6fCMAzDZDEsAFkAfhBZtYDOnDkjzp8/L4QwuIAfPHggLly4IC5fvkxJGgr58+cXderUEfb29uL+/fvi0KFD0phy5coJPz8/8eDBA6m2oKOjoyhTpox49OiRVEfQz89PCCHE/fv3aV/BggVFTEwMxQVaWFgICwsLERkZKYT4vxZzSo1BMzMzkZKSQiIvLwlBFxcXce7cOeHj45PTU2EYhmGyCBaALAA/iOyyADo5OYlKlSqJChUqCGdnZxEbGytOnjwpjh07RlY8IQzxfY0bNxb58+cX9+7dEwcOHCDhpdVqRe3atYWjo6M4ffq01E2kYsWKwszMTJw/f56sfS4uLsLT01PcvHmTruHi4iLUajXVFNRqtcLJyUmqMWhlZUUWQlNTU5GWliYlo+SVWoKtWrUSW7duFVoth8kyDMP812AByALwg8gJF7BChQoVRIMGDYSLi4t4+PCh2LFjhwgLC6PjlpaWolmzZsLNzU2cPXtWXLp0iY45OjqKWrVqicjISHHixAmywrm5uYnixYuLGzdukCvY3NxclChRQgQHB1PcoZ2dnbCzs5OykN3c3EgIqlQqYWtrS+PTC0FjK2BuFoJqtVqsXr1afP311zk9FYZhGOYjwgKQBeAHkVULKCgoSISEhAghDJ1AUlJSRGhoqLhw4YI4f/68uHv3rjTewcFBNG3aVPj7+4unT5+KnTt3iocPH9Jxb29v0bhxYyGEELt375YSQWrWrClcXV3F8ePHqWi0qampqFKliggPD5fKxpQsWVK8evWKhJ6lpaXw8PAQwcHBNMbd3V3qRqI8HyEyuobzihD08PAQ586d47ZyDMMw/xFYALIA/CCy0wLo6uoqKleuLCpXriyKFCkioqOjRUBAgDhw4IBUo8/Gxka0aNFClClTRgQHB4stW7ZIGcNVq1YV5cuXF/fu3RMBAQEkxvLlyyeqVq0qgoKCqLOIEAb3sFarFefOnaOxRYsWFYmJiWQBNDExEd7e3pIQ9PDwoI4jKpVKWFtbk2vYOFlEpVIJtVpNQjA3065dO7FhwwbuJsIwDJPHYQHIAvCDyKoFNH/+fDF//nwhhCEJJCQkhGLnFCwtLUX9+vVF48aNhbu7uzh16pTYunWrePz4MY1xcnIS7du3F97e3uL48eNi//79ZGWztbUVX3zxhTAxMRE7duwQERERQgiDmGvUqJFITk4Whw8fpvF+fn7Cw8NDnD17luIECxUqJLRaLVkJtVqtKFCggAgJCSGxaCwE1Wq1sLCwoBI16QtKZ1Y3MLclimg0GrFlyxbx5Zdf5vRUGIZhmP8RFoAsAD+IrFpA9+/fl7JwXVxcREJCgrh06ZI4d+6cOHbsGIkqBX9/f9G2bVtRtGhRcfbsWbFx40bJ1VumTBnRunVrodPpxIYNG6Tr16lTR5QpU0acPXuWso+FEKJWrVrCyclJHDx4kDJ8PT09RdGiRcW5c+eoCHS+fPmElZUVuaa1Wq3w8fER9+/fz1QIarVaYWpqSucbC8E3ZQznNhdxkSJFxPnz57mINMMwTB6EBSALwA8iO13A5ubmonz58qJevXqiXr16wsrKSgQEBIi9e/eK06dPS+KoXLlyom3btiJ//vzin3/+ETt27KDSMFqtVrRo0UJUqlRJnDlzRvzzzz8k0vLnzy+aN28unjx5Inbv3k3XLFWqlChRooQ4duwYxf85OzsLf39/cfHiRXIxe3l5CVtbW3H79m0hhMGaWKBAARKbxt1FlONarZbEn7EQNDU1pTnn5tIxEydOFGPGjMnpaTAMwzD/AhaALAA/iKxaQEuWLBGLFy8WQhhcwMHBwWSBU7CwsBA1atQQzZs3F3Xq1BGXLl0SmzZtEocOHZKsZo0aNRLt27cXcXFxYs2aNVItwGLFiolOnTqJmJgY8eeff1Lmr5WVlWjbtq0QQoitW7eSyzZfvnyiWrVq4uzZsxT/Z2dnJypUqCCuXLlCdQHz5csnbGxsSAiampqKfPnyUWJL+vIx6TuLGMcIvkkIKuQGQejg4CAuXrwoChUqlKPzYBiGYd4PFoAsAD+IrFpAkZGRJKaEMGTWPn36VJw8eVIcOnRIHD58WMq0FcJQFqZ169aiXr164vr162Lt2rXi+PHjdNzR0VF8/fXXolatWuLo0aNi1apVJCptbGxE586dRYECBcTGjRvF1atXhRAGAdmqVSvh5eUltm3bRi5cV1dXUbduXXH58mWK/7O2thaVKlUSly9fpoLR3t7ewsLCglzDlpaWwtXVlTKUzczMhJWVFX1XOzs7ERsbKwAItVotNBoNiUITExOpowmAXCH+jPn666/F6tWruaUcwzBMLocFIAvADyK7XMBqtVoUK1ZMVK5cWdSvX1/Uq1dPREVFif3794sdO3ZItfyEMIjBLl26iMqVK4t//vlHrFq1Sir8XKFCBdGzZ0+RlJQkFi9eLJWVadCggWjQoIE4dOiQOHjwIO2vWbOm8Pf3F7t27aI+wQ4ODqJRo0bi5s2b4saNG0IIg4irWLGiuHTpEmUnFyxYUKhUKuo4kr6OoK2trdDr9SRI7e3t6VzjGoIqlUoIIUggKi7q3BQfaGpqKgICAkTNmjVzeioMwzDMG2AByALwg8iqBTRlyhQxZcoUIYTBBawkSxhTsmRJ0aBBA9GyZUtRvHhxsWfPHrFt2zYREBAgJVE0atRIdOvWTVhaWoo1a9aIHTt2kCXN2dlZ9O7dW5QuXVps2rRJ7Nq1i4RUuXLlRIcOHcS1a9fE5s2b6ZoVKlQQNWrUEHv27BFBQUFCCIMFsXHjxuLGjRvizp07QgiDiKtYsaK4cOECxQgWLVpUxMfHU8FqZ2dnoVKpqP6gi4uLiImJIZevcQ1B4/hAY2ugcdJIbrIIVqtWTRw5ckSYmprm9FQYhmGYdLAAZAH4QWTXAnr27Jm4dOmSOHHihAgICBCXL1+WhI6jo6No1aqVaNOmjfD39xc7duwQa9euFefOnaMxbm5uomfPnqJNmzYiICBAzJ8/nyxwGo1GtG7dWrRt21acPHlSLF++nESnj4+P+Oabb8Tz58/F8uXLSYSVLVtW1K1bVxw8eJCsf/b29qJx48YiMDCQxKGTk5Pw9/cXp06dorZ1ZcqUEeHh4eLFixdCCEPySVRUlJRp/OzZMwEgQ59hS0tLmtu74gNzGo1GI/7++2/RrFmznJ4KwzAMYwQLQBaAH0RWLaBFixaJRYsW0ef8+fOLChUqiCpVqoiaNWuKpKQkceTIEbFv3z6xc+dOSt4QwmA1a9++vejWrZtwdnYWa9asEcuXL6eYQZVKJZo2bSp69eol0tLSxIIFC8TRo0fp/PLly4v+/fuLx48fi/nz59O1nZycRM+ePUVKSopYunQpJYaULFlSNGrUSOzfv1/cunVLCGGw7DVq1EicPXuWEj/y588vfH19xfHjxyUr47179+hahQsXFg8fPhSpqalCpVIJDw8PKmVjbW0tkpOT6ZiJiYmU2Zy+TmJucgtXqlRJHD9+XJiZmeX0VBiGYRjBAlAIFoAfRE70AjYxMRHVqlUTDRs2FA0bNhRly5YVp06dEtu2bRN//fWXVB+wUKFComvXrqJz587i6tWrYvHixVJcX758+cR3330natSoIVavXi3Wrl1L2be+vr5iyJAhQqfTiTlz5lD8nr29vejTp4/Q6/ViyZIlIjY2Vgjxf0Jw165dVPbFw8ND1K1bV0paKV68uHBychInT54UQvxfr+ErV64IvV4vtFqtKFSoECWXpE8UcXBwoCQTc3NzkZycLAC8sX5gbnELq9Vq8ddff4lWrVrl9FQYhmE+eVgACiGQRwkLC0Pnzp3h6OgICwsL+Pv74+LFi3Rcr9dj7Nix8PDwgLm5OWrXro0bN25I10hKSsKAAQPg5OQES0tLtGzZEo8fP37vOcTExEAIgZiYmI/2vQDg/v37OHDgAA4cOIC9e/di7ty56Nq1KwoUKAAhhLR5eHhgwIABOHr0KFJSUnD48GF0794d1tbWNEalUqFFixbYvXs37ty5g+HDh8PZ2ZmOW1lZYeDAgbhw4QLGjh0LR0dHOubu7o5JkyZh2bJlKF68OO23s7PDiBEjMGrUKNjb29P+ihUr4vvvv4e3tzftK1SoEDp16gRbW1vaV6lSJZQtW5Y+Ozs7o2TJkvTZxsYGBQsWpM+Ojo4wNzeX7m88f+Xfpqam9G+NRpPheeX0Vr58eSQmJn7U9cIwDMP8O7Lq/Z2XyJMCMDIyEgUKFED37t1x7tw5PHjwAAEBAbh//z6NmTp1KmxsbLBt2zZcv34dHTp0gIeHB2JjY2lMv3794OXlhYMHDyIwMBB169aFv78/0tLS3mseWbWA7t27h927d9N27do1pKamQq/X4969e1iwYAG+/PJLSVAJIeDm5ob+/fvj3LlziIuLw9q1a1GvXj1pjI+PD6ZOnYrHjx9j1apVKF26NB1Tq9Vo06YNAgIC8PvvvyNfvnx0zNbWFiNHjsSyZcskoWZra4sffvgB33//PSwtLWl/rVq1MHToULi5uUnip127djAxMaF9derUkYRtoUKFJOHn7u4uCVJPT0/6t7m5OczMzOizhYUF/Vur1ZL4Nf5+OS0AlXls2bLlo64ZhmEY5v1hAZhHBeCIESNQo0aNNx7X6/Vwd3fH1KlTaV9SUhLs7OywaNEiAEB0dDRMTEywceNGGvPkyROo1Wrs27fvveaRVQvo119/zSAaLCwsUKtWLUyYMAHnz59HWloakpKSsHv3bvTo0QMODg7S+GLFimHq1KkICwvDnTt3MHToUMlSZ2pqis6dO+P8+fM4cOAAGjduLJ1frVo1bN++HStXrpQsfzY2NhgzZgxWrFiBUqVK0X57e3uMGTMG/fv3l6xwTZo0Qf/+/SUrXf369dGiRQvpuzVq1Eiy6pUpUwZOTk702c/Pj4SjVquFu7s7HTM+z9TUlESfsdBUBKHxZiwOc2IrV64ckpKSPuraYRiGYd4NC8A8KgCLFy+OIUOGoG3btnBxcUHZsmWxZMkSOh4cHAwhBAIDA6XzPv/8c3Tt2hUAcOjQIQghEBkZKY0pU6YMfvnll0zvm5SUhJiYGNoeP36cJQtoyZIlqFixIipWrIhy5cpJ7lxlc3R0RPv27bF+/XrExsYiJSUF+/btw9dffy1ZwtRqNVq0aIG9e/ciLi4OK1aswGeffSZdq06dOmRp7NGjhyTgypcvj61bt2Lr1q3w9/en/ba2tvjll1+wevVqySLo4eGBSZMm4ZtvviEXrFqtxldffYWuXbtK+1q1aiXNxcPDA40aNaIxpqamqFKlivTZz89PEp02NjbSM1H+bSw4ja2EyrVyWvwZz+fgwYMfdf0wDMMwb4cFYB4VgGZmZjAzM8OoUaMQGBiIRYsWwdzcHKtXrwYAnDp1CkIIPHnyRDqvd+/eaNSoEQBg3bp1MDU1zXDthg0bok+fPpned+zYsZm+xLN6Ael0Oty+fRuLFi3K1PVrbm6OL7/8Ehs2bEBcXBxiYmKwbNky1KxZUxrn5+eHmTNnIjIyEhcuXECXLl0ky1jJkiWxcuVKPHz4EMOHD5dEVKlSpbBu3Tps3rxZsvzZ2dnhl19+weLFiyXXra+vL2bOnIk2bdrQPktLSwwYMAAtW7akfdbW1ujcubMUM1imTBlJGLq7u0v3dHNzk1zLnp6eJOgsLS1J8KnV6kxjAo1dwbnFLdysWTPodLosXUcMwzCMARaAeVQAmpiYoGrVqtK+gQMHokqVKgD+TwA+ffpUGtOrVy80btwYwJsFYIMGDdC3b99M75tdFsC9e/di0KBBtM2YMQPHjh1DXFwcACA1NRWnTp3C6NGjUbhwYUlIWFpaomvXrjh69Cj0ej3u3LmDwYMHS25SCwsL9OzZE4GBgQgNDcWwYcMkS5qnpyemTZuGBw8eYMyYMZLgLFq0KFatWoWNGzdKlj9nZ2fMmDEDs2fPhqurK+0vW7Ysfv/9d1SpUkUSdD/++CMqVqxI+woVKoQuXbpI1s66devCy8tLEobGwq9IkSIk9jQajXTsTdZAY0GYmVs4Jzdzc3Ncu3bto64lhmEYJiMsAPOoAPT29kbPnj2lfQsWLICnpyeArHMBpyc7YwCFMMS01a1bF1OnTsWVK1eg1+uh1+tx5coVjB49WnKPKqJq/PjxCAsLw+vXr7F48WKUKVNGGlO3bl3s27cPUVFRmD59upRk4ejoiIkTJ+LRo0cYN26cFGdYokQJbNmyBRs3bkTRokVpf8GCBbF06VKMHz9eEo7NmjXDrFmzUKhQIekaw4cPl+L5atWqhS+++II+29nZoUmTJiTctFotKlWqRPF9pqamkgh2cnKibGG1Wi0JW2MhqJyfG5NE+vbtC71e/1HXFMMwDPN/sADMowKwU6dOGZJAhgwZQlZBJQlk2rRpdDw5OTnTJJBNmzbRmKdPn+aKJJBDhw5hzJgxGDNmDEaOHIkvv/xSsoQpm7u7O/r164ejR48iLS0Ner0ep0+fRu/evSXho9Vq0b59e5w4cQI6nQ4nTpxAx44dJQuYv78/1q1bh/j4eKxatUoSdQ4ODhg/fjweP36MKVOmSEKwYsWK2LNnD5YsWSKJR39/f2zcuBGDBg2i+2g0GvTt2xcTJkyQrtGyZUv069ePRJ5Go0GbNm0ksVqiRAlUq1aNPru4uEgZzO7u7lLSSP78+enftra2JO5MTU3p3+9KEsnJzd7eHmFhYR91XTEMwzAGWADmUQF4/vx5aLVaTJo0CUFBQVi3bh0sLS2xdu1aGjN16lTY2dnhr7/+wvXr19GpU6dMy8Dky5cPAQEBCAwMRL169XJFGZjMUErAzJs3D82bN5dKrghhcNsOHjwYZ8+ehV6vx+vXr/Hnn39miAMsW7YsVqxYgYSEBDx69AhDhgyRLGMFCxbEvHnzEBsbi3Xr1qFYsWKSKPn111/x8OFD/PTTT9J5tWvXxqFDhzBlyhTJ3VynTh1s27ZNsurZ2tri119/xbfffktxeWZmZhniA11cXNClSxfpeg0bNpTKxvj7+0sWxGLFipFVz9raWnIFG//b2NVs7BZWttxiDZwyZUqWry2GYZhPDRaAeVQAAsCuXbtQqlQpmJmZoVixYlIWMPB/haDd3d1hZmaGWrVq4fr169KYxMREDBgwgIpJt2jRAqGhoe89h6xaQNu3b0fXrl1p+/nnn7Fr1y68evWKxiQlJWHv3r3o0aOHVN5FsZbNnDkTL168AABcuXIFvXr1kgopOzk5YeTIkXjy5AkiIiIwYcIEuLi40HFnZ2dMmzYNMTEx2LBhA0qUKCEJwSlTpuDBgwcYMmSIJKBatmyJ06dP44cffqD4PJVKhR49emDr1q0oV64cjfXx8cHvv/8u1SrMly8fxowZIwnPSpUqoVWrVtL9W7ZsSdc3NzdHtWrVSPjZ2dlJSSX58uUjQWdlZUXnmZiYkAA1tgDmNmtg0aJFuXg0wzDMR4QFYB4WgLmB7I4BVKlUqFSpEsaOHYuzZ8+SpTIpKQl///03vvrqK6kEjImJCdq2bYuAgADo9Xq8evUK06ZNkyxopqam6N27N4KCghAfH4/58+fDx8eHjru4uGDGjBmIi4vDpk2bMpR8WbRoEe7fv49evXqRmNJoNOjfvz8CAwPRuXNnGm9lZYUJEyZkcBc3atQIc+bMkeZVs2ZNDB06lCydGo0G7du3l9y+pUqVkhJJChcuDF9fX/pcpEgReh7pk0SMO6EYWwONRbIiKHNDRxGNRoPjx49/1HXGMAzzqcICkAXgB5FVC+jkyZOYPn06pk+fjilTpqBbt26SRUzZnJyc0LNnTwQEBJAYjI6OxqJFiyRhpIilpUuXIiEhAWlpadi+fTtq1KhBx9VqNTp06IDLly8jNTUVq1atkhI23NzcMHv2bMTFxWHNmjVSyZfChQtj06ZNuHnzpuTCtbW1xdSpU3H06FFUrlyZ9hcoUACrV6/G6NGjyXpoYmKCoUOHYvTo0STatFotvv32W3z++ed0rru7O7p3704JJmq1Gs2aNSP3rkqlQtWqVcnKp1iIjc9XLHwWFhYk+DQaDcUEGgs+4zjB3LB17dqVE0QYhmE+EBaALAA/iOxeQE+ePMHy5cvRtm1bKS5OETaDBw/G+fPnSSBcvXo1QxcOJycnjBo1inoenzhxAs2aNZOu1bRpU5w4cQIpKSlYvny5JPY8PDwwd+5cxMbGYu7cuZLbuEKFCggICMDhw4clV2+BAgWwbt06rF27VmovV6NGDezcuRPNmzenfZ6envj9998ll6+3tzfGjh0rWffq168vzbtgwYJo0KCB9DyMrYUFChSgZ6bRaCQLpHHyiHHyjHEBaWNLXE6LQCcnJ7x8+TJb1hzDMMx/ERaALAA/iKy0AE6bNo22jRs34sGDB5LlJyUlBYcOHULv3r0ztIErXbo05s2bRyVuoqKiMGPGDEnIaTQadOjQAZcuXQIAXL58GR06dJCSHxo0aIAzZ84gJSUFS5culeLqChUqhA0bNiA6Ohrjxo2T3KgtWrTArVu3sHr1ail7uWrVqjh58iTGjRtHrl21Wo2BAwdiw4YNksCrVasW/vjjD8kt3Lx5cwwePJisclZWVvjmm28kMde4cWPpnIoVK9Lz0Wg0Uls7d3d3skCamZmR5dG4gLRxPGBuswauWrXqo647hmGYTwUWgCwAP4jsjgH08vJCr169sH37dioKDRhK3OzatQudOnWSYtjMzc3RpUsXnDlzBgCQlpaGv/76C7Vr15au26xZM5w6dQoAEBQUhF69eknCp0WLFrh8+TKSk5OxYMECKeu2QoUKOHToEF68eCGVfNFqtRgyZAjCwsIwceJEskKqVCr06dMHV69eRfv27ek6rq6uWLp0KSZMmEBCzMTEBMOHD8cPP/wguW2///57VK9enc4tW7Ys2rVrJ12rVatWZK1zcHDI4IJWRKFarZasksaxgZlZAzOrG5iTbeWqV6/+3lnrDMMwjAEWgCwAP4isWkA7duxA9+7d0b17d3Tp0gUVK1bMkJlqamqKBg0aYNGiRYiIiKBzIyMjMXfuXMn9KYRA5cqVsX79eqSkpAAwWPy++uoryeJXt25dHDp0CHq9HiEhIejRo4d0vG3btrh58yZev36N8ePHS1a/Jk2a4OrVq7hz5w5atGhB+x0dHTF37lw8ePAAX331Fe13cHDAH3/8gX379kk1B2vUqIG9e/dK1/D19cXSpUsl4Vq2bFmMGTNGcut+9dVX0rVq164tZS9XrlyZYgU1Go2U0KJkiysiU7FQmpiY0LM3znbOTdZAMzMzBAUFfdQ1yDAM81+GBSALwA8iOxdQQkIC9u3bh0GDBkmuUkWMtGrVCps3b0ZCQgIAQxmcM2fOoFu3bpJw8fLywuTJkxEVFQXAYPHr2bOnJDCrVKmCf/75h1rJderUiaxcKpUKXbp0waNHj/D8+XMMGDCAzlWpVOjevTuePn2KAwcOSP17ixUrhn379uH48ePw9/en/f7+/jh06BCmTp0qZfwOHjwYa9eulVzInTp1wu+//y65dL/77jt8+eWXkljs3r07CTRra2t8/vnnNEdHR0dUqlSJxhcsWJCup1KpJHeycXxjZtbAzHoK56Q1cO7cuVm+DhmGYf4LsABkAfhBZNUCSkpKQmxsLG3psz4VYTZt2jRJTAlhqIE3cOBA3Lhxg8aHh4dj3LhxkuvW1tYWo0aNwvPnzwEAjx49woABA6TEh6pVq+LIkSMAgOvXr6N169aSCBoxYgSio6MRFBQkuXOtra0xdepUvH79GgsXLpTcqq1bt0ZwcDDmz58vxS5269YNV65cQdu2bWlf/vz5sXnzZgwaNIiElb29PWbMmCHdz8/PD5MmTSKxqFKp0LlzZ0noVa9eXYr/q1y5Mt1fq9VKFlNPT08SjDY2NiQmLSwsSOgZu9oVV3NuKB7NLmGGYZh3wwKQBeAHkV0xgI6OjmjWrBmmTJmCa9euZRCE169fx8iRI6UkDSEMtfTWrl2LpKQkAIZYwT///FOyzJmbm2PgwIFUAPvp06cYNmyYVE+wUaNGuHDhAgDgwoULqFOnDh1zdnbG3LlzkZKSgrNnz0qiy9fXFzt27EBUVBSGDh1KQsnCwgKTJ09GWFgY+vTpQ+LO0dERK1aswN69e6VahO3bt8fevXtRvnx52levXj0sXrxYsth169YNXbp0oc8+Pj5Sizl7e3t8+eWXNA8nJyd89tln0nilvIyZmdkb6wamb7MnhOwSVr5PTlkFLS0t8ejRo4+6JhmGYf5LsABkAfhBZHcSiLIVKFAA3333Hfbt24fk5GQ6T6fTYd++fZLIEcJQw2/ChAlUOkSn02Hnzp2SWDMxMcE333yDe/fuATAIwf79+0uu4TZt2uDWrVvQ6/XYtWuXVF+vcOHC+Ouvv5CWloY///wTHh4edKxhw4a4ceMGrl+/jlq1atH+IkWKYP/+/Th79qzU97dWrVq4ePEihg8fTt/D3t4eCxcuxIwZM0icWlpaYsqUKejbty+dmy9fPkycOFFK7OjYsaNUlqZevXoZrIFKNxUzMzMpjtA4c9re3l7qKKLsNxbLual49PLlyz/qumQYhvmvwAKQBeAHkVULKDU1FYmJiUhMTMTr169x/vx5/P7772jevLnkelSsWN999x3OnTsnWQbDwsIwfvx4KYbO3Nwcffv2xe3btwEYXMkBAQGoW7cujdFoNOjZsydZkIKDg9GlSxfJqtWjRw88efIEqampWLhwIVxdXSXxdvXqVcTFxUmFnpW4vujoaKxZs0ayrrVp0wYhISH47bffpOSLn3/+GWfOnEGFChVobM2aNbFv3z4pIaRatWr4888/4efnR/u6deuGHj16SKK5R48eJGidnZ3Rtm1bEmru7u5S8ewSJUqQO9zW1pYsgCqVSnJdGxetVvZl1ls4p7YGDRpAp9N91PXJMAyT12EByALwg8iJBRQfH4+///4bffr0kWL6hDBY1CZNmoTw8HAan5KSgnXr1knuU5VKhXbt2uHq1as07vTp01JBZlNTUwwePJhiBK9fv44vvviCjltaWmLcuHGIj49HbGwsfvrpJ6mO3nfffYeIiAgEBwdLSRqenp7YtGkToqKiMHjwYLKo2djY4I8//kBISIg0Dz8/PwQEBGD27NlkdTMzM8OUKVMwf/58cseamZnh119/xYABAyTRZ9z6TklgMc7+bdq0qSQc69atS8LPwcFB6oZinHxjLGAVt7EyD+UZKPuUf+dUjKCtrS2ePn2abWuUYRgmt8MCkAXgB5FVC+jKlStYvXo1bceOHUN8fHyGcampqdi3bx86d+6coQdwx44dcfz4cbIK6vV6HDt2TGqrJoRAq1atcPHiRbrm6dOnpRg/KysrjBkzhrKGz5w5g6pVq9LxfPnyYc2aNdDpdHj06JFUj8/JyQlLlixBWloa9u/fLwmtxo0bIygoCFevXkWVKlVof9WqVXH9+nVs3bpViu/79ttvcePGDTRp0oT2Va5cGYcOHULTpk1pX8WKFbF69WophrBXr17o2rUrfS5ZsiR69uxJgszd3V0SnUWKFEGRIkXoc7ly5cgC6uLiQlZKS0tL+re5uTldz/i3UCyDucElvGPHjo+6ThmGYfIqLABZAH4Q2RkDqNVqUa1aNUyZMgU3b97MkAgSGxuLlStXSuJMCENXkKVLlyIxMZHGXrt2DR06dJCSE5o2bYrTp08DMIjFgwcPSgkS9vb2mDZtGpKSkqDX67Fx40ap40alSpWomPShQ4ek+nsVKlTAmTNnkJiYiLFjx0rdN3799Ve8fv0a8+bNo7qCivv3+fPnUnyft7c39u7dixUrVlD9P8UauHLlSorjMzc3x9SpU9GvXz86t1ChQpgyZQqVdjExMUH//v0loffFF1+Qq9fMzExyjXt7e1NcY/ri0cYucMUiqVKpMk0Qyemtb9++H3WtMgzD5EVYALIA/CCyagGtXbsWTZo0QZMmTdCwYUMpoULZfH198f3330u9fxUuXbqEXr16SZYoNzc3TJo0idrDAcDt27fRpUsXyTrVsGFDyvjV6/XYvn27JOZ8fHywZcsW6PV6JCQkYPLkyVJB6I4dOyIsLAwpKSmYPXu25B795ptvEBERgXv37qFhw4a0v3Dhwjh8+DBCQ0MlC2XRokVx7NgxHDp0SLLo9ejRA9evX5d6AX/22Wc4fPgwGjduTPvq1KmDNWvWUHa0Wq3GkCFD0LJlSxpTrVo1qUB1yZIlUaNGDfpcsWJFcvdqtVqULVuWjhkniBhnCRv3aVZ+A2OxndNlY4oUKUKZ4QzDMJ8iLABZAH4Q2bWA9Ho9Hjx4gIULF6Jp06YZkgxKlCiB6dOnZ4jzioyMxIwZMyRrlZWVFQYPHownT57QuPv372coBt2+fXvKCE5LS8PKlSsll2yNGjVIKD579gy9evUikWNtbY2ZM2ciJSUF4eHh6N69O53n4uJCLuONGzdK4rZPnz6IiorCli1bpPjG/v37Izw8HIMHD6Z7eHh4YMeOHVi1ahUJLlNTU0ydOhULFiygeEEbGxvMmzdPcgFXqFABkyZNIuFqbW2NwYMHw8nJCUIYLIgdOnSghBtHR0fJslq8eHESdg4ODpQUYmJiQoLXxMSE4gGNE3dyi0vYzMwM9+/fz9J1yzAMk1thAcgC8IPIqQUUGxuLbdu2Zej9q1ar0bx5c+zZs0fK/ExJScGaNWukUitmZmYYNGiQJARDQkKkjF+tVotvv/0Wz549AwC8fv0av/zyi2RZ7NKlCx4/fgwACAwMlOL5SpUqhWPHjgEATpw4IVkSGzRogKCgIERHR+Pbb7+l/Z6enti5cyeioqLQp08f2u/j44MjR47g5MmTUpmWbt264datW1IMX61atXD06FGpX3CLFi2wePFiEmsWFhaYMGECatasSWNat26NevXq0ec6depICSP16tWjmD8nJyfJAmicLGLsElYEoUqlItGXm7KE161bl40rl2EYJnfAApAF4AeRXUkgx48fl2L4jImOjsbSpUslsSOEwa36+++/Izo6msbq9Xrs379fcnGam5tj8ODBkvXw6tWrknvV0tISY8aMoWs9fvxYKrhsYWGB8ePHIykpCTqdDsuWLSNrmiISw8PDkZycjEmTJkmWsUmTJiE5ORnHjh1D4cKF6ZwOHTrg+fPnCAgIkApcDxgwAK9evcKPP/5IQtXb2xuHDh3C8uXLyapnY2ODlStXYtq0aSS4XF1dsXr1atSvX5+u17x5c4wYMYLEmY+PD4YMGULnuLm5SYktxYsXl+ZpnF1dsGBBivdzdHQka5+xG1wRkMbu3/Qu4ewuHP3VV19lCCNgGIb5L8MCkAXgB5GdSSCmpqaoVasWZs6cieDg4EzPu3v3LoYOHSoJDsW9adwZQknyqFatmiQEhwwZIgnBo0ePonLlypJla9myZdRq7Pz585KYLFy4MPbv3w8AePXqFfr27UtixtbWFvPnz4dOp0NQUBAaNGhA55UsWRJnzpxBQkKCJMacnJywdu1aREdHS9bAQoUK4ejRozhx4oRkeRsyZAhu3rwpfa82bdrg+PHjUqu3AQMGZBCGM2fOpKQWrVaLgQMHksVSpVLhq6++ojg/KysrKVO6RIkSlPxhY2NDMYMmJiaSe9i4pZxyrrIvp13C3t7e1EeaYRjmvw4LQBaAH0R2JYGkr/cnhECZMmXwyy+/4M6dOxnOj4uLw4IFCySXq1arRbdu3XDz5k0ap9frceDAASm+zdLSEj///DNiY2NpzF9//SVly5YvXx4nT56k4+vXr5di+dq2bUtu4XPnzkmFnKtXr07dRNauXUtZuWq1Gj/88AMSEhJw8eJFqcfxF198gefPn+PAgQPInz8/7R80aBBevHghZQoXK1YMZ8+exeTJk8kC5+7ujp07d2Lw4ME0rlSpUti2bZvUFm/QoEGSta9WrVro0KEDfa5atark4q5duzbFGjo5OUnPyFiYGj8bRZyr1eoMLuHstvyl30xMTDgukGGYTwIWgCwAP4jsTAIJCgrC3LlzUa9evQzWourVq2PFihWIi4vLcN7+/fuluDYhDLX/Ll++LI07cOCAJG5cXV2xcOFCpKamAjD0EZ41a5ZkXezUqRMJvZiYGAwZMoTmZmVlhd9++w0pKSlIS0vD3LlzyT1ramqK8ePHIzk5Ga9evZISNIoUKYJTp04hJSUFEydOJAuZs7Mztm3bhpiYGPTu3ZvGFy9eHIGBgdi9ezcJZY1Gg3HjxuHcuXNSy7dBgwZh586dFKNnZmaGmTNnSjGIlSpVwrRp0yRhN3z4cPrs7OyMzp07k1jz8/OThJ+xxbRAgQLk1nV1daVzlHI1iuBW5qzsS184OruF4fbt27N0PTMMw+Q0LABZAH4QObWAXr16hdWrV6N58+ZSLJm1tTV69eqFa9euZTjn3LlzaN26tSQm2rVrh1u3btEYvV6PrVu3SgWbixYtih07dlCM2PPnz9G7d2+6jqWlJcaPH0/uwytXrkgu2JIlS1J9wEePHkmxhYrrFwB27dpFWcYqlQpDhw5FfHw8rl69KiWvfP3114iMjMTevXtJ8JmYmGDq1Kl4/vy5ZMGrUaMG7t69i0GDBtG+smXL4uTJk9I8mjdvLtURtLW1xe+//y71D+7bt680jw4dOtD9LSwspJqBxi5he3t7KfFEEcEWFhZkoVREoLHoU47lVKmYYcOGZfUyZhiGyTFYALIA/CBywwJ68uQJpkyZIiUmCCFQv359/P333xn6wN6+fRtfffWV1Nu3S5cukusvJSUF8+bNk2rb1apVi8q+AIZag8bxf76+vjhw4AAAQKfTYcWKFVL/3AEDBiA2NpZcxsbHBg0ahLi4OERGRkolY/z8/HD8+HEkJydj9OjRJIa8vLywb98+vHz5Eq1bt6bxNWvWREhICNasWSMJsC1btmD37t1SDN+KFSswZ84cSkjx8vLCli1bJHd4z549pdjDmjVrolu3bvT5s88+k7KIGzZsSALPycmJWsepVCopY9jYpW9cNkbZZ9w/OSfEn7JVq1aN+wgzDPOfJDe8v3MaFoAfQFYtoAkTJsDU1JS2okWLonfv3tiwYcMb76XX63H8+HG0b99eEg5+fn5YuHBhhizi69evSz16NRoNevXqJSWLREdHY9SoUVRqRqVSoXfv3nj58iXdc+PGjfDy8qLrdOrUicrGRERE4JtvvqFj+fPnx549ewAAL1++lDKJfX19ceLECQDAnj176JoqlQo//PADkpKScObMGUno9uvXD69fv8aKFStIeNna2mLNmjUICgpCpUqVJDEXFBQkucM7deqEU6dOUVkZjUaDiRMnYuTIkSSQS5UqhVmzZtH1XV1d8csvv5Bwc3Fxkb5HmTJlUKxYMRLXFStWlH6LzESgYiE0FoKKMM3pzdnZmeJBGYZh/iuwAGQB+EFkZxawsXWoWbNmWL58OV69epXp+Y8ePcKPP/4oxZp5eHhg5syZeP36tTT24sWLUi9dMzMzjBo1Snrph4aG4uuvv5YEy4IFCygbODY2FoMHDyYLnZ2dHRYtWkTWo4CAACkponPnziQi9+3bR4kdKpUKw4YNQ2JiIqKjoyXxWKZMGVy7dg3x8fEYOHAg7S9WrBguX76M+/fvS9a7jh074uXLlxg9ejSJuSJFiuD8+fOYPHkyieRChQrhyJEj0vdr0qQJtmzZQtm8NjY2mDNnDrmAFYumklms0WjQo0cPEnKOjo6SS7hixYpk1XN3d5fEqiKuMysVk1viArVaLW7fvv1R1zjDMExOwgKQBeAHkVULKCYmBo8fP8bjx4/x8OFD7Ny5E8OGDSPLkrJpNBq0bNkSu3btomQNY16/fo25c+dKnUCcnZ0xadKkDFadkydPonbt2jTOzc0NS5cuJZEHGIo5G8fBlStXjvoHAwYxaZzxW7VqVVy9epXm8v3335OAcXZ2xrp166DX6xEdHY0ePXrQecWLF8f58+cBADt27CDXrampKWbOnAmdToeDBw9Sdq2pqSlmzZqF5ORkjB8/XhJ358+fx+HDh8miaGJigtmzZ+PUqVNS2ZfZs2dj6dKlJMi8vLzw119/oVatWjSvAQMGoGfPnvS5Xr16aN++PX1u1KiRlL3cvHlziuUrVKgQzcHc3JxqG2q1Wun7KULROC5QuUb6uMDsTg7ZvHnzR13nDMMwOQULQBaAH0ROLKCbN29i/PjxUk9aRbD8/PPPePjwYYZzkpOTsXTpUopJUwTYzJkzpdpver0eO3bskFyVZcqUQUBAAI1JTU3FH3/8IVkXu3XrhufPnwMwtI2bM2cOxeBpNBqMHj2aes+eP39eqsnXunVrvHjxAoAhEcQ4k/fnn39GcnIywsPDpU4f9erVQ2hoKF6+fCn1Dm7cuDGePXuGM2fOkLgzMTHBzJkz8eLFC3zxxRc09ssvv8TDhw+lpJE2bdrg9OnTJLQ1Gg0mTJiA4cOH05hq1aph7ty5JNC8vb0xcuRIEm6+vr5o06aNJIIVS6K1tbUkEI0FvbFIV1rbGccFKi7hnI4LHDRoUFYub4ZhmGyBBSALwA8ipxfQ7du3MWzYMClZQ61Wo127djh79myG8ampqVi7dq0UR+fl5YWFCxciJSWFxiklX4xFXsuWLak3MGDIBjZ20To6OmLVqlWULRwWFiYlaJQsWZKseoqlThE4Li4uVHrk1atX6NixI51XtmxZ3Lx5E3q9HosWLSLhZW9vj/Xr10Ov12PhwoVkuXN1dcXu3bsRGRkp3b9Zs2Z48eIF5s2bR/ctVKgQLl68KO3z8/PD6dOnJZfw559/jnXr1pEwc3FxwZIlS0gom5mZ4aeffiKrnoWFBfr06UNzKlSokGQZNS63U7RoUbLkGcdSGndSUcRfbokLrF27NncOYRgmT5PT7+/cQJYJwJ07d/7rLa91IsiqBaTEwCnbuzIxk5KSsHHjxgz1/mrUqIHt27dLblzAIASXLVsmFVUuXLgwdu7cKb3YX716hQEDBkgFi3/++Wfpdzp79qxkjWzQoIGUUbx161aqu6dWqzFixAhKSLl8+bJUiLlbt27Ubm7z5s0kgszNzbFgwQLo9XrcvXtXSu7o0aMHXr9+jZs3b0ru6SFDhiApKQkLFiwg4eTp6YmjR4/i/PnzlJVramqKhQsX4syZMyTgzM3NsWzZMixdupTO9fPzw+7du+m7qlQqjBkzBi1atJDmb9zh5Ouvv6ZnbG1tjZYtW9KxChUqkED09PQki6mDgwPd01iAK3GDihtYmYPyXLNbBHp7eyM5OfmD1zrDMExOwAIwCwWgSqX6V5tarX5ji7PcSnYlgTg5OeHLL7/E/PnzKcP2TVy9ehXdunWT3IfFixfH+vXrMwjBpKQkzJkzhwSaEAb36pUrV6Rxt2/fRuPGjWmMr68v9u7dS8dTUlIwbdo0EjQWFhb47bffKC7x5cuX+Oqrr+j8YsWKUf2/pKQkjBgxgkRM/vz5yeX87NkzNGnShM77/PPP8fLlS6SkpODnn38mAVSsWDFcvXoViYmJUrePSpUq4cGDB7hy5Qpl+qrVaowfPx6vXr1Cq1ataGzHjh3x4MEDKSGme/fuOHHiBAlDS0tLrFq1SipE/eWXX2LMmDE0l8qVK2PAgAGStUypi6hSqdC6dWtyFxcqVIhqH1pZWZEb2MTERBK/iuhTRKCx6FOOKSI9O+MCraysEBER8cHrnWEYJrthAZjFAlCJC3sfrK2tWQD+f96WBaxSqVCrVi3MmzdP6tubnidPnmDUqFGSFalYsWJYu3ZtBiEYExODkSNHkuVJpVKhV69ektjU6/XYsmULCRYhDC3fwsLCaExQUJCU/Vq+fHkEBgbS8e3bt1M8nNL6TbEGnjp1SopRHDBgABISEqDT6TB79mwSTR4eHjh48CAA4MiRIzQfMzMzshLu2rWLMnLt7e2xc+dOvH79Wqox2LRpU7x69QozZ84kEVWkSBFcvXoVkyZNIoFVpkwZXLhwAQ0bNqRzBw0ahMWLF9OcSpQogaVLl9KzdnV1xdixY8ldXahQIcmtXadOHXoO9vb2UlygcecS4+xo4wLSynHl/sr8c6KVnEaj4QxhhmHyHCwAs1AAdu/e/V/VD+vXrx+VBskrZNUCSktLQ3JyMpKTkxEfH4/Tp09j8uTJUuyY8sJv0qQJduzYkWkWMGCo5TdhwgSp1lyRIkWwefPmDHFcDx48kLJara2tMXnyZKmGYGxsLIYOHUoWJ2tra8yaNYvur9frsWLFCrqfRqPBmDFjyF0YEREhxdeVKlVKyhTu37+/dOzGjRsADB1GjMXRDz/8gOTkZLx48ULq6tGmTRtERUXh4cOHUlu2YcOGISUlBStWrCBLZYECBXDx4kWcPn2arG9WVlbYtGkTDh8+TJZRBwcH7NmzB2PGjKHrVa9eHX///TcJUDs7Oyxfvpzc0FqtFj///DO5mq2srNC/f38SbUWKFKGxarVayjY2dosr1kchDHGWyjNVBKryXXI6OWT37t0f9f8DDMMwWQkLQE4C+SByYgE9evQIM2fOzCAG8+XLh3HjxuHJkydvnOukSZNIRAhh6GRx6NChDGNPnTolxdn5+flh//790pgrV65IdfcqVKggtaALDw+XxKS/vz8JPcAQI+ri4kKWLKW8C2CoDahYyMzNzbFw4ULo9XrEx8dLfXvLly+PoKAg6HQ6zJw5k9zeBQoUwJkzZ5CcnIwhQ4bQ+KpVqyI0NBSXL1+muoSmpqZYvHgxXrx4IcXv/fDDD3jw4AE9B7VajalTp2LHjh1Us8/DwwP//POP5OL99ddf0aFDB7pOz549Jatojx49qHyNo6MjGjVqRMeqVatGQq5w4cIkFj09Pcm6Z5zwo4i/3JIcMnPmzI+xxBmGYbIcFoDZKAATExNx7tw57Nq1K0PyR14lpxfQ/fv38eOPP0qiQKvVolu3brh582am58TExGDs2LGwsrKicxo3biyJM8DQzm3t2rWSy7djx46S21mn00muTxMTE4wbN05KDtiyZQvFs5mYmGDKlClkLQwPD5eSKOrVq4fHjx/TMeP4vy+++IIKX+/YsYOuaWtri61btwIwlJhRhJ1Wq8XcuXOh1+vx119/UQavk5MT9u7di6ioKKmETLdu3RAbG4sRI0ZkmI9x7b927drh8uXLKFmyJImvFStWoG/fvjSmTZs2+OWXX+hznTp1pONNmzalrGCtVov27dtLLmdlrm5ubpIrW3H/Got4JXnEOOYzJ5NDunXr9tHWN8MwTFaR0+/v3EC2CMC9e/fCxcXljckfeZXcsoCSkpKwbt06VK9eXXoZt2zZEidPnsz0nPDwcAwYMICEg1qtxrfffpuhu0hMTIzU5cPW1hbz5s2T4gifPn0qJVSUKVMGly5douPPnj2TMmCrVKmCu3fvAgCVd1HEjb29PTZt2gTAIDBnzZpFc/Ty8sKRI0cAAI8fP5a+76BBg5CcnIzo6Giptl/Hjh0RFxeH4OBgEl0qlQoTJ05Eamoqpk6dKomv+/fvY8uWLSSQvb29ceHCBSxcuJDmUbp0aVy5ckUSkD/88IM0pkyZMliyZAldx9fXF5MmTSKrXrly5aRn0qZNGxJzBQoUINexpaWllLGsCF9LS0uyFioWSeMYQOVYTiSHVKpUicvEMAyTq8kt7++cJFsEoK+vL/r374/w8PDsuF22kVUL6OjRoxg3bhxt69ate2vChzFnz55F69atpRd+nTp1qM9ueoKDgyVXrYODA+bNm5chpvDSpUv47LPPaFyFChVw4cIFOq7X67FhwwYSKOkLQOv1eqxcuZLEioWFBVnoAODOnTtS39yuXbsiLi6O7l2kSBESMj///DPS0tKQkpKCH3/8kc757LPP8ODBA+j1esyePZuSI4oXL47bt28jKSlJssR98cUXiImJyRDvd/DgQdy4cYPqJZqZmWHlypU4efIkFaq2t7fHnj178NNPP9H1mjRpIrmv3dzcsGbNGipKbWNjg6lTp5LF1tPTU8oorlOnDiV+2Nvbo1y5cnSsRIkS9G9ljEajoUQT4wxh5XsrYjQnRKC3t/cb41IZhmFyGhaA2SQAbWxspNpwH8rYsWMzvHDc3NzouF6vx9ixY+Hh4QFzc3PUrl2bkgkUkpKSMGDAADg5OcHS0hItW7Yk9+P7kt1ZwKVKlcL48eOlgsxv4s6dO+jVqxdZnIQwtCo7d+5cpuOPHj0q1dErVaoUDh8+LI1JS0vDggULyEWpVqsxbNgwqS7g8+fPJUFZvHhxXLx4kY4/evQI9evXp+PNmjWjbPGUlBT89NNPZJFTsnIBIC4uTio8Xb9+fTovs6xfwNC6Tom3s7a2JsvismXL6LkULVoUt27dQlhYmBTvN2vWLERGRkpWusGDB+PRo0cUf6lWqzFnzhxs3LiRLJhFihTB4cOH6VmamZlh0aJFlOShUqkwatQoSmixtLTE0KFDKY6vRIkSVGtQq9VK7fmM6y36+PjQvxUXvBITaPxvRQTmRIawvb19ht7TDMMwuQEWgNkkAHv06IFly5Z9tOuNHTsWJUuWxLNnz2hT2okBwNSpU2FjY4Nt27bh+vXr6NChAzw8PKSs5H79+sHLywsHDx5EYGAg6tatC39//wwlUt5GVi2gXbt2oW/fvujbty969uyJ8uXLZ3iBly9fHtOnT39nXcDQ0FD06dNHKiDcokWLDIIYMBSIXrBggRRj1rZtW4SGhkrjnj17JtX1K1KkCE6dOiWN2bZtG1nCtFotJk+eTM9Wp9Nh7ty5JHrc3d1x4MABOvf48ePUFUMRUIqlcN26deRW9fT0JMtm+qzf4cOHIzU1FeHh4ahTpw7tHzJkCFJSUnDu3DnK/LW2tsZff/2FxMREdOvWjcZ27doV8fHxkiBv3LgxwsPDpd7Fffv2xblz58gyZ2dnh+3bt0su4tGjR0vWvh49elBpGZVKhf79+5MV0tXVVRLJDRo0oN+/dOnSJJAV17AQghJqNBoNWfwUUWr822f3ZmZm9q/KQTEMw2QHLACzSQDGx8ejWbNm6NatG2bMmIE5c+ZI279l7Nix8Pf3z/SYXq+Hu7s7pk6dSvuSkpJgZ2eHRYsWATCURjExMcHGjRtpzJMnT6BWq7Fv3773nkd2LqCIiAisWrUKjRs3lkp+mJiYoFOnTjh58uRb466Cg4PRvXt3Eg9qtRq9e/fOVEBGRETgu+++o7HW1taYO3duBnG8a9cuShJRqVQYOnQo4uPj6firV6/Qtm1bmmuNGjXw4MEDOn7t2jXJtfnjjz9SAsnLly+l8i4dOnSg53zr1i2yoGk0GkyfPh16vT5D1m/9+vXx8uVLpKamSskdNWvWxPPnz/H8+XPJwjZ69Gikpqbi999/p2f82WefISwsDFu3biV3a9GiRXH37l3MmDGDhFm9evVw+/ZtikvUaDSYP3++1Ee4bdu2mDJlCp3TqFEjSRS2a9eOSsBYWFhIsYxVq1aVupIo4s7Ly4t+J0VwCyGkotzK751TIlCj0VDMJ8MwTG6ABWA2CcClS5dCo9HA2tqaAtyVzcfH519fTymy6+HhgYIFC6JDhw5URDo4OBhCCKkAMQB8/vnn6Nq1KwDg0KFDEEIgMjJSGlOmTBn88ssv7z2PnFpAL168wMKFC6UyLEIYXITLly+nuLvMuHPnjtQj18rKCuPGjcvUVXf16lUqcSKEocuFcakXAIiMjJQKLBcuXFiKN9Tr9Vi9ejUlONjY2ODPP/8ksRofH49+/frR+Z999hmFC+h0OkyfPp0sWL6+vpRcEhcXh86dO9N5rVq1QlRUFABISRwFChSgc7Zv307z8Pb2RmBgIFJTUzF06FC6TvPmzRETE4OAgACyhLq7u+P06dMIDAwkq6GDgwMCAgKwa9cuir/z8/PDtWvXJCvi999/j2XLlpErtmLFili+fDkJszJlymD8+PEk0OrUqUMt/dRqNbp27Urn+vv705w8PT0p3tLZ2ZkEn2IJVJ61YoXLKfGnbCqV6o0JSQzDMNkNC8BsEoBubm6YNGnSO3vavi979uzB1q1bce3aNRw8eBC1a9eGm5sbXr16hVOnTkEIkaEeXu/evdGoUSMABjeiqalphus2bNgQffr0eeN9k5KSEBMTQ9vjx49zfAFdunQJ33zzjRT/lS9fPsyZM0eyxqXnxIkTUq2//PnzY+vWrRmsiDqdDgsWLKDkDa1Wi9GjR0vFoQFg9+7d5LZVqVQYPHiwFBsYEhIiZe22b99eaiO2bds2iuOztrbGmjVr6Njp06epILKpqSn++OMP6PV66PV6LFy4kOL5fHx8SPhfv34dfn5+ZA37888/ARish0pyh4WFBVmB161bR8+wZMmSCA4ORnBwMFnkTE1NsXr1ajx79oxiABUr37Vr1yjRw87ODvv378fEiRMlcbp//34SbN7e3ti4cSMllHh4eGDu3LkkWkuXLi3VEuzYsSM9f19fX7qXra0tPRcrKyuKBTTu/qLEa+aWMjFbtmz5H1c6wzDMx4MFYDYJQAcHh4+aBJKe169fw83NDTNnziQBmD5rtlevXmjcuDGANwvABg0aoG/fvm+8T2bJJ7llAb169QrTpk2jpAfFGjRlypQ3dmTR6/XYuHEjCQohDDFumSWZhIWF4csvv6RxhQsXzpAkEhUVJSVqlCpVSrIYpqamYuLEiWTR8/LywvHjx+l4aGgoatasSef36dOHhGZERIQUU9elSxcSuBcvXqR4OAsLC6xfv57mY+xGHjRoEFJSUhAZGSn1Nh41ahR0Oh3Onz9Pz8/JyQnHjh1DXFycZDH96aefEB8fL3Uz6d+/P548eULWUo1Gg4ULF2LDhg1kfStfvjxOnTpF2cx2dnbYsGEDCUxLS0vMnj2b3LheXl5SV5SmTZuSu93NzY2STExMTFCsWDES58a9hZXnbJy0o1wvfZmY7BSDCxcu/LDFzjAM84GwAMwmAThkyBBMmjQpS+/RoEED9OvXL0tdwNllAYyIiEBQUBBt6a1tbyMxMRELFy6UEgScnZ0xe/bsN14nPj4eP//8M1nSTE1NMWbMmEwtiH/99ZckMvv375/Bfbx7924SMmZmZvj9998l6+/58+dJCGk0GkyePJmOp6WlYezYsWSlKl++PEJCQgAYBOtvv/1GYsXf359c/5GRkWjatCnNa/jw4UhLS4NOp8PPP/9M+2vVqoXw8HCkpaVJ8XktWrRAdHQ0wsLCqF6giYkJli1bBp1Oh1GjRtHYDh06ID4+HlOnTqV5NmvWDC9fvkSXLl1o3IgRI3DixAkq+5IvXz4cPXqUhKKpqSmWLl1K3UDUajUmTpxIgs7Ozg4jRowgIVelShU6ZmNjgxo1atC9ypcvT/82rhuouJoVEWgs+tKXiclOEZjV/z1gGIZ5GywAs0kADhw4EHZ2dqhVqxYGDBiAoUOHStuHkpSUBC8vL4wbN46SQKZNm0bHk5OTM00CUcqCAIZixrklCSR9GRhzc3PUr18fv/3223uXqklJScHq1atJaAlhcPMuX778jfXZ7t27J1nGChQogO3bt2dwC0dHR0txe35+fjh9+rQ05vnz51KXj8aNG0tW2bi4OMmK1rhxYymTe9++feQytbe3x65du+jY4cOHKdbNwcEBe/fuBWAQj8ZCrVGjRuRmNo7/y58/P5WXWbNmDVnpihUrhqCgIMTHx0ulbL7//nukpaVhxYoVJJqqVKmC8PBwbN++nURWuXLlEBYWhvHjx9O5HTt2xM2bN1G0aFEIYXBv79y5U0qOmThxInr16kWfhw0bRpZQExMTjBgxguZetGhRynbWarWUSSyEkOoo+vr6kqhTxJ9xrUBF7CvfPSdE4LBhw95rLTMMw3xsWABmkwCsU6fOG7e6dev+6+sNGzYMR48eRUhICM6ePYsWLVrAxsYGDx8+BGAoA2NnZ4e//voL169fR6dOnTItA5MvXz4EBAQgMDAQ9erVyzVlYCZPngwbGxvY2NiQuFA2lUqFunXrYtmyZZT08DZSU1OxdOlSSl5QhM7u3bszHa/X67Ft2zYqaSKEoWByZoWoDx48SNdVq9UYNWqU1AZOr9djwYIFFFvn7Owstf7T6/VSQoSnpyeOHTtGxx89eiSVdhk1ahSJ19DQUIphVKlUmDBhAlkRN23aRBm7hQoVIje0cfyflZUVzeXChQsUv+jk5IQTJ05Ar9dLQrxp06aIiYnBkSNHKFaxQIECuHHjBs6dO0clXPLnz49r165h1apVZLmrVasWQkJCqCewVqvFqlWrMGzYMLp+nz59pBCDrl27SlnAgwYNIvduvnz5pDZ5xv2EjUWgEgOpPHshhLSeFPGXXgQqVs3sqB3Yo0ePd65hhmGYjw0LwGzsBfwxUer6mZiYwNPTE61bt5Z63yqFoN3d3WFmZoZatWrh+vXr0jUSExMxYMAAODo6wsLCAi1atMhQ7+5dZMcC0uv1uHXrFubMmSPFxykv7i5dukht195EYmIiZs6cSVY1IQydK27dupXp+NevX2PkyJEkYhwcHLB69eoM1sCoqCjJ7env75+hr/DNmzfh7+9PY7799lvJHX39+nVybarVailhKDk5GQMGDKBz69atSx1lkpKS0KdPHzr2+eefIzo6GoAhg1kplmxlZUX9giMiIijLVqVSUQmZZ8+eUacTU1NTrF27FgCwefNmEk3+/v4ICwvD3bt3SVzZ2tpi3759CA4OJiufra0tDh48iIMHD1LyRvHixXH37l2pfuLUqVMxZ84cElrNmzfHvHnzyArXvHlzDBo0iMb37NmT7uHo6IiOHTvSscaNG9N5ZcuWpX8bi0DFdW9mZkbHle+mWASV/dkpAlu1avUe/09gGIb5eLAAzKMCMLeQEwvo4cOHmDJlCkqWLCm9RGvWrIlt27a904IZHR2N4cOHS/FfAwcOlDJyjbly5YoUX9asWbNM3dBbt24lcWlqaopp06ZJcX9JSUmSxatcuXJSYlBcXJwkJBs3bizNacOGDZQl6+XlJbWhW7p0KQkYxY0LGBJjjAsq//rrr9Dr9UhJSZFawvXo0QPJycmIj4+XEj6U8efPn6eYxnz58uHatWt49eoVdffQaDRYsWIFIiIiaJ9Wq8WKFStw7do1si66ubnh/Pnz0nMYOHAgtm3bRlbSqlWrYu3atfS5SpUqmDBhAo1v164dWfmsrKwk13GDBg3oOZQoUYIse4UKFaIxSuaxVqslca9YS3Oya0jt2rW5fzDDMNkGC8AsFIBXr179V2Vfbty4ked6h+bkAlKESefOnaVODz4+Pli6dKnkis2Me/fuSVm1zs7OWLVqVaYv4dTUVEyePJnEha2tLZYsWZJh7LNnz6TWaQ0aNMhQaHrfvn3kjlTc9MbfacWKFWSV8vHxwZUrV+j4rVu3yFJobm5OVjrAkFiiCC1HR0fKUE5f569z585ITEyEXq/HnDlzyOJVs2ZNvHz5EjqdTuov/PXXXyMpKQkPHjygeysWvqSkJEm0TpgwAYmJiZKV75dffkFoaChl7VpaWmLv3r2YNWuWJOqMXcslS5bEjh076HPRokUxc+ZMctE2adKEhK2JiQn69OlD36N27doUL+jr6yvFPSrnK5ZAtVpNIlER1znZNaRcuXIsAhmGyRZYAGahAFSr1VJQ/7uwsbGhjM68Qm5ZQGFhYRg9erTk3i1QoACWLFnyTiF48OBBqRtH7dq1JXe6Mbdu3aIaeIrAS+821+v1WLp0KVmVXF1dpTZvAPD48WOpwPTQoUOleV69epWsVhYWFli3bh0di46ORvPmzelcJdsXMCTyKG5crVaLxYsX03lLliwhcVOtWjVam3v37iU3rY+PD7nElyxZQoKpZs2aePXqFSIjIyUL38qVK6HX66XEk379+iElJQVjxoyhfX369EFkZCTF6mm1Wqxbtw4bNmwgq1vt2rVx+vRpivPz9vbGnj17KBbTw8MDf/zxB1kGq1evTmV5VCoVevbsSdeqXLkyJcnkz5+f/u3l5UUiXrmP8oyNRaBxp5ns3kqVKsUikGGYLCe3vL9zkiwTgCqVCn379s2Q8fumzczMjAXgBxIfH49Zs2ZJLcEKFCiAFStWvNU1nJycjKlTp0q9Y0eNGiUVclZIS0vDzJkzSYjY29tj8+bNGcbdunWLatypVCqMHDkSKSkpdDwlJUVyhVatWlUSkxEREVJG8vfff08W4vTZvk2aNKGEmISEBCk2btCgQXReQEAAZcT6+PiQ0L158ybFCzo4OFBtwoMHD9J4Pz8/3L9/H0lJSejUqRNdf+zYsdDr9Zg3bx65Tlu1aoX4+HgsXLiQ9rVu3RoxMTHSuXPnzsWhQ4fISle6dGmcO3eOElWcnZ2xe/dueo6Ojo5YvHgxzalMmTJS15EuXbqQiCtbtqwkHhWrn7u7u5R0o5yrZAgr5+dk67hixYp9tKLxDMMwmZHb3t85QZYJwNq1a781+zezLbNM09xMbl1A8fHxmD17NsV7KeJi7969b7WuPHz4UHILFy1aNEN5F4V79+5JnUS6deuWoeB0QkKCVC6matWqlKmtsGPHDhI0Tk5OUhmetLQ0jB49ms6vW7euZFXeuHEjiZkiRYrg9u3bAAxWSOO4ucaNG5NAvH37NlkX7ezscPDgQQCG9nqKddPMzIxE7c2bN6munqurKy5evJihLmC3bt2QkpKCbdu2kUu1atWqePXqFbZs2UJWtzp16iAqKgoDBw6kc3/++WdcvnyZBFqhQoVw/vx5qkVobW2Nv/76i561jY0Nli1bRiLfx8dHShTp2LEjuY6LFClC39XFxYUEobOzMwk+45qOiiVUsd7mpAgsXLgwi0CGYbKM3Pr+zk44CeQDyKoFNHfuXPj5+dHWvHlzzJkzh5Ib3peEhAT89ttvUmuwBg0a4PLly289b8eOHSQMVCoVvv/++0yLQqekpOCnn34ioVCoUCGcOXMmw7jNmzeTuLC3t8f27dul48HBwSR41Go1pk2bJgnVbdu2kWDJnz8/Ll68SMcCAwNJ2Nja2mLPnj10bOvWrSRmihUrRkknL1++pLZ0Go2G6kPGx8ejVatW9L1nzZoFAAgPD6dEGGtra3JpL1q0SMrYjY+Px/Hjx+l5Fy1aFA8ePJCsfOXKlcOzZ8+kWoH9+vVDUFAQiTUlyUXJVjY1NcWff/5JZWTMzc2xdOlSslp6eHhIQrl9+/b0+xUoUIBiFx0cHOge9vb2NE/jPxQU8agI65xICFG2QoUK/auyTAzDMO8LC0AWgB9EdhWCNt6qVKmChQsXZuhi8jYiIiIwbNgwskQp7vlXr1698ZzIyEh0795dssicOHEi07HHjx+ndnIajQbjxo3LkNATEhIiWQxHjhwpvdwTExOljNZOnTpJovPmzZtSD1/jnrLPnz+nEjlKGzaFwMBAqlXo4uKCc+fOATBkJRsXoh49ejT0ej3S0tKkFmyDBw9GWloaYmNj0aBBAwhhcJErCSi7du2S4vKioqJw48YNuqenpydu3ryJS5cuUa1AX19fBAcHY8GCBSSw2rVrh5CQEMrudnJywunTp9GmTRsSxkuXLqUkG61Wi4ULF5J72MXFReqg0rp1axKI+fPnpyQUa2trKiVjY2NDCTlKnGBmIjAntwIFCrAIZBjmo8MCkAXgB5FVCyg0NBSnTp3CqVOncOzYMfz222+oX7++FJxvZmZG2aPvGzQfEhIixaA5Ojpi0aJFb33B7t69m7JrVSoVBg8enKH1G2BIzjDOfq1evXqGBJGUlBR8//33NKZBgwZ4+fIlHdfr9Zg/fz4la5QrV05yGUdHR0vt3iZPnkzfPTk5WRKsw4YNIxfi06dPyYJnYWFBBaDTF3vu0aMHUlJSoNfrMW3aNNrfpk0bJCQkIDk5WXp+M2fOBACcOHGC3NilS5fG06dPERYWJom5CxcuICgoiESZu7s7rly5gk2bNlHyRoMGDfDo0SMq82JjY4PDhw9Lwnj+/Pno3Lkz/R4zZ85EuXLl6PecMGECrZMWLVpQHUBPT0+6roWFBc3NwsKC3MmOjo4kIB0dHd8oArPbKpgvX748VyGAYZjcDQtAFoAfRHYvoGfPnmHGjBkoXbq09IKsWLEiNm7c+N4vyePHj0vXqFChAlnGMiMqKgrffPMNjffz83vj+LVr15K7N31Mn8LGjRvJNevt7S25dAHg2LFjZJFydnbG0aNH6VhqaioGDx5Mc+natSuSkpIAGATdxIkT6Vjr1q3JihgXF0fdM9RqNebPn0/XXLp0KblymzZtSgJ33bp1JM6qV6+OyMhI6HQ6qayMIjSvXr1KrlQfHx8EBQXh1atXUuze0aNH8fTpUyqKbW9vj7Nnz+LgwYOUfFG9enU8fvwYtWvXhhAGd++uXbukuMGZM2dKsZUTJ06k+EVbW1tMnjyZ5t2wYUNyAbu5uUl9iMuWLUt/TBiX0FGehSICFQunsfjLCRHIlkCGYT4WLABZAH4QObWA9Ho9AgMD0bdvX+nl7OPjg3nz5kldNt5Eamoq5syZQ2JNpVJhyJAhiIuLe+M5e/fuJdemVqvFlClTMg3UDw4OJoubSqXC2LFjM7y8r1+/TtYpMzMzrFixQjr+6NEjsmxptVr88ccfkqVzwYIFZOmqUaOGZElcv349ubsrVapEnUNSUlIka9qIESNo/n///TdZuypVqkTJJocPH85g3QOA3377ja7TuXNnpKSkIDg4mGLs3NzccPnyZcTGxkqxe//88w+io6MpBtHa2hrHjh3D2bNnKSbvs88+Q1hYGJW70Wq12LhxI0aMGEH3nDBhAkaOHEmfx40bRyVqrKysMHXqVFobtWvXlqyRynxMTEzIKmhubk6/rZOT01tFYPpuIdm1FSxYkBNDGIb5KLAAZAH4QeSGBfTixQv8+uuvFMslhCHma8mSJVLZlTcRHh5OLkUhDDFXe/fufeP4yMhIqUdtvXr1EBYWlmFcYmKi1G2jQYMGGepCRkVFSYWj+/XrR9Y8wJCUYexy7devn2Tl3L9/PwnYQoUKSW3tjh8/TuKlYMGCVPIlfYZwp06d6J5nzpyhWoqFCxemskTXrl0j656vry9CQkIAAGvWrCF3dcuWLZGYmIhnz56Rhc/W1hbHjh1DYmKiFLu3fv16vH79mpI8LCwssH//fgQGBtL9y5Qpg7CwMCppo1ar8eeff2LcuHE099GjR0uff/nlFzRs2JAE27Rp08iyWLVqVbL42dvbZyoCzczMKKHGycmJBLYyp9wgAjk7mGGYj0FueH/nNNkmAFNSUhAaGoo7d+68se1YXiM3LaD4+HjMnz+frDhCGFy1a9eufS/X2b59+yiRQ7FqvSlJRK/XY/ny5eTGdXR0xI4dOzIdu2bNGhrn5eWFkydPSsd1Oh3Gjx9PQqJatWp4/vy5dK/p06fT8SZNmkjP27iGn52dHQICAuiYcc9eOzs7yZW8evVqEm+1a9emHsJ37tyh5+Dm5obAwEAAwP3796Ws2xs3bgAA9uzZQ8Kofv36iIuLQ1RUFCWlmJubY//+/UhJSZFi9xYtWoSEhAQ0a9YMQhhcsjt37sSNGzcoJq948eIIDQ1Fz5496bxVq1Zh+vTp9DsNHTpUcnuPGTMGLVq0oGtOmzaNRHK1atWoULaNjY0kApX96UWg4ko2bvOn3Cun3MElS5bkYtEMw3wQuen9nVNkqQCMi4vDokWLULt2bVhYWECtVtPm7e2NXr164fz581k5hSwlNy6gxMREzJ49W8rqLFu2LI4dO/bOc+Pi4jB06FCy7ri7u+Off/554/g7d+5IfYK//fbbTMvF3Lhxg+LQtFotZs2aleEFvmfPHnK1FixYENevX5eO79ixg4Rk6dKlpQSTFy9eoEaNGiRmjDuHGJd8MTMzk1rPHThwgMqzlC1bloTnkydPyIpnY2NDz+7JkyfkSnV0dMTZs2cBAEeOHKEyNVWrVkVUVFQGcbdr1y7odDp8++239Lx+++03JCcnU6avRqPBxo0bcffuXRLyfn5+ePDgAVlTVSoVli9fjnnz5knPferUqfR59OjRaNu2LT2PGTNmkAisUaMGxQHa2tpKLeWMRaC3tzd9T0UEKmtKqXVoLP6yu2Zg2bJlWQQyDPM/kxvf39lNlgnAWbNmwcnJCRUqVMC4ceOwd+9eXLt2DUFBQTh37hyWL1+O7t27w87ODo0bN8a9e/eyaipZRm5eQHFxcZg0aRKJKiEE2rZtS+7Lt3H+/HkUL16czvvmm2/e+B2Tk5MxfPhwGluqVCncvXs30/kYd+jo2rVrhljF27dvw9fXl4SXcU0/ALhw4QK5Yj08PHDp0iU6lpSUhA4dOtD1Z8yYQccSExPxxRdfkFBZunQpHbt8+TKVZylSpAhlHUdHR6NOnToQwuCiVdziERERqFy5MoQwxNophaTPnj1L5VPKli2LFy9eIDk5mdq1abVabN26NUPruClTpiA1NZVK0qjVaqxcuRIhISFkcSxQoACCgoLw3Xff0XmLFy/G8uXLSYD1798fM2bMoOMjRowgV72pqSlmzpxJYrdmzZokAu3s7KTyNkrSiqmpqSQCFWupIgKNs4NzSgRWqVKFRSDDMP8Tufn9nV1kmQBs27Ytrl279s5xSUlJmD9/vvRSzitk1QI6efIkpk2bRtuOHTvempzxNl6+fIlvv/2WXs5mZmYYPXp0pqVcjElMTMQPP/xAL3dvb28cPnz4jeMPHDhArksbGxvJ0qag1+sxZ84cii2rXLlyhu4vr169ogxYtVqNOXPmSC/5hw8fUu07S0tL/P3333RMp9NhyJAhJBC+//57ihdLTU0lV6oQcgmZu3fvktjJly8fdRRJSEigRAwTExNs3boVgEHMKqLJ1NQU27ZtA2DoYayIyWLFiiEsLAwpKSkkfDUaDVknjWP3Jk6cCJ1Oh969e9O+RYsW4fHjxyhSpAiEMJRxuXfvnpQBvWDBAqxatYp+owEDBmD27NnS91esi2ZmZpg1a5YkAhUh6+DgQLGDWq2W9qcXgcrvpohAxSKbkyKwdu3ab13HDMMwmcECMJtiANO3CPuvkJ2FoE1MTNCoUSOsXr36fxKD165dI3efEAY36+7du9953vHjxymzVaVSYfTo0W8sN/P06VOKfRNC4Mcff8x07MGDB8la5unpmSEMIDk5WRJr/fr1kxJaoqOjSbAoIlFBr9dLGbrGSR56vV7qmDF48GASiI8fPyY3tbOzMy5cuEBzad++Pd1r1apVAAx/uBi7btevXw/A4BZX3Lc+Pj4IDg5GWloa9exVqVSU8Wwcuzdu3Djo9XpJ4C1ZsgTPnj1DiRIlSJzev39fqqU4b948rFixggTY4MGDJffw0KFDyQqpiEDFXV2rVi1y+zo5OaFRo0YkAqtWrQohDDGMSkyki4sLCTwl6chYBKYXg9m1NW/e/J3rmGEYxhgWgNkkAP39/fHs2bPsuFW2klULaMeOHejevTu6d++Ozp07kwBTNisrK/Tv3x937tz5V9fV6/XYvn07WXWEMLiFnzx58tbz4uLipPIp1apVy9DTVyF9see6detSGRZjgoKCSNiYmZlRZw3juc6YMYPERP369aXuJykpKZLF7IcffpAshWvXriW3Zb169aTf6Pfff6fzvvrqKyQnJwMwWEuVjFhra2scOXIEgKEnsXEdxD/++AOAwaqoFJ9Wq9VYs2YNAODBgwfkyvby8kJQUBB0Op2UFb1gwQIAwJQpU2jfL7/8ksGKuWzZMoSHh5NL3tvbGyEhIfjxxx9pzO+//45ly5bR5yFDhmDBggX0efTo0dTiztzcHL///juJwNq1a1Mcp7OzMxo3bky/iWIJtLS0JFHr7u5Ov4mSGKJkGufk1qNHj7euYYZhGGNYAGaTAOzZsye8vb3JtaYQGBiIpk2bZscUsoTsWkB6vR537tzBuHHjKKtV2Zo1a4YDBw78q1iouLg4/PDDD+TSs7Gxwfz5899ZXmPTpk1ST1/FJZoZmzdvJpHh6emJU6dOZRgTExNDGatCGCyG6TOW//77bxIYJUuWxOPHj6XnYpz80K1btwxlYpQ5pP8jxFggNmnShJJXYmJiKPbPzMyMuobodDrJOjd58mTarwhRY+ve06dPSbTly5cPQUFBGSx8v//+OwC5puCYMWOg0+kwaNAg6ZrPnj2jFm4FChTAgwcPpFjChQsXYvHixfR52LBhmDNnDn0eN24claKxsLDAnDlz6LnWq1ePSsS4urpSdrClpSX1aLa1taX4S6VotLEIVJ7zu6x/WWkdHDFixFvXL8MwjAILwGwsA/Prr7/CyckJJ06cwN27d9GuXTuo1Wp88cUX2TWFj05OLCC9Xo/Dhw/j888/l16m/v7+2LFjx78SgleuXCErjxAGa927kkRCQkKkc/r27YuEhIRMx96+fZtEkFarlbpvKKSlpUlCpmXLlhniE69cuUKiI1++fFSCRWHlypVS+zPj+Rj34PXz88OjR4/o2N69e8mFWatWLQpVSExMxOeffw4hDO7dzZs3AzA8+59//pnmqvQPTp/du2TJEgCGzi2ZiUDjgs6KNXHWrFmSkNHpdBgwYACJplWrVuHJkyfUD9nHxwePHj2SrrVq1SosWrSIPg8fPlxqaTd9+nSKabSwsMC8efPo+zdv3pz6Bbu7u1PmtJ2dHWVEOzg4UPyfsRVZqbeoiEDjloXZLQJnzZr11vXLMAwDsAAEsrkQ9OTJk2Fubg4TExO0aNFCyuLMi+T0AgoKCsKgQYPoxSuEoS3cnj173lsIpqWlYc6cOZTVaWVlhQULFrzVGpiSkoKRI0fSi7xkyZJUaDk9cXFxUnZu//79M40LXL9+PdXTq1ixYga38aNHj0hM2dvb4/jx49LxnTt30vk1atRAVFQUHbt//z7FsXl7e0sZ56dPnyarZtWqVakeYGpqKtXt02g02LBhA51jbLFTRKBer5fatSku3vQi8P79+xlE4OLFiwFAstiNHDkSOp0O/fv3J9H0559/IiwsjNzLvr6+CA0NJWuhWq3Gxo0bMX/+fGl+xgknc+bMoX7KiuVXqe3Xrl07SrApUKAAZQQ7OjpS+RtnZ2epwHZ6Eag8S6V0TE5sf/755xvXLsMwDJDz7+/cQLYIwKdPn2LgwIGwsLBA+fLlYWlpmSHmKy+SWxZQREQERo0aJcViVatWLVO365sICgqSEjjq1asn1drLjAMHDpBb0MrKClu2bMl0nOKqVQRjgwYNpHg+hVOnTpFLsWDBghlCBiIiIqh8iZmZGWXfKhw/fjzTtm0AEBoaShm17u7uUp3BCxcuUFJKhQoVqFC5cfKGWq2W1qyxWDMWgcbxj3PnzgXwZhFoPFZxHRsncEyYMAF6vZ6siyqVCmvWrEFoaCjFhRYuXBhhYWHo06cPidXt27dL15k6dWoGd7Hi5nZycsK8efPIate9e3cSmEWLFiXXsJubGz0/Dw8PEnrGIlB59sr/KsIyvcUvO5JE0pcQYhiGMSa3vL9zkmwRgObm5ihbtiwVFd63bx9sbW0xderU7Lh9lpHbFtCLFy8wbNgwqWVXp06d3inkFHQ6nWQNtLe3J/fnm3j+/Dm1NBPC4L58U+eRnTt3kkgtUqRIpvUC7927RwLEwcEBJ06ckI4nJCRQQoNKpcrgVr569SqJ0oIFCyIoKIiOhYeHk5vT0dERFy9epGNXrlyhzNYyZcpQUWidTid14li9ejWdYywCx4wZQyLQOEFDcUm+SQQax/oplquZM2fS+TNnzoROp0O/fv1IiG7evBmPHj0i8VWsWDGEh4ejS5cuZH3bs2ePlGCyYMECSi5RqVRYtmwZZQB7enpi9uzZJMz69etHLveyZctKWciK8MyfPz9ZnpV6hWq1mn5fpa+xUjQ6feu47BCBZ86ceevaZRjm0yW3vb9zgmwRgMbuM4VLly7Bw8MD3377bXZMIUvIrQvo6dOn6NmzJ71kLSwsMHbs2Ey7dGTGvXv3yP0nhCHD8m2lfFJTU/HDDz/Q+AYNGryxjdzVq1cpfsze3l5q3abw4sULijM0MzPDpk2bMtzPOKNWscAphISEkIh0dXWV6lFGRETQd7O1tZUE5s2bN0k8Fi9enCyIOp2OLGzGiR6AnFH8008/kQgcM2YM7VdE6ptEoGLhU6vVVE7GuF+x4pJXkk1MTEywd+9ePHjwgNq2lS9fHq9evaLiz+bm5jh06BBGjhxJ8167di3dS6PRYPXq1eTyLVSokBQvOHjwYLLGVq1alWIPCxYsSL+fn58f/bGhPG8TExPap4hA5Q8KJelGEYNZXTNQpVLlyQLzDMNkPbn1/Z2dZGsMYHoePHiA4sWL5+QUPojcvoAuXbokuXW9vb2xa9eu9zo3JSUFY8aMIRHp6+uLc+fOvfWcjRs3UlJBgQIF3hjjGR4eTnXmNBoNxcsZEx8fT/XrhDC0TTMWeXq9HuPHj6fj/fr1k+IWw8PDyX3p5OREPX0BQ13KWrVqQQhDpuuBAwfo2L1796Q2bIr11DgeT4j/S/QA3iwCjd2uimg0FoEFChRAaGgodDodldlRkk7Sn79q1SqkpaVRUWkLCwscP34cd+7cocSMmjVrIjo6mhJYLC0tceLECZq3RqPBjh070KNHDxLXW7duJfFWokQJKV7whx9+oMLR9evXpzjKUqVK0T1LlSpF7mMlQ93CwoLEniIClXWhxAYq52S1CNRqtW/8Y4RhmE+X3P7+zg6yTAAaZ1u+DSUWLCwsLKumkmXkhQWk1+uxefNmenkL8X61/xSOHTtGFh8TExPMnj37rQkm169fJyFgbm4uuUyNSUxMJJelEIaCxekTT9LS0shFqlil0o9ZsmQJidSuXbtKCSaRkZFk7bO3t5cKTsfHx6NJkyYQwhCrZhwzFhISQu5VHx8fEoHGLlshDN06FIw7cPz8888kAo3drop179mzZxRPV6RIETx//hw6nY5qCmq1Wvz9999S2RglwSMlJYUyeW1sbHDx4kUEBgZSTF6zZs0QGxtL9fzs7Oxw+fJlajVnZmaGAwcOUGs8Gxsb/PPPP+TyrVChAlkNhRAYNWoUWfRatGhBbvJKlSqROFRKxSh/KAhhyAhWfhdlbop7WIkNTG8RzKrNysrqjZnqDMN8muSF93dWk2UC0NXVFb169Xqr1Sg6OhpLlixByZIlKWA+L5FVC2jVqlWoU6cObf369cPu3bsz9M79N7x+/Ro//vgjWV5sbW3fq/YfAERFRaFt27b0Qv3yyy+lLNvMxisiRQhDTbrM4gL1ej0mT55M4zp27EhdO4wxLpHSvXv3DFnE69ato+/Vrl07KuwMGH4jJXHE1tZWSoxJSkqSumTs27ePjoWGhpKQ9fPzI8Gs1+sxdOhQyTKnYCwCf/31VxqvuKs1Gg21yHv06BEJa39/f0RGRiItLY0yj83MzHDkyBHo9XpyP2u1WuzYsQMJCQmUxOHs7Ixbt27hxIkT5Grt0KEDYmNjqZSLh4cH7t27R7GTVlZWOHbsGLXcc3V1xb59+0jc1axZkzKaNRoNfv31VxJrbdq0ISFXt25dEnPGpYGUmEDF+ieEkLLMle9nLAKzevP09Hyvtc4wzKcBC8AsFIAREREYNmwYHBwc4OrqimbNmqFXr14YMGAAOnfujHLlysHU1BTVqlXLsxl72dkKThEwffv2facr9m1cuXJFiu+rVasWgoOD33meXq/HvHnzyIXn4+MjJVGkR6fTYezYsXSfVq1avbH/8Nq1a+m6devWpVIsxqxevZpEXuvWrTMIxe3bt5MYadGihSSW4+LiSOwo4kchOTmZrGHm5uY4ePAgHQsNDc2QaKE8C2PLnHGMorFYnT17Nj2Lrl27Qoj/S9AADO5mpX9ylSpVEBcXh9TUVHLhKhY+nU5H1lJTU1MEBAQgNjZWSuIICQnB3r176Tn26dMHERERFOOn1EBU2gE6ODjg9OnT5Cb38fGh5CwhBL744gt89dVXEMLgvp0wYQJZ9Lp160b3adq0Ke1X3PpqtZpiE5UajMp3NxaDyu/1rrqBH2srV67cv6qTyTDMfxcWgNkQA5iYmIht27ZhyJAh+OKLL9C4cWN07twZM2bMkEpx5EWyagHduHEDmzZtwqZNm7B27VopK1PZqlatiu3bt/9PVo20tDTMmzePrDFWVlZYuHDhe70cL1y4QKLI1NRUioXLjPXr15O1p3z58m90PR88eJCySsuUKZPpOGOR17BhwwyCct++feSubNCggXQ8Pj4eDRo0IAFinHySnJxMoktJnlAICQkhMVOqVCm8fPkSgEEEKnF7istWwTiBY/ny5QAMiStKT2Hje1y7do1K0NSrVw+JiYlITEyULHx37txBamoq9R62trbGpUuX8OrVK6rPV6hQITx9+hSbN28ml+qPP/6IJ0+ekPtfef6KUPPy8sKlS5fI0lm6dGn8888/9Iz79u1L/YGdnZ3xyy+/0PcyTsJRLItCCPrjwszMjCyKytrVarU0N+UeiijMajewsn355ZdvXa8Mw3wasADM4SSQvE52LiCdTofDhw+jc+fO9PIUwlCrbenSpf+Tezg4OJiSIYQQaNSo0XuVjImMjJRe+n379s3Udatw6tQpSQxcvnw503GBgYFkEStQoECGOoAAEBAQQMK1WrVqGVzRR48eJSFZvXp1yZqYkJBAcX/m5ubYu3cvHUtKSpK6ZCh9gAFDjUQPDw8IYSiLosStpqWlkZXM1NSUrId6vZ6yoo0thCkpKVKCxsmTJwEA586dozm3bNkSKSkpiImJodi6/PnzIzQ0FElJSVRyx9XVFUFBQXj69CmVZilZsiQiIyOlvsDTpk3D3bt3KWmjbt26ePLkCYoVK0bnXL58mb5f9erVsXbtWrLqjR07lubh4+ND3Uk0Gg2VpkkvApXewjY2NvS9lMQaxfqnXMP4f7OjNIwijBmG+bRhAZjFAvC/7m7JqQX09OlTjBo1igruKi/YFStWvLEG35vQ6XSYPXs2Wc7s7OzeWftPOW/SpEmS+8+48HJ6goODSXRYWVlRTcj0hISEUMkRR0fHTItZnzlzhuLL/P39M3QNMT5esWJFqeh0UlISiTAzMzPJ5ZuUlERdMiwtLSVX8e3bt8md+dlnn0kdQ5Q4QktLS+pQkj52b/fu3XQPxapmb29PVvAjR47Qb9CpUyekpaXhxYsX1P+3aNGiePHiBWJiYlCuXDkSZM+ePUNISAg8PT0hhMGln5iYiBkzZtDaWLduHS5evEhJG23atEFwcDCJvlq1auHChQv0zJo3by7FM86ZM4eSO/z9/amzi5WVFWUUq1QqenZarZZcz66urmTlUyyBipvZeMtM/GWlIHyX5ZphmP82LACzWABaWlqiWrVqGDhwIFatWoXr16//pwKxc3oBxcbGYubMmZJ7uGTJkti1a9e/Ft937tyRYgN79+79XnUD9+zZQ8LBw8MDp0+ffuPYqKgoikFTq9WYM2dOpuNevnxJSQXm5uaZxohevXqVrIWFCxfOYLkMDAwkq6OxYAPkuD9j0QYYQhaUDForKyupTuD169epNl61atWoNmJSUhJZFm1sbChG07hsi7m5OY4ePQrA4I5WElM8PT3x8OFDAMA///xDSRH9+/eHXq9HaGgouaArVKiAmJgYhIeHS4IsOjoa165dI2HVrl076HQ66jRiYmKCgIAAHDp0SHLvXr58mc5p27Ytjh07RiK0d+/eGD58OFnoli9fTgK4bt26ZIl0cXGRXNvK72tra0uhAsbdQpTfTGkdl5N9g9MXGWcY5tMhp9/fuYEsFYDz589Hz549UbZsWZiYmECtVsPS0hJVqlTBd999hxUrVuDKlStZOYUsJbcsIMXio8SSCWHI5Py3vZZTUlIwatQoeukWL178vX6foKAgsviYmppizZo1b72H0llDCEOtucz+KHj9+jW5ZE1MTCh7Nv19lfg2pS+uMdeuXZOKGRsXs36TaAMMruKGDRvSMeNkl8DAQBK8derUIde7cWaug4MDrl69St+3RYsWdK0LFy4AMCRJKR02ihYtSrGFGzdupOc/ZcoUAAZxrohZ5Z73798nMaXsO3z4MFnbBg8ejLS0NLLW2dra4urVq9i6dStdf/z48Th06BCdM2jQIOzYsYOOT548mcrHWFlZ4c8//ySXbuvWrSmBxM/Pj+IrXVxcyAWcL18+ev6K9VeI/8sOVr6TIjrTF4jOjkLRebH8FMMwH05ueX/nJNkWA5iUlASVSoUxY8bg22+/ReXKlWFhYQG1Wp1dU/jo5LYFFBUVhREjRkgv1AEDBry1ZEtmHDp0iNyDZmZm75UgEhcXh9atW9PLdcyYMW+09iq9gZWxXbp0QUpKSoZxKSkp1NlCo9FQHT1jjPvi+vr64vHjx9Lxy5cvkzCuWbOmlBiSkJCAunXrkigxjk2Mj4+XEjGM4xHPnz9P7tTWrVuT2z02NhZVqlSBEAZr6IMHDzLcx9HRETdv3gQAPH78mKx7lStXprkZF5ZW2sNdunSJ7tmhQwfodDoEBgZmmMeGDRvo3BkzZiApKYkyoL28vBAaGoqFCxfSmLVr10rnTJ8+HXPnzpWOK2LY1dUVq1atIivld999RwK8YsWKKF26NIQw1DZUSsGUKFGC1qPyR4KJiQnFAiqWQEVYKmJUuUdWZwhbWFhwjUCG+QTJbe/vnCBbk0BUKhVZRgCDi8z4c14jty6gx48fk+tReXH/+eef/8ot/PLlS7JcCSHw9ddfv7GMi4JOp5O6V7Rt2/atbuRVq1bRC75p06aZXj81NZVKqKhUKsqqNebRo0ckODITgRcvXqR4ybp160pziouLI3ess7MziTMAGRIxjIubG7tT+/TpQ882KiqKhI6xZS82NpZc7N7e3pTlfOvWLRJBTZo0ISGsJJFotVrqVGJsrVMSGQ4fPkzz6NevH/R6vRT/t379ekRGRlK2cMmSJREVFUXuXVNTUxw7dkzqP7x27VoqYG1qaor9+/dT3KGfnx8WLFhAYydOnEjzb9SoEcUiVq1alfZXrlyZrIrKs7G2tiaRp7ihFTGrCMbsyhDOnz//fz5emWEYmdz6/s5OclQA5nVy+wIKCAiQXG916tTB/fv33/t8vV6P3377jURaqVKlcPfu3Xeet3r1anp5V6xY8a3JIf/88w9ZgypXrkyCyRidTidlnP7xxx8ZxhiLQD8/vwwi8OzZsyQwGjZsKGVNR0dHo2LFihBCwN3dXeof++LFC3qGSiKGgrE79aeffqL9YWFhmVr2Xr58SQku/v7+tG7OnDlDz+Drr7+GTqeDTqdDp06dSCwprez+/PNPeg5Kj+EtW7bQPKZNmybVKTQxMcGhQ4cQGhpK4qx27dpISEig4t4ODg64c+cOFbhWYgaVOElHR0ecPHmSrH21a9fG6NGjSaDOnTuXSv107dqVsrSbNWtG4lSxQgoh6BkoLmzFEifE/xWKVkRgdhWKrl+//psXNMMw/zly+/s7O2AB+AHkhQWUnJyMKVOmUC9WCwsL/P777/8qGefYsWNwd3cnK822bdveec6JEycoxqtAgQK4devWG8eeOXOGrEXFixfPtAZg+g4c06dPzzAmvQhMH9918uRJEhhNmzaVStdERESgTJkyZBFS3LcApESM8uXLS7/3okWLaE7GSS23bt0i13OzZs3IshccHEzJFA0bNqSuJbt37yah/cMPPwCAVPbF3d0dISEhAP6vzqBarab6g3PmzKF5bN26FTqdjtznSvzf1atXydrWoUMHvH79mlzWhQoVQnh4OCV0ODo64tq1a2S19PX1xbFjx0hE9+jRg6zMDg4O+O233+j+Q4YMIaudcj0hBJUcMjMzk8r9KEJPOUcRk4p4zK4agVwehmE+HfLC+zuryVIB2KtXLyxcuBAXLlygGMBr165l5S2zlby0gEJCQigOTQiBGjVqSJaud/H06VPUrFmTzv/pp5/eKSKDg4Op562Dg8Nbsy5v3bpF2cyFChWSBJiCXq/HTz/9RHNQ2q0Z8/Dhw7eKwGPHjpG16fPPP5diD58/f07WPj8/Pzx//pyO3blzh2rpKRY0hfHjx9OcjOMUT506Rffq0aMHuRkvXLhAQrRr1660f/Xq1XQdpYtIdHQ0CdMiRYrg5cuX0Ov1lEhjaWlJiSVKjT5zc3OcO3cOiYmJJLq8vLzw9OlTyY08atQoPH/+nGIoq1SpgoiICBJ9RYsWxZ07d+h5KsXHFUE2adIkKirt6+tLbmsTExNyIStiUwiDC1/pXuLg4EB/lChZwoq4VMYKkXkMYFZmBht3dWEY5r9LXnp/ZxVZKgBr1qwJW1tbqFQqmJiYQKVSoU2bNpg3bx5OnTr1XmVG3oXSS3bw4MG0T6/XY+zYsfDw8IC5uTlq166NGzduSOclJSVhwIABcHJygqWlJVq2bJnBbfgusmoBnThxAlOmTKHt77///qA+wAo6nQ4LFy6kgHtzc3PMmzfvveOfUlNTqbSIEIbiv8aZtZnx8uVLEglmZmbYunXrG8eGhISQGPHy8sKdO3cyHWfcP3jcuHEZjj98+JBEhZ+fXwYX9KFDh8jF2KVLF0nIhoWF0bnprX3GiRiff/459STW6/UkvrRardRT+O+//ybBNGbMGNq/Z88eEjfG+6dNm0YiZ/v27QCAJ0+eUN/gKlWqICEhASkpKVSuxtXVFSEhIUhNTUWzZs0ghMG9+vDhQ0RGRpKorVSpEhISErBmzRp6fmvWrMGdO3fIWtm2bVuEhYVR4eYGDRrg2rVrlLnbtm1bsjaqVCqsXLmSnleNGjXIrezo6Eg1Ak1NTSme1MrKCsWLFyfrnyLmFPGvWI3f5frNShH4X/JSMAyTOSwAs8kFfO/ePWzYsAHDhw9HvXr14ODgAJVKBa1WixIlSvzP1z1//jwKFiyIMmXKSAJw6tSp5Kq8fv06OnToAA8PD0msKO3VDh48iMDAQNStWxf+/v7/qpBydvYCtra2RqdOnXDkyJEPDlh/+PAhZXYKYSj8a2zteherV68mN13JkiXf2Us4Pj6eOkWoVCrMnTv3jWPDwsJIsLi6ur7xZWyctDBp0qRMv6MiTEqVKoWIiAjp+K5du0iADR48WHqm9+7dI2tfvXr1JFfx0aNH6bt369aNztPpdOQStbS0lMrKLF26lOY6b9482m/csWPRokUADGJSiXe0sLAg656xS1mp8xcTEwN/f38IYSizEhkZidjYWNpXsmRJREdHIygoiFzsHTt2hF6vpxg+U1NTnD59GkePHpUSTC5fvkxWyn79+uHIkSN0fOzYsejfvz99161bt5JruVOnTmTlK1q0KAlSFxcXSrbx9vam56skhajVahKZintYsRCm7xiS1ZnBWq32k34pMMynAAvAHGwFFxISgs2bN2PUqFH/0/lxcXEoXLgwDh48iNq1a5MA1Ov1cHd3x9SpU2lsUlIS7Ozs6CUbHR0NExMTbNy4kcY8efIEarVast68i6xaQDt37sQ333yDb775Bl26dKH4M2UrVqwYVqxYkWnplPdFr9dLwftubm7/6rufPXuWSsU4OjpKrdMyIy0tDd9++y19h7Fjx75RyL548YJqzDk4OJAISo9iLRPCkPyQHuNuF5UqVcpgrTS2hI0fP146dvHiRbKUtmvXTvrD4O+//yYR8ssvv9D+5ORkEtYuLi4Uswf8n5tYpVJJNQ3Hjh1LAkiJ50tNTaUahe7u7lQo+tixYyTClKQTY2tdrVq1kJycjMePH9P3btSoEVJSUnDkyBGyqo0bNw46nY46mLi6uuLhw4fS81ixYgV27txJlrY5c+Zg+fLldHzTpk3U0cTLywvr16+nZ/Ljjz/SnOrVq0cu7DJlylDMX4UKFei7KL+1lZUVxf0pcZJK9rayTpVzsloEuru7/6eK1jMMI8MCMA/3Au7atSuGDBkCAJIADA4OhhCCsiYVPv/8c3Tt2hWAwQUohJBahAFAmTJlpBd6epKSkhATE0Pb48ePs2UB6fV6nDt3Dv369SNRIoQhdmrRokVv7cP7Lq5du0YlQoQQ+P777ykx4V2EhYWRtcfExIRq1r3teygJDEIIDBw48I0v2aioKEpQsLe3f6MInDhxIl1v1qxZGY7fvHmTihHXqVMnQ8034+QJJatW4eDBgyQ4lM4cCkuWLKHzjEvTxMbGkqBRrHLKd8/Msmccz2e8PyYmhoRTqVKlqJPJypUr6b5KwW3jLiDffPMN9Ho9Ll68SBa0vn37Qq/XS5bITZs2IS4ujuZapkwZxMXFkSA1NTXFqVOnKLlDrVZjz549lF1saWmJEydOUDHrChUqSPUDZ86cSffv3LkzuXabNWtGlkWla4jyrIyFnxD/VxtQ+W5KPKXym2R17+BmzZq9eTEzDJOnYQGYRwXghg0bUKpUKYqLMxaAp06dghAiQyZp79690ahRIwDAunXrYGpqmuG6DRs2RJ8+fd54X+XlmH7LzgUUGxuL3377TSqh4eXlhQULFlBM2r8lISGBYtiEMAT7v288ZEJCgpTpOW7cuHe6qP/44w8a36VLlzfOOzY2ltyGbxOBxr9LZiVijPvgtmjRIoPl9JdffiFBYWwVBjLvzKEwZswYskYZW0/DwsIopq1OnTokqI0tex4eHtS5JCUlhfZ7enpS4kpoaKhkyVOe08iRI0mkKYk1e/bsoVhDJYHEuKvHjBkzAIAyqc3NzXH+/HmEhobSWmrVqhVSU1PRpk0bEmMPHz7EN998AyEMSRpXrlyhrh8FChTA+fPnSdy1bdsWAwcOJPE2d+5cuv/gwYPJAqnUdRRCkMXUwsKCytQo8Y4ajYYsfUrMZnZnBs+cOTPTNccwTN6GBWAeFIChoaFwdXWVWpRlJgDTB/736tULjRs3BvBmAdigQQP07dv3jffOKQtgZiQkJGDOnDlSH+ASJUpg//79//M1d+7cSS43Z2dnKkD8LnQ6HUaMGEHz6Nat2zutiGvWrKGX++eff/7GJJf3EYF6vZ7EmBACq1evzjDGuM/tV199JVke9Xo9vvvuOxIYSs9eBWMroXGWr16vp1Zp1tbWUieRq1evkujs0qULieKYmBiKe/P39ye3dExMDFnTypcvTwlSly5dIkvaoEGD6HkrXVecnZ0pBnPWrFkkjvbu3SvtU6lU2Lt3L9LS0iguz8PDA2FhYThz5gy5WEeOHInXr19THGG5cuUQGRlJdfwKFiyIoKAg6kVcq1YtqQXdhAkTaGzhwoUpnlWr1VJmsEqlouem1WrJiuzh4UHWQT8/Pwjxf9Y/tVpNYjIzy19WWgON4zkZhvlvwAIwDwrA7du3S9YBRUSoVCpoNBrcv38fQmSNCzg9uWEBJSUlYd68eeTmVKxc71OwOTOCg4Op64NKpaJ4sfdh8eLF9HvUq1fvnc/l77//JuHRsGHDN2aFx8bGonr16u8UgYp7UqPRUAatMXv27CEr1LBhw6RjaWlpFBNnb28vdQQBIHXGOH78OO1PTk6m8jrGVj0A2LdvHz0P45I1Dx8+JKtb8+bNKb4wJCSErGlt2rSh5/7XX3/Rb7t06VIAhsQapUtJiRIlEBsbC71eT9Y6W1tb3L59G3q9Hr169YIQhni6u3fvIiYmhtz+ithcu3Yt3ePPP//Ew4cPKVGjXbt2ePnyJWVoN2jQQBK4/fr1I5e4SqXChg0byIrXrFkzSo5xdnam4ta2trYUQ+js7EwJO4oIFuL/MoOVZ6W4gBXrnyL60n/+2JtGo8nw3wqGYfI2ueH9ndPkOQEYGxuL69evS1vFihXx9ddf4/r165QEYpwUkJycnGkSiHHNr6dPn+aaJJD/hcjISAwZMoQEjlarxZgxY/6n8jGJiYno3bs3vQCbN2/+3t9x7969FLtVrlw5hIeHv3X84cOHyepTt27dN7abMxaBDg4OmWYH63Q6dO/enYRaQEBAhjHGnTTSu/cSEhKoZI1xuzZAFoiOjo5SiZqoqCgSVGXLlpW+w+LFi+l+GzZsoP3nzp0ji6RxBvuJEyfImmZcHkZJIjExMSEB+uTJE3KbfvHFF9DpdEhOTqZ6jX5+foiIiEBSUhJZUYsVK4aYmBhJbLZv3z5DZvDZs2dx/PhxWk8TJkzAtWvX6LcaPnw4du3aRaJrwYIF6Nu3LwnN7du30/cbMWIEWRQrVKhAz7hw4cL03IoXL06CUolLNDMzo/spIlCxUKfvFJLVSSEuLi7/qkIAwzC5m9z0/s4pclwAqlQq1K1bFxcvXvyfr2HsAgYMZWDs7Ozw119/4fr16+jUqVOmZWDy5cuHgIAABAYGol69ermmDMyHcOfOHTRv3pxeXEWLFpUsVv+GVatW0Yu2ePHi7104OjAwkIL5fX1931km5sSJEyQaa9Wq9cbagrGxsSQeXF1dM60TmJqaSu5RKysrnDlzJsOY6dOn0/MxdukChrqFSvFq43ZtgMHqVrlyZQhhKFZtXDrn4cOH9J2//PJLyWqqFEg2NzeXrJdbtmyheRgnkqxatYr2r127FoDBwqnEWjo7O1Oh7LNnz1JcnGJlfPHiBWXbNmzYEGlpaXj27BlZ1Fq0aAGdTocTJ06QgJo+fTp0Oh21f/Py8kJ4eLhk2duzZw82b94sCdopU6aQEDtw4AAJzRIlSkiJMgsWLKBSNB06dKAs4bp165IQrVOnDglKRRgqHWiMxZ/yv4o4VL6/sQUwK6yB9erVe+MaZhgmb5Eb39/ZTY4LwJUrV+LXX39FtWrV/udrpBeASiFod3d3mJmZoVatWrh+/bp0TmJiIgYMGABHR0dYWFigRYsWkvvufcjNC2jbtm3Sy/Pbb7/9n+Z54cIFEg729vbvHRcYFBREHSTc3d2lmM3MOH36NMV7VatW7Y1zjYqKIhe1l5eXVGpFISkpiZILHBwcMhQB1+v15NI1MTHBwYMHpePp27Wl7xaifK8qVapIFtZTp06RGDEub5SWlkai3NPTU7Isjhs3jkTM6dOnab8SU2lubo5Lly4BMAjQ8uXLQ4j/y9oF5MxgpcTM1atXKXZwxIgRAAy/peJyV6yLSkKOWq3GwYMHERMTQxm5tWvXRkpKCln27O3tERwcTEkoFhYWuHz5Mrl1XVxccPHiRbJKfvnll+SWt7a2xtKlS8ldO3z4cKkYt2LBUwpGm5qaUgKMEm9oampKglVxB2d3z+D0iUAMw+RNcvP7O7vIcQGYl8ntCygyMpLiv4Qw9Lh9V72+zHj69CmVZFGr1Zg9e/Z7FaN++vQplTKxtbV9pyXy3LlzVAy4SpUqb3yuL168oG4ShQoVytDuDYDU5zZ//vwZxuh0OmpRZm1tnUGgXrhwgQTUt99+K33fO3fu0DyNW7kBsovZuCxOTEwMzVnpyKHMQ8m6dXNzo+xrnU5HotHb2xsvXrwAAClrt02bNnTvQYMG0XdRBO+GDRtoLlu2bMkwv61bt0Kv16Nbt24QQsDJyQkPHjzA7du3yR07dOhQJCUlkeVTSVxRupAULFgQoaGh5LatUqUKTpw4QUJ44sSJ1M/Yz8+PBK9Wq6XsayEElcLRarXk6lc6+SjnKnNUznlb7F9WZgm/648ZhmFyP7n9/Z0dsAD8APLKAjp06BAF8KtUKgwfPvxf1w5MSkqi+DohDHXx3qfsTFRUFMWkWVhYvNOCeOnSJep4UbNmzTfGBD558oS+U7FixUggGfPq1SsULVoUQgiULl2aaukZfyclgSNfvnwZMseNy6ik715y4MABslpNnz5dOjZq1CiyWJ06dYr2BwUF0Xfr3Lkzibe4uDiULl0aQghUrFiRxGFUVBQKFy4MIQzuUcUSefr0aYoTVO6dkpJC38XX15eSFoYNGwYhDO5SRRgq7fxsbGxw584dJCQkkGWxXLlySEhIkBJP1q1bh8ePH1NSSOfOnfHq1St6/k2aNEFQUBCJ4gEDBlDNQbVaje3bt5NLumnTpuTK9vLyonZx9vb2aNq0KQk/ZbzyB4QQ/+cOVizSigtY+R0U0WecGJYVAtDU1PSjtLFkGCbnyCvv76wkWwRgQkKC9B/Mhw8fYvbs2R9UsiQ3kJcWUFxcnGQNLFu2bIZM13eh1+sxY8YMerE2b96c3JBvIyEhgUqPmJmZYdeuXW8df/HiRXIH16tXL0PxZoUHDx5QLNlnn32W6VwePHhAwqFu3boZhK9xr9wKFSpkEJxKtxHj0ioK8+bNI6Fh/J2MY+lcXV2lmoqHDh0igWKcqBQSEkIxcl9//TWJw5s3b1J8pHGYw4IFC2hehw4dAmCIX1SyaZs3bw6dTofU1FSywBUuXBhRUVFITU1FrVq1IIQhVi8uLg4PHz6kWDzFqqkkhVhYWODKlSs4cuQIzX3u3Lm4evUquWInTJiAXbt20fpau3Yt/cHg6uqK/fv3kzVv7Nix9Mzr1atHZWDKli1Lgr1SpUo0vlKlShDCYN1U9ilWUOWZKdZaxfKY1UkhH9LCkmGYnCcvvb+zimwRgA0bNsTChQsBGKwabm5uyJcvH8zNzbFgwYLsmEKWkBcX0Pbt28mNZm5ujkWLFv3r3sJbt26lF3H58uUzWM4yIykpibJotVottm7d+tbxZ86cIeHTtGnTN1osb9++Td+nUaNGmdYfvHz5Mrk0O3bsmKGszf3790n8pE/g0Ov1ZKWytbWVRLNer6f4OBsbGynW8PXr12S9qlSpkjR/47g740xlY3GoFHMG5DIwilvZ2HXr7OyMR48eATAk4ChxfhMnTgRgcJkrZVmUBJBnz56RMO7UqRP0ej0OHTpEVrTFixcjLS2NXL1+fn6IiYmhHsxarRanTp2ihBWVSoWDBw9SPUZLS0ucP3+enkGNGjUoKUStVmPFihVSfUPlN2zXrh1Z9pR4QEVwCSFI8BtbANMnhSjWUeMtK6yBI0eOfOsaZhgm95IX398fm2wRgE5OTvRyXLp0KcqUKQOdTofNmzejWLFi2TGFLCGrFtDVq1exZs0a2i5fvvyvRdrbePr0KXWeEMLg0nsfS54xZ86cIdHk7e2dIdEiM1JSUihhQKPRUIbrmzh+/DiJhFatWr2x9/HZs2eltmOZ1S00bus2fPjwDMdPnjxJ1qP0x41Lq/j4+Eju5pSUFNSpU4eOvXr1io4FBweTy7dnz570G+r1erKOGYs34P+KTmu1WuryAQA//fQTiXalxmVCQgIlxHz22WeUkKL07FUSOwCDVVURhkoiw/Hjx0lwzps3D8D/WTzNzMwQGBiIiIgIEo/t2rWDTqcjF27+/Pnx6tUrsiy7uLjg0aNHlIBTpEgRBAYGkjX3+++/J9Hq7u6O+fPn0xqcOHEiiTTjntGK5djR0ZHWmyIGFVFvLPoyaxOXlUWijV38DMPkHVgAZpMAtLCwoJdcu3btqFxFaGgoLCwssmMKWUJWLSCle4LxVrRoUYwfPx7Pnj37KPfQ6/WYPn06CYDixYv/a5fw/fv3KUbNwcFBymJ9E2lpaWRRU6lU7+wfHBAQQMIlfQcPY/bu3UuZoEOHDs1UMBsXO1YKKhuzfv16Or5kyRLp2MuXLyn7t06dOlL8o3E8nFJ2RWH//v1kVVPqUAKQ4u4qVqxI4k2v15NI9vDwoDqKOp2OxJCvry/FMz548IDcoL1796brKwWhnZ2dyQVtHJd37NgxACCLnomJCU6fPg2dTkeWN+U+Z8+eJWE1b948xMTE0O/evHlzvH79mpJAqlevjqdPnyJ//vwQwmBx3bp1Kz3X9evXUyeUunXrUn9kR0dHik20sLBA586dab8yvlSpUiTmFFe3Eg+orJH03UKUZ59VSSFarfaNZYsYhsm9sADMJgFYunRpzJkzB6GhobC1tSWhcPHiRbi5uWXHFLKErFpAa9asQaNGjdCoUSPUqVOHXm7Ki7pLly6Z1sD7Xzh+/DiV27C0tHynVS49r169omxbS0vL9yqkrdPp6MWvVquxbt26t47fvXs3ibsBAwa80RpqnOGaPjFDwTgLNbNC0cbHjS1wgByPN3ToUOnYtWvXyAo5evRo6djUqVPptzO2GBmLt169etH+uLg4snIZi82IiAhKjvjyyy/pOezfv58Ej9IGLyEhQcrMTU5Ohl6vR5cuXUhcPn/+HHq9Hm3btiUx9fLlS8nqp2Qaz549m77D+fPnceXKFVqX06ZNQ1BQEFn6hg0bhtOnT9MfF0uXLqVkFDu7/8fedYdHVT3R2U3ZVAIhCUnondB7RwhFRATERvcHgoB0EelIUaqIgCiodEFARHrvIBB6C4FQE0JCKuk9++b3x34zue/tbgopEHzn+/ZT76v73o337MycM0547Ngxfo6TJk3Cxo0bIwBgs2bNOHro5eXF0c1GjRpxtK9169Y81+gclBamZ0l1iRTRLWiLmIoVK+ZrhF6FChUFD5UAFhIB3L59O1pZWaFWq8VOnTrx+Lx58/Cdd94pjFsoEBTWBIqNjcWNGzeyCTIRp0GDBmFAQECezx8WFoYdOnTgc3/11Vc5UvgSEhISuFbMyspK1vHCHPR6PXcb0Wq1sq4spvDnn38yyZk9e7bZ/RYvXszf46+//jLaLkkS9u3bFwEMytO7d+8abSd7GDc3NyNvyB07dvD5lWRZjCCKrehEkuXu7i6rmRTJmxiVvHv3LhOciRMn8vjFixc5GrdkyRIeJ+JqZ2eHfn5+iGhIQZMyl/oIJyQksB1Nx44dMSMjA+Pi4tj8+r333kNJkmRRv2XLlqEkSVzDWaFCBXzx4gV3ObGwsMB///1XVqu4b98+TidT2ppMops1a4Z//PEH77t+/Xqu4xszZgzXJvbq1YuJH4lqADKVwUSGATJ7BhMJLGyT6C+++MLsnFShQsXrB5UAFqINzPPnz/HatWuyFN7FixeNFuCihFcxgS5evIjdunXjhcfKygpHjRqV59RwRkYGqz4BADt37pyr/qepqanc81Wj0eDPP/+c7TF6vZ7TwRYWFtkKQ0h1CwBZnp/Mh3U6ncm0dHJyMpORypUrY0REhGx7QkICty6jXrkiRHXs9evXZdvIYJosVgjx8fHc3aJt27Yygv3dd98xWSHTZ0SUdd0gg2fxOZAQA9Hw/ojE165dm+95z549fI5du3YhoiGSSdFKKse4fv06R/SIWFI9opWVFfr4+GB0dDSnwXv06IF6vZ7JNEUP6dlT6plqTb28vNDPz48J6aRJk7jWz83NjdPTGo0GFy5cyCSNzqfRaNgX0dnZmUUj9EzFekAifabqAQvSH5DU2CpUqHj9oRLAV2wDk5u+u68jXuUEunDhAtt70AK4bNmyXEXuTGHbtm2cQqtatWquCLper8eRI0fyPYk2J+aQkZGBn376KRMaIinmMHPmTF7UzUUaMzIysHv37kxETLWiCwsL4zqyNm3aGKmHnzx5wqKDvn37ylJ8GRkZ7FlXoUIFmfAjLS1NZrEi1of5+/tzVE/s86vX6/l+K1euLJtPX375JUe4qOuJ2BaudOnSLEoJDQ1le5TBgwfzOagVXYkSJTiiuWHDBn6OlAonUYaVlRVevnwZJUlik+oKFSpgTEwMXrlyhQnW8uXLMT4+nq1b3n33XUxOTubUrbe3Nz5//pw7gwwaNEgWQd2zZw/7H3bu3BmHDh2KAAaLF/rejo6OXBPp4uLCqfG6desysSNSSvWARG6VfoBKv8D8/lhaWuZaTKVChYpXA5UAqjYwecLrMIGOHz/OPmoABiNfHx+fPJ3z+vXrXANWrFgxI/+7rCBJEs6YMYPvZ86cOdkek5GRwZEka2trk7V54vmJZFpZWZmNuiQkJLDIonr16iajmb6+vpw6HD58uNF20ffu+++/l2178eIFtyijVCpBJD0ff/yxjDxu3bqVn434XMW6u169evExaWlpHK1s2rQpK6HFtG3nzp05sn78+HEmPCSwSU1N5TnSunVr/pFA3Tfc3d0xPDxcRvgqVaqEMTExGBMTw0SZ7GKWL1+OAIYI682bN/HWrVtsC7R8+XL09/fnFOx3332Hp06dYtK1ceNGHDFiBEf+Tp06xccuWLCABR+dOnVi5XWDBg2YKLZo0YJJNKmvHR0d+XpEAom8074U3SzoekDVH1CFiqKB12H9ftVQbWDygNdlAmVkZOCqVas4vabRaHDYsGEYHR390ucMCwvjBdjCwsJIFZsd5s6dy4vitGnTsi2ST09Pxw8++AABDPVbWZFY0YrEycnJrAVNcHAwq1HbtWtn0iNw//79TJh+/fVXo+3KXrkibt++zcTjm2++kW07f/48kw3ljxxKfZYsWVJWYygeIyqGAwIC+N2K9YAi8frhhx94nFTkynpAIrszZsxARENvYaoHpNq/6Ohorq375JNPUJIkmaBjw4YNKEkSp2Nr1qyJiYmJ/Jx0Oh3eunWL/QEtLCzw3LlzXKNIreqI0HXo0IFNra2srGQR6KlTp3JN36BBgziyRzWaFhYWnAImMqzVank/pT8gRS7FT0HUA86bN8/kfFShQsXrg9dl/X6VUG1g8oDXbQKFhYWxzxqAQR2pJC25QWpqKqdnAQCnTJli1obFFERBxoQJE7IlgSkpKdixY0cEMKQrb9++bXbf5ORkVoSWK1fOrBn1rVu3uD5syJAhJu+ByKpSpYtoiDiaslQhkLWMRqMxanNHFis6nU5WK5icnMzRyZYtW8r8DRctWsTHiD1nxdSpWDqxcuVKvneqH8zIyODygPr167MJNUUfNRoNnjhxAhERb9y4wcRoxYoViGgoLyAiSsKUb7/9lgncgwcPMDw8nMUa1CuZ7GNq1aqFiYmJbOVSrlw5jIiI4NR4ixYtZKrpBQsWMPmvUqUKRxgtLS15Dmk0Gk4LW1pa4ttvv40ABiEIRfmIVLq5ufExWaV9C7Ie8P79+ybnowoVKl4PvG7r96uAagOTB7yuE+jUqVOcngQwWKe8bO9SSZK47g7AkAbMTR9hUbgxbty4bElgfHw828p4eHiYrN8jREZGcuSnYcOGZuuvDh48yIs9kRzld6TUp7u7OwYHB8u2i5YqSsKGiFy75urqKjtWkiQW7FStWlVWD/jw4UOOyInG06LfX7Vq1WTHUOrU1dWVCa8kSayQrVq1Kj+DkJAQToNOmDCBz0GmzR4eHlw7uHTpUiadRLpJwWtnZ4f379/HjIwMJnBNmjTB1NRUPHz4ML/bXbt2YVhYGNcgjhw5EmNjY3kefvLJJ/jkyRP+zrNmzWLhh5WVFZ46dYrtXD799FP8+OOPEcCQvicCXrp0admzof3FSDWRUvJlJCNupTDElEAkPz8ODg55rsdVoUJFweF1Xb8LE4VuA9OxY0ceV21gCg4JCQlMGGjBzEtt4Lp16zgq9NZbb+UqvUx2IQCGFGZ2JDAqKoprwSpWrJhlq7lHjx6hq6srAhhECOYW3e+//55JAkW/RMTHx/M1mzdvbkRyHz58yClFpQdgUlISq4bbtGkju4eoqChOQ1MNHUGM6ol9sSMiIriWbcCAATyenJzMFigdOnTgaGxkZCTvP2jQIN5/165dfH6KBItp3x49eqAkSShJEotaateujUlJSajX67nGrlmzZpieno5Pnz5lQjVp0iRERPb3c3Z2xmfPnuGhQ4f4mnv37sVLly5xFG7z5s0cMbWwsMDz589jjx49EMAQNTx69CgT9fXr13Md5eeff87G0z169GCS16NHDyZwVCfp6enJ5yACTBFBIp+UNhf7BRcEEezatavZeatChYpXi9d5/S4sFLoNjLgAqjYwBY/Dhw8zObC0tMTvv/8+V2lcEUePHuVFtH79+tylIiegVCVAZg1aVggJCeHoUYMGDbLstnDx4kWuGxsxYoTJfSRJwv79+yOAofaOFLUiHj58yLV2YlcNgkiolJY19+/f51TzlClTZNvOnTsnM0UWQSSdhBiEs2fPMpHZunUrj9+9e5dTp9TSDdEQ9SUSI+5PvYo9PT1ZrXzjxg2OgK1ZswYRURa9GzVqFCIiBgYGMumlsg0irRqNBk+ePImpqamcziZSSqlaFxcXfP78Odf/OTk54dOnT1nVW6lSJXz8+DFfd9y4cTh58mR+R6JgZunSpfwMv/76ax6nSKGTkxPPcyLjdnZ2/EyI9NE/xfRvQbaKO3DggMn5qEKFileLorB+FzQKjQCeOXMG+/Xrhy1atMBnz54hoqFzg7LbQlFCUZlAL1684MJ5AEPBf1RU1Eud68aNG7xgV6lSBZ88eZLjY8lXDsCgDs0ODx8+5Ohe586dzfYCRkTcuXMnL+TmlOVJSUncdaJOnTomU8aHDh0yUtGKIPLh6OhoVOe1bds2sws/dQOxsbGR1TYmJSWxtUm3bt1kP5BITV28eHGZWIR6/VpZWXFfYMTMfsHFihXj95KQkMA2LR988AGfn1K8Dg4OnGY/ePCg0f2TubWFhQVeuHABETPTyOXLl8fY2Fi8d+8eE/CffvoJU1JSOGX+3nvvYVpaGjZt2hQBANu3by9TPA8aNAj37dsnuy4RuK5du+Lo0aOZIBM5dHR0lNVl0rUaN27MxI6+MwlaSAhizhpGjAbm58fS0hITEhJMzkcVKlS8OhSV9bsgUSgE8O+//0ZbW1scMmQI6nQ6XnB+/vln7NKlS2HcQoGgKE0gSZJw1apVbIdRrlw5XtBziwcPHsh6seamhzCJHACMrVVM4dKlSxzxGjRoUJbp4/nz5/NibirNi4j47NkzTiGKhEgE1Tza2dkZfbf09HSuhatXrx738CWQRY2rq6ssQqrX69kUuU6dOrIU882bN7lGTSSvInHy9vbmyK3YlaNmzZp8D+np6dwtpm3btrz/1atXjSJ+Yk1fy5Yt2cZmzJgxCGCIGJJ1DkXsKleujPHx8RgXF8fee+Q3SMINW1tb9Pf3x9u3b/N3WrduHfr7+/N7XLp0qSxi+c8//3BrwNKlS+O///4rE6YQQX7//fexVatWfM8k+ujYsSMTUGol5+zszGNUK0g/XCiKTdvp2RTUp2HDhmbnrAoVKl4NitL6XVAoFAJYv3597lEqRhyuX7+uikAKGdevX8cqVapwdGL58uUv1cf02bNnbMHh7OyMFy9ezPGx1PkCQG53Yg579+7lyI7SbkWEJEmsPHV2dsaHDx+a3O/8+fNMMEyR0IyMDFYje3l5GUVwQkJCODI5duxY2bbk5GQmJl26dJE929DQUD5OFGYgIvfatbGxkZHO+/fvc/RKvNfw8HAmNGJN4sOHD3n/H3/8kccp4mdvb8/P5cmTJ5y2JuuSxMREFtb069cPEQ0RZKpjpJ7Fp0+fZgK3b98+1Ov1rDxu3rw5ZmRk8DWLFSuGgYGBbPei0+nwzp07OGnSJAQw1OgFBARwnV+vXr24ZtPe3h737NnDJG3hwoWs+h0/fjzXpVKPY1tbWz4PRQZ1Oh3/8CHyR8/IFPkriJTw2rVrTc5FFSpUvBoUxfU7v1FoNjCUkhIJ4KNHj1Cn0xXGLRQIiuoEio2NlaWEP/vss1wpewlRUVHYrFkzXlhNtV0zh2nTpvFia6pnrxKrVq3i+1XW0YlISkriqJmXl5fZd0NkxMLCAk+fPm20PSwsDD08PJhcKEny/v37+X727dsn23b79m0mHD/99JNs2+7du/l7iybWer2e+ynXq1dP9j5EtaxoDSOmTkXzbKq3tLGx4RpbvV6Pbdu2RQCDiIeig+TXZ2lpyTYyPj4+TLip1vHkyZNMjMjAevz48QhgSM9GRkZiYGAgE6z58+djRkYGRyQ7dOiAGRkZHAWluk76EdGrVy+ZYGTbtm0coWzVqhVb9RQrVkyWTqeIpZOTE1+rQYMGTAzp/BSxpvei/ND3LahUsEajMWo5qEKFileHorp+5ycKhQBWqlSJVYgiAdywYQN6eXkVxi0UCApqAoWFheHt27f587IWLllBkiRcvHgxL3wtWrTIUm1rDvHx8UwsHBwc8MyZMzm+PqX9rKysjDz0TIFIo6WlZZZ9V0NCQlhB2rVrV1mXDvH6FC10d3c32Uv59OnTZsUbiCjre6t8dmK3DKVRNdnGlClTRtah5Pnz5xwhFK1hJElitWzNmjUxKSmJt5HIo0yZMqzMliSJyWSTJk1Ylfzo0SOOfC1btoz3JQ++mjVrMvGkfscuLi4YFhYm+75lypTBmJgYTE5OZkUxdTxZt24dv9ObN2/i/fv3OdW6YsUKDAkJYXPnOXPm4OXLl/kZb9++nesY3dzc8OrVqxyhXLBgAdsDvfPOO5zqbdasGTZq1AgBDGbfFB2k71+sWDE+B6WtqQSAxgsrFVyxYkWzc1aFChWFC5UAFhIBXLhwIdasWRN9fHzQ0dERz549i5s2bUJXV1ejCElRQkFNIOrkQB8HBwccNGgQnjlz5qXStVnh0KFDrHwtXbo0Xrp0KdfnSEhI4PSfnZ0dnjx5MkfHZWRkcEcPe3v7bNPIkiRxPVqJEiWyNNu9fPkyKz7NpY0TEhI4QtS2bVuTFjIUbaK2ZyJSUlJYsNCxY0eZulq0Vqlbt66sVjAhIUGW7hTfqRghFE2pIyIimLiI5DA+Pp5T+n379uXxZ8+e8XsV2/FR5NPW1pafX0REBKeTp06dyt+NLGfef/99lCQJExISWJlNqWCRwP35558y78N69ephamoqe0GSp+DmzZuZcN2+fZuJvaurKwYFBfE76dOnD65evZqjfQcOHOAI3uLFi5nAffXVV5zSJyN0a2trPg/Z+1haWvKcIDsbilia6hJSEEbRapcQFSpeD6gEsBBVwFOnTkVbW1vUaDSo0WjQxsYGp0+fXliXLxAU1AT6/vvv0c3NDd3c3HgRp0/Tpk3xn3/+yVcieP/+fY7k2NjY4I4dO3J9jqSkJO7OYGtrm+MOJCkpKbLCfWpdltV1KO1crVo1kz1+CX/88Qc/t71795rc5969exw1Im87EXq9ntue1apVSxZ9Q0T08/PjCNKiRYtk28SaP6V34MWLF5k4bdq0SbaNuq9UrVpVFv3ds2cPExNRwHPhwgUmKzt37uRx8twT07t6vR47dOiAAIbUKkVHyd7FwsKC9xXtYkgRffr0aX6m5F1IohlnZ2cMCwvD58+fY8mSJRHAYB8j1gfSNbt3744ABuVuQkIC101+/PHHMlK5Y8cOnh+tW7dmoY+TkxPXCep0OvYjdHR0ZP/CWrVqMWGkekAShGSXCi7InsGmos0qVKgoXKgEsBAJIKKhwPzy5ct48eJFs10bihIKYwJJkoRnz57FwYMHc/SCiOC///6bb9eJjY1loqPRaGQCgpwiOTmZOzXY2NhkmaYVER8fz3V7WbV1Izx//pxFCR07dszSHoZUucWLFzfbVWT79u38XPfs2WO03ZRHngiq0bO0tMQrV67Itol1esrnMWfOHI5CkTUSImJ0dDSnsMeNGyc7hsQONWrUkEUVSVDh7u7OpFjscFK7dm3uhRwQEMCkV+whTJ56devW5X2p9q5EiRKsaiZrlrJly2JsbCympaVxJLR3796IiLhlyxYEMET5fH19ZddcsWIFBgcHs8fgwoUL8erVq0y6tm3bhlOmTEEAg3L32rVrstR1kyZNEMCQ3qeawqZNm3KK+K233uIfTjSnixUrxmPUJYQiqkpVsKloYH5+1FSwChWvHioBLGQC+KahsCdQaGgoTp06lRdDAMCPPvrIrNo1t0hPT5d1DxkzZozJ+rmskJKSwj1h7e3tc0xSIyMj2bstq7ZuhOvXr7OtyMiRI83ul5qaysSgXr16Zuspx40bhwAGA2KRjBHEDhdK0YckSfjRRx8hgNyWhUC1jhUqVJAZWqenpzPx7dq1qyyqe+DAASbjokglKiqKicvEiRN5PCkpiZ+f2A0kIiKCo5BiKpi6s9jY2OC9e/cQ0UB0KXI3e/ZsvscGDRoggKGdG6IhhU0kaujQoYhoSAVT9GzPnj2yVHCzZs0wIyMDV6xYgQCGkoanT5/i2rVrORp39+5d/OabbxDAUHcYHBzM9i/9+vXjY+3t7fHw4cNM0pYtW8ZEcuLEifwjafDgwfz9KAVMtYLW1tZM9pSpYFORwYJIBS9dutTkPFShQkXhQCWAhUgAjx07hlOmTMHBgwfjoEGDZJ+iilc1gZ4/f46ff/45L0xWVlY4adIko/Tky0CSJE6tARjabeVWhJKcnMzp4GLFiuHly5dzdFxO27oRdu7cyfeZlZ1MUFAQn/fTTz81mT4XO1p4e3ubJL5EEl1dXY3SeGIdnVijh4gYFxfHhsTDhw+XbfP19WUyozSeJhJTqVIlGSGmOkGtVitr7/fvv/+yUldsLUdmztbW1pxilySJU6utWrXi+kXa18rKCm/duoWIBh9BSsnu3r0bEQ2qYHr2lO4nk+zSpUtjTEwMBgUFcZ3e0qVLUa/Xc8u2rl27ypTPLVq0wKSkJE4FDxw4EC9evChLbVPP344dO7KVUIkSJXDJkiUcwaN7cHZ25v2bNGnC0UWqa6S6SXOpYPq+BZUKVlXBKlS8WqgEsJAI4KxZs1Cr1WLTpk2xR48e+P7778s+RRWvegLdunWLF1AAQ81YfnVW2bZtGy+OLVu2zLLWzhQSExPZxqNEiRJGAgpz8PHx4SjO8OHDs611pBSllZVVlsbWx48fZzKxcuVKk/v4+/tzdHXu3LlG28VevO+8845RSz1RwKGMfB4/fpzfk2jZgogyMiOmv2NjYznVrWxxRwpmLy8vWcSR0rPlypXjaKMkSZwKbdmyJd93YGAgf18i0JIkyerziIRPnDiRyR3Nd0qvV6pUCZOSkjAxMZFFIkR0yZLGzs4Onzx5gnfu3GHCu2XLFgwMDOTU8NKlS/HChQtMYo8fP87XLVOmDF67do3nxm+//caEvVevXlz317FjR05Hd+/enfen7+/i4sLfmYQ4VBdIkUTaXtCp4OrVq5uchypUqCh4vOr1+3VAoRBAd3d3k221ijpelwm0Z88erhnTaDQ4atSofKmx/Pfff7luqm7durkuXo+Li2PBhqura477Pv/zzz9MApTCCiXErhilS5fOsj8xGRObUvQSyMbEwsLCpK+hr68vkwpTabyBAwcigKFrhtJAmtLr5cuXl6WC09LSOM1KilvC0aNHmTCI5D4yMpIjjpMnT+bx+Ph49rwTU+Mi0VqxYgWPkwG1k5MTk8/g4GB+72Q+LZK7L774AhEN85/675J6+MSJE3y/p0+fRr1ezz8E3n77bZQkiXsDu7q6YmRkJJNEBwcHDAoKwlGjRnGULjIyku1bvvzyS45OOzk54eHDh5nUr169mn+wzJ49m8epZZyTkxPfP81JOzs7JnlE/ugZiZYwNBcLwiD6119/NTkPVahQUbB4XdbvV4lCIYBZdWUoynidJlB0dDSnDAEM9WY59eTLCrdu3eKas8qVK+Pjx49zfV9EbsqUKSPraZsViJgAQLaq5NjYWKxRowYCGOxczIlC9Ho9i1Rq1KhhskeraDVToUIFjImJMdqH6tHE+jlCTEwMR5SUgpH4+HgmM8OGDZNtu3HjBqcbt27dKttG77VmzZoszkDMTIFbWlpyuhZRThrFOSDW4AUGBiKiwYqH+iNTjR9iZr9hOzs73lckd0RG//nnH74H8jv8/PPPOcKWlJSE/v7+TM42bNiAqampXJc3YMAAWWr4gw8+MCKWVH+p1Wrx4sWLXMvXt29f/PLLLxHAIKwg+yQXFxf84osvEMAgVKH5R1FCepZiFJBqAOkdKNXAYio4P4mgVqt9Lf7/oULFfw2v0/r9qlAoBHDixImyAvQ3Ba/jBDpy5AjXm2m1Wpw9e3auhRxKPHz4kImLh4eHkbFxdoiIiGCCVrNmTYyKisrRcZTOtLOzk3XAMIW7d+9yvZnSckVEeHg4R0s/++wzk/vExMRwFK13795GaWhJkrjGsUWLFkbP9/Dhw7zAK9O9Yu2c0vya7FRE82VEg/DDzc0NAQC//fZb2TEU/WzRooUsJT1kyBAEMKSIiTSKROvdd9/l73Xt2jWueSOBi16v5xq6Hj168HmJjFavXh2Tk5NlKWOqJRRVzDNmzEDEzD7NJUuWxMjISPTx8ZHVK966dYvvYe/evbhr1y4mXjdv3mRS3rBhQ1mnkj179nCafMKECUws+/bty++wb9++fG7yZixTpgxH/4hs0nlcXFwQwHS7uIKIArZs2dL0ZFWhQkWB4XVcvwsbhUIAx4wZg8WLF8e33noLR40ahV9++aXsU1Txuk6guLg49pKjqJgpZWtuEBwczIurs7Mze8XlFIGBgbzQtmjRIkfCkvT0dO7JW65cORkpMgWKRgEYTInNQWxrZm6/CxcuMGnYsmWLye9DhNNUP2GKQJUrV84oHU8pzooVK8qeQ2pqKtcY9u/fX3YMiTN0Oh36+/vzeFBQEKctRSHMixcvmDTOnz+fx/38/Jj4iJHGCRMmGN2vr68vR7527drF56WIMJFRsZbwt99+Q8RMax1ra2u8f/8+pqWlscDj888/R0TkNm5Vq1bFlJQUFnCUK1cOExISuENJs2bNZMbWS5cu5R8HVatWxb///pvJ4h9//MHvlky8NRoNG0SXLl2aySmlponwAQCn90klLLaGKwg1MH1OnDhhch6qUKGiYPC6rt+FiUIhgO3atcvyU1Txuk+gDRs28MJcsmRJs2bIOYXY+7d48eI5VvcSfH192Xbj3XffzdK/T7wmKTbbtGkjS4GaArUws7e3z7LmkCxHHB0dzZYniAbHprwJqUsF2ZiIiI+P50is8kdOfHw8R5vE+j1ExEuXLslEEASxvZu3t7csKrl06VJ+J2IN5MaNG5nMUC9uxMxOM56enlyLmJCQYPJ+J0+ezNExIoZERm1sbPi8pMSlexDvt3PnzuxnSYTMx8cHY2JimEx+9913mJCQgOXKlUMAg6XLs2fPODX7888/s3WNg4MD+vr6cq/mWbNmMVls3rw511pWrlyZI4cNGjTg70dt9aytrfl6RE5JLU4EkFLX9M+CIoG2trbZqt5VqFCRf3jd1+/CgOoDmAcUhQnk7+/PNVAAgDNnzjRSr+YGsbGxnEZ0cnLKtn2bEufOnePF1ZwlixJ+fn5MBIYMGZLlMRkZGdx1ok6dOmatcdLT0znF2bhxY5PEUhRnvPfeeyZTwWRETF53IsjLT6vVGrXYI8Wwsn4PMVMsUr16de7Ni4j4+PFjfnbr1q2TfWdSxIrt4CRJ4j7N3bp14/Hk5GT28ZswYYLJ+71+/ToiGsQflEolextJkriejtLDol8g3cP9+/c52vj3338jInIkrmHDhpiRkcFt4YikUrcTei5Ut0jEslWrVnzdbdu2MZE7c+YMR2QXL17MUb6vv/6a5w5FZS0sLPg89Ny0Wi17IBKxpJ7F9CNKJH8FQQSpvZ4KFSoKHkVh/S5oFAoB/OOPP8xuExegooaiMoFSUlLYsgPAYI+Rl3uOi4vD1q1bI4CheD4r+xVT2Lt3L6fWqEYsO+zfv58jY8uXL89y35CQEE5/KsUWIoKCgniRnzZtmsl9bt++zSRm7dq1Js8hdrRQgiJQ9erVM4p4mqvfi46OZoWvsuZv0aJFTE7Cw8N5XDRiFmsL79y5Y5TGRczsUCKKNxCRezO3bt2aCS/ta2FhwWRVTA/v37/f6B6oH/SMGTMQwFBzFx8fj2FhYZzKXbFiBUqShN7e3jIyKT6XtLQ0buP2+eefG12XoowdO3bE5cuXM1kUja4p2luiRAnev2nTphzVI6NwEoRYW1vz9xBr/ujfC7JNnLluNSpUqMhfFJX1uyBRKATQycnJZPpx3Lhx6O7uXhi3UCAoahNo7dq1TGZq1KhhpGDNDeLj47mGytHR0aRlSlYglSkA4Pr163N0DFmAWFpaZtth5MiRI7xgK1W1Iqh+TKvVmv0ORLocHR0xICDAaLvY0ULZyzgsLIzT3kpLG7F+T2kHItb8iSlqse3awIEDZcdQTV2VKlVkkU9K41JtHYFSoe3atWOy9/TpU+6wsnnzZt6XUqwtW7bkfalusHLlyuxFSFG2unXrYnp6OiYlJbGAiCKIP//8MwIYIsihoaEykrpv3z7Zc1m/fj3++++/TMAuXbrEfX+rVauGfn5+XLe3adMmJotDhgzh6GePHj34mfXq1Yv3p+/k7u7O1yOxEt0z/UCg7eaMo/PrU6ZMGZNzUIUKFfmLorZ+FwQKhQAePHgQnZycZC2tRo0ahZ6enjn2hnsdURQn0MWLF1mMUaxYMTx48OBLnyshIYGjN8WKFTPqg5sdqF7PysoqR0XwkiRh7969EcCQpsvOl3DatGlM3LKyIaL+ulWqVDFpDZORkcFp7/bt2xul0CVJYnuZNm3aGG0ngmhra2sU4RHr98TvI0kSdujQAQEMptNi+vnChQtMGMQUfGxsLKc+xchhYmIi179NmjSJx588ecJkSBTDkDG1p6cn1/0FBQVxKnTTpk2IaIgE0/VI5R8ZGcmE9+eff0ZE42hjRkYGW7kMGDAAETO7iFSsWBGTkpLYs9Hd3R3j4uL4HTVp0kQWIV20aBF+++23CGAQeBw5coTJ4tatWznS/MMPP/AzGzp0KAIY+gwT0aOUtpOTE5NRSh1n5Q1YEKlgem4qVKgoOBTF9Tu/UWg1gFu2bMESJUrg5cuX8YsvvkBPT0+ZmjE3+OWXX7BOnTro6OiIjo6O2Lx5czxw4ABvlyQJZ86ciR4eHmhjY4Nt27Y1si5JSUnBUaNGYcmSJdHOzg67deuGQUFBubqPojqBnj9/zilcCwuLLNuoZQex44ezszPevn07x8fq9Xrs1asXE6Cc/BiIj49nD7e2bdtmWTifnp7O37NRo0ayejoR0dHR7N1HJsdKPHjwgCNjphbogIAA3r5mzRrZNrFmrlOnTjIyJ5KhPn36yI7z9/fniO1ff/0l20a1dE2aNJERzi1btiCAwTpHnM9izaH4nIk8eXh48DwWawRFwjhv3jwmWkSUt27digCGVCt5RFLdnrOzM0ZGRiKicbTx4sWLTKLOnDmD8fHx/A6++eYbTElJYfHPpEmTMCQkhGv8Vq9ejevXr2dy9ujRI65TnDFjBvbt2xcBDClkat9XtWpVJpH169fndC/dl1arxWrVqiEAsNqdygiIJBMxpHdSUN6AFhYW+dLWUYUKFeZRVNfv/EShikB++eUX1Ol0WKZMGXzw4MFLn2fPnj24f/9+9Pf3R39/f5w6dSpaWVkxyVuwYAE6Ojrijh078Pbt29irVy/08PCQdV8YPnw4li5dGo8ePYrXrl1Db29vrFevXq4884ryBEpNTWUSAWBIz72sOCQuLg6bNm3KUZX79+/n+Njk5GSOrlWsWFFW12YOd+/e5aiMsu+uEkFBQVzc/9VXX5ndTzRPPnTokMl9fvrpJ44omrLVoRS1sj4P0SCIoPQhRdAIV65c4UiS0jeQlMgeHh4yOxmREIm1iZIkscChX79+snO99957CGBoi0ZITk5mojVu3DgeJzGGlZUV/1BLTk7miBnVbkqSxKIbURBCqlpqYRcQEMBEaufOnYiIHIlr1KgR6vV6to7R6XQYEBDA92BtbY0PHjzgKJ6LiwtGRkZy7d6AAQNwx44dTNYuXLgga3FH0cJp06ZxvSZZ8Wi1WrYaIiJO1wDIbBNHamWad6I9jPjv+fXp2bOnyTmoQoWK/EFRXr/zCwVGAJVef/QpW7Ysdu/ePd99AEuUKIGrV69GSZLQ3d0dFyxYwNtSUlLQycmJI10xMTFoZWUlqw0LDg5GrVZrdvE3haI+gSRJwjlz5vCi89FHH7105OHFixdcZ1W2bFmTtXLmEB4ezhGnli1bmo3UiSCyAJB9pxAiEhqNhsUJpkDech4eHibNqvV6PbZo0QIBwGQPa7E+79NPPzXaLkbbxB8jiJnegLVr15ZFNcVo3PTp02XHEOF0c3OTdSy5evUqR6TOnTvH4/fu3eOolSgUOXjwIEe0qC5UkiQ2Te7SpQtHLalm0sbGht+xn58fkyB6vtQ1RKvVcts9SslXqVIFU1NTMSwsjNOs69evlwlC+vbtK7OS6d69O6alpXH0d+TIkTLLnH///ZeJ6EcffcQegO7u7iwIsbOz43dQokQJJsStW7dmck7R7OrVqzMZpXkmpnsLQxCSlx/JKlSoyBpFff3ODxQYAczO+48+3t7eebpORkYGbtmyBa2trfHOnTv46NEjBAC8du2abL/u3bvzonz8+HEEAHzx4oVsn7p16+I333yT42sX1ARav349ent78+err77Kk2AjO/zxxx+c1mrRokWOO3UoERYWxkX0lSpVylXv4Hv37nF0JjurF8L48eM5Ipdd1JHak5UtWxajo6NN7pOYmMgLv2inIuL27dtcC/bPP/8YbRc7XCjrGs2lVhENfockOFCmmMngWiRdiIYoLqUtx48fLzuGOoE0btxYFtkdO3asSaLZtWtXWRQP0ZCCpu+6Z88eRJSns8XWcaQyb9iwIV/v448/RgBDql6SJIyPj+dI2g8//ICImf2ZPT09MSEhAa9du8bPz8fHB/38/JhkHT58mP92tVot3rlzhzuTNGzYEK9fv84k7fDhw5zmnTBhApcC9O7dm6OTAwcO5HlP91q+fHm22lEKQigqSKSV9iuoT7ly5UzOQRUqVOQdKgEswj6At27dQnt7e7SwsEAnJye2ojh37hwCAAYHB8v2//zzz/Htt99GRMTNmzejtbW10Tk7deqEQ4cONXvNlJQUjI2N5U9QUFCBTCAy6lV+2rdvn2UEKy84ffo0F+/XqlXrpTuHBAcHM8mpX79+rp7NwYMHeQHPSSF8Wloae/k1bNgwy8hhfHw8Vq5cGQGMu2yIuHjxIt8DtUVTYvr06UxaTPUKJh+/atWqsTqWQLV4VlZWRqSV1LHOzs4yEi6Srt69e8uOEaN3ogI5NDSUiYroGSgSzZUrV/K4GMU7deoUj0+aNAkBDDV0ZGNz48YNfkbUazg8PJyvt2HDBkSUp32phpHU305OThgREYEpKSlMsGbOnImIiIMGDeIfI5IkcR2fl5cXpqWl4fvvv48AhlR2WFgY/3D47bff+NnXrVtXlsb+559/ZDZC9MyIQFatWpXJaadOnRDAEKml70mpX6rzNNUhpCAEIaa60KhQoSLvUAlgESaAqamp+ODBA7x8+TJOnjwZXVxc8M6dO0wAlZ0bhgwZgp07d0ZE8wSwY8eOWfrGUT2W8pPfE+j27du4detW3Lp1K65fvx67desmW1zatWuX6y4cOYGvry+rOitUqJCrWj4RDx8+5AJ6b2/vHKV0CRQRsrS0zBHZffbsGdf4ZVdOcP78eX6O27ZtM7sf2YyULVvWKFWLaIjkUXSJatxEiB0uiNQQRPNosRYP0VA7RwKE0aNHy7Zdv35dlu4U0a1bNyYuYuR08eLFCGCoyxTnKBEgFxcXGYElCxcxihcXF8fdMX755Rfel+r3GjRowHWz9O5Kly7NLe7ob6ZSpUqYmpqKGRkZbNUyatQoRMxM59va2mJQUBAGBwdzDd+2bdvwxYsXHH1bunQp+vv7c1Tw+PHj+OOPPyKAId0bGBjIP2RWrVrFkc2ePXtyzWubNm1Ytf3uu+/y9yPPRkdHR/47oNpW6hhCRJCif/RPU+nh/PhYW1vnqGOOChUqcgeVABYSAZw3b56RMhLREA0Qa/Xygg4dOuDQoUMLNAVcWBFAUwgMDMQRI0ZwygrAkMLKTZo1J3jy5AmTGzc3N6PnmFNcu3aNRQoff/xxjsU1kiTxQuzi4iJrYWYOFOkByDQlNgcyJi5RooTZKGdiYiJHMUeOHGlyn5MnT/JiL9bZEahLhU6nY3Us4d69e5xaVUYZjx07xhEmpXLdXFr3wYMHPC9EW5/U1FR+lxMnTuTxtLQ0Tm+KRuxhYWH8zkTzdlL1urm5MSEODw/nyBv9bScnJ7PdDNnCJCQkMBkmA2+qD7SwsEA/Pz+UJIkjuWQLQ7WpFSpUwOTkZFy1ahUCGKKjMTExXDPZoEEDWWp9zpw5LNYpWbIk+vj4MDnbsWMHE7Zly5ZxFO/LL79EAIMSnWo4qZ7Qzs6OySh9D/rBYSoFXBCCELVDiAoV+Q+VABYSASxfvrzJRdLHxwcrVKiQL9do3749/u9//2MRiNiVITU11aQIRIwChYSEFAkRSGBgINtZEJHZsGFDjmrmcorQ0FBu61WsWDE8e/bsS53n+PHjTHRGjhyZ43tMTEzkFl316tUz6c2nBAk4XFxcjNL/ItLS0rBx48YmI2YiSBWs0WjMmk5/9tlnCABYs2ZNoyiNqI796KOPjI4l37sqVaoYRUgpxam8v9DQUCZolGYlUD1k3bp1ZeRw7969TEQDAwN5nNq+WVlZycQG8+fPRwBD9JMEQWlpaUwkxR9IFGEsU6YM70s2NPb29hyFJ/Lm4uLCfytkv/Luu+8ioqGLCM3pS5cuYWJiIvtVLliwANPT09HLywsBAKdOnSpLOW/cuJHtaBwcHPDZs2e877Rp0zha2bx5c5kQZdiwYTzHKPL64Ycf8nsnMkh/CxSFpDlNZI/+W/xxlp9RQACQ9XhWoUJF3qESwEIigKaiIIiIjx49Qp1Ol+vzTZkyBc+cOYNPnjzBW7du4dSpU1Gr1bKyccGCBejk5IT//PMP3r59G/v06WPSBqZMmTJ47NgxvHbtGrZv375I2cD4+PjIevx26dIFnz59mm/nj4mJYUWknZ3dS9cebtu2jRfDuXPn5vi4wMBATiMPGDAgW/KYnJwsi95k9R7v3bvHtWmrV682ux/Vonl5eZlMY0dFRXH6kEQNIm7dusXRJ7GuDtGQWqWes/Pnz5dte/jwIZOJ3bt3y7aRulU0aUY0GDBTRG7jxo08LtYPDho0SHYuUtiKBDU5OZnTneL7IvWvnZ0dE7vk5GQsW7YsAhj679L1mjVrJotcpaWlsViFlMz3799n4kR/t/TDhtrQbdy4EQEMKdnQ0FDctWsXR96Cg4P5WZQpUwYTEhKwSZMmCGDwchT3vX79Otfu/fHHH2wLM3fuXH5m1NXE0tKSU/T0QwEA+BiqVxTN1Om4gowCNmvWzGh+qVCh4uWhEsBCIoBVqlQx2Q9448aNWLFixVyf77PPPsPy5cujtbU1urq6YocOHWS2FmQE7e7ujjqdDt966y0jg+Lk5GQcNWoUOjs7o62tLb733nu5JlCvegKlpaXhvHnz2KrC0dERV61alW/RwKSkJCYJtra2ePTo0Zc6D9WcAWTdlk2JU6dOMYH67bffst3/3r17vNBnRzbJQsXJyclsxPDFixe88JsrDSBRg6Ojo8l0PNXVmfpx8ccff3DUShnhofZt1apVM7KFUYomCBS9K1eunEx84uPjgwCZylnC7du3mZxfvXqVxzdv3mx0X5Ikse+eWCdLXU4oNYuYKcTSarXcO5h8+kQCSYrkxo0boyRJGBQUxMR8//79qNfrmYSNGjUKJUliz8ihQ4diUlISE9B58+bhqVOnmIDdvXuX9x02bBj3A65SpYpMbDN79mwEMAg+iPh16tSJCThFcWvVqoUAwOlgJdGj5yhGAfP7Q3Y6KlSoyDte9fr9OqBQCOCCBQuwZMmSuHbtWgwICMCAgABcs2YNlixZEufNm1cYt1AgeF0mkLjYARg86pT1jS+L5ORkLqTX6XQv3TqOUpQ6nc5kOYA5UJRHp9PJSIo5ECGxtLTMcv/09HSOGPXo0cMsaSaBgmg0LkIkKcoIGyJiREQEFi9eHAGM+/1KksQiAxJEEGJjY7nW7Pfff5dto/pCBwcHjIiI4HExbbpkyRLZMT179uS5IaJ///4IYIggi9+Jno14X2fOnGHiQ4pjMTUr+hR+9NFHsutJksQeikQgw8LCmFCRpQ6lxuvXr496vZ7rda2srDAgIADPnj0rI3lEoh0dHTE8PJwFMT179pTte+XKFSbzS5cuZT/BcePGMaEePXo0/+CgloO1atXiSCUZZlM0k4QipKoWawLzOwUMYEjLq1ChIn/wuqzfrxKFQgAlScKJEyeijY0NarVa1Gq1aGdnh7Nnzy6MyxcYXqcJlJGRgUuWLOEIRLly5fD8+fP5cu7U1FSu2bK2tmZPuNzeH53DxcUly968IvR6PS/qFStWzJbYSpLEdVw1a9Y0smERIXr6mYtMSpKE3bt3RwCDotkUUaQIG4C8Ny+B+v26uroaeRCSmMTS0tLomSxZsgQBDOlG0aBbr9dz+l/Z3WT16tVMSsRr+fn5Mbm5cOECjz98+JDTl2TpgpgplLK2tpbVDtI7FP0CyafQzs6OI4bi9ahHtEggydeSLHVq1qyJGRkZGBkZyXWOVKNLPZGJYNP7+OCDD1Cv13O96JgxY/DOnTt83bNnz/Lc+fDDD3HlypU8/4jYW1tbc4S6WLFi3EauVatWfB8UGSTiZ2FhwX9nFH0XVcD0PAuCBCpLAlSoUPFyeJ3W71eFQrWBiY+Px0uXLuHt27dzZQ3yuuJ1nEBXr17lSIWFhQXOnz//pVu8iUhLS+OojpWVlVmPvKyQkJDA7baqV6+e4yjlixcvOErTrVu3bL9PeHg41w+KKldTIM9FV1dXWTRNxJMnTzg1aY4oDhw4EAGMe/MiylW3SsNmROSOG7169ZKNizV233//vWwbiTh0Op2s568YkZsyZYrsGBKtkDEzgcQQVHtHoNpB0RtTJHYUyTUXyaSaPjG6SITsgw8+QERDH2aybaHaRUrLUvpbTGHfu3cPfX19ZWSWBDvW1tYYFBTEpt/NmzeX1WGePXuWjb4nT57M6d3Bgwdj3bp1EcBQP0jk7tNPP0UAgxKZ7F+IbJIohqK0FOWlEoSC+jg4OOTL37MKFf91vI7rd2GjyPoAvg54XSdQbGwsW6kAGJSWpgyLc4v09HTs1asXEw+x7jKnCAkJYVLTrl07TE1NzdFxV69e5WiLqPA2BzJc1mg0ssiWEqmpqawANdf9AzGTlJQuXVomviA8f/7cZG9egmjYTL11CTdu3OBokdLf0VSNHaKBdFF3C6V3JX13W1tbmdVNYGAgP0Mxlf/s2TOT45RCtbS0xEePHvE4mSd36tSJx8jaxcrKivd9+PAh18mRklqM0F26dAkRM2sXySswLi6OFbdkMUNRP+o+QgKdt956C/V6PQuWhg8fjiEhIZyO3bdvn2zfnTt3MlHbt28f/1AipbKtrS3b7TRo0IBFPlQGUa5cOb5/EpBQGtuUEKQgzKEXLVpkNL9UqFCRO7yu63dhokB7AZN9h7m+wPnZC/hV4HWeQJIk4erVqzlyVa1aNbx7926ezyt2YrC1tTVSt+YEt27dYrI0fPjwHB9HPV0tLCzQx8cn2/1p4a9UqZJJ0ka4dOlStt0/smrjRiBbFGVvXgKZD5uyhaFoWfv27WVROHM1doiZKVVLS0uZlYskSdiqVSuT5JBqMevVqyeLJJH5dYMGDWTjJAIaOHAgjz1+/JjJjmiRQ/uKnVYoGie2fKTI2nvvvYeIhsgw1edRd5IffvgBAQx1bykpKXjz5k0mydevX8enT5/KSCsJQKysrPDJkyes6m3cuLGM+O7bt4/rG7/66it+J/369WORy2effcakjqKmpUqVYlJKKmeKJlINIEUJ6ViR/OUnEbSwsMiytEGFChXZ43VevwsLBdoLmGqQCrIX8KtEUZhAV65c4YhbsWLFcO/evXk+Z0pKCi+cDg4OL1VruG/fPl7QxZZkWUGSJI5AVqxYMdvnHhsby5YmWXV4QUQmDBUrVpTV24kQW4uZ6s2cmprKpEBZm4coV91SXRwhICCAU49KL0pTNXYEqk/r16+fbJzIoZWVlUzdHhkZydYlYpuxiIgIJjDbt2/n8YsXLzKBESOXFCUTo4BXr15FAEPUldTGgYGB/L2OHz+OiAYLGGV9IJk3e3h4YFJSEiYlJbGgZdmyZYiIHNWmDipk4Ny8eXOUJIlrBQcPHozh4eFMxPbs2cPvt2HDhrh//37+AXPo0CG+Z4q2WllZsa9ktWrVsEKFCkxYAQzlAhThI/JHaWwimnROMRqYn5/PP//caH6pUKEi5ygK63dBQ00B5wFFZQKFhYVxpwWNRoNz587Ns1VMcnIyduzYkYmlktDkBJT6s7S0zDJNKyI6Opq7TShJjylQatIUsRIRHx+PZcqUQQDAGTNmmN2PUoFvv/22yWdItXlK8QSBVLfUl1qEuehcVmrhK1eu8HtVWh1RDZ+ymwnVPdauXVt2HbJKqVGjhsx6hur2+vTpw2PmooCkNhajgNS1o2XLlvzM6Dl069YNEQ0/Kui9Ur0jRXzd3NwwPj4e79+/z2Tq/Pnz+Pz5c45wHzlyBM+fP8+E68GDB9zHuGHDhhgWFsb1eXv27OFo37hx4/CDDz5AAENkluZ03759mdwR2XVycuIfFBRFpFpAIoDKFnEkMsrvKKBGozHZplCFChU5Q1FZvwsSKgHMA4rSBEpNTWVPOgBDgXtO6+/MISEhgWuvXFxccp1iFiN6rq6uJgmTKZw7d46JgGh6bA5jxoxBAMDy5ctnmQoms2Nra2uzfZDFtmtkXaL8Tt7e3gggT5sSHj16xMRJaa4tRuc2b94s2ybaoShN1ZWWKwQiv9bW1rJawBcvXnAKfufOnTweExPDpOfPP//k8evXr5skmaaigERItVotq5pDQkKYqB04cAARDZ6NRIjIrocicCVLlsSEhARMS0vDypUrIwBwy0i6JmUOyEuwVatWKEkSC2oGDBggi2ru2rWLLWYaN27MkT8bGxs8fvw4R+vIfFqr1fL+ZcuW5TpRqkV0cnLieUB1gpTGFr0C6SMSwfz69O7d22h+qVChImcoSut3QaHQCOCxY8dwypQpOHjwYBw0aJDsU1RRFCfQqlWrmDx5e3vn2S8wLi6OffDKli2bazPtxMREtjRp0KABJiYm5ug46hXr4OAgq38zhfj4eI4uZVVzKkkS17F17tzZbJSUrEsqVKhgUs1OaVONRsNGyCJGjBiBAJmpSxHfffcdR+GUxtEUnVKm/0Rlruh9KApFxo4dKztm6tSpCADYqFEj2T18++23CABYp04d2ThZ63z44Yc8Zi4KSOUBYg9bsSaPztuvXz8EyLSUSU9PZ8L3448/IiLi+vXrOQqYlJSET58+ZeJ19uxZDA4O5rTrsWPHuKWcVqvFu3fv4pQpUxDAEFV9/vw5RwH379/PdZKjR49m+5euXbtyjesHH3zAaWhSSjs4OLDKnrw3qTaURCFEdumfojgkv0UhUVFRRvNLhQoV2aMort/5jUIhgLNmzUKtVotNmzbFHj164Pvvvy/7FFUU1Ql06NAhjgB5eXnhkydP8nS+iIgIrn2rUaOGWTsVcwgMDOQoSp8+fXKUns7IyOC0dpMmTbKNZpIKV6vVmvTqI9y/f58Jxt9//21yn4SEBDYBVhouEygqR0IHEaJKVenrFhsby+lEsVc1IuK///7L0aSAgADZNiJTPXv2lI0fOXKEyYjYqSQ8PJzJkKj8ffHiBUfNxHpRX19fjpJlFwWkVKyVlRVHdcPDw/k7U0eZu3fv8jmvXbuGiIi//fYbAhjU1ikpKZiWlsbk/aeffkLETGEJ9RGmer02bdqgJEnsVdirVy+Zr+COHTtY7NKsWTO2j9HpdHjmzBn+YfTHH3/wfRGBLF++PHcDoTQ3dRECAHR3d5f9k64pEr6CiAKKfowqVKjIOYrq+p2fKBQC6O7unqNUXVFDUZ5AN27c4OiGm5sbW3K8LJ4+fcpikyZNmuS6PunMmTMcKaGFPjsEBgay/5pSIWsKVHdWp04dTEtLM7vfjBkzEMDQY9ZcypgMl0uUKGEyiurv78+E4vTp00bbqdVb7dq1jSJ9ZDmjrNFDRPau++KLL2Tjd+7cMUnQxBZuSmEK1RyKtXmIiBMnTjQZoSRSK9ZemosC0n2K9YdE1Dp27MhjFHmjH4IpKSlMrqn9H7VuK1u2LKampuKDBw+YWF2/fh2DgoKYtJ88eRJv3ryJAIYI7N27d3HatGn83kXyffDgQf4RMXLkSFb8du7cmesCe/fuzZ6SFLl1cnLiqB/VWVJtIKV/6Rr03wVVCwgAGBYWZjS/VKhQkTWK8vqdXygUAujs7Jzjzg9FCUV9Aj179gzr16/PC9XL9vol3L17l41xO3TokGuz7x9//JEXy5wqi6ktmoWFRbYkNjw8nO8vq17BSUlJbDw9ceJEk/tkZGRwROjrr782uQ+lDU2lel+8eMHkVfnjKDo6mmsBlXWGZHdCpsciiKCJYg3ETGGKnZ2djCyI6dMTJ07w+PPnz3lcrFMkla9Wq5X5AlIUUBS2UIcTnU7HvX8DAgKYFJPfoZ+fn8zeBTGzA0rlypUxPT0dk5OTub5u3bp1iJipCCZfQCJn7dq1Q8TMjiWfffYZRkVF8fPcvn07q4dbtGghq5M8e/Ysk7NNmzbxvCIxSdWqVdnQm1LiLi4uHO0jERFFs2lc7AgiEsH86hQiEmoVKlTkDEV9/c4PFAoBnDhxIs6ZM6cwLlWoeBMmUFxcHNeWWVtbm0175hSXLl3iFGK/fv1ypTaWJAk//vhjBDCkAMPDw3N0HAlJvLy8zFq4EKh3rE6nM2nlQti7dy8CGOq3zAlCyE5Ep9MZpWQRDaleSrOaEozMmzcPAQzWM8qIJEWtGjRoYPQMSXgzZswY2fiNGzeYoImWLZIkcZ2m0sOQiFP79u1l4yQYUqqVyXZGtNV5/PgxEzuqQRS9CMXII/kdil6I1HeXxhISEpiokxhl0aJFCGCwZcnIyJBF+fz9/fHp06dMrk6fPi1LQz979oyjuo0aNZKJUo4cOcJRvLFjx3JE8pNPPuF60EGDBrE4ZuTIkQhgSP+SPQxFO6l+keZ/VlHA/LaGyW3trQoV/3W8Cet3XlGgRtD0GTt2LBYvXhzfeustHDVqlGoEnQ1iYmLw6dOn/BEtOQoCKSkpHD3SarX4+++/5+l8R44c4bTgtGnTcnVsXFwc1xN26NDBKD1qCpGRkVx7Zcp/T4Qo9HjrrbeyJKikKFXW1YnnIsXvgAEDTO5DRE5prYJoIDqUXqTIlvidiDgovRuprs/W1tao3pIsW5RCEfIwtLe3lwkHAgMD+V1RazdEOakTu5OQv6C1tTUGBwfzOEXkxHZ2VHdpZ2fHZP727dsy4qYcI7JNYhRKg8fFxXFt5F9//SX7rp999hkiIg4fPlwWEaP07oQJEzAiIoIJ2fHjx2Xq4cOHD/N90vfTarW4efNm/q4kYqlVqxaLQOhvxtXVlQmlh4eHLApYWIrgVq1amZx/KlSoMA2VABawEXROPqoRtDHIp40+np6eOHfu3FyLK3KDjIwMLq4HyFm7taxAlh4AmbVcOcWdO3d44cxJbR9iZsQuu9ZviIbevhSZ27Rpk9n9xJ6zpur4EJFVpxqNhoUMImJiYjiatWHDBqPtCxcuRABDelFJdqkWr0mTJjKiKkkS96SdOXOm7BgSilhbW8tEH5IkYb169RDAOP1Nrd3Enr2ImdE66ttLoMje5MmTeYysYkT7FzHyKP4QMEVSyV+RIouiVc2ePXsQEXHmzJkIAFi/fn2UJAkvXLiAAIYobWBgoCzFfOXKFY7QOjg44IsXLzh6984772BISAinuU+fPs2lEN999x3fy5AhQ5hEjhgxgtPIVMvo5ubGda+0H3VtIbJK84zmM9UqFkQUMKc2SipUqFAJIGIhpYADAwNNNjCXJKlI/0+roCbQt99+i9bW1mhtbS1bJOzt7fGbb74psAkrSRKLEwAM9W95MYymBdvCwoL933KKP//8k+8jp8dSEX92rd8QEefOnYsABtVmVs+T6vgaN25scg4jZka/OnToYPJ5LViwAAEAq1SpYhQFjIuL4/Si0vsvLCyMo1ZKE+u//voLAQypSOV3bdGiBQIYFKwiqK6tVKlSslZioqhCFJDcuXOHya2fnx+P79q1CwEAixcvLhP7UGRVFKhQF5MSJUpwa8hz584xGaIo4unTpxHAkE4n4kq1d82aNUNJkmRR0f379yMicgSW0uGkhu7VqxdKkoR16tRh0vvo0SP+njdv3sShQ4cigEFJS9E+Nzc3mecilQzY2dnhuHHjEMBgLE3pXypZcHNz479VahlH0V0igfQs6dz5Sf4AMusfVahQkT1UAlhIBFCr1ZpUqkVGRqJWqy2MWygQFMYESklJwQ0bNrBXHoAhvbRhw4Y8d/MwB6q3oihITtKwpiBJEv7vf/9j8ip61OUE1EHCxcVFlm40B7H1m1Ilq0RKSgqn8rJKG4eGhnJNl7lo4ePHjzmyc/jwYaPt8fHxWUYByfvPy8vLiGSSYEGp1M3IyOD7J888ws6dO00StLS0NBYqrF69WnYMiRoonUogTzzR1Fqv13MHjKVLl/I4CT9sbGw45ZuRkcG1cStWrOB9KWJGAhpRrTx16lRENDx7Sq1SGzmycWnZsiUiIlu52NraYlhYmKwO8tGjR0zgyEeQCNuAAQPw7t27TMp8fX3ZbmbVqlV8f+PHj8dGjRohgMFDksgcmYt7eHjwM6X7J9NoEq4oo4AFqQjOad2sChX/dagEsJAIoEajMUkAAwIC0M7OrjBuoUBQmBNIkiT8+++/sVq1avw/+06dOsnUmPmJ1atX8+LUq1evLG1TskJqair3aHV3dzcpljCH5ORkTs15e3vniIhS9AbAfNqWQOpYS0tL7l1rChQtLFeunFmRCdWUtWjRItdRwJiYGFYE79ixQ7ZNTFWKNiuImZ555cqVk51Tr9fzPFH6FC5evNgk2STRhDJ17OPjY3J85cqVCGAww6Zriynfb7/9lvelPr+VK1fmd7hv3z4EMChlqWe4SFwpWkhpW/L8CwkJYbJ94cIFlCSJ27JRmpmEKiNHjsS0tDT+UfDLL7/gpUuX+J0/ffqU+/sOHz4cly1bxu+ISgrs7e3ZjNrJyYl/lLRu3ZrtakiERNYwtC/9WBNJIBFOeqb5Sf4AjNP1KlSoMA2VABYwASSRh1arxWHDhsmEH2PGjMFmzZrxL/miiFcxgdLS0nD+/PlMCmxtbXHhwoUFIhTZsWMHRys+/PDDl24dFxMTw1GRmjVr8oKfE/j7+3PkJKdKckrtVatWTZbqNAVq7dW+fXuzEdWkpCSO8syfP9/kPkplqRLZRQGpM0fTpk2N7oNsVpSm6cnJyUwwlKbRRA4rVKggI86xsbFcy7Zv3z7ZMRTBUvZCppSyWG+YmJjIqU7x2pRmdnd35/mSkJDANXGkhhbTs1RvqtfrOar5888/I6IhPU2EiVoNDhw4EAEyLWC2b9+OAIYWcklJSWztQiKZ5cuXM0FLT09n1e/48eNlUcuAgABOx2/fvp1rJmfOnMm1fVOnTmXRDNUC1qhRg+sV6VnRsTRv6LxEDMXIX373CP4vL2gqVOQUKgEsYAJIQg+NRoMtW7aUiT/efvttHDp0qFmLjaKAVzmB7t+/z/VPAIYatYJ4lnv37uVIRY8ePXLt7Ud4+vQpR0y8vb1zFVEU+7NmJ/BANPjokRozOxXy48ePmUyTujSre3B0dDRrvKvsS6vE/PnzTUbfEA3pTrqPU6dOybb5+fnx4q58x9988w0CGNKPIpKSkphwKi1oSNGqtHgRiZTYko+8Ft3c3GSEmq4t/ohLTU3l9yz6G1JHjdatW/PYunXrEEAewSSyVq1aNX5GRNKHDx+OiJl2NxYWFhgYGIjp6emcvv31119lIpl58+bJbGW2bt3KkV8Sh1CKd86cOdzmr0mTJlyHWrJkSVy1ahUTOqoz/OCDD5j4UXcQioBaWFgY2cCILeHo38Wx/PoMHTrUaO6pUKFCDpUAFlIKeODAgW/kQ37VE0iSJFy7di1HV+zt7XHdunX5Xht48OBBJiddu3bNNqpmDjdu3OB6umHDhuXqPj/99FNegCMjI7Pdn8QHlpaWePPmzSz3JbFKmTJlOPWohF6vZ6IwevRok/uIUUBTptoxMTEcATLlC0g2JpTuFEHKVGVtY2hoqCwlKoJIV9u2bWXjjx8/NoqqIRrq9cgAW6wRTE9PZ7WraFcTEhLCBEas76SUuehhGBwczPuS4XNycjJHEcl/Mj4+np8RCT0oSmdra8vvnrz3JkyYgIiIP/zwA5NrSZKYsHt6emJaWhor60lQQhHpBQsWMNFzc3PDwMBAnuvHjx/ntO6yZcu4po+IvIWFBSvnmzdvziKQpk2bIgBw+QJFAcmqiL6f+MnPKKBWq83WD1OFiv86XvX6/TqgUAjgm4rXZQIFBQVh27ZteQHo3bs3xsTE5Os1jhw5wuSmc+fOL73A7N27l8lHTlu+IRqIAdW1de/ePUfkkaIyTZo0ybJ+MCkpiVWdWdnOHDt2DAEMtVvmjHdJHNC6dWuT90ipXqW1C6JcjXvr1i3ZNmVaU4QyJUoICgpiUkKki0CdMsRWbYiI33//PZMX8f7IrqZevXqycVJADxo0iMciIyN5rogRWzJ8Hjx4MI+RT+Jbb73FYyT0oP7CkiQxmZo3bx4iZtr+ODk5YVxcHMbExPCPi0OHDmFKSgoTtj///FNGlH18fLiuz93dHePj45ng/v777zIiTnWB1atX5xZ9jRs3ZvP0IUOGMLF9++23EQB4m62tLZdQiGp+mv9ENPOrI4j4USrAVahQIcfrsn6/SqgEMA94nSZQRkYGzp07lxeaChUq5Lm/rxInTpzgYvYOHTrI0oS5AamMLSwsTNbLmcP169d5Ec+Jt2BwcDDXuymVskrs2LGDF+1nz56Z3EeSJCbaYicM5TVpYT927JjRdtHaxdR2UqmKhIquTWlNZR2imBJVElMSKIgqXsRMsYy9vb3sx0JUVBSTN9EYOioqiu9bFKOQeESn08mIKdUt9u7dm8fIo9DGxoYjec+ePTOKDD558oSJMIlzNmzYwNG09PR0mdDll19+QcTMFHznzp0RMbOnctOmTRExM4rcr18/Wap68+bNMnGMv78/k7KrV6/yHNqyZQs/GyLKjo6O+MknnyAAsHG4hYUFt4yjd0Y/MCgKKIpC6G82P4mglZXVSwu3VKj4L+B1Wr9fFVQCmAe8jhPowoULnMaztrbOtQlzdjh9+jTXNLVt2zZbvz1TEO1hnJycsmzJpgQt1HZ2djmqefz11195/ydPnmR5T2RwLEaolCC/OktLS7PnI3FAmzZtTEYBabupHq5kbmxtbW1Ua0hRK6XqFxGZmCoFHCJBEzuASJLEvYxFKxfETD9FZU9hGu/Xr5/sPJQaF4kpGUNbWVmxeliM5C1atIj3pcigaEFD9jOjRo1CRHm6eOfOnYiIHJ2rVasWSpKEDx8+ZBL14MEDDAsLk6XHr1y5wvcUEhLC3UZatGiBMTExXM+3f/9+TrmPGTOGrXiobhnAIMghkkcRSysrK2zWrJmMDBLhI5JHxJbuy5Q6OL8+33//vdH8UqFChQGv4/pd2FAJYB7wuk6gmJgYXkCJ0Lxs3Z4pnDt3jhfLdu3avVQkMCUlBVu2bIkAhoL/Fy9e5Og4vV7P4pemTZtmG+XQ6/XcO7d79+5Z7ktkSavVygyRlaAUn9Izj/Ds2TNe4E+cOGG0PSAgQGZIrASRiNmzZ8vGRRKkrCEkoYa7u7vsmYikS2kJQ1Yu1atXlxHVq1evMskNCQnhcep6Ym1tLfObI2Javnx5WaqdFLHfffcdj61Zs8ZoX4oM2tnZsUKc2t05OjryjwwyhibiHB0dzQSKhDNEvMaPH4+ImelxatVHJH/mzJkYGhrKKdorV67g+PHjEcCQej506BACABYrVgxv3brF74tMsLVaLRPIatWq8XeliKuTkxO/K1IQk1CFxk2JQvLzY29vX2BeoSpUFHW8rut3YUIlgHnA6zyB9Ho9zps3jxeuxo0b52vXlQsXLjAJ7NChw0vVBIaGhrJHW8eOHXNsZfP06VP2zfvmm2+y3f/OnTu8wCqtT5Sg/q7KtmgiiChaWFjggwcPTO5DfnFKAQaB0ob/+9//jLaRKMHd3d1IdU3Cjvbt28vGU1NTOdqkVDOTglVJ9OLi4jiaq/RMJHIu+vkhInvuLViwgMeSkpJYiHTw4EEeJxPmsmXL8rsV9yWRhyjKoLpQ0RLm119/RURDapiiZBQ1pojcxx9/jIiZtYElSpTAxMRE9v2ztrbGiIgIJsqlSpXCtLQ0VvQOGjTISBxDZtc///wz15OOGDGCf4BMmDCB08P0XlxdXfm+yY+QUtVUo0hpZCKvptLB+fXJbQceFSr+K3id1+/CQqERwDNnzmC/fv2wefPmXGO1ceNGPHv2bGHdQr6jKEygI0eOsAVGyZIlTapTXxbnzp3jRa1z584vFWW8ceMGkxBK9+UEW7du5UjM+fPns93/66+/RgCDF1xW9/ngwQOOCpmq0SNQpIkiS0oEBQXxeXx8fIy2k8GylZWVUZeTtLQ0k1YqiIa2isr6OMKMGTMQwLglWFxcHL+nkydPyraRilVM6yJm2t5UqFBBZllDPZ4rVqwoG6f6u549e/KYqbStuK/oa0hm0bVr12aSSspeUXhCfYTHjh2LiIg3b97kCFpwcDBmZGRwvd3atWsRETlFvWjRIkxLS2OivH37dlmKPDIyklO/X375JaeYvby8WADk4ODAxNbV1ZWJ/jvvvIOlS5dGAOBawwoVKvAcoG1kT0Q/ngCMRSHiWF4/FStWRBUqVBijKKzfBY1CIYB///032tra4pAhQ1Cn03H3ip9//jnLSMvrjqIygQICAngR1Gq1OH/+/HxLDZ05c4YjGO++++5L+QRSBwgAwJUrV+b4uP79+zOpE1uemUJcXBwvwsrUqhKk5G3QoIHZ/r8UWdJqtTIrFRGUfvzwww9Nbqd0JLU+EzFv3jwEMKiFlfjggw8QwFjBK6p+leSQlK29evWSjVNalwgQISkpiaOsYnu7xMREHhf7E/v6+nIES0wbT5w4EQHkEVVT+8bExPA8IpGJKUHKwYMHEcCQYqXSg9atWyMA4KxZsxAxs+tKo0aNEDEz7VypUiXU6/WsxO7YsaNMXPP9999zh5LixYtjSEgIE+fjx49j9erVEcAQpSRrFxKDAACnkJs0acKRQYoWUuSU1MZkDE37FWQ6+OHDh0ZzSIWK/zqKyvpdkCgUAli/fn3ufuDg4MAE8Pr161iqVKnCuIUCQVGaQMnJyVzED2BQZ+aXV9jJkydZIdq9e/eX6hhChMfS0jLHUeGYmBhOIZtT5Yqg9J+NjU2WLfQiIiJ4YVZG4ESQQbGodBVBRMeUgTNipvKY0pUiwsPDuY7wypUrsm1UHyeSIALVflINHIGUwlZWVjJxiSRJ3GdaWSNI0a2PPvpINk4iFqXtDBHauXPn8tj9+/eZKAcFBfE4pZjFfQcPHowAgP379+cxEguRKlqv17PIid4NdR8pV64cZmRkYEREBD+7q1evykjrwYMHZankBw8ecNeU6tWrY3p6OkcQ16xZwynmPn364NKlSxEAsE6dOjhnzhwEMPgKiq3nKOJHwhYipzY2NhzhI1Ip9gSmfxfH8utjSmykQsV/HUVp/S4oFAoBtLW1ZcWkSAAfPXqEOp2uMG6hQFDUJpAkSbhq1SqOMDRu3Ngo/fiyOHr0KEdrevbsmWsLCkmSuIC+VKlSZq1YlCCTYADTLdiU1yAD4W7dumW5L0WRypYtazaqSUpXjUaDfn5+JvehXrOmCGpGRgYLA9asWWO0vW/fvggA+Pnnn8vGRRKkbCtHNXAuLi5GRJwMipVEj2oEa9SoIYsMmyON9L2tra1lUUOyalGmjUmEI9YTknBETCVTVFWn07EY5OzZswhgEDRQlJfEF+QdaCpaSQSMjLOVaWdK4X/99ddGtZBiBJEEMdbW1vjw4UP+obN7924maz/++CMCGFLCZONDNZ4ajYZFIBQFJPUwRRFFY2gipvldC2jO4FyFiv8qitr6XRAoFAJYqVIlrj0TCeCGDRvQy8urMG6hQFBUJ9DJkyc5BeXp6ZlvfoGHDh3iyMvHH3+c6/7ECQkJ3B+2WbNmOU4njxw5ksladu/Cz8+PCfCePXvM7peUlMQp4xUrVpjdj6KASp89AtnG6HQ6ky3kiGw0bNjQKC1/5swZBDCIBJTG3t999x0CGNrOiUhPT+c6M+quQfjll184giVeKzY2lomNsl6RSIvSUoSihsuWLeOxpKQkJjNirSERQ5HsJSYm8r70/waxPzCVAkiSxKnX33//HRENqW6qg/T390fEzKgkiUGoZq9YsWKYmJjI0VhLS0sMDQ3F3bt3M1FOSUmR1UKGh4czubt+/TqXT/zwww8cpezbty8LhkaMGME1m9Qez97eHtu0aYMAmZYwlP6lcxPZo/koikHy+zNp0iSjuadCxX8ZRXX9zk8UCgFcuHAh1qxZE318fNDR0RHPnj2LmzZtQldX11x1g3jdUJQn0KNHj7BmzZoIYEhPbdmyJV/Ou3//fl7g+vTpk2UHDnP3RSrRwYMH56hWMT4+niNiymiZKVBdWsWKFbMUhBBh8vT0NLsf+fZZWlqaVFlLksQkSqmoRTSkmyk1qGzlJkkSvyMlCQ0ODjZb7zd58mQEMG4p9+LFC76W2LoNEVkNq2w1R+lRarFGINFG3bp1ZeNEpERCnJiYyCn148eP8/gXX3yBAPKULwk/mjVrxmPUhaRFixY89u6778qIDYlBrKysMDw83GSqmOx1Fi1ahOnp6Uzwt2/fLos+RkVFMbkbNWoUe0lWr15dtt/ff/+NAIZ6QXrm3t7eHOEjM2xXV1f+/qQIJqWwm5ubjATSufObANrY2KiWMCpUCCjK63d+odBUwFOnTkVbW1vUaDSo0WjQxsYmy7ZbRQFFfQLFxsay6hHA0AbNnOghN9i9ezcvaAMGDMg1CTx8+DBHeHIqChFTwaJowRTi4+M5YiMaEiuRkpLCURsx0qUEFfqPGTPG5HaqUfPw8DBZH0liEaUSFxFx+fLlCCBXxxIo+vjll1/KxsW6O2UqndLsyn7GVFdYokQJWeQ1JiaGU/tiLWJUVJRJMkkpWwcHB1nacdiwYRw5I5AS2s7OjtO7oaGhTGwprf78+XOjMer1THYuiJnRyh9++AERjVPFRGYp1U3WLe+++y5KkoT16tXjd00+gMWLF8ewsDBOEZ88eRLr1q3L+1G94JIlSziiR+3t6taty4pjqhOke6RxUgPTP0Xyl99iEFP9p1Wo+K+iqK/f+YFC9QFMTEzEy5cv48WLF1+qg8TrhjdhAmVkZLBFCgDgBx98kC/1Qv/88w8v2oMGDco1saTUqJWVlaz1WFagNGDZsmWz7YVMNWjFihUzmZolUPTH3d3drGiGyJOtra3MIJmQmprKadnNmzcbbRcNlpX3Eh0dzenZixcvyraJ9X7KmkuquxNFFoiZKlpnZ2cZ0cvIyOCImDJ1TPVsZL1CIDIp2vdIkoSVKlVCAMA//viDxylyZmNjw38vkiSx19769et5XyK2X3/9tdHYV199hYgGqxyKnlEqn94VdQZRpopjY2M5zXru3Dn09/dnohwSEoIrVqxAAIP6OyMjg8n/5s2bOZr3v//9j+1h6tevzySzTZs2HJUcPXo0l0KQiIXEIFZWVkwmKdJN7xcgs/avIKKA5cuXN5p7KlT8V/EmrN95hWoEnQe8SRNo/fr1vGjVr18/X0yj//rrL16Ahw0blqsUlCRJTDxyKgpJSEjAypUrI4Ah/ZYV9Ho9238MHz7c7H6pqaks1FCKJ8R7pToxsiJRglSj1JdWCRJomGrfZS49m56ebkSCCOvWrZNFuwgZGRkc/VQSPeq0oRTIENF0c3OT1XXu37/f5PisWbMQwNBRQ3xGVMsnkj0iUKKxNUX33N3d+bzUgcPDw4MjytSijdTI0dHRTJyuXbuGiJmpYso2ULSVuriQGnnhwoUYFRXF5Qu3bt3ier727dtztxJ7e3sMCAjgv5UDBw7wHKe0uKenJ89dendarZbrG5s3b44AwOl9UrITIRQ/qiWMChUFgzdp/X5ZFAoBnDdvnkmV45o1a2QdBYoa3rQJdO7cOSYUpUqVypHBcnbYvHkzp8ZGjx6dKxL4MqIQEl0AyLtSZLWvVqtFX19fs/utXr2aiY656CgZU7u6upqMFCr70irx+++/I4Bxtw5Eg8IawJCOVNYijhs3DgEyxQ+E2NhYTt0SGSJQDaTSn9DPz49JhxiJTEtLQ1dXVwTI7N5B42T0LD7rR48eIYBB5CBavxDZE4nhkydPeF/60ZGammp03tTUVBYukWjk2rVrHC2jiC+pcMkGZ8uWLQiQqUwmYY2DgwMmJibycyeiTB6LEyZMkNnFPHr0iOv2NmzYwNHPESNGcBnFpEmT2HSdRDrFixdnexwysaYIKc0HpRiEIoQF8VFa96hQ8V/Fm7Z+vwwKhQCWL1+ejVxF+Pj4YIUKFQrjFgoEBTWBdu3ahYMGDeLPqlWr8s2zLzsEBARwLZS1tbWRzcjLYP369bzIjR8/Plck8OHDhxwZGTJkSI6OJSPnMmXKZJsKpgW/c+fOZvdJS0vjRdtczWB6ejpHckitqgSlAz/99FOjbaIVidIHUa/Xczpy69atsm0iCSLrFAKRIUqbEsjGRafTGc3dxo0bIwDgL7/8Ihun9LrS83DEiBEIYNwRhVKeixcv5jEihpRyJbRt2xYB5OlqOq/4rMjMmtrniSIZ+oG5Z88eBMiMHiYmJnJ93ZkzZ1CSJK7b27p1q0wBfeHCBY400vEdOnRAAIOAh6K47du357R/8eLFZS3vRDUyzQe67/LlyzMpp0g1/bNUqVJGET/aNz8/FhYWubZoUqHiTYRKAAuJAOp0Onz8+LHR+Mv6AM6bNw8bN26MDg4O6Orqij169ODeoARJknDmzJno4eGBNjY22LZtW6MoT0pKCo4aNQpLliyJdnZ22K1bN1nEIjsU1ASiFJr4cXV1xfnz5xcKEYyPj+fepwCGWqzcCjmUoAJ8AMDJkyfnigQeOnQoV6IQMRVMqT5zePjwIaf9suqbSilVFxcXs/WrpGD18vIyWfNIogcbGxuMiooy2k4WI6b6A0+fPh0BDGICEZIkYa1atRAA8LfffpNtow4rnp6esvcnpmOVRtfU2ULZTk6s4RO//7lz52QRNcLPP/+MAMadTCjlKqbTKcJap04dHiMxiaOjI895UWBC1yIDcW9vb0Q0RAopCkedSijtO3ToUEREFmm89957iJjZUWbUqFFGx9N7r169Oj5+/Jgjdk+ePGEfvz///JMtbagOUafTcW1t+/btWQXcqVMnBDAomokUAmR2BqEfOxQdBMh/c+iszM1VqPivQCWAhUQAq1SpIisIJ2zcuPGlelV27twZ161bh76+vnjjxg3s2rUrlitXTpaeW7BgATo6OuKOHTvw9u3b2KtXL/Tw8JC1DBs+fDiWLl0ajx49iteuXUNvb2+sV69ejslOQU2gs2fP4oIFC3DBggU4Y8YMXiQADKmsf/75p8AtHfR6PS+UAIb0VXbt1rIDkQIAwJkzZ+bq2NyKQs6cOcNRR7FlmSl89dVXTNzMeRemp6dzCtBc2UJsbCxHm0yRSVFp+uOPPxptJ0sZW1tbo8jlw4cPOXqmrIckm5Q2bdrIxlNSUtgg+cSJE7Jt9CND2YoxICCASY4YpZMkiUm1aBkkSRLbrYjRydDQUCbt4o8/mgMNGzbksaioKI58kcpXjHpSraJer5dF7xANvZHpfp8+fYqImb6QZC9z/PhxjtYlJyfLUt0RERF44MABBMisZaQOKH379pVFCC9fvozt2rVDAEOKl1LpPXv2lNnfkEqYUt4ajQb79OnDBB7AID6i70ydQcToHxHAgugMoopBVKhQCSBiIRHABQsWYMmSJXHt2rUYEBCAAQEBuGbNfnZxUgAAk9dJREFUGixZsiTOmzcvz+cPDw9HAIOLP6JhUXJ3d5ct1CkpKejk5ISrVq1CRIO9hZWVlWzRCg4ORq1Wmy1hIBTWBEpLS8MNGzZwxAEAsEOHDlnWreUXNm/ezIX1derU4Y4uLwvqmkCLaE4hSRKnNN3d3XPUwYS6P5QrVy5L8hodHc01Z8rUpwiKBrm7u5v1BaR+sGKdm4iVK1cigLE4g74jRfNMRToprUo2J4Rnz54x2VWKd4iYDB48WDZOClgiQSJIpLB8+XLZONmmfPDBB7Jx+qGgFI9Q1xXx7zAiIoKJjhi1J7NksU8zRdDEWkXq40vRO8TMFDJdR7SXSUhIQL1ez387O3bsQERkAdDPP/+MaWlpHPU7fPgwXrx4kYl4QkICdxUZO3YszwEvLy/2HrS2tmZBjIODA/9Yad68OZtBUxrY0dGR1daUbifCSESafkSIpDC/O4Pk9e9YhYqiDpUAFhIBlCQJJ06ciDY2NqjValGj0aCdnR3Onj07XyJZDx48QADA27dvI2JmrZGy+L179+5cU0RRgRcvXsj2qVu3Ln7zzTcmr5OSkoKxsbH8CQoKKtQJlJCQgNOnT2dCZmFhgRMmTDDqB5vf8PHxYd8yV1fXHNuymMOiRYt4IcrKh0+J+Ph4rF27Ni+u2YlCEhISeFEdMWJElvuSBYi7u7tZoUdqaioTCXN1fo8fP2YypixLQDT8T4dq/U6dOmW0ffHixQgA2LJlS6NtZEzduHFjo21EgpTk8NSpUxz9UtZ+EQmiH0WEJUuWIIDBukQE1Rsq08C3b99mIiT+LVA6tEGDBrLzUBRMrPkjW55atWoZXU+sVRSjd/S3S63sGjVqhIhyK5q//voLEY2FL/Qd6TmTKfXAgQNlx2/duhX37duHAIYIYWRkJEfnbt26xeRt1apVPNd+/vlnjn6SGKRu3bocySdLG/IEJIENWdTQ/BA7g+S3Gji70ggVKt50qASwkG1g4uPj8dKlS3j79u0ct/nKDpIkYbdu3WSLFdUlKaNEn3/+Ob799tuIaIhsWVtbG52vU6dOXCukxMyZM03+z7SwJ9Djx49lNXpVqlSRtd4qCDx9+hTr16/PC71o5fEyoIURAHDp0qU5Pu7Bgwec1jT3nkRQSzCAzAixKaSmpvKin1Vkkur8qlWrZrZUgNSe5oyhhw4digCGTilKUBQaALhlIiEsLIwjQQ8ePJBtIwIrdtBANNi+kLJbaZBNRFy0YEFE/mEDALKaWDENLEbOJUniDhd//vknj0dERPD93r9/n8ep5k8khtHR0ZzupMi2uVpF+hFAczAsLMzomZGlDamjqacvRfVCQkL4mCdPnrA6uFixYpicnMydPT744AOZCvrAgQP4/vvvIwDg1KlT+Rm2adMGZ8yYgQCGSChFP2fMmMHfi6KxRNYtLS25NpDekRj9ox8SohiExvL60el0amcQFf9pqASwAAngl19+yZGUL7/8MstPXjBixAgsX768bKEiAijWMCEiDhkyhNWe5ghgx44dcdiwYSav9aojgErs3buX00kABq+97FSveUFCQgKrZgEAJ06cmCdxCPmsUdQkpzh48CAvhL/++mu2+9PCW6VKlSyjpZs3b2YSEBkZaXKfuLg4JqDmOiscPnyYz2Mq9UzGzzY2NkbKXURkocCcOXOMtr399tsIYNxW7vnz52bTwNSFQ0mYqa7QwsLCSJRC6WZlraJIjERQelhpLUP3K5JqkRiKvnTvvfceAsjrQ2mO9OjRg8eoflFMAxPhWrhwISIiXrlyhaNoiYmJslpFigpSB5fFixfLag537NjBSmkbGxuMi4vjusD//e9/bPlTqVIlfPr0KT93eu/W1tZsFl23bl2O+NE8tLS0ZBJLFjFkd0Q1jpSSFj+iMCQ/PmJbPhUq/mtQCWABEsB27drx4tauXTuzH1LvvQxGjRqFZcqUMVIYF1QKWInXYQLFxMTwAg8AWLp0ady3b1+BXU+v17MiFcCQznpZcYgkSUwoAMynVU2B1J9WVlbZ+hXGxMQwUZ4wYYLZ/fR6PYs0lNYpIqgOrVmzZiajKHq9niNipmoKxVo/UwR2w4YNCGCIMirPTzVoYqqUYC4NTJYlbm5uRoSdiIdSGUq1msq/T3NpYCXhIpDPnlINTPYqRNgQDaIwAEN9HeHGjRt8PfpB6evry4SI/vaotpKuIxK+7du3I2JmGpiigiRIad68OSJm1hx+9NFHsqjm5s2b2TOyePHi+OLFC07PXr58mYnk999/z7Y0P//8M0f+KGpcvnx5NgynCD4RQTofEWMie2JEUPzkRyRQKRpSoeK/hNdh/X7VKJKdQCRJwpEjR6Knp6cstSRud3d3ly0uqampJkUg27Zt430oLfS6iUBygpMnT3J6DsCgYFQW9+cnlOKQgICAlzqPJEksnNBoNDlOLUuShB9++CECGLpDKKO9SlA3C61Wi5cuXTK7HylCdTqd2W4ooaGh/N3NpZUpAlSzZk2TJJHsVlq0aGG0LS4ujpWnynuNjo5mckA1rwRzaeC0tDS2F1HWHVLaUhnRE6OD4o8kMQ1MxIrGKXolRkZDQ0OZrIglGUrChmj4m6RaN/q7FokcCTgkScIaNWowOaPriCldxExCR+bHFHklkhoSEsL39vTpU95ub2+PSUlJ/EOne/fumJGRwXWwBw4cYCPor776imszmzZtytHJrl27ckRz0qRJTOQokti0aVO+Nv04oRIEEiSJJE80h86vNLBGoynw+mEVKl5XvE7r96tCkSSAX3zxBTo5OeGpU6fw+fPn/BE98hYsWIBOTk74zz//4O3bt7FPnz4mbWDKlCmDx44dw2vXrmH79u1fCxuYl0ViYiJOmDCBF0I3NzfZIp3fyC9xiCRJvDBqNBqT/XJNIS4ujiMuLVu2xNTU1Cz379u3L0ddzO0rSRJH0rIqlKeoa9euXU1uj4mJ4aiOqecSEhLC0R5TYhG619GjRxtt69GjBwJktjcjZJUGJhNqZV0i1cbZ2dkZeUxSlFL5PoiwK/0Kabxfv36ycVIVi9FOkRiKPx46duzIUTPlecnWBTHTF7Fnz548RhYt1E6PvAvFNDCRVLKWIZXu0qVLUZIkTgPv2bNHJm6JiYlhc+pBgwaxx2KZMmVkRJJqTq2srNj7snLlyjhgwACeUzTPmzVrhgDA903RZ7pHIoL09wwg7xucH5/clF6oUPEm4XVbv18FiiQBNPc/s3Xr1vE+ZATt7u6OOp0O33rrLaOISXJyMo4aNQqdnZ3R1tYW33vvPfYSywle1wl06dIlTi0BGFJaYmuv/ER+iUP0ej2LIywsLLhOKzvcv3+fTXiVvXKViIiI4GL+rHwIyY9Pq9XinTt3zF6XFn3lvCKQAbEpY2dE5BZiU6ZMMdpGtiLu7u5GptLUeaJ27dpGx7311ltMaERQh4wyZcrIzidJEnes2L17t+wYquvr1auXbPzEiRNM+sUfS1R7W6xYMRnBpnT9u+++m+29UuS0bdu2PEYG0MWLF+fziqlhSkUrU7qmopITJkyQfSe6HonIqIsMqYEp0rhlyxY8efIkAhjMmsXOLZcvX5al3ymtvnLlShZwLF26lJ8/EeKPPvqI36NI7mhe0Q8EUQ2c35+X8WFVoeJNwOu6fhcmiiQBfF3wOk+glJQUnD59Oi8iJUuWxC1bthSI8i+/xCF6vZ5Jk6WlJe7cuTNHx+3bt48XzdWrV2e577Zt2/j8N2/eNLsfKT3ff/99s/vQAm6qtRsi4vnz53lhNyX22L59OwIYUoBKkkclCwDGreFevHhhUkSBmGkj07FjR9l4cnIyGw5fvnxZto1Iz6BBg2TjRISVhC4tLY3vTay/1Ov13NLs2LFjPE41ezqdTlY3SPcqeiZStw1RmGJKySymoima9+zZMyZQ9IOHeiXTdyOPQEdHR0xNTWUhl0ajweDgYLbNcXZ2xrS0NFYT9+nTBzMyMvj7HTx4kN//tGnT8KeffmLySQbQXbp0YQHItGnT+PnT827evDnPW7IXIrNxDw8Pnqf0d5Xf0T/6FGSpiAoVryte5/W7sKASwDygKEyga9eucWqJCM3z58/z/TrKziEvKw7JyMjAfv36IYAhjZZTQQstutbW1ujj42N2P0mSmNw1atTIbOcPPz8/Tr2ZOx+lGC0tLY26c9C1KI1qKtVG5uQApmsJP/30UwQAHDdunNE2Ur0qBR9k8GxlZWU0L0l4oFQXU0TPxcVFRtz1ej0Tr6NHj8qOoRq4qVOnysaJwI8fP172HKi+TawPvHfvHt+rOFcoIrZp0yYeIwXt8OHDeUxJ7hAzvQ0pG0ApWTc3N9Tr9TKSSt+J2rL98ssvmJGRwVHiY8eOcVTTyckJ09LS2C9w8ODBskismAYmgZm1tTXXOtatW5cNpem7iGlgEpIo08B0r6IRtDIimNeawNwYsqtQ8aagKKzfBQ2VAOYBRWUCpaam4uzZszmaUKJECdy4cWOBRAPzQxySnp6On3zyCS+iORHl6PV6JnalS5fOkuSGhISwlYsoFFKC6uaU0TQRVENmTjlOqb/69eubfN5EmEylr82lbRERly9fjgCmlZykXlXWf5Iil1KkhLS0NBYpKEUn1J941KhRsvFNmzYxsRHx119/IYCh04kIImsDBw7kMTGKJxJDUlmTeAMxMyVetmxZfo5E7kqVKsXPh2xjyI4mNTWVvfaIyFMdHtVDUucOSlHTdx45cqQs+nj8+HE8evQoXzMyMlIWiaW5sGTJEo7krVu3jvehFHXFihWxadOmCADc3Sa7NDC9n/wSgIgfT09PozmkQsWbjqKyfhckVAKYBxS1CXTz5k2OkAAYfNRMRa7yCh8fH45cuLm54blz53J9jrS0NI5Y2djY5MizLC4uDr28vBDAUNOVlSiE7FR0Op1JEQaiIR1JVh7mjLYppVyqVCmT14uKimJCfPXqVaPt5B3n4uJi1KkjOTmZF35lFJJ69mq1WgwPD5dtI9GEMjUtpkiVaT961kp/wV27diGAITUpIjIykiOkIsmPiYlh0iIaWVNUjCJxBGrXJ7aqozStmHpOTEzk50h1mampqfx8KK1NSl4HBwc+lkgWiWZIwFGxYkWUJEmWok5ISGCyWbp0aZQkSUYYxWtevHhRFoml7iLt27eXvQOK7s2bN4+jd/S9W7RoYTYNTAIrMfpHaeT8/og+qipU/BdQ1NbvgoBKAPOAojiB0tLScO7cuWwl4uTkhGvXrs33aKBSHLJhw4ZcnyM1NZWtNOzs7LLs5EG4d+8eR3yUUSsRkiRh586dmSwqI2wEUn62bNnS5DNKS0vjei2xC4YISpeOHTvWaFt6ejqrPU1FOvv06YMApv0L6fmuXbtWNk5iBWVKFxE5xSimVxEz26kp27+JhE7ZP5YiXitWrJCNkyDip59+4rGUlBQmPzdu3OBx8igUxS5imvbEiRO8L72vxYsX8xjVnpKoR6/XM3GiFC/5C9arVw8RDR2JaP7fuXMHJUniNm179uzB5ORk2b0SCa5QoQJKksS1fzNmzJBFYqklpaWlJbePK1myJHsqtmrViq2LKJVsYWHBPYHJG5H+m+xvKCVtzhZGue1lPpMnTzaaXypUvMkoiut3fkMlgHlAUZ5Avr6+nIYCAHznnXdypYDOCZTikEmTJuVaHJKSksK9Y+3t7XMUTaTUKYBcGa5EQEAAR1REsiIiODiYlZz79+83uc/s2bOZJJoCRZRcXV2NonyI8j60SuzYsUNGPkSQ51z37t1l46JIQ/m8SNnbt29f2fiTJ0+YkCi7ybRs2RIBjI2658+fjwDyLh2IiAsXLkQAgwhCRJcuXRAg06YF0fB+icxcuXKFx6kOdNq0aTxG6fQOHTrw2Nq1a5k0ESiFS4Q7IiKCo5U0x2lOUQnAyJEjEQC4CxD98Jg/fz4mJibyHLh16xYbddevX98oEiuqhsl7kcQ+Go2G08B169ZlCyMqd6B6QDqOSjbon2L0L79Twa6urqhCxX8JRXn9zi+oBDAPKOoTKD09HRcuXMipNUdHR/ztt9/yNRqYH+KQpKQkjo4UK1YML168mO0xRI50Ol2WohBakO3t7Y0iXASyDqlfv77JSOHz5885VWwqzZuens4RrT179hhtV/ahFZGYmMh1Ybdu3ZJtIw8/e3t7o/QzCQ6UFjNkqeLs7GxExqnvLhkuE6gHtliTh5gpgnFycpKdi/zzbGxsZEbDlCKlftwESj/PmjWLxyhF37RpUx4j0Yi1tTWriZ8/f85zi+o+KWJXqVIlnsvUco06s5BpNkU8Dx48iACZaV+aF1RjSf2d582bh+Hh4UzAgoKCOBL7xx9/8FwZMGAA9u/fHwEM0VuK6i1btozJKBF/IsY6nY6JO/kRUvRP9AIsCFNokRyrUPFfQFFfv/MDKgHMA96UCXT37l1WQgIYRA/myNDLIq/ikMTERE4tFi9e3CTREqHX69kw2cPDw2yto16vZz+6jh07miS/ERERXPdlzp+QUrXmzKOpJuyjjz4yeQ/UDcIUQSS/wPnz5xsdRwRBmR6nKJUYGUM0kFESwCijg2RPouwZTKSxZMmSMgKckZHB5xLFI6K3oBg1FYmhSHRJnNKqVSseI3sWrVbLnUjEriDicyJytWbNGkQ0RJ4pxfvgwQNEzPQipGilGLmLioqSpX2vX78us6OJjo5mQkit8ejvZeXKldzOsH///mwjU7JkSe4ZXLVqVRanfPzxx0xGiSw6OTlxCprS6k2aNEEA4IgipbXFT36rgXPaAlOFijcBb8r6nReoBDAPeJMmUEZGBi5ZsoSjTQ4ODvjzzz+brY17GeRVHBIfH8+Lp7Ozc5Y+fogGUQipKxs3bmzU6YJw//59TvERiVCComA1atQwmcYmuxAbGxuMjIw02k7GxdbW1kb9pxGRO6GIYggCtRpT1uchZnYMEVOliHLBh/J6JIqYPXu2bJxS1eXKlZMR4bS0NE4/Kok3Ka+V5JTSsGJPZUmSuF5S9AkksmVpaSnzCSTyIyqEqSZzxIgRPEbkqnfv3jxGPxao9aMYrSTrH0rBko8g/WAgmxy6/l9//YX3799HAINlTUJCAhPKrl27cs2lm5sbpqamMik+cuQIp2///vtv/vEyd+5cBDCojqn+k6Kg1BWEbGDohwf9k+pb6V7yK/oHYBChqFDxX8GbtH6/LFQCmAe8iRPo/v37HIWgBUlpNpwX5FUcEhsby7VSLi4uZrtwEB4/fowlS5ZEAIOZr7n09qJFi5ggiD1rxes6OzsjAJjsdiJJEjZo0AABABctWmTyGiTAIFIigixNlN01EBEDAwNl0SoR69ev54iREpTSFQkUYmYf3nbt2snGExISOEqrVEZTTZzSNodEEEqrnM2bNyMAYMOGDWXj1BJt0qRJsnEiPAcPHuQxIsUi2aP6TrGDxenTp5mA0fudM2cOR9wQ5dFKKiEYPXo0AmRa8Pz6668yov3ll18igMFnUBSKHDhwAG/dusWEPzY2ltOy165d42jw5MmT+W/pl19+4flD0VkbGxsm8CQOcXNzY9ENkT3RAJq20Q8Wmhf5RQJVU2gV/xW8iet3bqESwDzgTZ1Aer0ely9fzikmOzs7XLZsWb5FAxMSEjjiQWQgN+eOjo7GRo0aMWHy9fXNcv+TJ09yJEYZqSKkp6dz2q179+4miSKJGypUqGDS8mXNmjW83VSUkEgmpRFFpKWlMUFRdv5AzDRHVvblDQ4O5kifMvJI0TKlGppq6XQ6nVHNIUWgxL69iJkt05RE786dO0xIxHOFhITwfYkRSFLkKokhWa2Iameq5atWrRqPJSQk8LukMoWUlBQmSTQXKCIrpq0pWjlv3jyT53/06BECGCKRCQkJMoWyJEk4ZMgQBAD88ssvZdHM48ePy0Qjf/75JwIYhB5ERD/88EOuy5w6dSqnyCl9XLVqVY7ykVUTzXHydaT5IUb/KNVNn7ymgZUtBFWoeFPxpq7fuYFKAPOAN30CPXr0iD3MKDJy//79fDm3UhzSo0cPWfovO0RFRXHEzc3NzWzPXgJFvTQajck6O0RDjRotrFu2bDHanpiYyLVYpjp7JCUlcZTH1DWo7kyj0WBISIjRdhINiGlTArUkU6p3ETPJ4bZt22TjpCD28vKSjUuSxN9D6W9I6dT+/fvLxono6XQ6TElJMXku0bIFMTMCuWvXLh4TiaFIWMlYWiSGMTExHN0KDAzkcaq/EyOxnTp1QgCDyAJRnra+fv06IiK3a2vfvj0iGn5I0PmDgoJkUb6DBw/KFMo3btxgz0fqwUxK5alTp/K527Vrh+Hh4TyvKa1eokQJFrY0atSIBSCfffYZzzmyuaF/1q1bFwEy28JRuliM/intYPL6qVmzptH8UqHiTcSbvn7nBCoBzAP+CxNIr9fjypUreTG1sbHBxYsXv1SvX1PYtGkTpx3r1q2bK3FIbkkgLboODg5mo4akHnZxcTEyWEbMJBEeHh4yhSvh66+/RgBjCxRC8+bNEQBw+fLlRtuoTqxy5cpGEUhSCptS75LAZMiQIbLxqKgojggp09qUplQW/lOni3LlysnGJUliAnLhwgXZNkpjktEyYfjw4Qhg7H9ItXUiSRYjmWKam56X6HVIUTPRNoe6eYiWNO+++y4CZPoG+vn5MYmlelCyQiIyqYxEkl3M0qVLMTIykp9nSEgIE7pmzZrJagTj4+OZvG3evJmVvaQ0BgBuI1e+fHkWIdFzpMifra0tX0+M7BEBFFO/+aUG1mg0ufohpkJFUcV/Yf3ODlpQ8drhp59+gqpVq/JnwIABcPv27VdyL1qtFoYPHw6+vr7QsWNHSElJgQkTJkDr1q3h3r17eT5/v3794PTp01CqVCm4desWNG3aFM6fP5+jY52dneHYsWNQv359CA8Ph/bt28Pdu3fN7r9s2TJo164dJCQkQPfu3SEqKsponylTpkCdOnUgMjISxo4da7T9888/h/Lly8Pz58/hl19+MbkdAODw4cMQFBRktL13794AALBt2zajbZ07dwadTgePHj2CO3fuyLa1aNECSpQoAS9evICLFy/Ktr399tsAAHDkyBFARB53dnaGBg0aAADAiRMnZMd4e3sDAMCpU6eMrmNpaQlPnz6FwMBAHtdoNNCyZUsAAKP306FDhyyvcfLkSdm4qfN4enpCjRo1ABHh9OnTRuf4999/eaxt27YAALL92rdvz99Hr9fL7uv48eMAAFCjRg3w8PCA1NRUvrZyH+V3adeuHX+HkiVLQsOGDQEA4OjRo7zv5cuXwcXFBSpWrAjp6elw8uRJ6NixIx9H3+HatWt8fEpKClhaWkJgYCCPRUdHAwDAzZs3wdXVFZKTk6F69eoAAFCxYkUAANDpdJCSkgIAALa2tgBgeDfie88LEBEOHDiQL+dSoULFa45Xyz+LNgrqFwRFoZSfrl274r///puv18oNJEnC33//nYvTdTodLliwgFWVeUFexCGRkZEssChVqhT6+fmZ3TciIoKtRLy9vU0aM1++fJmjK7t37zbaTubDJUuWNPnuqY6O1KQigoODOVpjyneNasm+++47o23UgULZri0xMZFrwZSCHYpIKk2mKWJlbW1tpI4mkc0ff/whG6coG/XZVZ5Lp9PJaiPDwsJ47oriAqqVVPYxJjNmsWZx7969CCDvLRwXF8diCEoNZ2RkcKSN2sKR8lr0SaQ0O/kjkvjG09MTJUliX0GKRFJbuhIlSqBer5dZviAiVq1aFQEMaW6KeI4ZM4ZTvxUrVmQLmXbt2nGf4wEDBmDr1q0RADi9X6JECRbD0BwiE25K81O7ODHiJ9YGAuRdFKL0aVSh4k2EGgFUU8B5QkFNoKdPn+K5c+fw3LlzeOTIEfzkk09k/8Nv3bo1HjlyJN/bt+Xm/si8FsCgQM1OjZsT5EUcEhERwWm3UqVK4d27d83u6+vryyltUWEqYuLEiQhgSPVGR0fLtqWnp3N9m9JKBTGznq18+fIm759SfmJLMwJZvijJESIaedGJoLo4JXE+dOgQAhiEKSIkSWLvQdGSBTHT+Przzz+XjVMamkQR4rmo9lH0A0RErFWrFgJkWq0gZopQbGxsZISRahbFOrSIiAieD2JqmFK3Gzdu5DGycVmwYAEiGsoXKG1NwhqlwXRSUhKXINCcIXuYHTt2YHp6uqyWkIQh9DyprGD06NG4ZcsWBABs0KABxsfHs1iFSKa1tTUT2nLlysm8AUkAQkKVt99+GwGAe1tTdxClLQwR77wQPuXHxsbmlf2/RYWKwoJKAFUCmCcU5gS6f/8+fv755zLVX4sWLfDgwYOv5H/WkiThunXrOOpiZWWF3333ncmIWm6QF3GISALd3d2NrExE7Nmzh0n1ypUrjbYnJSVxdMeUNx+Z/Do6Ohqpb5OSkmRecEoQkWvevLnRNlGJqmzJdvfuXV7wlepdIm1KE+fY2Fj+ntQpg0AiBmXtHlmtVK9e3eh7kWDh8ePHsm1Ub6esbSSrFTGqJ0kSW/OIXVpE8YSoHCYVrGgqTZFN8d2QUlmMYFErQrKvET0HKfLZvn172Tyge6YfB/RjZ8mSJRgXF8cRtuDgYK7b9PLyYu9FrVaLsbGx7Fn566+/srhk165dTAxpDrm6unLkl+oAqU5So9GwwlkUf1AEVPQCpLH8+GSnrFehoqhDJYBqDWCRQdWqVeG3336Dx48fw7hx48DGxgYuXLgAXbp0gRYtWsCBAwfyrQ4oJ9BoNDBw4EDw8/ODbt26QXp6OkyfPh2aNWsGt27deunzarVa+O6772DTpk2g0+lg9+7d0KpVK1k9mjm4uLjA8ePHoU6dOhAaGgre3t7g7+9vct9u3brB3LlzAQBg9OjRRvVrtra2sGbNGgAAWLNmDRw9elS2/eOPP4Z69epBfHw8LFq0yOjY/v37AwDA6tWrja7ds2dPAADw8fGB58+fy7ZVqlQJqlatChkZGUb3VL16dXB3d4fU1FTw8fGRbWvVqhUAAJw7d042XqxYMahVqxYAgFHtINW3ifV14rn8/f0hPDxc9r2oXk1ZB9isWTOT16BzieNiPaF4v66urlC5cmUAALh06RKPm6oZpHsXaxjfeustADA8V0mSAACgefPmPAYAUKFCBShVqhRkZGTA9evXZfdI+5irAzx16hQ4OjpC3bp1+d69vb1Bo9HA3bt3QaPRQMWKFUGSJDh//jzXAZ44cYLrFq9evQpNmjQBAID4+Hiws7ODiIgIfkfBwcEAAHDv3j2oUqUKICLXAZYvXx4AAJycnLjOUas1/C/c0tKSx8Txl8WmTZvydLwKFSpef6gEsIihdOnS8OOPP8KTJ09g/PjxYGtrCxcvXoSuXbtC06ZNYe/evYVKBD09PWH37t2wadMmcHZ2huvXr0OjRo1g1qxZkJaW9tLn7devH5w6dUomDrlw4UK2x4kk8Pnz5+Dt7Q337983ue/kyZOhb9++kJGRAR9++KHRfm3atIFRo0YBgEHckZCQwNuIqAIYRDtKIjdkyBAAANi5cydERkbKtnl4eDAx2b17t9F9de7cGQAMQhIRGo2GBQVKckgk6c6dO/DixQvZNiUJIhBpu3r1qow8ODs7Q506dQAA4OzZsyavoySA5q7RtGlTAAC4ceMGixcAMklXToikqWu2bt0atFotPHr0CJ49ewYAALVr1wY7OzuIi4tjgZJ4X4gIGo3G6F6V/92mTRsAMJCwqKgofuZnzpwBvV4vI9vOzs5Qv359ADAQaSKhZ8+elRFJusb58+eZUJ47d46vRbh06RLUq1cPADKFHyT2IFLn4OAAAAbSl5qaKhsjEAF+Wfz11195Ol6FChVFAK82AFm08TqEkENDQ3HChAmyvqANGzbEXbt2FXpq+Pnz57Iavrp162bbszc7BAYGssDD2tpaVvOVFcLDw7lw3tPT06x/YXJyMtfPValSxSidGx8fz+k7ZSpYkiS2KVGaLSNm9qhdsmSJ0TYSVHTu3Nlo2759+7jOTPkOqW+uqbZwlLLet2+fbHz16tUIYNz5IyMjg33klBY6VNsmGjMjIm7fvh0BAOvXry8bj46O5vcu2udIksT9ikX7GHP1hJTGfffdd3mMegjb29vLBEdkmCz2Z6b6SrKNSUxM5NQoiW7mz5+PAJl9mSMjI/neqc6QajwPHDiA6enpXHN37do1NnqmPstkuD1u3Dh+1m3atMHU1FRO2+7evRsBDBZEJBCpUKECm4t37dqV/f4++eQTBADs0KEDAgDPP0oFU82fWAeYn91A6PNfTo2pePPxOqzfrxoqAcwDXqcJFB4ejpMmTZIZw9arVw937NiRr/18s4MkSbh161YuvrewsMBp06bJzINzi/j4+JcSh4SFhbEIISsSGBoayotsu3btjLp8nDp1iuvoduzYIdt2/PhxrsVSehiuWrUKAQyiBiWR8/f35+OUtX4JCQlc6+nv7y/b9vDhQz5O6UM4cOBABMhUuBJ8fX1NEihEY8JEICKjFJyQX59Wq8W4uDjZNqpb27t3r2yc6tvELhPm6gkvXryIAAaFNT0zvV7PyvNr167xvqS6/frrr3mMxDtiLaSSKFLvXrH3LdUZUiu6//3vfwiQ6ZNINY4//vgjt+azsLDAhIQE9vRr3rw5v1eq0ySl7+rVq/k7nD17lkkpkX1HR0fuFEJ1gHRPAMAiG6q5BchUAout4vKTCIrEWoWKNw2v0/r9qqCmgN8QuLq6woIFCyAgIACmTJkCDg4OcPPmTfjwww+hQYMG8Pfff+c5LZQTaDQa6NWrF/j5+cEnn3wCer0e5s6dC40aNYLLly+/1DkdHBzg77//hmnTpgEAwMKFC+H999+H+Pj4LI9zc3ODEydOQM2aNSEkJAS8vb3h4cOHRvuVKlUK9u3bB46OjnDq1Cn44osvZGn0tm3bwsSJEwHAkAqmOi0Ag/9c+/btIT09HWbPni07b58+fcDOzg78/PyMUqPVqlUDLy8vSE9PN/Jds7e3h9atWwMAwKFDh2TbKlWqBGXLloX09HSjej86Rjleo0YNcHR0hMTERCN/QUrRijV3AACNGjUCAIN3nfgsPD09oXz58iBJktH7pDSnsg6Q0rriNWxtbfkaYmq3Xr16YG1tDVFRUfDo0SMAMKQ+W7RoYbQv1dKJ92EqFa0ca9y4MWi1Wnj27Bmnj82lhansgNLQly5dgrJly0Lp0qVBr9fD5cuX+d6uXbsG5cqVAzc3N0hNTZVtu3TpEv/7zZs3oXHjxgAAEBkZCU5OThAfHw/lypUDAIDQ0FAAALh//z5UrVoVAACqVKkCAIYaRgCAkiVL8nuhf9rZ2cn+xq2srCAv2LJlS56OV6FCxesNlQC+YXBxcYF58+ZBQEAATJs2DRwdHeHWrVssWvjrr78KhQi6urrCtm3b4O+//wY3Nze4c+cONG/eHCZPniyrBcspqOZu8+bNoNPpYO/evdCyZUt48uRJlseJJDA4OBjatWtnkgTWrl0btm3bBlqtFtauXQuLFy+WbZ8zZw40bNgQXrx4AQMHDpQ9QxKTbNiwQSY6KVasGHzyyScAkLUYZNeuXUbb3nnnHQAwmDuL0Gg0MtNjEVSbdunSJVn9pYWFBRO9nJAzAIBatWqBTqeD2NhYePz4sWwbCUGUYp/s6gCV1yYSdOPGDR7T6XR8/uzqAIkAXrlyhWsY6fv4+vpyzabyvhwcHFjIQddQEj6RzEqSJCPKGo1GVgdYqVIlcHFxgbS0NLhx44asDpBI34ULF2TfgUQhZ86c4XsmXL16lYkfET47OzvZPvb29gBgeLf09+To6CjbJyMjA/IC5fxSoULFG4ZXG4As2igKIeQXL17gN998I0sd1axZE//88898a+eWHSIiIjitBWCwuDh//vxLn+/ixYtcL1WyZEk8depUtseEhoayp1qZMmWMDJMJy5cv5/Tazp07Zdvu3r3L6bYffvhBtq1bt24IANirVy/Z+L///osAgHZ2dkbz5NKlS1wXpkw7X716FQEAixUrZvSefvvtNwTI7GlLEO1VlO3ayFpn0KBBsnFKZ4q2KIQmTZoggHGP4ZkzZ5o8FxkvOzo6ylL0Yn2gaAhN9YydOnWSnWfs2LEIIK+rPHDgAM9dQnp6Ote+ijWMZcuWRYDMPsemjKopfUw1jteuXeMUq16vNzr3ixcvZN+BahWp5R+9/yVLlvC2d955R2YsvWvXLgQw1PRRHWDVqlX5efbt25fnV/fu3RHAUBsIAGySTqUVVOpBHoUAcpuY/PqYaoeoQsWbgKKwfhc0VAKYBxSlCRQdHY2zZs2SdQ2oUaMGbtq0qdCI4O7du9Hd3Z0XxPHjx5vsp5sTPHv2jHumWlpa4m+//ZbtMc+fP+c6tbJly+KjR4+M9pEkiYv67ezsZDVniJl1fdbW1njjxg0eJ/IDALJxSZL4msp71Ov1WKpUKQQAPH78uGxbRkaGTHggwhzRQkQmDCtWrJCNkwGxl5eX0fele1CS8mHDhiEA4MSJE2Xj//zzDwIYxEYi0tPTWaCgJNgkqhC9/Kjez83NTbYvGSo3adKEx4KCghDAUHcn1pNSjR318kVE/PjjjxEAcP78+fwdlUbV69evR4BMMU16ejqTL+ok07ZtWwQAXLNmDSJm1gkeOHAAr1y5ggCGLhySJOG8efMQwCDgIGLv6uqKkiRxd4/du3dzjR4JWwBA1gOarkkdS6gri62tLdcNikSP6gDJW1D578r9cvvZvHkzqlDxJqIord8FBTUF/B9B8eLFYebMmRAQEADffvstlChRAu7duwf9+/eHmjVrwh9//JHnlFF26N69O9y5cwc+/fRTQERYsmQJ1KtXz8hqJCcoXbo0nDlzBnr16gUZGRkwdOhQGDt2bJbfwd3dHU6ePAk1atSAoKAgaNeunVF6U6PRwLJly+Dtt9+GpKQk6NatG4SEhPD2oUOHQvfu3SEtLQ369u0LycnJAGCoXevVqxcAAEyfPl12vs8++wwAgH0FCVqtFrp06QIAYFQHaGFhwTV9Z86ckW2rVasW2NnZQXx8vFE/ZrIQuXnzpmyc0ox3796FmJgY2f1lVwd49epV2TilT+/cuSN73paWllCjRg0AAPDz85MdY+oatWvXBq1WC+Hh4Vz3Jt6raB1TunRpKFGiBOj1elm/Z1N1gEormaysX65cuQLp6elgaWnJ5zJnDyOmy+vWrQvW1tYQExMDgYGBshRynTp1wMLCAiIiIiA4OJi33bp1i5/dvXv32OaF7F0ePXrE2yl97evrC05OTpCcnAzVqlUDgEx7mBIlSnD9H53DwsJC9k50Oh0AwEtbQ23fvv2ljlOhQsXrD5UA/sfg5OQE06dPh4CAAJg7dy44OzvD/fv34dNPPwUvLy9Yv359gRJBZ2dn2LBhA+zbtw9Kly4NDx8+hLZt28LYsWMhMTExV+eys7ODLVu2wLfffgsAAMuXL4d3330XoqOjzR7j7u4OJ06cgOrVq0NQUBB4e3sb1RFaWlrCtm3bwMvLC4KDg6F79+58bxqNBlavXg2lSpUCPz8/mDRpEh83e/Zs0Gq1sG/fPlkd3KeffgqWlpZw8eJFIxHGu+++CwDGBBAg09hYSQAtLS25fk5ZV0cEQkkAXV1dWWTg6+sr25ZbIUjFihXB3t4eUlNT4cGDB7JjatasCQDGBNCUv5+dnR3Xuon3W6FCBXB1dYX09HS4ffs2ABieO3kT0ph47+aEIHTftN+VK1cAwGCs7uTkBCkpKSY9A8X/prpA8TlZWVnxd7158yY0adIEtFotBAUFQVRUFBs7X7t2zWQd4IULF5hw+vv7g5eXFwAY6kYBDATRwcEBEhMT+Vyurq783AAMP+oADOSPaj5LlCghe+6iv+PLQDn3VKhQ8eZAJYD/URQrVgymTp0KAQEBMH/+fChZsiQ8fPgQBg0aBNWrV4e1a9dCenp6gV2/a9eu4OvrC4MHDwZEhOXLl0PdunVzXXiu0Whg+vTp8M8//4CdnR0cPXoUmjVrZrYDCIDBiPnkyZNQrVo1ePr0KbRr1w4CAgJk+xQvXhz27dsHLi4ucPXqVfj0009Z+OHq6grr168HAIMJ9MGDBwHA0Knjf//7HwAAjB8/nvcvVaoUvPfeewAAsHbtWtl1OnXqBBYWFnD37l0jIioSQGUExxxpowigr6+v0eJvjpyZO1ft2rXBysoKoqOjZc9Hq9UyGVMKQcxdg8jOtWvXTN6vSABFsieex9Q16bw3btxgEtSwYUPQarUQGhrKBt21a9cGAODooVarNbrXBg0aAEAmwSTSeufOHYiLi5M9J0SUkW1RWOLj48NClqtXrzIB9PHx4WsQaQQAmVqYlO337t1jAk6kjn6YxcbGAgBAUlISAMhNoJV/s3n9MffixQtZdFaFChVvDlQC+B+Ho6MjTJ48GQICAmDRokXg6uoKjx8/hsGDB0O1atXg999/z1NHj6xQvHhxWL16NRw6dAjKli0Ljx8/Bm9vbxgxYkS2Fi9K9OzZE86dOwflypWDBw8eQLNmzYwUtCJyQgIrVaoEO3fuBGtra/jnn39kqd133nkHRo8eDQAAgwYNgrCwMAAA+Pbbb8He3h4uXLgAGzdu5P0pDbxx40bZ8yxevDgrSpVRwMaNG4ONjQ1ERkYapXrNtV6rWrUq2NjYQFJSEtuoEMyRMyIrjx49kkVhra2tmXSZSwPnlADSeHh4OERFRb3UeWhfMQJYqVIlcHZ2hrS0ND6Hra0t26bQ8RRF8/PzYzJNYxSVVe7j4eEBZcuWBUSEmzdvQr169cDKygoiIyMhICDAiLzSO7l8+TI/02vXrkG9evXAxsYGXrx4wVG727dvywigmCame/f09AQA4G4fT58+BQDgHwo058T5ROTQlAWMRqMxGssJjh8//lLHqVCh4vWGSgBVAIAhivD111/DkydPYPHixeDm5gYBAQEwdOhQqFq1Kvz6668FRgQ7d+4Mvr6+MGzYMAAAWLlyJdSpUweOHTuWq/PUr18fLl++DK1atYLY2Fjo0qULLFu2zGz9k6enJ5w8eRKqVq0KgYGB4O3tbUQCW7duzRYu8+fPhw0bNvC2hQsXQu3atSEsLIwjhKVLl4aZM2cCAMDEiRM5Hd2lSxfw8PCAyMhI2LNnj+wa5tLA1tbWHBlSpuIoGnXr1i2uQwQw1IBRtEuZBjZHzlxcXMDFxQUQ0Shyml0doDnidvfuXZlVjoODA/eyFWv4zNUsmrpXUylgjUbD6XAxDaw8vnLlymBlZQWJiYlMpJT7VKtWDSwsLCA2NpbrPulZ3rlzB3Q6Hbd9E1u20b2LtZEiAbS2tub/jo+PB41GA+Hh4VCmTBnQaDQQFBTEqfDLly8b2cI8fvwYNBoNPHv2DEqVKgV6vR7KlCkDAIZyAKqTJGsYAHkkkOoDX7YOcMeOHS91nAoVKl5vqARQhQz29vbw1VdfwZMnT+DHH38Ed3d3ePr0KQwfPhyqVKkCK1eu5IhEfqJYsWKwatUqOHbsGFSoUAECAwOhU6dOMHToUI5q5ARubm5w/PhxGDRoEEiSBOPGjYOhQ4eaJa8iCQwICDAZCRwwYACbUH/++edMxmxtbWHr1q1ga2sLR44cYe/AsWPHgpeXF0RERMCMGTMAwLBQDxo0CAAAVq1aJTs/EcATJ07IyByA+TrAsmXLgru7O+j1erNpVSU5EyNcSojETQQRwOvXr8vGzRHAKlWqMNEKCgoyeQ3x+nSv9+7dk80rU/sSGQsJCZFFEU35EtLxFN2zsrJiEYUyKkj76HQ6s5FD2kdMA9O9P3r0COLj42X71qtXDzQaDYSEhEBoaCiT14cPHzLZe/z4MYtm4uLioFixYpCYmAhly5YFAICIiAgAMET8lIbQpUqVkv0TIDMSSFFGAglBXhY56cGtQoWKogeVAKowCTs7Oxg3bhw8fvwYli1bBp6enhAUFAQjRoyAypUrw4oVK17K0Dk7dOjQAW7fvg2jRo0CAIDff/8dateubdQRIyvodDpYs2YN/PDDD6DVamH16tXQsWNHXlCVKF26tCwS2LZtW6N6vDlz5sBHH30E6enp0LNnTzaTrlWrFixfvhwAAKZNmwY+Pj5gbW0NK1asAABDNJPI0+effw4ajQaOHz8O9+/f53PXrl0bypQpAykpKXD69GnZddu0aQMAxnWAonpXmQY2F1UjoUFwcLARqc4udauMDBKhefr0qUxVbGlpCdWrV8/yXOJ4mTJloESJEpCRkSEbp32fPHnCtW6Ojo6sgBWjgKbIqymyqxyj4x48eMDkSUkclQRQrGV0cXHhNK2vry/v++TJE9BoNPwcrl+/zuTV19dXFsmk8129epX/ner2Hjx4wJFZivhRvR+leC0tLQHAEPmlqJ/SEFr5oyK3CA0N5XegQoWKNwcqAVSRJWxtbWHMmDHw6NEj+Omnn6B06dIQHBwMo0ePhsqVK8Py5cvzvMAo4eDgAD/99BOcOnUKKleuDM+ePYMuXbrAZ599JiMbWUGj0cD48eNh3759UKxYMTh79iw0adJERhxEiCSQagJFixitVgsbNmyAJk2awIsXL+C9997j9O7gwYPZjqZPnz4QExMD7du3h969e4MkSTBy5EiQJAkqVKjA0b5ff/1Vdq9vv/02AAAcPXpUdl/NmzfntmWiHQ2A+S4e5qJzTk5OULp0aQAwjvQROVSSNiIxgYGBsvdcvHhxTukqn6k5MmnqGhqNxqRy2dXV1WRa2lQamM4rfieRyBFxVt5X6dKloVixYqDX65mQK0mikgASkaPtItl2cXEBNzc3vhcxDSyeR3w/YjcTOheR88DAQP5uROqIqNLci4uLAwAAGxsb/u75/fcIYFwCoEKFiqIPlQCqyBFsbGxg1KhR8OjRI/jll1+gbNmyEBISAmPHjoVKlSrBjz/+mO9RgrZt28LNmzdh3LhxoNFoYN26dVCrVi3Yt29fjs/RpUsX8PHxgcqVK0NgYCC0bNkSdu/ebXLf0qVLw6lTp2TCEFFIYWdnB7t374YyZcqAv78/fPzxx5Ceng4ajQZ+/fVXqFixItdNIiIsXrwYHBwc4MKFC1w7+MUXXwAAwLp162QLNRFApXDF3t6eyQNZmBDE6JEIIhiBgYFGhDm7SJ+SGLq6uoKTkxMgopGoJLs6QKXljblrv0wdoHhNSqOKApPq1auDVquF6OhoFkso70uj0RhdQ/nfRMDCw8MhMjJSdq3IyEijexeJnmijQ8Tx8ePHTKpFAnj58mXe5+HDh+Dh4QEAmSleqqeMjIwEAMO7BcgkguLfHu0jkkLCy/YHVoUgKlS8eVAJoIpcQafTwRdffAEPHjyAVatWQbly5SA0NBTGjx8PlSpVgh9++CHXfn5Zwd7eHn788Uc4e/YsVKtWDUJCQqBbt24wYMAAePHiRY7O4eXlBZcuXYIOHTpAQkIC9OzZE+bPn2+yKN7T0xNOnTrFPoFKEujh4QF79+4Fe3t7OH78OHzxxReAiODk5ARbt24FS0tL2L59O/z+++9QunRpmDVrFgAYBCFRUVHwzjvvQPny5SE6Ohr++usvPm+HDh1Ao9GAr68vW5cQSOSgJIAiqRDT8SVKlGDPv9yqdB8+fCirxRNTmWLaWjxGqVDOLgKoTEETaVKmmXOqBHZwcOC6OSKwtra2UKlSJdnx4vmyUwJT5NDBwYH78d65cwfs7e35v+/evZslARQjgK6uruDq6gqIyMTMz88PatWqBZaWlhAREcE+f76+vvxuaV8ieg8fPgSdTgcpKSmytDB9H5Hgie+RBCIva+2kEkAVKt48qARQxUtBp9PBsGHD4MGDB/D7779DhQoVICwsDCZMmAAVK1aERYsWcTeD/ECrVq3gxo0bMGHCBNBqtbBp0yaoWbMm7Nq1K0fHOzs7w8GDB2HkyJGAiDB16lTo37+/yXSZh4cHnDp1CmrUqAHPnj2Dtm3bcs0fgEFtvG3bNtBqtbBmzRpYuHAhABgEAvPnzwcAgxDE19cXxowZA7Vq1YLIyEj46quvwMLCgtXOS5cu5YXbxcWFI0bKNLA5Auju7g7FixcHSZKMyFlubVo8PDw4Hao0dybxhJKgEREiVa2pa4gku3jx4lwzJ0Yaqa5PKb7JKgLo6+srO3d2aWAAg0WOpaUlxMfHQ3BwsMlrVKtWDbRaLcTExLD/nbnaQWU6V5Ik3tfX15cVwwEBARAbG8uk7sWLF2ykHRQUxMIOSZJAo9FAREQEk1cicQEBAWBtbQ3Jycm8v7u7OwDIhSDk/WhnZyd7PnkVgiijsypUqCj6KJIE8MyZM9CtWzfw9PQEjUZjRAIQEWbNmgWenp5ga2sL7dq1M0pHpaamwujRo8HFxQXs7e2he/fu8OzZs0L8Fm8GrK2tYciQIXD//n1Ys2YNVKpUCSIiImDSpElQsWJFWLBgQa49/czB1tYWvv/+ezh//jx4eXlBWFgY9OzZE/r06cNpr6xgZWUFK1asgJUrV4KlpSX8+eef0LZtW6PaOoDMtnHUDaRt27YyYtS1a1dYtmwZAABMmTKFo3njx4+Hd955B1JSUqBXr16Qnp4Ov//+O2g0GtiwYQMcOXIEhg4dCvb29nDjxg04fPgwn9NcGlgkgEohiDlCZypSBmCeAIrnUqaBiQAqSSbVAFI6klC1alWwsLCQEa2srk9EMiAgQPb9TO1LxCgxMVGmBM6JEMTa2prVtPT/AyVJtLGxYYJlTgginrdatWqg0+kgMTERHj9+LNu3ePHiXBP48OFD2XFiKpvSygEBAfz9SOxB6etnz57xe6BzUkcQInc6nY5TxU5OTiAir1H5+Ph41RBahYo3DEWSACYmJkK9evVYaanEokWLYMmSJbBixQq4fPkyuLu7Q6dOnWREZNy4cbBz507YunUr/Pvvv5CQkADvvfdenlsn5QdOnDgB06dP58/WrVvzjUQVFKysrOCzzz6De/fuwfr166FKlSoQGRkJU6ZMgQoVKsC8efO4YD2vaNasGVy7dg2mTJkCFhYWsHXrVqhZs2aO+5YOHz4cjhw5As7OznD58mVo0qSJUXQNIJME1qxZE0JCQqBdu3YyEjRq1CgYO3YsABjavV24cIHFIu7u7uDn5wfjxo2DFi1asGn0sGHDQKfTwdChQwEAYMGCBXy+Tp06AQDAsWPHZB56devWBUtLS4iMjMwy2iaicuXKAGBMzihSFhgYaBShNXcuSgErI4DmCKBItHKiBC5XrhxoNBpITk6WKbVNpaV1Oh1HvESbmZxEAE1dn0iZKSWwOSGIuF3sf3z//n3e9+nTpxAfH8/P4cGDBzJPQZGg073fu3ePiSG9f39/fxbuUPSUCB/dL6X/iRACZHr+kflzflg3KcVGKlSoKOLAIg4AwJ07d/J/S5KE7u7uuGDBAh5LSUlBJycnXLVqFSIixsTEoJWVFW7dupX3CQ4ORq1Wi4cOHcrxtWNjYxEAMDY2Nu9fRMCsWbMQAGQfnU6HPXr0wE2bNuX79QoC6enpuHHjRqxWrRp/hxIlSuCcOXMwJiYm365z+fJlrF27Nl/jo48+wrCwsBwd+/DhQ/Ty8kIAQBsbG9l8EBEaGoq1atVCAEAPDw+8d+8eb8vIyMBu3bohAKCrqys+evQIERGPHTuGGo0GAQC3bt2K8fHxWL58eQQAHDduHAYFBaGVlRUCAJ4/fx4RDfPU3t4eAQBv3Lghu4cGDRogAODff/8tG1+yZAkCAH744Yey8WPHjiEAoJeXl9H3KVWqFAIAXr58WTb+/fffIwDgJ598Ihu/fv06AgCWLFlSNh4fH8/PXTkn33nnHQQAXLt2rWx81apVCADYpUsX2Xjp0qURAPDixYs8JkkSFi9eHAEAb926xeONGzdGAMDdu3fz2JkzZxAAsHz58jx27do1BAB0dnZGSZIQEXHGjBkIADhkyBC+hqOjIwIA3rlzBxERp02bhgCAQ4cORUTEK1eu8PtFRLx48SLPBUTEHj16IADgL7/8goiI7u7uCADo4+ODAwcORADAOXPm4NmzZxEAsGzZsvjTTz8hAGC3bt1ww4YNCADYrl07nD59OgIA/u9//+Nn6+3tjQCAPXv25P0AACtXrowAgHZ2dggAPHdoPgMAOjg4GP2/xMLCwmgsJ5/Ro0ejChVvCgpq/S5KKJIRwKzw5MkTCA0N5XQagOEXc9u2beH8+fMAYFBNpqeny/bx9PSE2rVr8z6vEs2aNYMxY8bAmDFjYPjw4VC1alVITU2F3bt3Q//+/cHV1RW6d+8OGzduzLEtSmHD0tISBgwYAH5+frBp0yaoXr06REdHwzfffAMVKlSA2bNn58u9N27cGK5cuQIzZswAS0tL+Pvvv6FmzZqwZcuWbDsfVK5cGXx8fKBr166QkpICvXv3hhkzZsiibwCGGqsTJ05A7dq14fnz5+Dt7c3CBwsLC/jzzz+hYcOGEBERAV27doXo6Gjo0KEDTJ06FQAAhg4dCuHh4WwAvWzZMggODoZPP/0UAADmzZsHAIZ52q5dOwAAWWqYvieAcR2guagdiUCePn1q9BxyqwSmKFZUVJQs7erg4ADOzs4AYBwFJEGD0nvR3LXFNDDBXIqbBB9iNFSMbFK6s3r16qDRaODFixd8H8poXk6VwFSbFxERwdd6/vw5REdHG0VCxUifGAGkawcFBXHd4927d2XRSzrW39+f96FnSQIOSsUGBASApaUlK4Dpe2s0Go4KihkN6gjyslkOpRm5ChUqijbeOAJI/3MUC6Ppv2lbaGgoWFtbc5N1U/uYQmpqKsTFxck+BYF33nkHli1bBsuWLYOVK1eCv78/3Lx5E2bMmAE1atSAtLQ02Lt3L/zvf/8DNzc36Nq1K6xfv56Vgq8TLCwsoF+/fnDnzh34888/wcvLC2JiYmDWrFlQvnx5+Oabb3Ks5jUHnU4Hc+bMgcuXL0O9evUgKioK+vbtCz179jRS1CpRrFgx2L17N3z99dcAAPDdd9/BRx99ZJQedXNzgxMnTkCdOnWYBBJRcnBwgL1790KZMmXg3r178OGHH0JaWhrMmjULWrVqBXFxcdC7d29o37499O/fHxARhgwZAuPGjQOtVgv79u0DHx8fADC8ewCA/fv3y64v+sWJMGVmDACsEE1MTDSaF5RKNEfO/P392YwYwKAgpfPltA4wOwKoTEGbIoAAmeRTNOYmAiimgKmdHd0/gCElSiSKCB/9t1jvS2SZakGJkNF3VZ7H0dGR78HPz4+fAd27SDJFAliiRAlO55L4KDg4mFPsYWFhfF7RWJqUvUS+Hz16xIIdem70vAEMKXiCKHJSGkTnFv7+/i/dTk6FChWvH944AkhQNj5HxGyboWe3z/z588HJyYk/9D/rggaZ5c6ZMwf8/PzA19cXZs6cCTVr1oT09HQ4cOAADBo0CNzc3KBLly6wZs0aWaTmdYCFhQX06dMHfH19Ydu2bVCrVi2Ii4uDb7/9FipUqADTp0/P8z1TL+DZs2eDlZUV7N69G2rVqgV//PFHlguXhYUFLFq0CNavXw/W1tawc+dOaNWqlUlSc/z4cahbty6EhoaCt7c3R4k8PT1h//794ODgACdPnoRhw4ZxdLBEiRJw+fJlmDJlCvz444/g4uICvr6+sHPnThg4cCAAGGxiEBG6du0KAADnzp2TETdzQpAyZcqAo6MjZGRkyEQqtra2LBZQfg/64aMkhuXKlQM7OztIS0uTmWADgFkrmNwSwJIlSzIREcU35ggg3atoG2OKAAKYrgOk+6MfdiVLlgQAkP3oIOJI84+eW1RUlJFdDJ1bFHQon4EpAih2jhGfS3JyMmRkZDAx1Ov1YGVlBQkJCUxMicQ9fPgQ7O3tIT09nWs86V4pEguQWRtYrFgx2fPJK3lLSUlRhSAqVLxBeOMIIFkjKP9HFR4ezlFBd3d3SEtLM1oAxX1MYcqUKRAbG8sf5QJUGNBoNFCrVi2YNWsW3LlzB+7cuQNz5syBOnXqQEZGBhw6dAiGDBkCpUqVgrfffht+//13sy3QXgW0Wi188skncOvWLdi+fTvUqVMH4uPjYe7cuVChQgWYMmVKjhS95mBlZQXffPMNXL16FRo1agTR0dHw6aefQrdu3YwUqUr873//g1OnToGbmxub9J47d062D5HAevXqQVhYmIwE1q1bF/766y/QarWwfv16mDdvHpQrVw7Wr18PAABLliyBc+fOceu47777Dvr37w82NjZw9uxZ2LdvH1SsWBG8vLxAr9fL1MC1atUCnU4HMTExMl/CrJTAYhpYhDkCqNVqmYgo54w5K5jcEkCATIWqGEEnAqhswUd9bcVyAfpe5gig+BzoWnQ8EaXExEQWRhABpHlH++j1ehZfkTEz7SM+c+UzoPsLDQ1lRXFkZCTExMTIhC30jJ49e8b3/uDBAxaVkKgjJCSEU9D0HojIUrTPwsICAAylF0T0lAQwP4RkpvpIq1ChomjijSOAFStWBHd3d5mXWlpaGpw+fRpatmwJAIYG91ZWVrJ9nj9/Dr6+vryPKeh0OihWrJjs86pRs2ZNmDFjBty6dQvu3bsH3333HdSrVw/0ej0cPXoUhg4dCh4eHtCxY0dYtWoVhIeHv+pbBgAD2fjoo4/gxo0b8M8//0D9+vUhISEBFixYABUqVIBJkyblibjWqVMHfHx8YN68eWBtbQ379++HWrVqwdq1a7OMhLRo0QIuX74M9evXh4iICPD29oZ169bJ9nFxcYHjx49D/fr1ITw8XGYz1KVLF1anT58+HbZs2QLdu3eH8ePHAwDAwIEDoXnz5tC1a1dIS0uD6dOnw5gxYwAAYPLkyaDX6zkKKKaBra2tWSFKvYUJ5gggERNzBNBUDSbNaWWv4PyKAAJkkjLxGuYigKYIYG4igHQ8XcvJyYlr4YgAE5kicmdrawu2trYAkBkVVN6zKQL4/PlzSE1N5WtGR0eDg4MD/yh98OAB/3tUVBST7WfPnjHpu3fvHtcBUh3fkydPmIDS8UQOicQSuRP9/ih1TN8XFRZC4j9zCrUlnAoVbw6KJAFMSEiAGzduwI0bNwDA8D/IGzduwNOnT0Gj0cC4ceNg3rx5sHPnTvD19YWBAweCnZ0d9O3bFwAM/zMfPHgwfPXVV3D8+HG4fv069O/fH+rUqQMdO3Z8hd8sb6hevTpMmzYNbty4Affv34f58+dDw4YNQa/Xc9cKDw8P8Pb2hl9++eW1SOdotVro2bMnXLt2DXbt2gUNGjSAxMREWLRoEVSoUAG+/vpr9kLLLSwtLWHKlClw/fp1aNq0KcTGxsLgwYOhS5cuRqRIRLly5eDff/+FDz/8ENLT0+Gzzz6Dr776SlY8X7JkSTh27Bg0aNCAiaKvry8AGNq9EeEbNGgQnDt3DubPnw/NmjWDmJgY6N27NyxbtgwcHR3h/PnzULJkSXB2dgY/Pz/4/fffmQAePHhQdk0igDltsWYuAigSFCWIACrrW/MzAmjqGua8ALMigM+ePZM9H4q2ifeijABqtVomwETulClggMwoIKWKlfchWsy4uLgwYQwKCjIi2GIdoHgeqqsUI4B3797lc1P9akxMDN8PdQYh4ka1mvQ3ItaB0r9TFxARRBRzSwCpVlWFChVFH0WSAF65cgUaNGgADRo0AACD+W6DBg3gm2++AQBDPdW4ceNgxIgR0LhxYwgODoYjR47IiqB//PFHeP/99+GTTz6BVq1agZ2dHezdu5dTKUUdVatWhcmTJ8PVq1fh0aNHsHDhQmjcuDFIkgSnTp2CkSNHgqenJ7Rt2xZ++uknk2bIhQmNRgM9evSAq1evwp49e6Bx48aQlJQEixcvhooVK8L48eNfmrDWrFkTzp07B4sWLQKdTgeHDx+G2rVrw2+//WY2Gmhvbw9//fUXzJw5EwAM6dv33ntPFrUiEkgKYG9vbzZeXrRoEbz//vuQmpoKPXr0gKdPn8K2bdugePHicOnSJfj555/ZA3DOnDnsEzh9+nTw8vICJycniIyMhMuXL/P1xC4Yyu8HYJ4A5rQGECB7AvjgwQPZMzMXZcxtBJC8AFNSUmRRaiWBAzCkYy0sLECv18vmBJErMdWpjAACGJM7ZQrY1D7K+yBRCP3diESYrhkXFwd6vT5XBPDevXv87Kj2T4wqWlpaAkCmIpiENGlpaWBhYSFr9Ubvl44ByIwcktJdqXjPDsofHypUqCi6KJIEsF27doCIRh+qtdJoNDBr1ix4/vw5pKSkwOnTpzmtQrCxsYGffvoJoqKiICkpCfbu3Vtooo7CRqVKlWDixIlw+fJlePLkCXz//ffQrFkzQEQ4c+YMjBkzBsqUKQOtW7eGZcuWvdKOKBqNBrp16waXLl2C/fv3Q9OmTSE5ORl+/PFHqFixIowbN+6lyKqlpSV8/fXXcPPmTWjZsiXEx8fDsGHDoFOnTkZpR4JWq4VZs2bBX3/9Bba2tnDo0CFo3ry5TGzh7OwMR48ehUaNGkFkZCR4e3vDrVu3wMLCAjZt2gSNGzeGqKgo6Nq1Kzg6OsKGDRsAwPADxMPDA9q0aQOJiYlw5swZqFWrFkRFRcF3333HFkViGpjmsDkCqFTv5rYGEMA8AaTa2NTUVLYdAQCj9CeBSExiYqJRuz1T17C2tuaUqPg+TBE4CwsL3ldMA5s6rymyqSR3lAIWI4DKMVOpZABDWjUhIeH/7Z13XJXl//9f94EDwjnInoqIMxVcuFBc4M6R5i7TXFnhzpFmamVqmSMrLe1r9jHT3CsEHOAARAEVQQ0UxYGCCBz2vH9/+Lsu73M4hyUO4P18PHhg97ju67ov6Lx4TzUBKK0ukJqaqiYApfNhAvDBgwfcBXz79m1u5cvKyuLuW9YZhP03e9dpaWncisf2m8H2SSry2NqllsLycPfuXcoEJohqQpUUgETFqV+/Pj777DOEhITg7t27WLt2Ldzd3SGKIs6fP49Zs2bB0dERnTt3xtq1a0t0lb5MBEHAgAEDEBISAh8fH3Tq1Ak5OTnYsGEDGjRogBkzZpSa1KGNpk2b4syZM1i3bh2MjIxw8uRJuLi44Oeff9ZpDRkxYgTOnTuHOnXq4MaNG+jYsSNOnjzJzzMRyMSep6cnrly5AoVCgSNHjqBevXr477//MHToUPTt25e7hydOnIivvvoKRkZGOH36NBd9mzZtQqtWrQAAf//9N58XE4AxMTE8Pgx49sFvYGCA/Px8tXeiyzqnza3K0CaYgGcWUSY+pALL0tKSW5U0xRiLQdO0Aup6hrY4QF1z1RYHqE0Aaru/MiyAtWrV4pY1lUqlJgDlcjl3u0oFYGxsrE4LoJ2dHUxNTVFUVMTr+alUKv5caZcP4HnNv9TUVO7ZYCJRE6kwZ3tYUXJzc9+I0BGCIF4cEoA1mHr16mH27NkICgrCvXv3sH79enh4eEAQBAQHB2Pu3LlwcnJCx44dsWbNGp2WspeJIAjo168fgoKC4Ofnhy5duiA3NxcbN25EgwYN8Omnn5Y7G1tPTw+zZs3C1atXuQXO29sbnp6eahm2Utq2bYuLFy+iY8eOSElJQd++ffHLL7/w8+bm5vD390f79u25CLx8+TLs7Oxw7Ngx1K5dG2fOnMGUKVPw7bff8njABQsW4OuvvwYAbNmyBf3790dhYSF8fX1hamqKW7duwcfHB8CzBAALCwsUFRWpJTrIZDKeJCC1jjKLkKZ1TmoB1LTm6LIACoKg9ZwgCFpdzYIg6HQD63pGRQSgVNyycbOzs7krVJvY1LTusf/OycnhVjNdMYBsHM33oRkLKY2z1OUCliaBCILArYBsXiqVil/PYvaYhZe5ubOysvg8mOVQU+RJ/1gor8tXG+QGJojqAQlAAsCzenIzZ87E2bNncf/+fWzcuBHdunWDIAgIDQ3FvHnz4OzsjPbt2+O7774rVifuZSMIAnr37o2zZ8/ixIkT6Nq1K/Ly8vDLL7+gYcOG+Pjjj4vFupVGo0aNEBAQgI0bN0KhUCAwMBAtW7bEhg0btH5Q2tvbIyAgAOPGjUNhYSE+/fRTfPzxx1xsmJmZwc/PDx06dMDTp0/h5eWFiIgIuLi4YM+ePdDT08P//vc/rF69Wi0e8P79++jSpQsyMjKQnp7Oy8J069YNAHjZGEEQdLqBmZiQWgCtrKy4KJAeZwIwLy+vTO5ZzXOalrvyJoKUZgGUloJh12ZnZ6u5LbVZAKUxvkwglcUCqFQqeTkVZgXUrBeoLRaxJAEoTQRhNfuePn3KBXdaWhovyM1CLpiIl7p32fzZ/Ng7SE1N5a5ftm4mEplFUxtSMVhRNH/2CIKompAAJIrh4OAAb29vBAYG4sGDB/j555/Rs2dPyGQyXLp0CQsWLEDDhg3Rtm1brFy5khe5fRUIggAvLy8EBgbi1KlT6N69O/Lz87F582Y0btwYU6dOLZelUiaTwdvbG5GRkejZsyeysrIwa9YsdOvWrVjJE+CZlWX79u1YvXo1BEHA5s2b0adPH7VYMT8/P3Ts2JGLwPDwcPTp04dbDJcuXYpz587xeMD169dj7NixqFWrFs6dO8cz0cPCwiAIAvz8/LjFT5cAZGJCagHUZZ1TKpU82UnTslYWAah5rrwCsDwWQGmpJc2kEUBdAMrlcp6Ny8YuSwygIAg6awFqiwHUrLNXmgVQoVAU674iiqLa/enp6Xyu7A8KlUrFhSTbLybgUlJS+DPYmplLWioAmShkAlJT8FcEzW40BEFUTUgAEiVib2+PTz75BKdOncLDhw+xadMmeHl5QSaTISIiAosWLULjxo3RunVrrFixoliZkJeFIAjo2bMnAgICEBAQAE9PT+Tn52PLli1o3LgxJk+eXC4rpbOzM06cOIFNmzZBqVTi/PnzaNWqFX744YdivVMFQcD8+fNx6NAhKJVKBAQEoEOHDjwL19TUFL6+vujUqRPvCxwWFoapU6fylnMTJ06Eubk5jwdcvHgx5s6dCwAICAiAg4MDHj58yOvvsdqC5bEAAtrjAAVB0FkKRpd1TnruRQWgrnG0CUA9PT0ulMpSC1BTXGqz3GkKQKC4W1hXDGBeXh4XYdJ1sHdw7949FBYWFku0YWtLSkrioqywsJCP8eDBA7VnAM8sgWw9zNrHYv+ysrL4HjIrLxOJ0nhBFofJjlWGALxy5coLj0EQxOuHBCBRZmxtbTFt2jScOHECjx49wm+//YbevXtDT08PV65cwRdffIG33nqLt62Txqm9TLp3746TJ0/i7Nmz6NWrFwoKCvD777+jSZMmmDhxYpktlDKZDNOmTcO1a9fQu3dv5OTk4LPPPoOHh4fWtQwaNAjBwcFwdnbG7du30alTJ561y0Sgu7s7UlNT0atXL1y6dAmrVq3ivYLfeecdTJw4kccD+vn5oVOnTsjIyOBWHCZi//jjDzx+/LhcFkCg/JnAr8IFrGsclhShuYbyFIPWnD+7NzMzk8fPacv61bQAarqAlUolj61j85auw8HBAfr6+igoKEBCQkKxWoDSlna6EkGk7m4GE25S1zETeuz5zLqnrbgz+zdLSikpBrCsCSK3b9+mTGCCqAaQACQqhLW1NaZMmQI/Pz88fvwYW7duRb9+/aCvr4/IyEjeq5i1rbt27dpL/9Dw8PCAv78/zp8/j759+6KwsBDbtm3DW2+9hfHjx6uVbykJJycn+Pr6YuvWrahduzZCQkLQpk0brFq1Sq3MCvDMIhcaGoru3bsjPT0dgwYNwpo1a7iL7/jx4+jcuTMXgWFhYfjzzz95nOA777yDzZs3w8zMDBcvXkTTpk1haGiIq1evokmTJsjLy4OFhQWysrKwYsUKLgDj4+PVRJouC+DLEICa51jsmmaXmfJaANmc0tPT1d6zNiseE4CPHj1SS3DRZQEEngu38lgA2X/LZLJilkjps/T09LiYu3PnTjELq1T0Sd3J2gRgeno6z+hl1j32PlJTU/l7YuJQWucPUO/4wazXbJySKGtR6KysLF6kmiCIqgsJQOKFsbS0xKRJk+Dj44PHjx9j27ZtGDBgAORyOaKjo7F8+XK4urqqta17mWKwc+fOOH78OIKDg3lW7Z9//om33noL48aNw40bN0odQxAETJo0CVFRUejfvz9yc3Px+eefw93dvZj1zcrKCn5+fpg6dSpEUcS8efMwYcIE5OTkcBHYpUsXpKWloXfv3rh27RoOHz4MJycnxMbGYvr06di6dSsAYPv27RgzZgyAZ2JOJpNxobJ582a17FFpNmZpFkBN65yu7Fpd1jlAt3DT5U4urwWQjaN5TlstQF0JLpoCUC6Xc6FUkgDUFQMovUZzHprP0lYLkL1fbQJQMxNY6n7XtO6xuMCnT5/q7ArCxJ5UPDNxzFzBlQWVgiGIqg8JQKJSsbCwwIQJE3Ds2DEkJiZi+/btGDRoEAwMDNR6FbO2dRERES9NDHbq1An//vsvLly4gLfffhtFRUXYsWMHmjdvjrFjx5bJRV23bl0cO3YMf/zxB8zMzHDp0iW0bdsW33zzjVrXBQMDA2zevBkbN26Enp4e/vzzT3h6euLRo0cwMTGBj48PPDw8uAi8c+cO/v33X5iamuLcuXPYv38/jwc8cOAAb4nHLERKpRL5+flYunSpVjdwZVkAdYk8QLdw09VbuLwWQAMDAy7WpGNpE6uCIKhZzzTnWFIx6JIEoGZpGGnmrqYlsiwCsCQLoC4XcFpaGv83E27MLZydnc3HZufY/Jjwk/5cMlGo2eFI02ooHacsaCsiThBE1YIEIPHSMDMzwwcffIDDhw8jMTERO3bswJAhQ2BoaIiYmBh8++23aNu2rVrbupchBjt06ICjR4/i0qVLGDx4MERRxN9//40WLVpg9OjRpdY1EwQB48ePR1RUFAYPHoz8/HwsWbIEHTt2VAuIFwQB3t7e8PHxgZmZGYKDg9GhQwdERERwEdi1a1eoVCr07t0bKpUKe/fuhb6+Pnbu3AkjIyN06tQJaWlpKCgogKGhIeLj46FQKHjLrx07dnCXa1BQEH82swCyUjIMOzs7AMVFWGku4KysrGLubl0uYDZWdna21m4gJWUBa8akaROTuqyVbHxpLF9ZikEzcZeRkcETLtgxZgFk8ygsLCwWT6jLAsje9ZMnT0p0AUuFpFQASsdnY7O4vMzMTC7imHuYiTj2DqXJI4C66NN072qL9ytPjUBtLf4IgqhakAAkXgmmpqZ47733cPDgQSQlJWHnzp0YOnQoatWqpdaruGHDhpg/fz5CQ0MrXQy6ubnh0KFDCA8PxzvvvANRFLF79264uLhgxIgRvI+vLhwcHHDw4EH89ddfsLCwQEREBNq1a4dly5ap1ajr3bs3Lly4gKZNm+LevXvw8PDA3r17oVQq8e+//6Jbt25IT09Hnz59oFAosHnzZgDAihUrMHz4cJibmyMyMhLt27cH8NyKo6+vD1EUeab1oUOHuLVHqVRy0SC1AjJhk5KSopbNrMtqp62WHkOX5a527dpcYEgFZWkWQFEUeVYrQ5s7WVsMIKDdklcWC6CpqSmfr65uIEZGRry8iq5agJrPksYRltUFLG0Hp80CKE080Yz9Y7CfASb8WJayVPRp/i696O/Wqyz9RBDEy4EEIPHKMTExwZgxY7B//34kJSVh9+7dGD58OIyMjNR6FdevXx9z585FSEhIpXQwYLRp0wYHDhzA5cuX8e677wIA9u7di5YtW+Ldd98tscyFIAgYO3YsoqKiMGzYMBQUFGD58uVo3749wsLC+HVNmjRBSEgI+vbti6ysLIwYMQJfffUVFAoF/v33X/To0YOLwGbNmmHhwoUAgM8//5yXgzl37hwaN26MnJwcmJqaoqCggHdpMTc3R0pKCk6dOsWfqS0OkIkkURTVRJWuuD0DAwMeW6bp6tXlApbJZFrHYwIwLS1NTSBL26iVxZ2sywKomakrnWNJFkCZTMafU5Z+wLq6gZTkWi5LEkhJLmC2DvZzn5qaWiz2j51jwo91MWHfpSJP8/dH6iauCBXpx00QxJsFCUDitaJUKjFy5Ejs2bMHSUlJ2LNnD0aOHAljY2PEx8fzXsVOTk6YPXs2zp8/X2lisFWrVti7dy+uXr2KESNGQBAE7N+/H61bt8bQoUMRERGh8147Ozvs3bsXu3fvhpWVFa5evYqOHTti8eLF/APZzMwMR48exaxZswA8KwA9atQoCIKAo0ePomfPnsjIyEDfvn0xYMAAjBo1Cvn5+fj+++8xYcIEAM+C7Q0MDJCWlgZBEPiHOqslt3fvXj4nbXGAcrmcCwtpr1tdLmCgZEuftuO6xjM3N+duSOmzBUEoV0KJtiQQoHimrq45llQMmt1bkX7Ams+SXl/eJJAnT57wPVWpVCUKQCaemYuexQcy4ccst1KL74sKPk00M74Jgqh6kAAk3hgUCgWGDx+O3bt3IykpCfv27cOYMWOgVCpx//593qvY0dERM2bMwNmzZ4sVaa4Irq6u+OeffxAZGckF2sGDB9G2bVsMHjxYzbInRRAEjBw5EtHR0Rg5ciQKCwt5XGNoaCiAZx/W69atw9atWyGXy7Fnzx507doVKSkpOHr0KDw9PZGRkYH+/ftj8uTJPFv49OnTcHNzQ3p6OmxsbAA8D/oXBIFnYR44cIB/uOvKBNZMcABKFoC6hF5JCSLaxpPJZNyKVtZM4PJYAMvrApber2nd0/aOdHUDKY8LmPVb1iUAzc3NuUWPCTlRFLn7me1tSkoKnw9zC7M/NJgbnQk/bWJPGptZGUiFMkEQVRMSgG8gmZmZSEpK4l+awfg1AWNjYwwbNgw7d+5EYmIiDh48iPfeew8mJiZ4+PAh71Vct25deHt7IyAg4IXFYIsWLbBr1y5cu3YNY8eOhUwmw5EjR9CuXTsMHDiQizpNrK2tsXv3buzbtw82NjaIjo6Gu7s75s+fzz/UJ02ahJMnT8LKygrh4eFo3749rl69iiNHjsDLywuZmZl45513MH/+fDRq1Ah3795Ffn4+zM3Ncf/+fdjY2CAvLw9yuZxbAfX09JCcnIzAwEAAujOBNRMcAN2iCtAtAEsqEVPeUjAVsQBWVABqsyBq3sveUVZWFt8zXRZAXUkg2lzABQUFyMzM1FkHUBAE/o5UKhUX+ZrlX/Lz89Xa4rG5As+Fn3TN0lhOoHI6gEihLGCCqPqQAHwDWbNmDWxsbPiXUqlEq1atMGbMGHz99dfYv38/bty4UelunTcVIyMjDBkyBDt27EBSUhIOHz6MDz74AKampnj06BHvVVynTh3etu5FRHPz5s3x119/ITo6Gu+//z5kMhmOHTuGjh07on///ggJCdF637BhwxAdHY333nsPRUVF+P7779GmTRuerdu1a1dcvHgRrq6uePToEXr06IF9+/bhyJEj6NWrFzIzMzF27FgsW7YMlpaWuHr1Km8Fl5iYCH19fa0lPvbs2QOg8i2AumIAS7IAlrUUTHksgJWdBKLtXhMTEy6+tJWCAUq3AErHNDY25q5aqehLT0/n4oyNw97RkydP+FzZvdLsX5b8wfadWf7YOKIo8rE1BSC7VrMcTEXR9ocDQRBVCxKAVYDc3FxcvXoVu3btwpdffol3330XzZo1g0KhgIuLC0aNGoXly5djz549iIqKUgu4r24YGhpi0KBB2L59Ox4/foxjx45hwoQJMDMzw+PHj3mvYgcHB3z00Uc4ceJEhcVg06ZN8b///Q/Xr1/H+PHjoaenh+PHj8Pd3R19+/ZVK8PCsLS0xI4dO3Do0CHY29vj5s2b8PDwwJw5c5CVlYX69esjKCgIQ4YMQW5uLj744AMsX74cBw4cQO/evZGZmYmpU6di6dKlMDAwQEhICNzc3AA8//DW/BDfuXMnnjx5Ui4LYEViAKXHNbNIdY1XmRZATbGoLXGjLEkgQHH3riAIxd6T5jUlWQBFUeTXFxYWIj09XW0t0o4kUmEIgLv4k5KS+HVsj6XjMFcx+/1m88jPz+filbV8Y98ZzAKordtHRUShZoY4QRBVDxKAbyBffvklioqKUFRUhIKCAty+fRtHjhzB6tWrMX78eLRv3x4KhQL5+fmIiorCP//8g2XLlmHkyJFwcXGBQqFA8+bNMXz4cHz55ZfYvXs3IiMjKz0O6HVjaGiIAQMGYNu2bXj8+DF8fHwwadIkWFhYICkpifcqtrOzw5QpU+Dr61shq2mTJk3wxx9/4MaNG/jwww+hp6cHPz8/dOnSBb169cLZs2eL3TN48GBERUVh/PjxEEUR69atQ6tWrXDmzBkolUrs378fixYtAgCsXr0aY8aMwf/+9z+eNbxgwQLMmzcPABAWFgZnZ2fk5ubC2Ni4mKs7IyMDa9eurZAFMDMzs9g7Kc0FLIoir0uoOd6LdgN5mTGA0mdpyyAurRuILgtgUVERMjMzi5WOka5FLpdzUcZEmKYFMDExkc+VXSPtHczcwqzMS0pKSrG+wOwZbB6aaCv/UpEuIZXtUiYI4tVDAvANRBAE/qWnpwdnZ2cMHDgQ8+fPxx9//IHQ0FCoVCreTWLNmjX48MMP0bFjR5iYmKCgoADXr1/Hvn378PXXX2P06NFo2bIlFAoFmjZtimHDhuGLL77Azp07cfnyZf6BUpUxMDBAv379sHXrVjx69Ah+fn6YMmUKrKyskJyczHsV29raYuLEifDx8Sm3pbRRo0b4v//7P/z333+YPHky9PX1cfLkSXTr1g2enp48Fo9hbm6OP/74A8eOHUOdOnUQGxuL7t27Y8aMGcjOzsaKFSvw119/wdDQEEePHoWXlxfWrVuHfv36ITs7G2vXrsXEiRMBPOsva2JigqysLK0Wmx9//JF/6D98+FAtU1qbBVBqkSprOzgjIyP+bF3FoDUFILNuPX78WO14RSyAmj2CyxsDqM0CWNZuINI5s/dibGxc7H1IrYa6uoEwUlNTIYqimkiW7gsbl93HnsVi/3JycvgzmPBjVkLNNnEM6R8PbDxtRaFLozp7GQiipkACsIoik8ng5OSE/v37Y+7cufi///s/hISEIC0tDfHx8Th+/DjWrl2LyZMnw93dHaampigsLMR///2HAwcOYMWKFXjvvffQpk0bKBQKNG7cGEOGDMGiRYuwY8cOhIeH8w+aqoZcLkfv3r3x22+/ISEhASdOnMBHH30EGxsbpKSk8F7Ftra2mDBhAo4ePVou62iDBg2wZcsWxMTEYOrUqZDL5Th9+jR69OiBHj164PTp02qWlgEDBiAqKgqTJ08GAGzcuBGurq44ffo0xo4dizNnzsDe3h5RUVHo2rUrZs+ejQEDBiA7Oxt//fUX+vfvD1EU+YeutmSXzMxM7Ny5E4IgoKCgQM3ips0CqKenx8WSrm4gmuKspPItugQgs0omJCRofUZ5YgA1n8vEVlZWFv8jho2bnp7ORXBZYgCB4kK5tCxgQRB0ZgKXVAuQidiioiJkZGRodQGzPZZaAKVFoTUtf0z8s1Iymi5hbbBrtbmFS6OoqKhSMvAJgnh9kACsZgiCAEdHR/Tt2xezZ8/Gli1bEBQUhJSUFDx48AD+/v5Yv349pk6dCg8PD5ibm6OoqAixsbE4fPgwVq5ciXHjxsHNzQ1KpRINGzbEoEGDsGDBAmzfvh2XLl0q5v57k9HX14eXlxc2b96Mhw8f4tSpU/jkk09ga2uL1NRU3qvYxsYG48aNw+HDh8tsEa1fvz5+/fVXxMTEYNq0aZDL5QgMDISnpye6d++OEydOqPWR3bJlC3x9fVGvXj3ExcXB09MTn3zyCZo1a4aLFy+iXbt2SE5Oxttvv40BAwZg4MCByM3NxcmTJ9G2bVvk5ubyD3RtVpuff/6ZW5OkbmBtFkCgcvsB68oCZgJQMy6xPBZAuVzOEyCkzzU1NeVCiAk5aaYs+zktSwwgUFwo68oCTk9P5+KnIrUAs7OzuUBLTU3V6gJmIlFqAWQ/S9KagOzngYk5Fl/IvktdwcyFzGD3VLQrCCWCEETVhgRgDUEQBDg4OKBXr16YOXMmfv31V5w9exbJyclISEjAyZMnsXHjRnz88cfo1q0bLC0tIYoibt++jaNHj+K7777DhAkT0L59e5iYmKB+/foYMGAA5s2bh23btuHChQtaBcObhJ6eHnr27Imff/4ZDx48QGBgILy9vWFvbw+VSsV7FdvY2PC2dWWJdXJycsKmTZtw69YtfPrppzAwMMDZs2fRu3dveHh4wM/Pj3/I9unTB5GRkZg2bRoAYNOmTXB1dUV0dDTOnDmD0aNHo6CgAN7e3nB0dMSgQYOQl5eHa9euoX79+sjMzISxsbHWYtiZmZncmnPv3j1+XJsFENAdW1dStm9p/YA1x2KJKZpxiWWxAEqFiba5CoJQrKOHoaEhF1dsjlILIBtTWwygplDW5QKWjq1LAJbkApZa9dLS0rS6gJm1V6VSFROFT58+5c9hAo+tmQk/9nPARJ70Wga7p6KF1aXvjiCIqgcJwBqOIAiws7ODp6cnvL298csvvyAwMBBPnjxBYmIiTp8+jZ9//hmffvopevbsyd1Vd+/ehY+PD9asWYOJEyeiU6dOMDU1Rb169dCvXz/MmTMHW7duRXBw8BtpKdDT00O3bt2wceNG3L9/H2fPnsXMmTNRp04dpKen817FNjY2GDNmDPbt21eqS9zR0RE//fQTbt++jenTp8PQ0BBBQUHo27cvOnfuDB8fH4iiiNq1a2PTpk04efIknJ2dcffuXfTp0wczZszApk2b8M033wB4Jg4zMjIwYMAA5OXl4cGDB7CwsEBWVlYxaw6DiRdpi7jyWgBLqvdXURdwYmKiWrJJaRbAvLw8NUtsWRNBtLll2bPy8/N11vgDnidjsHhF6TWiKMLQ0LBYm7yyuIBL6waizQXMQhIKCwuhVCr5/Nmz2dzYzwGzhDLhx75L40WlYhB4LhYrWk7q/v37FbqPIIg3AxKAhE6sra3Ro0cPfPLJJ/jpp59w6tQpPH78GElJSThz5gw2b96M6dOnw8vLC/b29gCeWZ58fX2xbt06TJkyBZ07d4a5uTnq1KmDPn36YNasWfjtt99w7ty5N8aCIJPJ4OHhgfXr1yM+Ph5BQUGYPXs2HB0dkZGRgV27dmH48OGwtrbmbetYXTVt1KlTBz/++CNu376NWbNmoVatWggJCcGAAQPQqVMnHDt2DKIowtPTE1evXoW3tzcAYOvWrXB1dUXbtm1x4MABKBQKnD59Gjdv3kTv3r2Rn58PlUqFWrVq6QzCZ67J/fv3c2sXswA+ffpUzdpTmgAsjwtY11hWVla8eDXrXlLSOCYmJty9LR3rRWoBKpVKtfg56X0ZGRn8XdarVw/Asz9upNcUFhbysXRlAmvrB6zLAqgpALW5gDMzM/mcmeiUCmJW50/aHUYK22fpcc1sXyYOKxrLx94TQRBVExKARLmxsrJC165d8dFHH+HHH3/EiRMn8PDhQzx9+hTnzp3Db7/9hlmzZqFPnz5qLkB/f39s2LABH330Ebp27QpLS0vY29vDy8sL06dPx+bNm3HmzJnX2mZKJpPB3d0da9euxd27dxESEoK5c+fCyckJWVlZvFextbU1hg8fjl27dumMiXRwcMC6desQFxeHOXPmwMjICKGhoRg4cCA6dOiAI0eOQKFQYOPGjQgMDETDhg1x//59DBgwAIcOHcLx48fh5OSEW7duISQkBB4eHigoKEB+fn6pmZv37t3jLeyYVaqoqEhNQL1IDKAuC2BGRoaaRUkmk/E/DqRxgLqeIQiCVmtfaRbAkmoBymSyYkLN1NSUiyN2r7OzM4BnGdfAM+HFYg81S8GU1g0kOTlZZxKILgGYnZ3NxZ60HzCz8kmPsXmxNTCxz4QfE3VSwc8sfoyKxv4xyAJIEFUbEoBEpWFubo4uXbpgypQpWLduHXx9fXH//n2kpqYiODgYW7duxZw5c9CvXz9ubXn06BFOnTqFn376CR9//DG6d+8Oa2tr2NjYoGfPnvj000/x888/4/Tp00hMTHzhD63yIAgCOnbsiDVr1iAuLg6hoaGYP38+nJ2dkZ2dzXsVW1tbY+jQodi5c6dW0WRnZ4cffvgBcXFx+Oyzz2BsbIxLly5h8ODBcHNzw8GDB9G1a1dcvXoVs2fPhiAI+OOPPzBy5Eh888036Nq1K9LT03H+/Hm0atWqzBab/fv3A3gmIJjFSCqUSosBLI8LuKSyMtrqE5b0DG3CtLRi0OUtBaOnp4e6desCAOLi4gA8S+oBnrmAmavY1tYWwPOYSk1LpOb7kM5HVxKIpgBUKpVc+DHS0tL42MxyJ+0HzK5nvw8sPpB9ZyJcWjaHiUUmBEsq5VKW0jCacZ0EQVQtSAASLx1TU1N06tQJkyZNwg8//AAfHx/cvXsXKpUKFy5cwLZt2zBv3jwMGDCAfwgnJSUhICAAv/zyC7y9veHp6QlbW1tYW1ujW7dumDZtGjZu3IiTJ08iISHhpQtDQRDQvn17rF69Grdu3UJYWBgWLlyIhg0bIicnh/cqtrGx4W3rNMWKra0tvv/+e8TFxWH+/PlQKBSIiIjA0KFD0aZNGxw/fhxr1qzBuXPn0KRJEyQkJGDcuHGoU6cO3n//fYiiiCtXrsDZ2RlFRUWllu9gLeKA8nUDqYgLWF9fn4tMzfG0JYKUZGWsiAWwIsWgGzduDACIiYnhz2D3MitgkyZNil0jnUdFkkA0BaC0H7C0/Asbm4kxafYvE4Xseibm2HcWQygtb8R+R1gySEmxf2UpDUMWQIKo2pAAJF4bJiYm6NChAyZMmIDvvvsOx44dQ1xcHDIyMnDp0iVs374dCxYswKBBg9CwYUMIgoDk5GScPXsWv/76K2bMmIFevXrBwcEBlpaW8PDwwNSpU7F+/Xr4+/vjwYMHL0UYCoKAtm3bYuXKlYiJiUFERAQWL16MJk2aIDc3F4cPH8a4ceNgY2PD29ZJhYuNjQ1Wr16NO3fu4PPPP4dSqcSVK1fw7rvvonXr1njw4AHCw8Mxb948yGQy7Nq1C35+fpg0aRJkMhni4uJgZWVV6tpiY2Nx/fp1ANozgZko1CzSzIRHdnZ2mbuEAKUngkhdwGycrKysYs/QNs6L9gPWJiA1BaAgCMXcwEwA/vfff2rzKM0FXJ4kEOB5Agqz2EktgNLOIWx8JgpZXKCm4GMWTGmsKnMHMwH4ogXgNWs7EgRRtdAv/RKCeLUoFAq4ubnxHriMrKws3Lx5E9HR0YiKikJ0dDSio6Nx69YtpKSk4Pz58zh//rzaPbVr10bz5s3RokULNG/enH85OjpWqACuJoIgoHXr1mjdujW+/vprXLt2DXv27MGePXtw48YNHD16FEePHoVcLkevXr0wYsQIDBkyBBYWFrCyssK3336LuXPnYt26dfjxxx8RGRmJkSNHokWLFliyZAnOnj2LKVOmIDo6Gr///ju6d++OiIgIPHnyBMbGxqVmJm/fvh2rVq3SagF86623AABRUVHF3hkjPT2diw6gZMudubk54uPjy1QKpqRnVHYMoHTeJVkAgWdu4CtXrugUgKVZALW5gEuzAALPBSATcGlpaWjRogWA58ItNTWVj88sgEyESbuDAM+Fn1TkMaHNsoGl52QymVq8YFn+cNIsK0QQRNWCBCBRZTA2NkabNm3Qpk0bteM5OTlcGLKvqKgoxMbGQqVSISQkBCEhIWr3KJVKNUHIBGK9evUq1BoLeCYGXV1d4erqiq+++gpRUVHYu3cv9uzZg6ioKPj4+MDHx4cXpx4+fDjeeecdWFlZ4ZtvvsHcuXOxfv16bNiwAVFRURg9ejSaNWuGBQsW4MaNG/j+++8RGBgIc3Nz2NvbIyEhAXp6eiXGBP70009Yvny5Vgugi4sLAOD27dvIyMjg5UbkcjmMjIyQnZ2tVnIEqDwLYEnPKCkGUFMAVjQGEHguAJm4A57HAbK4wLJaALVlAUszenNyctTmoDkOKwXDhJu0/h/b39TUVC7a2TqYG5bdx75rS0xigo+JR6nIk8vlau7istQGTE9PL/UagiDeXEgAElWeWrVqoVWrVmjVqpXa8dzcXMTExBSzGP7333/IyMhAaGgoQkND1e5RKBRo1qxZMXFYv379cgvDFi1aoEWLFli6dCmuX7+OvXv3Yu/evbh69Sp8fX3h6+uLadOmwdPTE8OHD8fQoUOxfPlyzJ49Gxs2bMD69etx/fp1TJgwAU2bNsXSpUvxzz//4Nq1awCexRRqum81yczMxKZNm7RaAK2trfkYUVFR6NixIz9Xu3ZtZGdnFxN65U3eAHQXgzY1NdX6DG1izdHREQBw8+ZNtWtfJAZQGt8niiIEQeACUNMCGBsbi8LCwjLHABYVFUFPTw9WVlZ48uQJrl69ys+VZAFkwq2oqKhYrF5BQQGaN28OALh+/Tqsra15yz82DhNl6enpMDExQXp6OrcUMwGo7eeYCUB9fX21xJGSKEuRdIIg3lwoBpCothgaGsLFxQUjR47E8uXLuSUuKysLUVFR2LNnD5YvX46RI0fCxcUFcrkcmZmZuHTpEv78808sXLgQgwcPRsOGDaFUKtG2bVu8//77WLlyJQ4dOoSYmJgyZ+Q2a9YMS5YswZUrV3Dz5k2sWLECrVu3RmFhIfz9/fHRRx/Bzs4OXl5e+PvvvzFt2jTcuXMHX331FczNzXHz5k18+eWXyMnJwZAhQ6Cvr4/Hjx8XK+6rjWXLlml1lQKAq6srACAyMlLtuC5LX2kuYKDs7eDKU1OQidMbN26oHS+rAGQCWDqHBg0aQCaTITMzk9co1IwBdHR0hKGhIfLy8hAfH18sFlHzWdLSMSkpKXzeFy5c4KIvIyOjWMIME4ApKSk8S5ftbXZ2Nj/G5nfjxg1uwWXWQ+C5la+wsJDPlb1Pdk5q+WO1ADVbyJWF8vTPJgjizYMsgESNQy6Xc+uelIKCAty6dUvNWhgdHY0bN24gOzsbERERiIiIULvH0NAQb731VjGLYcOGDXV+mDZp0gSLFi3CokWLEBsby93E4eHhOHXqFE6dOgVvb29069YNw4cPR0hICPbu3YsffvgBsbGxiI2N5TGM8fHxpa43LS0Nt27dAlC8G4irqytOnDhRTADqEnoluYB19QNmFkCVSqXmai6tG4jUAmhpaYnGjRsjJiYGoaGh6Nu3L4CSYwClwrJDhw4AgDNnzvBjBgYGcHJyQlxcHGJiYmBvb1/MBaynp4dGjRohKioK//33H5ycnAAAV69e1bkG1q0lOTkZHTp0wLFjxxAaGsrb/0nXePPmTeTl5RXrBpKcnMx/flQqFaytrZGQkICsrCxYWloiOTmZ11e0sLBAYmIiH5vF8zGRaWZmpiZ8pUk3hoaGyMrK4kJQ2jmkNCpaQJogiDcDEoAE8f/R19dH06ZN0bRpUwwbNowfLygoQFxcXDFX8vXr15GTk4MrV67gypUramPJ5XI0bdq0WAJK48aN1ToyNGrUCAsXLsTChQtx+/Zt7ia+ePEiAgICEBAQAEEQ4OHhgYULF+Lp06fYsmULr0tnbm4OlUpV6ocxqwmoywLI3MoMXda5iriATUxMoFQqkZGRgYcPH3K3KhtLM65PV1/hTp06ISYmBiEhIcUEIHNx1qpVS6tI9fDwgJ6eHuLi4nDnzh0u9Bo3bswFYLdu3fjxJ0+ecLHapEkTLgDHjx8PfX19xMbG4vbt21qfZWFhgfv37+Pp06dqFkC5XA6FQoHMzEzY29tzF25ISIhaP2AzM7NiArB79+7YtWsX/P390aZNG5w4cYIXiGbxeiweVKlUQqVScUskE9wMafIHE4CaLeTKwqusyUkQROVDLmCCKAV9fX00btwYQ4YMwaJFi7Bjxw6Eh4cjIyMDsbGxOHz4MFatWoUPPvgAbm5uMDY2Rn5+Pq5du4Z//vkHS5cuxYgRI9CiRQsYGxujRYsWGDFihFpMX25uLho0aID58+cjNDQUcXFxWLNmDTp27AhRFHH27FnMnz8fq1atQuPGjTFo0CBYWloiJSUFhYWFOnsDM1hygDYLIFB+F3B6enqxRAFdAhDQXgyauTM1M7d1WRI7deoEAGoJPaampsVax2mbu4mJCdq3bw8AOH36ND+umQlsamrK18FanUkTQWrXrs3n4e/vr/YsJoikiSnsmTExMWqlYVQqFfr06QMA8PPzUxOA7B2zdalUKvTv3x8A4OPjw5OgWLwgiwNl+8GEH4shZN8Z0tIwmgWoy5L8IaWkYtIEQbzZkAAkiAqip6eHhg0bYtCgQViwYAG2b9+OS5cuIT09HXFxcTh27Bi+++47TJgwAR06dIBSqURBQQGio6Oxd+9efPXVVxg1ahRcXV2hUCjw1ltv4d1338WSJUsQHByMXr16ISAgAHfv3sXatWvRuXNnAM8E0JEjR5CcnIx69epBqVSW+YNY0wLYvHlzCIKApKQktYQSZlm7ceOG2vXS8i2amaa6LHfAczew1BU5evRoAMDu3bvV4slKsgACz6xpTKjIZDJ+PYsD1CVePT09AWgXgOXJBGbCTSoACwsLeSkWqVvawsKCP+PixYtq7m02jq+vL3cBS/sBM9LS0vi14eHhaNCgAQAgPj4eMpkMaWlpMDIy4gKUWYNZDKFmD2CpAGRWRs0WcmVFM66TIIiqQ40XgL/88gucnZ1Rq1YtuLm54ezZs697SkQVRyaToX79+hgwYADmzZuHbdu24cKFC1CpVLh79y58fHzwww8/YOLEiejUqRNq166NwsJC3Lx5E/v378c333yDsWPHonXr1lAoFOjVqxcCAwPRvXt3bNiwAfPmzUPnzp15DCATYpof9Np48uSJmuvO2NgYDRs2BKBuBWQu8N9//13NElerVi1ubSxL8gZDmwWwR48ecHBwQEpKCnx8fPhxXRZAV1dXGBkZISUlRa12n2YiiC4B2LNnTwDPBCB7B5qdPgDozATWFIAnT56EoaEhd5tqKwYNPI8/lCaCpKamonfv3gCAsLAwbu3Lzs6GQqEA8FyUqVQq2NnZccsfE8bXrl3jc2vUqBGfP3tvbJ9YXB+zDALPxSE7x4SfttZxJbmFo6OjdZ4jCOLNpkYLwN27d2PWrFlYvHgxIiIi0LVrV/Tv379MgfUEUV4EQUC9evXQr18/zJkzB7///juCg4ORmpqK+/fvw9fXF+vWrcOUKVPQpUsXmJmZoaioCDExMTh06BBWrlyJmTNn4vvvv0dwcDAcHR3h4uLCE0JKau3FKCwsLCbctLmBBwwYABcXF2RkZGDTpk1q1+sSWCUJQG0WQD09PYwdOxYAsGPHDn5c6iaVuiTlcjnatWsHQN0NrJkIos0tCwCdO3eGXC7H/fv3eVIMs87FxsbyZ+myAN69exc5OTlo164dzMzMkJqairCwMJ3FoNl8WBxgaGiomgC0t7eHq6srRFFESEgIF2XsO5v77du3ER0dzd3Aly9f5qVd2FxZnUdmZWbvV4o0FpC5hZm4Y9ZLqQWQPb8kAagZ+0oQRNWhRieBrF27FpMmTcLkyZMBAOvXr4evry82bdqElStXvrZ5iaJYaocHonphZmaGLl26oEuXLvyYKIp4/Pgxrl+/jhs3bvDvN27cwNOnTyv8h4qtrS1iY2O5cGratCmAZ8JC6h6cPXs2Jk2ahHXr1mHq1KlcNJiYmODJkyf4999/4eTkxAUCEy4pKSlq4wDPRVF8fLzauXfffRdr1qzBkSNH8ODBA5iZmakVKn748CEXlgC4lf7s2bMYPnw4gOdxiQkJCcjMzIRcLuf17GbOnImvv/6auzrbt2+PoKAgHD9+HB9++CGsra2hr6+PnJwcxMTEoG7dutxaGRsbi8zMTBgbG6N27dpQqVSIjIxE8+bN0aNHDxw8eBBHjx6FiYkJ0tLScODAAXz66adcaCUmJiIzMxMtW7YE8Ey09urVS+2cp6cnIiMj4ePjA2tra7X+unp6evDw8MC5c+cwePBgrF69GsAz17OLiwtCQ0P5njDRZ2RkxC3C7Lu28ACFQoHU1FTeSaQsfzxoIywsrNheE0RlY2xsXCmdmwh1BLGGpnLl5eXB2NgYe/bswdChQ/nxmTNn4vLlywgMDCx2T25urlqskkqlgqOjo1rj9sogMzOzWOYeQRAEQdRUKluqsG47lf35XZWosS7gJ0+eoLCwELa2tmrHbW1teVFYTVauXAlTU1P+xboTEARBEARBVCVqtAsYKB7fwlpCaePzzz/HnDlz+H8zC2BlY2xsrLWXJ0FUlOTkZAQHB+PIkSPYs2cPle8gCIKo4dRYAWhlZQU9Pb1i1r7ExMRiVkGGoaFhmVpvvSiCIPBMQIKoDBQKBerVq4dRo0apJVwQBEEQNZMa6wI2MDCAm5sb/P391Y77+/vzemsEQRAEQRDVkRprAQSAOXPmYNy4cWjXrh3c3d3x22+/IT4+Xq1nJ0EQBEEQRHWjRgvAUaNGITk5GV999RUSEhLg4uLCS1sQBEEQBEFUV2psGZjKgNLICYIgCKLqQZ/fNTgGkCAIgiAIoqZCApAgCIIgCKKGQQKQIAiCIAiihkECkCAIgiAIooZBApAgCIIgCKKGQQKQIAiCIAiihkECkCAIgiAIooZBApAgCIIgCKKGQQKQIAiCIAiihlGjW8G9KKyJikqles0zIQiCIAiirLDP7ZrcDI0E4AuQnp4OAHB0dHzNMyEIgiAIorykp6fD1NT0dU/jtUC9gF+AoqIiPHz4ECYmJhAEoVLHVqlUcHR0xL1796pln0JaX9Wnuq+R1lf1qe5rpPVVHFEUkZ6eDgcHB8hkNTMajiyAL4BMJkPdunVf6jNq165dLX+xGbS+qk91XyOtr+pT3ddI66sYNdXyx6iZspcgCIIgCKIGQwKQIAiCIAiihkEC8A3F0NAQS5cuhaGh4eueykuB1lf1qe5rpPVVfar7Gml9xItASSAEQRAEQRA1DLIAEgRBEARB1DBIABIEQRAEQdQwSAASBEEQBEHUMEgAEgRBEARB1DBIAL6B/PLLL3B2dkatWrXg5uaGs2fPvu4pFWPZsmUQBEHty87Ojp8XRRHLli2Dg4MDjIyM0KNHD0RFRamNkZubi+nTp8PKygoKhQKDBw/G/fv31a5JSUnBuHHjYGpqClNTU4wbNw6pqakvZU1nzpzBoEGD4ODgAEEQcPDgQbXzr3JN8fHxGDRoEBQKBaysrDBjxgzk5eW91PVNmDCh2J526tSpyqxv5cqVaN++PUxMTGBjY4N33nkHN2/eVLumKu9hWdZX1fdw06ZNaNmyJS/86+7uDh8fH36+Ku9fWdZX1fdPk5UrV0IQBMyaNYsfq+p7WK0QiTeKXbt2iXK5XNyyZYsYHR0tzpw5U1QoFOLdu3df99TUWLp0qdiiRQsxISGBfyUmJvLzq1atEk1MTMR9+/aJkZGR4qhRo0R7e3tRpVLxa6ZNmybWqVNH9Pf3F8PDw8WePXuKrVq1EgsKCvg1/fr1E11cXMSgoCAxKChIdHFxEQcOHPhS1vTvv/+KixcvFvft2ycCEA8cOKB2/lWtqaCgQHRxcRF79uwphoeHi/7+/qKDg4Po7e39Utc3fvx4sV+/fmp7mpycrHbNm7y+vn37itu2bROvXbsmXr58WXz77bfFevXqiRkZGfyaqryHZVlfVd/Dw4cPi8eOHRNv3rwp3rx5U1y0aJEol8vFa9euiaJYtfevLOur6vsnJTQ0VKxfv77YsmVLcebMmfx4Vd/D6gQJwDeMDh06iNOmTVM79tZbb4kLFy58TTPSztKlS8VWrVppPVdUVCTa2dmJq1at4sdycnJEU1NTcfPmzaIoimJqaqool8vFXbt28WsePHggymQy8fjx46IoimJ0dLQIQAwJCeHXBAcHiwDEGzduvIRVPUdTIL3KNf3777+iTCYTHzx4wK/5+++/RUNDQzEtLe2lrE8Un334DBkyROc9VWl9oiiKiYmJIgAxMDBQFMXqt4ea6xPF6reHoiiK5ubm4tatW6vd/mmuTxSrz/6lp6eLjRs3Fv39/cXu3btzAVhd97CqQi7gN4i8vDyEhYWhT58+asf79OmDoKCg1zQr3cTExMDBwQHOzs4YPXo0bt++DQCIi4vDo0eP1NZhaGiI7t2783WEhYUhPz9f7RoHBwe4uLjwa4KDg2FqaoqOHTvyazp16gRTU9NX/j5e5ZqCg4Ph4uICBwcHfk3fvn2Rm5uLsLCwl7rOgIAA2NjYoEmTJpgyZQoSExP5uaq2vrS0NACAhYUFgOq3h5rrY1SXPSwsLMSuXbuQmZkJd3f3ard/mutjVIf9+/TTT/H222+jV69easer2x5WdfRf9wSI5zx58gSFhYWwtbVVO25ra4tHjx69pllpp2PHjvjzzz/RpEkTPH78GN988w06d+6MqKgoPldt67h79y4A4NGjRzAwMIC5uXmxa9j9jx49go2NTbFn29jYvPL38SrX9OjRo2LPMTc3h4GBwUtdd//+/TFixAg4OTkhLi4OS5YsgaenJ8LCwmBoaFil1ieKIubMmQMPDw+4uLjw57L5as6/qu2htvUB1WMPIyMj4e7ujpycHCiVShw4cADNmzfnH+xVff90rQ+oHvu3a9cuhIeH4+LFi8XOVaffweoACcA3EEEQ1P5bFMVix143/fv35/92dXWFu7s7GjZsiO3bt/Og5YqsQ/Mabde/zvfxqtb0OtY9atQo/m8XFxe0a9cOTk5OOHbsGIYNG6bzvjdxfd7e3rh69SrOnTtX7Fx12ENd66sOe9i0aVNcvnwZqamp2LdvH8aPH4/AwECdz61q+6drfc2bN6/y+3fv3j3MnDkTfn5+qFWrls7rqvoeVhfIBfwGYWVlBT09vWJ/nSQmJhb7S+ZNQ6FQwNXVFTExMTwbuKR12NnZIS8vDykpKSVe8/jx42LPSkpKeuXv41Wuyc7OrthzUlJSkJ+f/0rXbW9vDycnJ8TExPB5VYX1TZ8+HYcPH8bp06dRt25dfry67KGu9WmjKu6hgYEBGjVqhHbt2mHlypVo1aoVNmzYUG32T9f6tFHV9i8sLAyJiYlwc3ODvr4+9PX1ERgYiB9//BH6+vp87Kq+h9UFEoBvEAYGBnBzc4O/v7/acX9/f3Tu3Pk1zaps5Obm4vr167C3t4ezszPs7OzU1pGXl4fAwEC+Djc3N8jlcrVrEhIScO3aNX6Nu7s70tLSEBoayq+5cOEC0tLSXvn7eJVrcnd3x7Vr15CQkMCv8fPzg6GhIdzc3F7qOqUkJyfj3r17sLe3B/Dmr08URXh7e2P//v04deoUnJ2d1c5X9T0sbX3aqGp7qA1RFJGbm1vl96+09Wmjqu2fl5cXIiMjcfnyZf7Vrl07vPfee7h8+TIaNGhQLfewyvKSk0yIcsLKwPz+++9idHS0OGvWLFGhUIh37tx53VNTY+7cuWJAQIB4+/ZtMSQkRBw4cKBoYmLC57lq1SrR1NRU3L9/vxgZGSmOGTNGa6p/3bp1xRMnTojh4eGip6en1lT/li1bisHBwWJwcLDo6ur60srApKenixEREWJERIQIQFy7dq0YERHBS/C8qjWx8gVeXl5ieHi4eOLECbFu3bovXL6gpPWlp6eLc+fOFYOCgsS4uDjx9OnToru7u1inTp0qs76PP/5YNDU1FQMCAtTKaGRlZfFrqvIelra+6rCHn3/+uXjmzBkxLi5OvHr1qrho0SJRJpOJfn5+oihW7f0rbX3VYf+0Ic0CFsWqv4fVCRKAbyA///yz6OTkJBoYGIht27ZVK/PwpsBqN8nlctHBwUEcNmyYGBUVxc8XFRWJS5cuFe3s7ERDQ0OxW7duYmRkpNoY2dnZore3t2hhYSEaGRmJAwcOFOPj49WuSU5OFt977z3RxMRENDExEd977z0xJSXlpazp9OnTIoBiX+PHj3/la7p796749ttvi0ZGRqKFhYXo7e0t5uTkvLT1ZWVliX369BGtra1FuVwu1qtXTxw/fnyxub/J69O2NgDitm3b+DVVeQ9LW1912MOJEyfy//dZW1uLXl5eXPyJYtXev9LWVx32TxuaArCq72F1QhBFUXx19kaCIAiCIAjidUMxgARBEARBEDUMEoAEQRAEQRA1DBKABEEQBEEQNQwSgARBEARBEDUMEoAEQRAEQRA1DBKABEEQBEEQNQwSgARBEARBEDUMEoAEQRAEQRA1DBKABEEQBEEQNQwSgARBvHR69OiBWbNmFfs3UZwePXpAEAQIgoDLly+/0FgTJkzgYx08eLBS5kcQRPWABCBBEK+U/fv34+uvvy7TtTVVLE6ZMgUJCQlwcXF5oXE2bNiAhISESpoVQRDVCf3XPQGCIGoWFhYWr3sKbzzGxsaws7N74XFMTU1hampaCTMiCKK6QRZAgiAqlczMTHzwwQdQKpWwt7fHDz/8oHZe06q3d+9euLq6wsjICJaWlujVqxcyMzMxYcIEBAYGYsOGDdyNeefOHQDA8ePH4eHhATMzM1haWmLgwIG4deuW2jNmzJiB+fPnw8LCAnZ2dli2bJnaPIqKirB69Wo0atQIhoaGqFevHlasWMHPi6KI7777Dg0aNICRkRFatWqFvXv3lutd/P3336hVqxYePHjAj02ePBktW7ZEWlpamcfp0aMHpk+fjlmzZsHc3By2trb47bffkJmZiQ8//BAmJiZo2LAhfHx8yjU/giBqLiQACYKoVObNm4fTp0/jwIED8PPzQ0BAAMLCwrRem5CQgDFjxmDixIm4fv06AgICMGzYMIiiiA0bNsDd3Z27QxMSEuDo6AjgmcicM2cOLl68iJMnT0Imk2Ho0KEoKiriY2/fvh0KhQIXLlzAd999h6+++gr+/v78/Oeff47Vq1djyZIliI6Oxs6dO2Fra8vPf/HFF9i2bRs2bdqEqKgozJ49G++//z4CAwPL/C5Gjx6Npk2bYuXKlQCA5cuXw9fXFz4+PuW2zG3fvh1WVlYIDQ3F9OnT8fHHH2PEiBHo3LkzwsPD0bdvX4wbNw5ZWVnlGpcgiBqKSBAEUUmkp6eLBgYG4q5du/ix5ORk0cjISJw5c6YoiqLYvXt3/u+wsDARgHjnzh2t40mvLYnExEQRgBgZGcnv8/DwULumffv24oIFC0RRFEWVSiUaGhqKW7Zs0TpeRkaGWKtWLTEoKEjt+KRJk8QxY8aUOh8pR44cEQ0NDcUVK1aI5ubm4rVr10q8XtuaNddTUFAgKhQKcdy4cfxYQkKCCEAMDg4uNiYA8cCBA+WaN0EQ1RuKASQIotK4desW8vLy4O7uzo9ZWFigadOmWq9v1aoVvLy84Orqir59+6JPnz4YPnw4zM3NS33OkiVLEBISgidPnnDLX3x8PE+caNmypdo99vb2SExMBABcv34dubm58PLy0jp+dHQ0cnJy0Lt3b7XjeXl5aNOmTYlz02TgwIFo3rw5li9fDj8/P7Ro0aJc9zOk69HT04OlpSVcXV35MWa9ZGskCIIoCRKABEFUGqIolut6PT09+Pv7IygoCH5+fti4cSMWL16MCxcuwNnZWed9gwYNgqOjI7Zs2QIHBwcUFRXBxcUFeXl5/Bq5XK52jyAIXCgaGRmVOC923bFjx1CnTh21c4aGhuVao6+vL27cuIHCwkI1F3N50bYe6TFBEABAzQ1OEAShC4oBJAii0mjUqBHkcjlCQkL4sZSUFPz333867xEEAV26dMHy5csREREBAwMDHDhwAABgYGCAwsJCteuTk5Nx/fp1fPHFF/Dy8kKzZs2QkpJSrnk2btwYRkZGOHnypNbzzZs3h6GhIeLj49GoUSO1LxaHWBbCw8MxYsQI/Prrr+jbty+WLFlSrnkSBEG8LMgCSBBEpaFUKjFp0iTMmzcPlpaWsLW1xeLFiyGTaf9b88KFCzh58iT69OkDGxsbXLhwAUlJSWjWrBkAoH79+rhw4QLu3LkDpVIJCwsLmJubw9LSEr/99hvs7e0RHx+PhQsXlmuetWrVwoIFCzB//nwYGBigS5cuSEpKQlRUFCZNmgQTExN89tlnmD17NoqKiuDh4QGVSoWgoCAolUqMHz++1GfcuXMHb7/9NhYuXIhx48ahefPmaN++PcLCwuDm5lau+RIEQVQ2JAAJgqhUvv/+e2RkZGDw4MEwMTHB3LlzdZY8qV27Ns6cOYP169dDpVLByckJP/zwA/r37w8A+OyzzzB+/Hg0b94c2dnZiIuLQ/369bFr1y7MmDEDLi4uaNq0KX788Uf06NGjXPNcsmQJ9PX18eWXX+Lhw4ewt7fHtGnT+Pmvv/4aNjY2WLlyJW7fvg0zMzO0bdsWixYtAgD88ccf+PDDD7W6vZ8+fYr+/ftj8ODB/Ho3NzcMGjQIixcvxvHjx8s1V4IgiMpGEMsbtEMQBEFg2bJlCAgIQEBAQKWO26NHD7Ru3Rrr16+vtDEFQcCBAwfwzjvvVNqYBEFUbSgGkCAIogL4+vriu+++eylj//LLL1AqlYiMjHyhcaZNmwalUllJsyIIojpBFkCCIIg3iAcPHiA7OxsAUK9ePRgYGFR4rMTERKhUKgDPyuAoFIpKmSNBEFUfEoAEQRAEQRA1DHIBEwRBEARB1DBIABIEQRAEQdQwSAASBEEQBEHUMEgAEgRBEARB1DBIABIEQRAEQdQwSAASBEEQBEHUMEgAEgRBEARB1DD+H5BeG8sHnpdEAAAAAElFTkSuQmCC", - "text/html": [ - "\n", - "
    \n", - "
    \n", - " Figure\n", - "
    \n", - " \n", - "
    \n", - " " - ], - "text/plain": [ - "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure()\n", - "plt.plot(x,np.transpose(H[0:-1:10000,:]), color = 'black');\n", - "plt.xlabel('distance, $x$ [m]')\n", - "plt.ylabel('ice thickness, $H(x)$ [m]')\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "id": "3d36960d-9b95-45ef-8db7-e004d2cddd60", - "metadata": {}, - "source": [ - "Another kind of plot we can make is a time series of ice thickness from a particular location. In this case we will plot the ice thickness on the left side of the domain - the ice divide. " - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "id": "b7f94765-c113-41a8-883e-12f7ca5a0144", - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "e07f78ef53894acf98cb2ecf426d0615", - "version_major": 2, - "version_minor": 0 - }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAABi0klEQVR4nO3deVwV5f4H8M9hFRAIEFkUFRRXFhWUIBVX0KuZmVummakXc0Xk2r5oBmmFaYumpbjkxW5GaXVVREQRM0VMcCF3QMAjsstykDO/P7zMzyOooJwZ4Hzer9e8OGfmOTPfM/fc5uvM83wfhSAIAoiIiIhIZ+jJHQARERERSYsJIBEREZGOYQJIREREpGOYABIRERHpGCaARERERDqGCSARERGRjmECSERERKRjmAASERER6RgmgEREREQ6hgkgERERkY5hAkhERESkY5gAEhEREekYJoBEREREOoYJIBEREZGOYQJIREREpGOYABIRERHpGCaARERERDqGCSARERGRjmECSERERKRjmAASERER6RgmgEREREQ6hgkgERERkY5hAkhERESkY5gAEhEREekYJoBEREREOoYJIBEREZGOYQJIREREpGOYABIRERHpGCaARERERDqGCSARERGRjmECSERERKRjmAASERER6RgmgEREREQ6hgkgERERkY5hAkhERESkY5gAEhEREekYJoBEREREOoYJIBEREZGOYQJIREREpGOYABIRERHpGCaARERERDqGCSARERGRjmECSERERKRjmAASERER6RgmgEREREQ6hgkgERERkY5hAkhERESkY5gAEhEREekYJoBEREREOoYJIBEREZGOYQJIREREpGOYABIRERHpGCaARERERDqGCSARERGRjmECSERERKRjmAASERER6RgDuQNoytRqNbKysmBubg6FQiF3OERERFQHgiCguLgYjo6O0NPTzXthTACfQFZWFpycnOQOg4iIiB5DRkYG2rZtK3cYstBaArhr1656f2bYsGEwMTHRQjTaYW5uDuDuD8jCwkLmaIiIiKguioqK4OTkJF7HdZHWEsAxY8bUq71CocCFCxfg4uKinYC0oPqxr4WFBRNAIiKiJkaXu29p9cF3Tk4O1Gp1nRZTU1NthkJERERE/6O1BHDatGn1epw7ZcoU3kUjIiIikoBCEARB7iCaqqKiIlhaWqKwsJDJKxERURPB6zfrABIRERHpHMnKwJSXl+P06dNQKpVQq9Ua20aPHi1VGEREREQ6T5IEcM+ePXj55ZeRm5tbY5tCoUBVVZUUYRARERERJHoEPG/ePIwfPx7Z2dk1Rv8y+SMiIiKSliQJoFKpREhICOzs7KQ4HBERERE9hCQJ4Lhx43Dw4EEpDkVEREREjyBJGZjS0lKMHz8etra2cHd3h6Ghocb2BQsWaDsEreAwciIioqaH12+JBoFs374de/fuhYmJCQ4ePKgx9YpCoWiyCSARERFRUyRJAvjOO+9g2bJleOONN6Cnx9KDRERERHKSJAFUqVSYOHEikz8iIqImShAE3LlzBxUVFRqLSqWCSqUSX1f/raysFLfd+/7ev9WLSqXCnTt3NNZVv3/hhRcwduxYub9+syNJAjht2jTs2LEDb731lhSHIyIiapYEQUB5eTlKS0tRWlqKsrIy8W9tS3l5ufi3tqWiouKBf6uX6vcqlQpyzB7buXNnJoBaIEkCWFVVhZUrV2Lv3r3w8PCoMQgkIiJCijCIiIi0ThAEVFRUoLi4GMXFxSgpKXngcvv27VqX0tJS8e+9r8vKyuT+eiJ9fX0YGRnB2NhY46+RkREMDQ013t+73tDQUOP1wxYDAwP4+vrK/VWbJUkSwJSUFPTq1QsAkJqaqrHt3gEhREREciovL0dBQYG4FBYWoqioCIWFheJSVFSE4uJiFBUViUv1++qkT4pJDoyMjGBiYgITExOYmpqKr+9fWrRo8cDF2NhY43X1cv/72hZ9fX2tf0fSHkkSwLi4OCkOQ0REhIqKCuTl5SEvLw+3bt0SX+fl5SE/P7/Gcm/Cp1KpGjQWMzMztGzZEubm5mjZsqX4vvr1wxZTU1Px7/2LiYkJDAwkuYRTM6W1X8/p06fh5uZW54EfZ86cQZcuXfiDJiIiUVVVFfLy8nDz5k2NJTc3t9bl1q1buH379hMdU09PD5aWluJiYWGh8br6vbm5ufjewsIC5ubmGouZmRnvklGjpbVsq1evXsjJyYGtrW2d2vv6+uLUqVNwcXHRVkhERNQIVFVVITc3F9nZ2cjJyRGXGzduQKlU4saNG+Lr3NxcqNXqeh9DT08PVlZWsLGxgbW1NaysrMS/1Uv1+6eeekpjadmyJatWULOntQRQEAS8++67MDU1rVP7+tx279ChA65du1Zj/Zw5c/DVV19BEAQsXboU69evR35+Pnx8fPDVV1+hR48eYtuKigqEhobi3//+N8rKyjBkyBB8/fXXaNu2bZ3jICKi/ycIAm7duoXMzExcv34dWVlZtS5KpbLeSZ2VlRVsbW1rLDY2NmjVqpW42NjYwMbGBhYWFkziiB5CawnggAEDkJaWVuf2vr6+MDExqVPb48ePa3SwTU1NxbBhwzB+/HgAwMqVKxEREYHIyEh07twZy5cvx7Bhw5CWlgZzc3MAQHBwMHbv3o2oqCjY2Nhg8eLFGDVqFJKSknjLnoioFoWFhUhPT9dYMjMzkZmZiYyMDFy/fh3l5eV12pdCoUDr1q1hb28vLnZ2drCzs0Pr1q01XtvY2NSoHkFET0aSuYC1LTg4GL/++isuXLgAAHB0dERwcDBef/11AHfv9tnZ2WHFihUICgpCYWEhbG1tsXXrVkycOBEAkJWVBScnJ/z+++8IDAys03E5lyARNSf5+fm4cuUKrl69Ki7V79PT01FUVFSn/dja2qJNmzZo06YNHB0d4ejoKL52cHCAg4MDbG1t2eebZMPrt0SjgLVJpVJh27ZtCAkJgUKhwOXLl5GTk4OAgACxjbGxMfz9/ZGYmIigoCAkJSWhsrJSo42joyPc3NyQmJhY5wSQiKgpUavVyMzMxMWLF3Hp0iVcunQJly9fFv8WFBQ8ch82NjZo166duDg5OaFt27bi4ujoCGNjY+1/GSJ6Ik0+Afz5559RUFCAV155BQCQk5MDALCzs9NoZ2dnJ/YbzMnJgZGREaysrGq0qf58baqroler67+GiYikIggClEol0tLSkJaWhgsXLojLpUuXHvmItnXr1nB2dkaHDh3QoUMH8XV1wmdmZibRNyEibWryCeB3332HESNGwNHRUWP9/QWmBUF4ZNHpR7UJDw/H0qVLHz9YIqIGUlVVhcuXL+Ps2bM4e/Yszp8/LyZ9D7uTZ2BgABcXF3Tq1AkuLi7o2LGj+LdDhw5M8Ih0RJNOAK9du4b9+/fjp59+EtfZ29sDuHuXz8HBQVyvVCrFu4L29vZQqVTIz8/XuAuoVCrh5+f3wOO9+eabCAkJEd8XFRXBycmpwb4PEdH91Go1rl69ipSUFKSmpuLMmTNiwnfvE4l7KRQKdOjQAV26dEHnzp3h6uoqLu3atWPfOyJq2gngpk2b0Lp1a4wcOVJc5+zsDHt7e8TExIjTz6lUKsTHx2PFihUAAC8vLxgaGiImJgYTJkwAAGRnZyM1NRUrV6584PGqp78hItKGoqIi/PXXXzh16hRSUlLEpK+kpKTW9i1atEC3bt3EpWvXrujSpQs6depU56oKRKSbJEsAKysrkZOTg9LSUtja2sLa2vqJ9qdWq7Fp0yZMmzZN41+zCoUCwcHBCAsLE//FGxYWBlNTU0yePBkAYGlpiRkzZmDx4sVikdDQ0FC4u7tj6NChTxQXEVFdZGdn4+TJk0hOTsapU6dw6tQpXLp0qda2RkZG6NatG9zd3eHm5obu3buje/fu6NChA8tWEdFj0WoCWFJSgu+//x7//ve/8eeff2o8rmjbti0CAgLwz3/+E3369Kn3vvfv34/09HS8+uqrNbYtWbIEZWVlmDNnjlgIet++fWINQABYtWoVDAwMMGHCBLEQdGRkJP9jSkQN7saNGzhx4gSSkpLEv1lZWbW2bdeuHTw9PeHh4QF3d3e4u7vD1dWVdfCIqEFprQ7gqlWr8NFHH6FDhw4YPXo0+vbtizZt2sDExAR5eXlITU3F4cOHER0djaeffhpffPEFXF1dtRGK1rCOEBHdr7S0FCdPnsSxY8fwxx9/4NixY8jIyKjRTk9PD926dUOvXr3Qq1cv9OzZE56enrCxsZEhaiLdwuu3FhPA8ePH47333oO7u/tD25WXl2Pjxo0wMjLCzJkztRGK1vAHRKTbBEFAeno6jhw5giNHjuDo0aM4ffq0xkxFwN2uKV27doW3tze8vb3h5eWFnj17csQtkUx4/ZZoJhBfX1/s3bu32Z1k/oCIdEtVVRX++usvJCQkiEnf9evXa7RzcHCAj4+PuHh7e2t0QSEiefH6LdEgkGPHjqG8vLzGSS4qKsKHH36ITz75RIowiIjqpbKyEidPnsShQ4cQHx+PhIQEFBYWarQxMDBAr1698Mwzz8DPzw9PP/002rZt+8i6o0REctJqAjh27Fj07dsXCoUCSqUSrVu31th++/ZtREREMAEkokZBrVbjr7/+QmxsLPbv34+EhATcvn1bo425uTmeeeYZ9OvXD8888wz69u0LU1NTmSImIno8Wk0A27dvj19//RWCIIidmz09PcURbqdPn9Yo1kxEJLVLly5h//792L9/P+Li4nDr1i2N7VZWVujfvz/8/f3h7+8PT09PFlImoiZPq/8VW7VqFYC7BZQTEhKQlZUl1ryKjo6GWq1+aOFlIqKGVlJSgoMHD2LPnj3Ys2dPjdp7LVu2hL+/P4YMGYLBgwfD3d0denp6MkVLRKQdkvwz9vbt2+K/mJ977jkpDklEBODuSN3z58/j119/xZ49e3D48GFUVlaK2w0MDODr64uhQ4diyJAh6Nu3L2vuEVGzJ0kCyMclRCQllUqFQ4cO4ddff8Xu3btx+fJlje3Ozs4YPnw4AgMDMWjQIJ0dBUhEuouZGRE1C4WFhfjtt98QHR2NvXv3ori4WNxmZGSEQYMG4R//+AdGjBiBTp06cZQuEek0JoBE1GTduHEDv/zyC3766SccOHBA49GunZ0dRo4ciWeffRZDhw5Fy5YtZYyUiKhxYQJIRE1KVlYWdu7ciR9++AFHjhzBvbXsu3Xrhueffx7PPfccvL29OXiDiOgBZE8A9fT0MHDgQHzyySfw8vKSOxwiaoRu3LiBnTt3YseOHTh8+LBG0tenTx88//zzeP7559G1a1cZoyQiajpkTwA3btyIa9euYcGCBThy5Ijc4RBRI1FYWIidO3fi+++/x8GDB6FWq8Vtvr6+mDhxIsaOHQsnJycZoyQiapokmQu4ueJcgkQNS6VSYe/evdi2bRt27dqF8vJycVufPn0wceJEjB8/Hu3atZMxSiJq6nj9bgR3AIlItwmCgBMnTiAyMhI7duzQmImjW7dumDJlCiZNmgQXFxcZoyQial60ngBmZmZi7dq1SExMRE5ODhQKBezs7ODn54fZs2fz8Q2Rjrp58ya2bduGjRs3IjU1VVxvb2+PyZMnY8qUKejZsyfLtRARaYFWHwEnJCRgxIgRcHJyQkBAAOzs7CAIApRKJWJiYpCRkYH//ve/eOaZZ7QVglbxFjJR/dy5cwd79+7Fxo0bsWvXLty5cwcA0KJFC4wdOxbTpk3D4MGDWTyeiLSK128tJ4B9+vRBv379xDmB77do0SIkJCTg+PHj2gpBq/gDIqqbrKwsfPvtt9iwYQMyMzPF9X369MGrr76KSZMm4amnnpIvQCLSKbx+azkBNDExwalTp9ClS5dat58/fx69evVCWVmZtkLQKv6AiB5MrVYjNjYW69atwy+//IKqqioAgI2NDV5++WVMnz4d7u7uMkdJRLqI128t9wF0cHBAYmLiAxPAo0ePwsHBQZshEJHECgoKsHHjRqxduxYXL14U1/fv3x+zZ8/GCy+8AGNjYxkjJCIirSaAoaGhmD17NpKSkjBs2DDY2dlBoVAgJycHMTEx+Pbbb/H5559rMwQiksj58+fxxRdfYPPmzbh9+zYAwMLCAtOmTUNQUBB69Oghc4RERFRNqwngnDlzYGNjg1WrVuGbb74RHwHp6+vDy8sLW7ZswYQJE7QZAhFpkVqtxp49e7BmzRrs3btXXO/m5oYFCxZg8uTJMDMzkzFCIiKqjWSFoCsrK5GbmwsAaNWqFQwNDaU4rFaxDwHpqvLycmzbtg2fffYZzp8/DwBQKBQYPXo0Fi5ciIEDB7J8CxE1Wrx+S1gI2tDQkP39iJq4/Px8rFu3DmvWrEFOTg6Au495Z86ciblz57JYMxFRE8FiW0T0SBkZGVi1ahU2bNiAkpISAEDbtm2xaNEizJo1C+bm5jJHSERE9cEEkIge6NKlS/j444+xefNmVFZWArjbv2/JkiWYNGlSs+jKQUSki5gAElEN58+fR1hYGLZv3y4O3ho4cCBef/11BAYGsn8fEVETpyfVgY4cOYKKiooar4mo8UhJScHEiRPRvXt3bN26FVVVVRg+fDgSEhIQFxeH4cOHM/kjImoGJEsAR4wYgevXr9d4TUTyO3/+PCZNmgQPDw/88MMPEAQBzz33HP78888mPV83ERHVTrJHwPdWm5Go8gwRPcLly5exbNkybN26FWq1GgAwbtw4vPvuu/Dw8JA5OiIi0hb2ASTSQZmZmVi+fDm+++473LlzBwAwevRoLFu2DJ6enjJHR0RE2sYEkEiHFBQUIDw8HKtXrxb74QYEBODDDz9E3759ZY6OiIikwgSQSAdUVFTgq6++wkcffYS8vDwAQP/+/bF8+XIMGDBA5uiIiEhqTACJmjG1Wo2oqCi8/fbbuHr1KgCge/fuWLFiBUaOHMkRvUREOooJIFEzdfjwYSxatAhJSUkAAEdHRyxbtgzTpk2DgQH/r09EpMt4FSBqZtLT07FkyRLs2LEDAGBubo433ngDwcHBMDU1lTk6IiJqDCSrA/jWW2/B2tq6xuvHdf36dUyZMgU2NjYwNTVFz549xTsdwN1SMx988AEcHR1hYmKCgQMH4syZMxr7qKiowPz589GqVSuYmZlh9OjRyMzMfKK4iORSWlqKDz74AF26dMGOHTugUCgQFBSEixcv4q233mLyR0REIoXQBIvy5efno1evXhg0aBBee+01tG7dGpcuXUKHDh3QsWNHAMCKFSvw0UcfITIyEp07d8by5ctx6NAhpKWliRPXv/baa9i9ezciIyNhY2ODxYsXIy8vD0lJSdDX139kHEVFRbC0tERhYSEsLCy0+p2JHkQQBOzYsQP/+te/xH/ADBgwAKtXr0bPnj3lDY6IqBHi9buJJoBvvPEGjhw5gsOHD9e6XRAEODo6Ijg4GK+//jqAu3f77OzssGLFCgQFBaGwsBC2trbYunUrJk6cCADIysqCk5MTfv/9dwQGBj4yDv6ASG7nzp3D3LlzERcXBwBo3749Pv30U7zwwgsc4EFE9AC8fkv4CLgh7dq1C97e3hg/fjxat26NXr16YcOGDeL2K1euICcnBwEBAeI6Y2Nj+Pv7IzExEQCQlJSEyspKjTaOjo5wc3MT29yvoqICRUVFGguRHEpLS/HWW2/B09MTcXFxaNGiBZYuXYpz585h3LhxTP6IiOihJEkAi4uLG3R/ly9fxtq1a+Hq6oq9e/di9uzZWLBgAbZs2QIAyMnJAQDY2dlpfM7Ozk7clpOTAyMjI1hZWT2wzf3Cw8NhaWkpLk5OTg36vYjq4tdff0WPHj0QHh6OyspKjBw5EmfPnsV7770HExMTucMjIqImQJIEsH///g9Mqh6HWq1G7969ERYWhl69eiEoKAizZs3C2rVrNdrdfxdEEIRH3hl5WJs333wThYWF4pKRkfFkX4SoHjIyMjBmzBg8++yzuHr1KpycnBAdHY3du3fD2dlZ7vCIiKgJkSQB9Pb2ho+PD86fP6+xPjk5Gf/4xz/qvT8HBwd0795dY123bt2Qnp4OALC3tweAGkmnUqkU7wra29tDpVIhPz//gW3uZ2xsDAsLC42FSNvUajXWrl2LHj164JdffoGBgQGWLFmCc+fOYcyYMXzcS0RE9SZJAvjtt9/i1VdfRb9+/ZCQkIC///4bEyZMgLe3N4yNjeu9v2eeeQZpaWka6/7++2+0b98eAODs7Ax7e3vExMSI21UqFeLj4+Hn5wcA8PLygqGhoUab7OxspKamim2I5JaWloaBAwdizpw5KC4uhq+vL06dOoUVK1bAzMxM7vCIiKiJkqwQ9Pvvvw8jIyMMGzYMVVVVCAwMxPHjx9G7d+9672vRokXw8/NDWFgYJkyYgD///BPr16/H+vXrAdx99BscHIywsDC4urrC1dUVYWFhMDU1xeTJkwEAlpaWmDFjBhYvXgwbGxtYW1sjNDQU7u7uGDp0aIN+d6L6qqysxKeffoqlS5eioqICZmZmCA8Px5w5c+pUooiIiOihBAlkZWUJ8+fPF0xMTITevXsLpqamwrZt255on7t37xbc3NwEY2NjoWvXrsL69es1tqvVauH9998X7O3tBWNjY2HAgAFCSkqKRpuysjJh3rx5grW1tWBiYiKMGjVKSE9Pr3MMhYWFAgChsLDwib4L0b2Sk5OFnj17CgAEAMLw4cOFq1evyh0WEVGzweu3IEhSB9DExARdu3bF8uXLMXLkSOzduxcTJkzAW2+9Jdbpa4pYR4ga0p07d7BixQosXboUlZWVsLa2xueff44pU6awnx8RUQPi9VuiR8CbNm3CpEmTxPeBgYGIi4vDqFGjcO3aNXz99ddShEHUaKWlpWHatGk4duwYAOD555/H2rVrHzggiYiI6ElIMgjk3uSvWu/evZGYmIiDBw9KEQJRo6RWq7FmzRr06tULx44dg6WlJbZs2YKdO3cy+SMiIq3RWgJYXZLlYTp06IAjR44AAK5fv66tUIgapYyMDAwbNgwLFy5EWVkZhg0bhpSUFEydOpWPfImISKu0lgD26dMHs2bNwp9//vnANoWFhfjxxx/h5uaGn376SVuhEDU6P/74Izw8PHDgwAGYmpriq6++wt69ezm7DBERSUJrfQDPnTuHsLAwDB8+HIaGhvD29oajoyNatGiB/Px8nD17FmfOnIG3tzc++eQTjBgxQluhEDUat2/fxqJFi8S5q/v27Ytt27bB1dVV5siIiEiXaH0UcHl5OX7//XccPnwYV69eRVlZGVq1aoVevXohMDAQbm5u2jy8VnEUEdXHX3/9hUmTJuH8+fNQKBR4/fXXsWzZMhgaGsodGhGRTuH1W8sJoFCHuXebMv6AqC4EQcAXX3yBf/3rX1CpVHBwcMDWrVsxZMgQuUMjItJJvH5ruQxMy5Yt0bNnT3h5ecHb2xu9e/dG9+7doacnyeBjItnl5+fjlVdewa5duwAAzz77LDZu3IhWrVrJHBkREekyrSaAn3zyCU6ePInDhw9j3bp1qKqqQosWLeDh4QEvLy94eXmhd+/e8PT01GYYRLJITk7GCy+8gCtXrsDIyAifffYZ5s6d26zvihMRUdMgyUwgAFBRUQETExO89dZbyMvLw8mTJ3H69GlUVFSgqqpKihAaHG8hU20EQcB3332HefPmoaKiAh06dMCPP/4ILy8vuUMjIiLw+g1INBMIABgbGwMAJkyYAA8PDwBAVVUVzpw5I1UIRFpXWlqKuXPnIjIyEgAwatQobNmyBVZWVvIGRkREdA9ZO+Pp6+uLySBRU3fx4kX4+voiMjISenp6CA8Pxy+//MLkj4iIGh3J7gASNWf79u3DxIkTUVBQgNatWyMqKgqDBg2SOywiIqJaafUO4KxZs7Bu3TqcOHECFRUVAMAO8NSsCIKAVatWYcSIESgoKICvry+Sk5OZ/BERUaOm1TuAaWlp+OGHH1BcXAwDg7uHWrp0KQYOHIjevXujZ8+eMDU11WYIRFpTUVGB2bNni/39pk+fjrVr14r9XYmIiBorSUYBX7hwAUlJSTh58iSSkpKQnJyMgoIC6Ovro3Pnzk12IAhHEemunJwcjB07FkePHoWenh4iIiKwYMEC3uEmImoCeP2WqA+gq6srXF1dMWnSJHHdlStXcOLECSQnJ0sRAlGDSUpKwpgxY5CZmYmnnnoKO3bsQEBAgNxhERER1ZlkdQCbI/4LQvf89ttvmDBhAkpLS9G1a1fs2rULrq6ucodFRET1wOu3zGVgiJqSb7/9Fs899xxKS0sREBCAP/74g8kfERE1SUwAiR5BEAS8//77mDVrFqqqqvDKK6/g119/haWlpdyhERERPRYmgEQPUVlZiRkzZmDZsmUAgPfeew8bN26EoaGhzJERERE9PhaCJnqAkpISjB8/Hnv27IG+vj7Wrl2LWbNmyR0WERHRE2MCSFSLW7duITAwEElJSTA1NcUPP/yAkSNHyh0WERFRg5D9EbCenh4GDx6MpKQkuUMhAgAolUoMGjQISUlJsLW1xcGDB5n8ERFRsyJ7Arhx40b4+/tjwYIFcodChKysLPj7+yMlJQUODg6Ij49Hnz595A6LiIioQbEO4BNgHaHmJSMjA4MHD8bFixfRtm1bHDhwgGVeiIiaIV6/G8EdQKLG4MqVKxgwYAAuXryIDh064NChQ0z+iIio2ZJsEEhsbCxiY2OhVCqhVqs1tm3cuFGqMIhquHDhAgYPHozMzEx06tQJBw4cgJOTk9xhERERaY0kCeDSpUuxbNkyeHt7w8HBAQqFQorDEj3S5cuX4e/vj+zsbHTt2hWxsbFwdHSUOywiIiKtkiQBXLduHSIjIzF16lQpDkdUJ9nZ2Rg2bBiys7PRo0cPxMbGws7OTu6wiIiItE6SPoAqlQp+fn5SHIqoTvLz8xEQEIDLly/DxcUFMTExTP6IiEhnSJIAzpw5E9u3b5fiUESPdPv2bYwcORKpqalwcHBATEwMHBwc5A6LiIhIMpI8Ai4vL8f69euxf/9+eHh41JhHNSIiQoowiKBSqTB27FgcPXoUVlZW2LdvH1xcXOQOi4iISFKSJICnT59Gz549AQCpqaka2zgghKRSVVWFqVOnYt++fTA1NcVvv/0GNzc3ucMiIiKSnCQJYFxcnBSHIXogQRAwd+5c/PDDDzA0NER0dDR8fX3lDouIiEgWTbIQ9AcffACFQqGx2Nvbi9sFQcAHH3wAR0dHmJiYYODAgThz5ozGPioqKjB//ny0atUKZmZmGD16NDIzM6X+KiSRTz75BN988w0UCgW+//57BAQEyB0SERGRbLR2BzAkJAQffvghzMzMEBIS8tC2j9MHsEePHti/f7/4Xl9fX3y9cuVKREREIDIyEp07d8by5csxbNgwpKWlwdzcHAAQHByM3bt3IyoqCjY2Nli8eDFGjRqFpKQkjX1R07d792688cYbAIA1a9Zg/PjxMkdEREQkL60lgMnJyaisrBRfP8jj9gE0MDDQuOtXTRAEfP7553j77bcxduxYAMDmzZthZ2eH7du3IygoCIWFhfjuu++wdetWDB06FACwbds2ODk5Yf/+/QgMDHysmKjxSU1NxeTJkyEIAmbPno25c+fKHRIREZHstJYA3tvvTxt9AC9cuABHR0cYGxvDx8cHYWFhcHFxwZUrV5CTk6PxiM/Y2Bj+/v5ITExEUFAQkpKSUFlZqdHG0dERbm5uSExMZALYTNy8eRPPPvssSkpKMGjQIKxZs4aDjoiIiCDhXMAAcPbsWaSnp0OlUonrFAoFnn322Xrtx8fHB1u2bEHnzp1x48YNLF++HH5+fjhz5gxycnIAoEZRXzs7O1y7dg0AkJOTAyMjI1hZWdVoU/352lRUVKCiokJ8X1RUVK+4SToqlQrjxo3D1atX0bFjR/znP/+pUX6IiIhIV0mSAF6+fBnPP/88UlJSoFAoIAgCgP9//FtVVVWv/Y0YMUJ87e7uDl9fX3Ts2BGbN2/G008/rbHvaoIgPPLuz6PahIeHY+nSpfWKlaQnCALmzJmDQ4cOwcLCArt374aNjY3cYRERETUakowCXrhwIZydnXHjxg2YmprizJkzOHToELy9vXHw4MEn3r+ZmRnc3d1x4cIFsV/g/XfylEqleFfQ3t4eKpUK+fn5D2xTmzfffBOFhYXikpGR8cSxU8Nbs2YNvvvuO+jp6SEqKgrdunWTOyQiIqJGRZIE8OjRo1i2bBlsbW2hp6cHPT099OvXD+Hh4ViwYMET77+iogLnzp2Dg4MDnJ2dYW9vj5iYGHG7SqVCfHy8OB+xl5cXDA0NNdpkZ2cjNTX1oXMWGxsbw8LCQmOhxiUuLk4cdf7JJ59o3C0mIiKiuyR5BFxVVYWWLVsCAFq1aoWsrCx06dIF7du3R1paWr33FxoaimeffRbt2rWDUqnE8uXLUVRUhGnTpkGhUCA4OBhhYWFwdXWFq6srwsLCYGpqismTJwMALC0tMWPGDCxevBg2NjawtrZGaGgo3N3dxVHB1PTcvHkTL730EtRqNV5++WUsWrRI7pCIiIgaJUkSQDc3N5w+fRouLi7w8fHBypUrYWRkhPXr1z/WPKyZmZl48cUXkZubC1tbWzz99NP4448/0L59ewDAkiVLUFZWhjlz5iA/Px8+Pj7Yt2+fWAMQAFatWgUDAwNMmDABZWVlGDJkCCIjI1kDsIlSq9WYNm0asrOz0a1bN3z99dcc8UtERPQACqF6RIYW7d27F7dv38bYsWNx+fJljBo1CufPn4eNjQ127NiBwYMHazsErSgqKoKlpSUKCwv5OFhmERERWLx4MYyNjXH8+HG4u7vLHRIRETVSvH5LlADWJi8vD1ZWVk36Lg1/QI3D8ePH8cwzz6CyshJr167F7Nmz5Q6JiIgaMV6/Ja4DeC9ra2u5Dk3NSGFhISZNmoTKykqMGzcOQUFBcodERETU6EmWAJaXl+P06dNQKpVQq9Ua20aPHi1VGNSMCIKAoKAgXL58Ge3bt8eGDRua9B1lIiIiqUiSAO7Zswcvv/wycnNza2xTKBT1LgRNBADfffcdduzYAQMDA0RFReGpp56SOyQiIqImQZI6gPPmzcP48eORnZ0NtVqtsTD5o8dx7tw5sYbkRx99JM4AQ0RERI8mSQKoVCoREhLy0Fk2iOqqqqoKM2bMQFlZGQICAhAaGip3SERERE2KJAnguHHjGmTKNyIA+Oqrr3D06FGYm5vj22+/hZ6eJD9jIiKiZkOSMjClpaUYP348bG1t4e7uDkNDQ43tDTEdnBw4jFx6V69eRY8ePVBaWsqSL0RE9Fh4/ZZoEMj27duxd+9emJiY4ODBgxojNRUKRZNNAElagiDgn//8J0pLSzFgwAD885//lDskIiKiJkmSBPCdd97BsmXL8MYbb/BxHT22zZs3IyYmBi1atMCGDRv4WyIiInpMklxBVSoVJk6cyAs2PbacnBwsWrQIALB06VJ07txZ5oiIiIiaLkkysmnTpmHHjh1SHIqaqXnz5qGgoAC9e/dGSEiI3OEQERE1aZI8Aq6qqsLKlSuxd+9eeHh41BgEEhERIUUY1ETt3LkTO3fuhIGBATZu3AgDA9lmMCQiImoWJLmSpqSkoFevXgCA1NRUjW2cuoseJj8/H3PnzgUAvP766/D09JQ5IiIioqZPkgQwLi5OisNQM/TOO+/gxo0b6Nq1K9555x25wyEiImoWJHuWVlBQgO+++w7nzp2DQqFA9+7d8eqrr8LS0lKqEKiJOXPmDL755hsAwNq1a9GiRQuZIyIiImoeJBkEcuLECXTs2BGrVq1CXl4ecnNzERERgY4dO+LkyZNShEBNjCAICAkJQVVVFZ5//nkMHDhQ7pCIiIiaDUlmAunfvz86deqEDRs2iB3479y5g5kzZ+Ly5cs4dOiQtkPQClYS157ff/8dI0eOhKGhIc6dO4eOHTvKHRIRETUTvH5L9Aj4xIkTGskfABgYGGDJkiXw9vaWIgRqQiorK7F48WIAQHBwMJM/IiKiBibJI2ALCwukp6fXWJ+RkQFzc3MpQqAmZN26dTh//jxsbW3x9ttvyx0OERFRsyNJAjhx4kTMmDEDO3bsQEZGBjIzMxEVFYWZM2fixRdflCIEaiLy8vLw/vvvAwA+/PBDDhIiIiLSAkkeAX/66adQKBR4+eWXcefOHQCAoaEhXnvtNXz88cdShEBNxLJly5Cfnw93d3fMmDFD7nCIiIiaJUkGgVQrLS3FpUuXIAgCOnXqBFNTU6kOrRXsRNqwzp8/D3d3d9y5cwcxMTEYOnSo3CEREVEzxOu3hHUAAcDU1BTu7u5SHpKakNDQUNy5cwfPPvsskz8iIiIt0loCGBISUue2nAuYYmJi8Ntvv8HAwACffvqp3OEQERE1a1pLAJOTkzXeJyUloaqqCl26dAEA/P3339DX14eXl5e2QqAmQhAEcbTv3Llz0blzZ5kjIiIiat60lgDeO/9vREQEzM3NsXnzZlhZWQEA8vPzMX36dPTv319bIVATsWfPHhw/fhympqZ466235A6HiIio2ZNkEEibNm2wb98+9OjRQ2N9amoqAgICkJWVpe0QtIKdSJ+cIAjw9fXFsWPHsHjxYj7+JSIireP1W6I6gEVFRbhx40aN9UqlEsXFxVKEQI3Uvn37cOzYMZiYmOBf//qX3OEQERHpBEkSwOeffx7Tp0/Hjz/+iMzMTGRmZuLHH3/EjBkzMHbsWClCoEZIEAQsXboUADB79mzY2dnJHBEREZFukOQRcGlpKUJDQ7Fx40ZUVlYCuDsX8IwZM/DJJ5/AzMxM2yFoBW8hP5mYmBgEBASgRYsWuHLlCuzt7eUOiYiIdACv3xIXgr59+7ZGIeimmvhV4w/o8QmCgP79++PIkSNYuHAhPv/8c7lDIiIiHcHrt8SFoM3MzODh4SHlIamROnDgAI4cOQJjY2MsWbJE7nCIiIh0iiR9AInuJQgCPvjgAwDAP//5Tzg6OsobEBERkY5hAkiSi4uLQ0JCAoyMjPD666/LHQ4REZHOYQJIkqse+Ttr1iy0adNG5miIiIh0T5NPAMPDw6FQKBAcHCyuq37E6OjoCBMTEwwcOBBnzpzR+FxFRQXmz5+PVq1awczMDKNHj0ZmZqbE0euegwcP4tChQzAyMsIbb7whdzhEREQ6SbIE8PDhw5gyZQp8fX1x/fp1AMDWrVuRkJDw2Ps8fvw41q9fX2NgycqVKxEREYEvv/wSx48fh729PYYNG6ZRdDo4OBjR0dGIiopCQkICSkpKMGrUKFRVVT12PPRoH3/8MQBgxowZaNu2rczREBER6SZJEsCdO3ciMDAQJiYmSE5ORkVFBQCguLgYYWFhj7XPkpISvPTSS9iwYYM4vzBw9+7f559/jrfffhtjx46Fm5sbNm/ejNLSUmzfvh0AUFhYiO+++w6fffYZhg4dil69emHbtm1ISUnB/v37n/wLU63Onz+PvXv3QqFQIDQ0VO5wiIiIdJYkCeDy5cuxbt06bNiwAYaGhuJ6Pz8/nDx58rH2OXfuXIwcORJDhw7VWH/lyhXk5OQgICBAXGdsbAx/f38kJiYCAJKSklBZWanRxtHREW5ubmKb2lRUVKCoqEhjobr74osvAACjR4+Gi4uLzNEQERHpLknqAKalpWHAgAE11ltYWKCgoKDe+4uKisLJkydx/PjxGttycnIAoMa0YnZ2drh27ZrYxsjISOPOYXWb6s/XJjw8XBzAQPVTUFCAzZs3AwAWLFggczRERES6TZI7gA4ODrh48WKN9QkJCfW+E5SRkYGFCxdi27ZtaNGixQPbKRQKjfeCINRYd79HtXnzzTdRWFgoLhkZGfWKXZd99913uH37Ntzc3DBo0CC5wyEiItJpkiSAQUFBWLhwIY4dOwaFQoGsrCx8//33CA0NxZw5c+q1r6SkJCiVSnh5ecHAwAAGBgaIj4/HmjVrYGBgIN75u/9OnlKpFLfZ29tDpVIhPz//gW1qY2xsDAsLC42FHq2qqgpffvklAGDhwoWPTMSJiIhIuyRJAJcsWYIxY8Zg0KBBKCkpwYABAzBz5kwEBQVh3rx59drXkCFDkJKSglOnTomLt7c3XnrpJZw6dQouLi6wt7dHTEyM+BmVSoX4+Hj4+fkBALy8vGBoaKjRJjs7G6mpqWIbaji7d+/G1atXYW1tjcmTJ8sdDhERkc6TbC7gjz76CG+//TbOnj0LtVqN7t27o2XLlvXej7m5Odzc3DTWmZmZwcbGRlwfHByMsLAwuLq6wtXVFWFhYTA1NRWTD0tLS8yYMQOLFy+GjY0NrK2tERoaCnd39xqDSujJrVmzBsDdad9MTU1ljoaIiIgkSwABwNTUFN7e3lo/zpIlS1BWVoY5c+YgPz8fPj4+2LdvH8zNzcU2q1atgoGBASZMmICysjIMGTIEkZGR0NfX13p8uuT06dOIi4uDvr5+vR/3ExERkXYoBEEQpDhQbGwsYmNjoVQqoVarNbZt3LhRihAaXFFRESwtLVFYWMj+gA8wa9YsfPvttxg/fjx++OEHucMhIiLi9RsS3QFcunQpli1bBm9vbzg4OHAQgI7Izc3Ftm3bANwd/EFERESNgyQJ4Lp16xAZGYmpU6dKcThqJL799luUl5ejd+/eHFxDRETUiEgyClilUjEB0DGVlZX46quvALD0CxERUWMjSQI4c+ZMcR5e0g3R0dHIzMxE69atMXHiRLnDISIionto7RFwSEiI+FqtVmP9+vXYv38/PDw8NOYDBoCIiAhthUEyqb77N3v2bBgbG8scDREREd1LawlgcnKyxvuePXsCAFJTUzXW89Fg83Pp0iUcOnQIenp6mDVrltzhEBER0X20lgDGxcWJr9PT09G2bVvo6Wk+cRYEgfPpNkObN28GAAwbNgxt27aVORoiIiK6nyR9AJ2dnZGbm1tjfV5eHpydnaUIgSSiVqvFBPCVV16RNxgiIiKqlSQJ4INqTZeUlKBFixZShEASiYuLQ3p6OiwtLTFmzBi5wyEiIqJaaLUOYPVAEIVCgffee09jHtiqqiocO3ZM7BtIzUNkZCQA4MUXX2RyT0RE1EhpNQGsHggiCAJSUlJgZGQkbjMyMoKnpydCQ0O1GQJJqKioCDt37gQATJ8+XeZoiIiI6EG0mgBWDwSZPn06Vq9erbPz7emKH374AWVlZejWrRv69OkjdzhERET0AJJMBbdp0yYpDkMyq378+8orr7C8DxERUSMmySAQav7+/vtvHDlyBHp6epzzmYiIqJFjAkgNorr0y/Dhw+Hg4CBzNERERPQwTADpiVVVVWHLli0AWPuPiIioKdBaAnj69Gmo1Wpt7Z4akdjYWGRmZsLKygqjR4+WOxwiIiJ6BK0lgL169RJn/3BxccGtW7e0dSiSWfXgj8mTJ8PY2FjeYIiIiOiRtJYAPvXUU7hy5QoA4OrVq7wb2EwVFBQgOjoaAB//EhERNRVaKwPzwgsvwN/fHw4ODlAoFPD29oa+vn6tbS9fvqytMEjLduzYgfLycri5ucHLy0vucIiIiKgOtJYArl+/HmPHjsXFixexYMECzJo1C+bm5to6HMmkevQva/8RERE1HVotBD18+HAAQFJSEhYuXMgEsJlJT0/H0aNHoVAoMHnyZLnDISIiojqSbCaQgoICfPbZZzh37hwUCgW6d++OV199FZaWllKEQFpQPe9v//79WfuPiIioCZGkDuCJEyfQsWNHrFq1Cnl5ecjNzUVERAQ6duyIkydPShECacF//vMfAMC4ceNkjoSIiIjqQyEIgqDtg/Tv3x+dOnXChg0bYGBw96bjnTt3MHPmTFy+fBmHDh3SdghaUVRUBEtLSxQWFsLCwkLucCSVmZkJJycnAMD169fh6Ogoc0RERER1o8vX72qSPAI+ceKERvIHAAYGBliyZAm8vb2lCIEaWPXj32eeeYbJHxERURMjySNgCwsLpKen11ifkZHBgSFN1I8//ggAGD9+vMyREBERUX1JkgBOnDgRM2bMwI4dO5CRkYHMzExERUVh5syZePHFF6UIgRpQVlYWjhw5AuBuvUciIiJqWiR5BPzpp59CoVDg5Zdfxp07dwAAhoaGeO211/Dxxx9LEQI1oJ07d0IQBPj6+qJt27Zyh0NERET1JEkCaGRkhNWrVyM8PByXLl2CIAjo1KkTTE1NpTg8NTA+/iUiImraJEkAq5mamsLd3V3KQ1IDy87OxuHDhwHw8S8REVFTJUkfQGo+oqOjIQgCfHx80K5dO7nDISIiosfABJDqpbr4Mx//EhERNV1MAKnObty4IRbt5uNfIiKipkuSBDA9PR21TTgiCEKt9QGpcYqOjoZarUafPn3QoUMHucMhIiKixyRJAujs7IybN2/WWJ+XlwdnZ+d672/t2rXw8PCAhYUFLCws4Ovri//+97/idkEQ8MEHH8DR0REmJiYYOHAgzpw5o7GPiooKzJ8/H61atYKZmRlGjx6NzMzM+n85HcLHv0RERM2DJAmgIAhQKBQ11peUlKBFixb13l/btm3x8ccf48SJEzhx4gQGDx6M5557TkzyVq5ciYiICHz55Zc4fvw47O3tMWzYMBQXF4v7CA4ORnR0NKKiopCQkICSkhKMGjUKVVVVj/9Fm7GbN2/i4MGDAIBx48bJGwwRERE9EYVQ27PZBhISEgIAWL16NWbNmqVR96+qqgrHjh2Dvr6+OKvEk7C2tsYnn3yCV199FY6OjggODsbrr78O4O7dPjs7O6xYsQJBQUEoLCyEra0ttm7diokTJwK4O7uFk5MTfv/9dwQGBtbpmLo0mfT69esRFBQELy8vnDhxQu5wiIiIHpsuXb8fRKt1AJOTkwHcvQOYkpICIyMjcZuRkRE8PT0RGhr6RMeoqqrCf/7zH9y+fRu+vr64cuUKcnJyEBAQILYxNjaGv78/EhMTERQUhKSkJFRWVmq0cXR0hJubGxITE+ucAOqS6uLPvPtHRETU9GktATx9+jT2798PfX19TJ8+HWvWrIG5uXmD7T8lJQW+vr4oLy9Hy5YtER0dje7duyMxMREAYGdnp9Hezs4O165dAwDk5OTAyMgIVlZWNdrk5OQ88JgVFRWoqKgQ3xcVFTXU12nUCgoKEBcXB4AJIBERUXOgtT6AvXr1Ql5eHgAgPj4eKpWqQfffpUsXnDp1Cn/88Qdee+01TJs2DWfPnhW339/n8EH9EOvTJjw8HJaWluLi5OT0ZF+iidi3bx/u3LmDbt26oVOnTnKHQ0RERE9IawngU089hcuXLwMArl69CrVa3aD7NzIyQqdOneDt7Y3w8HB4enpi9erVsLe3B4Aad/KUSqV4V9De3h4qlQr5+fkPbFObN998E4WFheKSkZHRoN+psfr1118BACNHjpQ5EiIiImoIWksAX3jhBfj7+8PZ2RkKhQLe3t5wcXGpdWkIgiCgoqICzs7OsLe3R0xMjLhNpVIhPj4efn5+AAAvLy8YGhpqtMnOzkZqaqrYpjbGxsZi6ZnqpbmrqqoSS+yMGjVK5miIiIioIWitD+D69esxduxYXLx4EQsWLMCsWbMarA/gW2+9hREjRsDJyQnFxcWIiorCwYMHsWfPHigUCgQHByMsLAyurq5wdXVFWFgYTE1NMXnyZACApaUlZsyYgcWLF8PGxgbW1tYIDQ2Fu7s7hg4d2iAxNhd//vkncnNzYWlp+dDkmIiIiJoOrY4CHj58OAAgKSkJCxcubLAE8MaNG5g6dSqys7NhaWkJDw8P7NmzB8OGDQMALFmyBGVlZZgzZw7y8/Ph4+ODffv2aRx/1apVMDAwwIQJE1BWVoYhQ4YgMjIS+vr6DRJjc/Hbb78BuPu/paGhoczREBERUUPQah3A5k4X6gj17NkTf/31F7Zu3YopU6bIHQ4REdET04Xr96NIMhMIABw+fBhTpkyBr68vrl+/DgDYunUrEhISpAqB6ikjIwN//fUXFAqFeDeXiIiImj5JEsCdO3ciMDAQJiYmSE5OFmvpFRcXIywsTIoQ6DH8/vvvAABfX1+0atVK5miIiIiooUiSAC5fvhzr1q3Dhg0bNPqR+fn54eTJk1KEQI+huvwLR/8SERE1L5IkgGlpaRgwYECN9RYWFigoKJAiBKqnsrIyxMbGAmD9PyIiouZGkgTQwcEBFy9erLE+ISGhweoAUsOKi4tDWVkZnJyc4O7uLnc4RERE1IAkSQCDgoKwcOFCHDt2DAqFAllZWfj+++8RGhqKOXPmSBEC1dO9s388ago9IiIialq0Wgew2pIlS1BYWIhBgwahvLwcAwYMgLGxMUJDQzFv3jwpQqB6EARBrP/H/n9ERETNj6R1AEtLS3H27Fmo1Wp0794dLVu2lOrQWtFc6wilpKTAw8MDJiYmuHXrFkxMTOQOiYiIqME01+t3fWjtDmBISEid20ZERGgrDHoM1Y9/Bw8ezOSPiIioGdJaApicnFynduxf1vjw8S8REVHzprUEMC4uTlu7Ji3Kzc3F0aNHAQD/+Mc/ZI6GiIiItEGyqeCoadizZw/UajU8PDzQrl07ucMhIiIiLWACSBr4+JeIiKj5YwJIojt37mDPnj0AOPsHERFRc8YEkETHjx9HQUEBrKys4OPjI3c4REREpCVMAEm0b98+AMCQIUOgr68vczRERESkLZIlgIcPH8aUKVPg6+uL69evAwC2bt2KhIQEqUKgR4iJiQEABAQEyBwJERERaZMkCeDOnTsRGBgIExMTJCcno6KiAgBQXFyMsLAwKUKgRygqKsIff/wBABg2bJjM0RAREZE2SZIALl++HOvWrcOGDRtgaGgorvfz88PJkyelCIEeIS4uDlVVVejUqRM6dOggdzhERESkRZIkgGlpaRgwYECN9RYWFigoKJAiBHoEPv4lIiLSHZIkgA4ODrh48WKN9QkJCXBxcZEiBHqE6gSQj3+JiIiaP0kSwKCgICxcuBDHjh2DQqFAVlYWvv/+e4SGhmLOnDlShEAPce3aNfz999/Q19fHoEGD5A6HiIiItExrcwHfa8mSJSgsLMSgQYNQXl6OAQMGwNjYGKGhoZg3b54UIdBDVN/98/HxgaWlpczREBERkbZJkgACwEcffYS3334bZ8+ehVqtRvfu3dGyZUupDk8PUV3/j49/iYiIdINkCSAAmJqawtvbW8pD0iNUVVUhNjYWAAeAEBER6QrJEsDY2FjExsZCqVRCrVZrbNu4caNUYdB9kpOTkZeXBwsLC/Tt21fucIiIiEgCkiSAS5cuxbJly+Dt7Q0HBwcoFAopDkt1UP34d9CgQTAwkPSGMBEREclEkiv+unXrEBkZialTp0pxOKoH1v8jIiLSPZKUgVGpVPDz85PiUFQPJSUlOHLkCAAOACEiItIlkiSAM2fOxPbt26U4FNXDoUOHUFlZiQ4dOqBTp05yh0NEREQS0doj4JCQEPG1Wq3G+vXrsX//fnh4eGjMBwwAERER2gqDHuLe2T/YL5OIiEh3aC0BTE5O1njfs2dPAEBqaqrGeiYe8mH9PyIiIt2ktQQwLi5OW7umBnD9+nWcPXsWCoUCQ4YMkTscIiIikpAkfQDT09MhCMIDt5H0qh//ent7w9raWuZoiIiISEqSJIDOzs64efNmjfW3bt2Cs7OzFCHQfe7t/0dERES6RZIEUBCEWvv6lZSUoEWLFlKEQPdQq9XYv38/ANb/IyIi0kVaLQRdPRJYoVDg3XffhampqbitqqoKx44dEweH1Ed4eDh++uknnD9/HiYmJvDz88OKFSvQpUsXsY0gCFi6dCnWr1+P/Px8+Pj44KuvvkKPHj3ENhUVFQgNDcW///1vlJWVYciQIfj666/Rtm3bx//STUBqaiqUSiVMTU3h6+srdzhEREQkMa3eAUxOTkZycjIEQUBKSor4Pjk5GefPn4enpyciIyPrvd/4+HjMnTsXf/zxB2JiYnDnzh0EBATg9u3bYpuVK1ciIiICX375JY4fPw57e3sMGzYMxcXFYpvg4GBER0cjKioKCQkJKCkpwahRo1BVVdUQX7/ROnDgAABgwIABMDIykjkaIiIikpwggVdeeUUoLCzU2v6VSqUAQIiPjxcEQRDUarVgb28vfPzxx2Kb8vJywdLSUli3bp0gCIJQUFAgGBoaClFRUWKb69evC3p6esKePXvqdNzCwkIBgFa/mzaMHj1aACCsWLFC7lCIiIgk11Sv3w1Jkj6AmzZtgoWFhdb2X1hYCADiaNYrV64gJydHo3+bsbEx/P39kZiYCABISkpCZWWlRhtHR0e4ubmJbe5XUVGBoqIijaWpuXPnDg4ePAgAGDx4sLzBEBERkSwkSQC1SRAEhISEoF+/fnBzcwMA5OTkAADs7Ow02trZ2YnbcnJyYGRkBCsrqwe2uV94eDgsLS3FxcnJqaG/jtYlJyejqKgIlpaW6NWrl9zhEBERkQyafAI4b948nD59Gv/+979rbLt/5LHwgNHIdW3z5ptvorCwUFwyMjIeP3CZVBfo9vf3h76+vszREBERkRyadAI4f/587Nq1C3FxcRojd+3t7QGgxp08pVIp3hW0t7eHSqVCfn7+A9vcz9jYGBYWFhpLU1M9AISPf4mIiHSXrDOBCILwWDOBCIKAefPm4aeffsKBAwdqFJN2dnaGvb29WOwYAFQqFeLj4+Hn5wcA8PLygqGhoUab7OxspKamim2aG5VKhcOHDwMABg0aJHM0REREJBet1gGs5uzsjOzsbLRu3VpjfV5eHpydnetddmXu3LnYvn07fvnlF5ibm4t3+iwtLWFiYgKFQoHg4GCEhYXB1dUVrq6uCAsLg6mpKSZPniy2nTFjBhYvXgwbGxtYW1sjNDQU7u7uGDp0aMN88Ubm+PHjKC0tRatWrcT+kkRERKR7JEkAH9Sv7nFnAlm7di0AYODAgRrrN23ahFdeeQUAsGTJEpSVlWHOnDliIeh9+/bB3NxcbL9q1SoYGBhgwoQJYiHoyMjIZts3rvrx76BBg6Cn16Sf/hMREdETUAi1PZttINUzgaxevRqzZs2qdSYQfX19HDlyRFshaFX1aNrCwsIm0R9w8ODBiIuLw9dff43XXntN7nCIiIhk0dSu39qg1TuAycnJACDOBHLvrBNGRkbw9PREaGioNkOg/ykrKxPrG3IACBERkW7TagJYXXJk+vTpWL16tc5m2Y3B0aNHUVFRAUdHR3Tu3FnucIiIiEhGkvQB3LRpEwDg7NmzSE9Ph0ql0tg+evRoKcLQadXJ+KBBgx5ZC5GIiIiaN0kSwCtXrmDMmDFISUmBQqEQS8JUJyL1HQVM9cf6f0RERFRNkqGgCxYsgLOzM27cuAFTU1OcOXMGhw4dgre3tzgvLWlPSUkJ/vzzTwCs/0dEREQS3QE8evQoDhw4AFtbW+jp6UFPTw/9+vVDeHg4FixYIA4WIe1ISEjAnTt30KFDhxpFs4mIiEj3SHIHsKqqCi1btgQAtGrVCllZWQCA9u3bIy0tTYoQdBof/xIREdG9JLkD6ObmhtOnT8PFxQU+Pj5YuXIljIyMsH79eri4uEgRgk67dwAIERERkSQJ4DvvvIPbt28DAJYvX45Ro0ahf//+sLGxwY4dO6QIQWfl5+fj5MmTAJgAEhER0V2SJICBgYHiaxcXF5w9exZ5eXmwsrJiSRItO3ToENRqNbp06YI2bdrIHQ4RERE1ApIkgLWxtraW69A6hY9/iYiI6H6SDAIh+XAACBEREd2PCWAzdvPmTaSkpAAABg4cKG8wRERE1GgwAWzG4uPjAdwdhW1raytzNERERNRYMAFsxqpnWWH/PyIiIrqXJAlgWVkZSktLxffXrl3D559/jn379klxeJ1VnQDy8S8RERHdS5IE8LnnnsOWLVsAAAUFBfDx8cFnn32G5557DmvXrpUiBJ2jVCpx5swZAIC/v7/M0RAREVFjIkkCePLkSfTv3x8A8OOPP8LOzg7Xrl3Dli1bsGbNGilC0DmHDh0CAHh4eMDGxkbmaIiIiKgxkSQBLC0thbm5OQBg3759GDt2LPT09PD000/j2rVrUoSgc/j4l4iIiB5EkgSwU6dO+Pnnn5GRkYG9e/ciICAAwN3HlBYWFlKEoHOqC0AzASQiIqL7SZIAvvfeewgNDUWHDh3g4+MDX19fAHfvBvbq1UuKEHSKUqnE2bNnAQADBgyQORoiIiJqbCSZCm7cuHHo168fsrOz4enpKa4fMmQInn/+eSlC0CnV9f/Y/4+IiIhqI0kCWFZWBgsLC9jb2wO4WwYmOjoa3bp1Q9++faUIQaew/x8RERE9jKxlYMaMGcMyMFrABJCIiIgehmVgmhn2/yMiIqJHYRmYZob9/4iIiOhRWAammeH8v0RERPQokpeB6du3L8vAaBH7/xEREdGjKARBEKQ4UE5ODrKzs9GzZ08oFAoAwJ9//gkLCwt07dpVihAaXFFRESwtLVFYWNgo7mQqlUrY2dlBoVAgNzcX1tbWcodERETU6DS267ccJLkDCAAXLlzAZ599hmeeeQbXr18HAKSlpSE3N1eqEJq9e/v/MfkjIiKiB5EkAdy5cycCAwNhYmKCkydPoqKiAgBQXFyMsLAwKULQCXz8S0RERHUhSQK4fPlyrFu3Dhs2bIChoaG43s/PDydPnpQiBJ3A+X+JiIioLiRJANPS0mqtSWdhYYGCggIpQmj2bty4gXPnzkGhULD+HxERET2UJAmgg4MDLl68WGN9QkICXFxcpAih2WP/PyIiIqorSRLAoKAgLFy4EMeOHYNCoUBWVha+//57hIaGYs6cOVKE0Oyx/x8RERHVlSQJ4JIlSzBmzBgMGjQIJSUlGDBgAGbOnImgoCDMmzev3vs7dOgQnn32WTg6OkKhUODnn3/W2C4IAj744AM4OjrCxMQEAwcOxJkzZzTaVFRUYP78+WjVqhXMzMwwevRoZGZmPsnXlBUTQCIiIqorycrAfPTRR8jNzcWff/6JP/74Azdv3sSHH374WPu6ffs2PD098eWXX9a6feXKlYiIiMCXX36J48ePw97eHsOGDUNxcbHYJjg4GNHR0YiKikJCQgJKSkowatQoVFVVPVZMcmL/PyIiIqoPyQpBa4tCoUB0dDTGjBkD4O7dP0dHRwQHB+P1118HcPdun52dHVasWIGgoCAUFhbC1tYWW7duxcSJEwEAWVlZcHJywu+//47AwMA6HbuxFJL84YcfMHHiRHh6euLUqVOyxUFERNQUNJbrt5wMpDpQbGwsYmNjoVQqoVarNbZt3LixwY5z5coV5OTkiPMNA4CxsTH8/f2RmJiIoKAgJCUlobKyUqONo6Mj3NzckJiYWOcEsLHg/L9ERERUH5IkgEuXLsWyZcvg7e0NBwcHcSo4bcjJyQEA2NnZaay3s7PDtWvXxDZGRkawsrKq0ab687WpqKgQi1gDd/8F0RhUJ4D+/v7yBkJERERNgiQJ4Lp16xAZGYmpU6dKcTgAqJFkCoLwyMTzUW3Cw8OxdOnSBomvobD/HxEREdWXJINAVCoV/Pz8pDgU7O3tAaDGnTylUineFbS3t4dKpUJ+fv4D29TmzTffRGFhobhkZGQ0cPT1d+jQIQCs/0dERER1J0kCOHPmTGzfvl2KQ8HZ2Rn29vaIiYkR16lUKsTHx4tJqJeXFwwNDTXaZGdnIzU19aGJqrGxMSwsLDQWubH8CxEREdWXJI+Ay8vLsX79euzfvx8eHh4a8wEDQERERL32V1JSojGzyJUrV3Dq1ClYW1ujXbt2CA4ORlhYGFxdXeHq6oqwsDCYmppi8uTJAABLS0vMmDEDixcvho2NDaytrREaGgp3d3cMHTr0yb+whJgAEhERUX1JkgCePn0aPXv2BACkpqY+8f5OnDihMeI1JCQEADBt2jRERkZiyZIlKCsrw5w5c5Cfnw8fHx/s27cP5ubm4mdWrVoFAwMDTJgwAWVlZRgyZAgiIyOhr6//xPFJRalU4uzZs+z/R0RERPXS5OsAyknuOkL/+c9/MGHCBHh4eOCvv/6S/PhERERNkdzX78ZAkj6A27Zte+C2f/3rX1KE0Czx8S8RERE9DkkSwHnz5uHXX3+tsX7RokUPTQ7p4eLj4wEwASQiIqL6kSQBjIqKwpQpU8SSJQAwf/58/PDDD4iLi5MihGZHqVTizJkzAMD+f0RERFQvkiSAw4cPx7p16zBmzBicOHECc+bMwU8//YS4uDh07dpVihCanXvr/9nY2MgcDRERETUlks0FPGnSJOTn56Nfv36wtbVFfHw8OnXqJNXhmx32/yMiIqLHpbUEsLo0y/1at26NXr164euvvxbX1bcOIHH+XyIiInp8WksAk5OTa13fsWNHFBUVidsfNT8v1XTz5k32/yMiIqLHprUEkIM7tKe6/5+7uztatWolczRERETU1EgyCIQaFvv/ERER0ZOQJAEMDw/Hxo0ba6zfuHEjVqxYIUUIzQoTQCIiInoSkiSA33zzTa3lXnr06IF169ZJEUKzcfPmTXE+Zfb/IyIioschSQKYk5MDBweHGuttbW2RnZ0tRQjNRnX/Pzc3N/b/IyIiosciSQLo5OSEI0eO1Fh/5MgRODo6ShFCs8HHv0RERPSkJCkEPXPmTAQHB6OyshKDBw8GAMTGxmLJkiVYvHixFCE0G5z/l4iIiJ6UJAngkiVLkJeXhzlz5kClUgEAWrRogddffx1vvvmmFCE0C7m5uUhJSQHA/n9ERET0+CRJABUKBVasWIF3330X586dg4mJCVxdXWFsbCzF4ZuNe/v/2drayhwNERERNVWSzQUMAC1btkSfPn2kPGSzwunfiIiIqCFodS7gDz/8EGZmZg+cF7ga5wKuGw4AISIiooag1bmAKysrxdcPwrmA64b9/4iIiKihSDIXMOcFfnLV/f969OiB1q1byxwNERERNWWcC7iJYPkXIiIiaiiSDQKJjY1FbGwslEol1Gq1xrba5gkmTez/R0RERA1FkgRw6dKlWLZsGby9veHg4MB+f/V069YtnD59GgD7/xEREdGTkyQBXLduHSIjIzF16lQpDtfsVPf/6969O/v/ERER0ROTpA+gSqWCn5+fFIdqlvj4l4iIiBqSJAngzJkzsX37dikO1SwxASQiIqKGpNVC0NXUajXWr1+P/fv3w8PDA4aGhhptWQj6wfLy8sT6f5wBhIiIiBqCVgtB36tnz54AgNTUVI31HBDycIcOHYIgCOz/R0RERA1GkkLQ6enpaNu2LfT0NJ84C4KAjIwMbYXQLHD+XyIiImpokvQBdHZ2Rm5ubo31eXl5cHZ2liKEJov9/4iIiKihSZIACoJQ6/qSkhK0aNFCihCapLy8PLH+H+8AEhERUUPRah3A6oEgCoUC7733HkxNTcVtVVVVOHbsmNg3kGqq7v/XrVs32NnZyR0OERERNRNaTQCrB4IIgoCUlBQYGRmJ24yMjODp6YnQ0FBthtCk8fEvERERaYNWE8DqgSDTp0/H6tWrYWFhoc3DNTvx8fEA+PiXiIiIGpZCeFAHPXqkoqIiWFpaorCwsMGT27y8PLRq1QqCICA7Oxv29vYNun8iIiJdpc3rd1MhySAQqr/Dhw9DEAR07dqVyR8RERE1KJ1PAL/++ms4OzujRYsW8PLywuHDh+UOCQD7/xEREZH26HQCuGPHDgQHB+Ptt99GcnIy+vfvjxEjRiA9PV3u0JgAEhERkdbodB9AHx8f9O7dG2vXrhXXdevWDWPGjEF4ePgjP6+tPgTs/0dERKQ97AMo4R3Aw4cPY8qUKfD19cX169cBAFu3bkVCQoJUIWhQqVRISkpCQECAxvqAgAAkJibW+pmKigoUFRVpLNpQ3f+vS5cuTP6IiIiowUmSAO7cuROBgYEwMTFBcnIyKioqAADFxcUICwuTIoQacnNzUVVVVaPAsp2dHXJycmr9THh4OCwtLcXFyclJK7FVl3/h418iIiLSBkkSwOXLl2PdunXYsGEDDA0NxfV+fn44efKkFCE8kEKh0HgvCEKNddXefPNNFBYWiktGRoZWYpo+fTpWrFiBF198USv7JyIiIt2m1ULQ1dLS0jBgwIAa6y0sLFBQUCBFCDW0atUK+vr6Ne72KZXKB067ZmxsDGNjY63H5u7uDnd3d60fh4iIiHSTJHcAHRwccPHixRrrExIS4OLiIkUINRgZGcHLywsxMTEa62NiYuDn5ydLTERERERSkOQOYFBQEBYuXIiNGzdCoVAgKysLR48eRWhoKN577z0pQqhVSEgIpk6dCm9vb/j6+mL9+vVIT0/H7NmzZYuJiIiISNskSQCXLFmCwsJCDBo0COXl5RgwYACMjY0RGhqKefPmSRFCrSZOnIhbt25h2bJlyM7OhpubG37//Xe0b99etpiIiIiItE3SOoClpaU4e/Ys1Go1unfvjpYtW0p1aK1gHSEiIqKmh9dvie4AVjM1NYW3t7eUhyQiIiKi+0gyCCQ8PBwbN26ssX7jxo1YsWKFFCEQERER0f9IkgB+88036Nq1a431PXr0wLp166QIgYiIiIj+R5IEMCcnBw4ODjXW29raIjs7W4oQiIiIiOh/JEkAnZyccOTIkRrrjxw5AkdHRylCICIiIqL/kWQQyMyZMxEcHIzKykoMHjwYABAbG4slS5Zg8eLFUoRARERERP8jWR3AvLw8zJkzByqVCoIgwMTEBK+//jreeOMNKUIgIiIiov+RtA5gSUkJzp07BxMTE7i6ukoyr642sY4QERFR08PrtxbvAIaEhODDDz+EmZkZQkJCHto2IiJCW2EQERER0X20lgAmJyejsrJSfP0gCoVCWyFoXfXN06KiIpkjISIiorqqvm5L+BC00ZH0EXBzk5mZCScnJ7nDICIioseQkZGBtm3byh2GLJgAPgG1Wo2srCyYm5s3+J3MoqIiODk5ISMjQ2f7J9QHz1f98HzVD89X/fB81Q/PV/096TkTBAHFxcVwdHSEnp4kFfEaHUnnAm5u9PT0tP4vBwsLC/4HoR54vuqH56t+eL7qh+erfni+6u9JzpmlpWUDR9O06GbaS0RERKTDmAASERER6RgmgI2UsbEx3n///SZfK1EqPF/1w/NVPzxf9cPzVT88X/XHc/bkOAiEiIiISMfwDiARERGRjmECSERERKRjmAASERER6RgmgEREREQ6hglgI/T111/D2dkZLVq0gJeXFw4fPix3SJL74IMPoFAoNBZ7e3txuyAI+OCDD+Do6AgTExMMHDgQZ86c0dhHRUUF5s+fj1atWsHMzAyjR49GZmam1F9Faw4dOoRnn30Wjo6OUCgU+PnnnzW2N9Q5ys/Px9SpU2FpaQlLS0tMnToVBQUFWv52De9R5+uVV16p8Zt7+umnNdroyvkKDw9Hnz59YG5ujtatW2PMmDFIS0vTaMPfl6a6nDP+xv7f2rVr4eHhIRZy9vX1xX//+19xO39fEhCoUYmKihIMDQ2FDRs2CGfPnhUWLlwomJmZCdeuXZM7NEm9//77Qo8ePYTs7GxxUSqV4vaPP/5YMDc3F3bu3CmkpKQIEydOFBwcHISioiKxzezZs4U2bdoIMTExwsmTJ4VBgwYJnp6ewp07d+T4Sg3u999/F95++21h586dAgAhOjpaY3tDnaPhw4cLbm5uQmJiopCYmCi4ubkJo0aNkuprNphHna9p06YJw4cP1/jN3bp1S6ONrpyvwMBAYdOmTUJqaqpw6tQpYeTIkUK7du2EkpISsQ1/X5rqcs74G/t/u3btEn777TchLS1NSEtLE9566y3B0NBQSE1NFQSBvy8pMAFsZPr27SvMnj1bY13Xrl2FN954Q6aI5PH+++8Lnp6etW5Tq9WCvb298PHHH4vrysvLBUtLS2HdunWCIAhCQUGBYGhoKERFRYltrl+/Lujp6Ql79uzRauxyuD+haahzdPbsWQGA8Mcff4htjh49KgAQzp8/r+VvpT0PSgCfe+65B35Gl8+XUqkUAAjx8fGCIPD3VRf3nzNB4G/sUaysrIRvv/2Wvy+J8BFwI6JSqZCUlISAgACN9QEBAUhMTJQpKvlcuHABjo6OcHZ2xqRJk3D58mUAwJUrV5CTk6NxnoyNjeHv7y+ep6SkJFRWVmq0cXR0hJubm06cy4Y6R0ePHoWlpSV8fHzENk8//TQsLS2b5Xk8ePAgWrdujc6dO2PWrFlQKpXiNl0+X4WFhQAAa2trAPx91cX956waf2M1VVVVISoqCrdv34avry9/XxJhAtiI5ObmoqqqCnZ2dhrr7ezskJOTI1NU8vDx8cGWLVuwd+9ebNiwATk5OfDz88OtW7fEc/Gw85STkwMjIyNYWVk9sE1z1lDnKCcnB61bt66x/9atWze78zhixAh8//33OHDgAD777DMcP34cgwcPRkVFBQDdPV+CICAkJAT9+vWDm5sbAP6+HqW2cwbwN3a/lJQUtGzZEsbGxpg9ezaio6PRvXt3/r4kYiB3AFSTQqHQeC8IQo11zd2IESPE1+7u7vD19UXHjh2xefNmsdP045wnXTuXDXGOamvfHM/jxIkTxddubm7w9vZG+/bt8dtvv2Hs2LEP/FxzP1/z5s3D6dOnkZCQUGMbf1+1e9A5429MU5cuXXDq1CkUFBRg586dmDZtGuLj48Xt/H1pF+8ANiKtWrWCvr5+jX+ZKJXKGv8S0jVmZmZwd3fHhQsXxNHADztP9vb2UKlUyM/Pf2Cb5qyhzpG9vT1u3LhRY/83b95s9ufRwcEB7du3x4ULFwDo5vmaP38+du3ahbi4OLRt21Zcz9/Xgz3onNVG139jRkZG6NSpE7y9vREeHg5PT0+sXr2avy+JMAFsRIyMjODl5YWYmBiN9TExMfDz85MpqsahoqIC586dg4ODA5ydnWFvb69xnlQqFeLj48Xz5OXlBUNDQ4022dnZSE1N1Ylz2VDnyNfXF4WFhfjzzz/FNseOHUNhYWGzP4+3bt1CRkYGHBwcAOjW+RIEAfPmzcNPP/2EAwcOwNnZWWM7f181Peqc1UaXf2O1EQQBFRUV/H1JRdIhJ/RI1WVgvvvuO+Hs2bNCcHCwYGZmJly9elXu0CS1ePFi4eDBg8Lly5eFP/74Qxg1apRgbm4unoePP/5YsLS0FH766SchJSVFePHFF2stEdC2bVth//79wsmTJ4XBgwc3qzIwxcXFQnJyspCcnCwAECIiIoTk5GSxZFBDnaPhw4cLHh4ewtGjR4WjR48K7u7uTbKMwsPOV3FxsbB48WIhMTFRuHLlihAXFyf4+voKbdq00cnz9dprrwmWlpbCwYMHNUqWlJaWim34+9L0qHPG35imN998Uzh06JBw5coV4fTp08Jbb70l6OnpCfv27RMEgb8vKTABbIS++uoroX379oKRkZHQu3dvjTICuqK65pOhoaHg6OgojB07Vjhz5oy4Xa1WC++//75gb28vGBsbCwMGDBBSUlI09lFWVibMmzdPsLa2FkxMTIRRo0YJ6enpUn8VrYmLixMA1FimTZsmCELDnaNbt24JL730kmBubi6Ym5sLL730kpCfny/Rt2w4DztfpaWlQkBAgGBraysYGhoK7dq1E6ZNm1bjXOjK+artPAEQNm3aJLbh70vTo84Zf2OaXn31VfE6Z2trKwwZMkRM/gSBvy8pKARBEKS730hEREREcmMfQCIiIiIdwwSQiIiISMcwASQiIiLSMUwAiYiIiHQME0AiIiIiHcMEkIiIiEjHMAEkIiIi0jFMAImIiIh0DBNAIiIiIh3DBJCIJDVw4EAEBwfLHUa9DBw4EAqFAgqFAqdOnZI7nId65ZVXxFh//vlnucMhokaKCSARaU1tyd5PP/2EDz/8UJ6AahEcHIwxY8Y8st2sWbOQnZ0NNzc37Qf1BFavXo3s7Gy5wyCiRo4JIBFJytraGubm5nKHITp+/Dj69u37yHampqawt7eHgYGBBFHVTqVSPbKNpaUl7O3tJYiGiJoyJoBEpBWvvPIK4uPjsXr1avGR5NWrV2vcFRw4cCDmz5+P4OBgWFlZwc7ODuvXr8ft27cxffp0mJubo2PHjvjvf/8rfkYQBKxcuRIuLi4wMTGBp6cnfvzxx3rFV1lZCSMjIyQmJuLtt9+GQqGAj49PnT67ZcsW2NjYoKKiQmP9Cy+8gJdffrnOMe7Zswf9+vXDU089BRsbG4waNQqXLl3SODfz5s1DSEgIWrVqhWHDhgEAfvzxR7i7u8PExAQ2NjYYOnQobt++Xa/vT0S6jQkgEWnF6tWr4evrKz46zc7OhpOTU61tN2/ejFatWuHPP//E/Pnz8dprr2H8+PHw8/PDyZMnERgYiKlTp6K0tBQA8M4772DTpk1Yu3Ytzpw5g0WLFmHKlCmIj4+vc3z6+vpISEgAAJw6dQrZ2dnYu3dvnT47fvx4VFVVYdeuXeK63Nxc/Prrr5g+fXqdY7x9+zZCQkJw/PhxxMbGQk9PD88//zzUarXGuTEwMMCRI0fwzTffIDs7Gy+++CJeffVVnDt3DgcPHsTYsWMhCEKdvzsREQQiIi3x9/cXFi5c+NB1/v7+Qr9+/cT3d+7cEczMzISpU6eK67KzswUAwtGjR4WSkhKhRYsWQmJiosZ+Z8yYIbz44ov1ii86OlqwsbF5rO/x2muvCSNGjBDff/7554KLi4ugVqsfO0alUikAEFJSUsTj9uzZU6NNUlKSAEC4evXqQ2MGIERHRz/yuxGRbpKvMwsR0f94eHiIr/X19WFjYwN3d3dxnZ2dHQBAqVTi7NmzKC8vFx+HVlOpVOjVq1e9jpucnAxPT8/HinnWrFno06cPrl+/jjZt2mDTpk3iCNy6xnjp0iW8++67+OOPP5Cbmyve+UtPTxcHm3h7e2vsw9PTE0OGDIG7uzsCAwMREBCAcePGwcrK6rG+BxHpJiaARCQ7Q0NDjfcKhUJjnUKhAACo1WoxSfrtt9/Qpk0bjc8ZGxvX67inTp167ASwV69e8PT0xJYtWxAYGIiUlBTs3r1bjLMuMT777LNwcnLChg0b4OjoCLVaDTc3N43BHmZmZhqf19fXR0xMDBITE7Fv3z588cUXePvtt3Hs2DE4Ozs/1nchIt3DBJCItMbIyAhVVVUNus/u3bvD2NgY6enp8Pf3f6J9paSk4Pnnn3/sz8+cOROrVq3C9evXMXToULGPY11ivHXrFs6dO4dvvvkG/fv3BwCxT+KjKBQKPPPMM3jmmWfw3nvvoX379oiOjkZISMhjfxci0i1MAIlIazp06IBjx47h6tWraNmyJaytrZ94n+bm5ggNDcWiRYugVqvRr18/FBUVITExES1btsS0adPqvC+1Wo3Tp08jKysLZmZmsLS0rFcsL730EkJDQ7FhwwZs2bKlXjFaWVnBxsYG69evh4ODA9LT0/HGG2888pjHjh1DbGwsAgIC0Lp1axw7dgw3b95Et27d6hU7Eek2jgImIq0JDQ2Fvr4+unfvDltbW6SnpzfIfj/88EO89957CA8PR7du3RAYGIjdu3drPAKNjIwUHx0/yPLly7Fjxw60adMGy5Ytq3ccFhYWeOGFF9CyZcsaxaQfFaOenh6ioqKQlJQENzc3LFq0CJ988kmdjnno0CH84x//QOfOnfHOO+/gs88+w4gRI+odPxHpLoUgsHYAETU/H3zwAQ4ePIiDBw8+8b4GDhyInj174vPPP6+xbdiwYejWrRvWrFnzxMdpSAqFAtHR0XWa5YSIdA/vABJRs7R3716sXLmywfb39ddfo2XLlkhJSQEA5OXlISoqCgcOHMDcuXMb7DhPavbs2WjZsqXcYRBRI8c7gEREj3D9+nWUlZUBANq1awcjIyN06NAB+fn5ePfddxEaGipzhP9PqVSiqKgIAODg4FBjFDEREcAEkIiIiEjn8BEwERERkY5hAkhERESkY5gAEhEREekYJoBEREREOoYJIBEREZGOYQJIREREpGOYABIRERHpmP8DrlvxQncal8kAAAAASUVORK5CYII=", - "text/html": [ - "\n", - "
    \n", - "
    \n", - " Figure\n", - "
    \n", - " \n", - "
    \n", - " " - ], - "text/plain": [ - "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure()\n", - "plt.plot(t[0:-1:10000],np.transpose(H[0:-1:10000,0]), color = 'black');\n", - "plt.xlabel('time, $t$ [years]')\n", - "plt.ylabel('ice thickness at the left of the domain, $H(x=0,t)$ [m]')\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "id": "cc5e4b34-ad4b-4ad9-b6ba-8cf104bdfd20", - "metadata": {}, - "source": [ - "We can also plot the final ice flux as follows." - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "id": "2cc789ca-4f85-4932-95f0-cf9ac88db043", - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "d74326ea6386495780c34149964adc6e", - "version_major": 2, - "version_minor": 0 - }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAABXZ0lEQVR4nO3deVyU1f4H8M+wjYg4osjmbpobagouqIm5oCaa2dVMJW2xLNe0zco0LXEpy/J3Xbpl3ja6lXbrlijuG6iXJQWXstwFQYUBF0Dh/P44dwYRNHBmeOZ5ns/79eI1jzOH4fs44nzmnOecYxBCCBARERGRbrgoXQARERERVS0GQCIiIiKdYQAkIiIi0hkGQCIiIiKdYQAkIiIi0hkGQCIiIiKdYQAkIiIi0hkGQCIiIiKdYQAkIiIi0hkGQCIiIiKdYQAkIiIi0hkGQCIiIiKdYQAkIiIi0hkGQCIiIiKdYQAkIiIi0hkGQCIiIiKdYQAkIiIi0hkGQCIiIiKdYQAkIiIi0hkGQCIiIiKdYQAkIiIi0hkGQCIiIiKdYQAkIiIi0hkGQCIiIiKdYQAkIiIi0hkGQCIiIiKdYQAkIiIi0hkGQCIiIiKdYQAkIiIi0hkGQCIiIiKdYQAkIiIi0hkGQCIiIiKdYQAkIiIi0hkGQCIiIiKdYQAkIiIi0hkGQCIiIiKdYQAkIiIi0hkGQCIiIiKdYQAkIiIi0hkGQCIiIiKdYQAkIiIi0hkGQCIiIiKdYQAkIiIi0hkGQCIiIiKdYQAkIiIi0hkGQCIiIiKdYQAkIiIi0hkGQCIiIiKdYQAkIiIi0hkGQCIiIiKdYQAkIiIi0hkGQCIiIiKdYQAkIiIi0hkGQCIiIiKdYQAkIiIi0hkGQCIiIiKdcVO6ADUrLi7GuXPn4O3tDYPBoHQ5REREVAFCCOTl5SEoKAguLvrsC2MAtMG5c+fQoEEDpcsgIiKiu3D69GnUr19f6TIUwQBoA29vbwDyH1DNmjUVroaIiIgqIjc3Fw0aNLC+j+sRA6ANLMO+NWvWZAAkIiJSGT1fvqXPgW8iIiIiHWMAJCIiItIZBkAiIiIinWEAJCIiItIZBkAiIiIinWEAJCIiItIZBkAiIiIinWEAJCIiItIZBkAiIiIinWEAJCIiItIZBkAiIiIinWEAJCIiItIZN6ULICI7EgI4cwY4cgT480/g9GkgJwfIzQWKiwEXF6BGDaBOHSAgAGjWDGjRAmjUCNDxpuhERHrDAEikZkIAhw4BGzcCW7YA+/YBmZmVf57atYHOnYEHHgAGDADatmUgJCLSMIMQQihdhFrl5ubCZDLBbDajZs2aSpdDenL0KPDFF0BMDHDsWOnHXF2Be+8F7rkHaNhQhjuTSfb+FRcDeXnAxYuyp/DYMeD334HCwtLP0bAh8NhjwOjRMgwSEWkI378ZAG3Cf0BUpYqKgB9+AP7v/4CtW0vuNxqB8HCgXz/g/vuBdu0AT8+KP29hIXDgALBnT0lP4rVrJY936wZMmgT87W+Au7vdToeISCl8/2YAtAn/AVGVuHED+PxzYMEC4Lff5H0uLsDAgcCoUcDgwYC3t/1+3rVrwC+/AF9+Cfz0k/z5ANC4MfDqq8C4cTJ0EhGpFN+/GQBtwn9A5FBCAD/+KEPXkSPyPh8f4PnngWeekcO0jpaeDnz8sex1tFxb2LixDKMjRvA6QSJSJb5/cxkYIud09CjQty8wdKgMf76+wKJFwMmTwNtvV034A4DAQODNN4ETJ4ClS+WfT5wARo4EuneXQ8dERKQ6DIBEzuT6deCtt+R1fFu2ANWqAa+9JidrvPSSfYd6K8PTE5gyRU4YmTsX8PIC4uOBjh2BV14pfc0gERE5PQZAImeRlgZ07QrMmSMnZgwcKO975x05i9cZeHkBs2bJHspHHpETUxYtAkJDgeRkpasjIqIKYgAkUpoQwIoVQEgIkJQkl22JiQF+/hlo2lTp6spXrx7w3XfAv/8tF5Q+dAjo0gV49115PkRE5NQYAImUlJcnZ/I+9xxQUAA8+CCQmgo8+qg6JlgMGQIcPAgMGyaHr196CXj4Ybn7CBEROS0GQCKlHD8u19iLiZGLN7/7LvCf/8iJFmri6yt7A5cvBzw8ZK9gaGjJzGUiInI6DIBEStixA+jUSfb2BQQA27cDM2aoo9evPAYDMGGCXEy6USPgjz/k9YwbNypdGRERlYMBkKiq/etfcteOixfldX/798slVbQgJETuR9y9O2A2yyHtTz9VuioiIroFAyBRVVq6VF7fV1gor5vbsQOoX1/pquzLzw/YvBmIipKzhJ96Ss5k5uQQIiKnwQBIVFWio4Fp0+TxpEmyJ7B6dUVLchijEVizRu5iAgBvvAG8+CJDIBGRk2AAJKoK8+fLBZ0BuZDyhx/KiR9aZjDI0PvBB/LPS5bIxaSLixUti4iIGACJHO+dd4DXX5fHb78tF1JW62SPuzF1KrBqlTznZctk7yd7AomIFMUASORIb78thz+B0kFQb8aPB1avliFw+fKSvxMiIlIEAyCRoyxaJHv7ADkUahkC1quxY2X4A+SQ+LvvKlsPEZGOMQASOcIXXwCvvCKPo6NLJkPo3bPPyr8PQO4a8sknytZDRKRTThcAb9y4gTfeeANNmjSBp6cnmjZtirlz56L4pgvHhRCYM2cOgoKC4OnpiV69eiEtLa3U8xQUFGDy5Mnw9fWFl5cXhgwZgjNnzpRqk52djaioKJhMJphMJkRFRSGHW1iRrTZvBp58Uh7PmMHwd6tXXpHhDwCeeQZYu1bZeoiIdMjpAuDChQuxYsUKLFu2DIcPH8aiRYuwePFifPTRR9Y2ixYtwpIlS7Bs2TLs378fAQEB6NevH/Ly8qxtpk2bhnXr1iEmJga7du3C5cuXERkZiaKiImubUaNGISUlBbGxsYiNjUVKSgqioqKq9HxJYw4cKNkXd8QIOQxMpRkMwMKFcn3A4mLgscfkeohERFR1hJMZNGiQePLJJ0vdN2zYMDFmzBghhBDFxcUiICBALFiwwPp4fn6+MJlMYsWKFUIIIXJycoS7u7uIiYmxtjl79qxwcXERsbGxQgghDh06JACIhIQEa5v4+HgBQBw5cqRCtZrNZgFAmM3muztZ0pZTp4SoV08IQIiePYW4dk3pipzbjRtCPPKI/Pvy9RXi+HGlKyIineD7txBO1wPYo0cPbN68Gb/99hsA4Ndff8WuXbvw4IMPAgCOHz+OjIwMREREWL/HaDQiPDwce/bsAQAkJibi+vXrpdoEBQUhODjY2iY+Ph4mkwldunSxtunatStMJpO1DVGF5eXJbc/OngVatQJ++AGoVk3pqpybqyvwz38CHTsCFy4ADz0EXL6sdFVERLrgpnQBt3rllVdgNpvRsmVLuLq6oqioCO+88w4ee+wxAEBGRgYAwN/fv9T3+fv74+TJk9Y2Hh4e8PHxKdPG8v0ZGRnw8/Mr8/P9/PysbW5VUFCAgoIC659zc3Pv8ixJU4QAxo0DUlOBwEBg/Xrgln97dBvVq8uw3KmTHD5//HHgu+8AF6f7bEpEpClO97/sN998gy+++AJfffUVkpKSsGbNGrz77rtYs2ZNqXaGWxbSFUKUue9Wt7Ypr/2dnic6Oto6YcRkMqFBgwYVPS3SskWL5EQGd3d526iR0hWpS4MGwLp1gIeHvJ0zR+mKiIg0z+kC4EsvvYRXX30VI0eORNu2bREVFYUXXngB0f9bOiIgIAAAyvTSZWZmWnsFAwICUFhYiOzs7Du2OX/+fJmfn5WVVaZ30WLmzJkwm83Wr9OnT9t2sqR+mzeXrO/30UdA167K1qNWYWFytxAAmDdP7pNMREQO43QB8OrVq3C5ZfjH1dXVugxMkyZNEBAQgLi4OOvjhYWF2L59O7p16wYACAkJgbu7e6k26enpSE1NtbYJCwuD2WzGvn37rG327t0Ls9lsbXMro9GImjVrlvoiHTt1Chg5Us5kfeIJuaQJ3b2xY+WyOYBcRufoUWXrISLSMKe7BnDw4MF455130LBhQ7Rp0wbJyclYsmQJnvzfumoGgwHTpk3D/Pnz0bx5czRv3hzz589H9erVMWrUKACAyWTCU089hRkzZqBOnTqoXbs2XnzxRbRt2xZ9+/YFALRq1QoDBgzA+PHjsXLlSgDAM888g8jISLRo0UKZkyf1yM8HHnlETl4ICQH+7//0tb+voyxcCCQnA1u2AI8+CiQkcDINEZEjKDwLuYzc3FwxdepU0bBhQ1GtWjXRtGlT8frrr4uCggJrm+LiYjF79mwREBAgjEaj6Nmzpzh48GCp57l27ZqYNGmSqF27tvD09BSRkZHi1KlTpdpcvHhRjB49Wnh7ewtvb28xevRokZ2dXeFaOY1cx559Vi5fUqeOECdOKF2Ntpw7J0TduvLvd+JEpashIg3i+7cQBiGEUDqEqlVubi5MJhPMZjOHg/Xkhx+Ahx+WPX4bNgD9+ildkfbExgIDB8rj77+Xi2sTEdkJ37+d8BpAIqd27hzw9NPy+KWXGP4cZcAA4OWX5fGTTwInTihaDhGR1jAAElVUcbFc7+/iRbl48bx5SlekbW+/LWdVm81yu7jr15WuiIhIMxgAiSrqww+BuDjA0xP48ku5bh05jrs78PXXQK1acjIIAzcRkd0wABJVxIEDwCuvyOMlS4CWLZWtRy8aNwb+N0sf8+cDSUmKlkNEpBUMgER/JT8fGDUKKCwEBg8Gnn1W6Yr0ZcQI+VVUJNcKvGk7RiIiujsMgER/5a23gLQ0wN8f+OQTrvenhGXLgLp15X7Lc+cqXQ0RkeoxABLdSVISsHixPF65UoYQqnp16wLLl8vjhQuB/fuVrYeISOUYAIlu5/p14Kmn5NDjiBHAQw8pXZG+PfKInA1cVCRnY+fnK10REZFqMQAS3c577wEpKUDt2nIGMCnvo4/kUPyhQ8Ds2UpXQ0SkWgyAROX57Tdgzhx5/P77MnSQ8urUKZkV/O67MqATEVGlMQAS3aq4WO72UVAA9O8PREUpXRHd7KGHgOHD5ev03HPyloiIKoUBkOhWq1YBO3cCXl6yt4mzfp3P++8DNWrIBaI/+UTpaoiIVIcBkOhm58+XLPg8fz7QqJGy9VD56tUr2RnklVeArCxl6yEiUhkGQKKbzZwJ5OYCISHAxIlKV0N3MmkS0L49kJ0NvPyy0tUQEakKAyCRRUICsHq1PF62DHB1VbYeujM3t5K1AT/7TA7bExFRhTAAEgFybblJk+TxE08AXbsqWw9VTFgYMH68PH7uObl2IxER/SUGQCJATiRITARMJiA6WulqqDIWLAB8feV2fUuXKl0NEZEqMAASXbwor/0D5D6zXPNPXWrXltvDAXJiCCeEEBH9JQZAolmzgEuXgOBg4Pnnla6G7sa4cUCHDnICj2UBbyIiui0GQNK35GRgxQp5vGyZnFhA6uPiAixZIo9XrpRbxRER0W0xAJJ+CQG8+KK8ffRRIDxc6YrIFr16AUOHygk9M2YoXQ0RkVNjACT9io0FtmwBPDzkRAJSv8WLAXd3+drGxipdDRGR02IAJH0qKipZPHjyZKBxY0XLITtp1ky+noDsBbxxQ9l6iIicFAMg6dOaNUBqKuDjA7z+utLVkD3NmgXUqSOvA/zHP5SuhojIKTEAkv5cvSpDAgC88YYMgaQdtWqVzASeNUvODCYiolIYAEl/PvgAOHdODvtyv19tevZZoEUL4MIF4P33la6GiMjpMACSvmRmlkz4mD8fMBqVrYccw90dePttefzeezIIEhGRFQMg6cu8eUBeHhASIpd+Ie0aNgzo2FG+3padQoiICAADIOnJ8eMliz4vXiwXDybtcnEB3nlHHi9bBpw9q2w9REROhO+ApB9vvy2XBYmIAB54QOlqqCr07w/cfz+Qny97f4mICAADIOnFsWNy6RcAmDtX2Vqo6hgMJb2An3wi/x0QEREDIOnEW2/JxZ8HDQK6dFG6GqpK998PDBwoe38ty8MQEekcAyBp3+HDwFdfyeO33lK2FlKGZUbwV18BBw8qWwsRkRNgACTte+stoLgYGDpUzv4l/enYERg+HBACmD1b6WqIiBTHAEjadvAg8M038pi9f/o2Z468JnDdOvYCEpHuMQCStlmu+Ro+HGjXTtFSSGGtWwOPPCKPLRNDiIh0igGQtCs5GVi7Vvb6cNiPALn3MwD861/AkSPK1kJEpCAGQNIuy7pvI0cCbdooWws5h/btgSFD5LWA8+crXQ0RkWIYAEmbDh2S13oBJb0+RAAwa5a8/eor4I8/lK2FiEghDICkTQsWyNuHH5bXfhFZhIYCAwbIdSGjo5WuhohIEQyApD3Hj5es+zdzprK1kHOy9AKuWQOcPKlsLURECmAAJO1ZvFj27vTrB3TqpHQ15Iy6dQN695a7gyxcqHQ1RERVjgGQtCU9Hfj0U3n82mvK1kLOzdIL+MknwLlzytZCRFTFGABJW95/HygoAMLCgPBwpashZxYeDnTvDhQWAh9+qHQ1RERVigGQtOPSJWD5cnn82mty/T+i2zEYgJdflscrVgC5ucrWQ0RUhRgASTuWLQMuX5Y7fgwapHQ1pAaRkUDLloDZDHz8sdLVEBFVGQZA0oYrV4ClS+XxzJns/aOKcXEBZsyQxx98AFy/rmg5RERVhQGQtGHNGjkE3LQp8Le/KV0NqcmYMYC/P3DmDBATo3Q1RERVggGQ1K+oSE7+AIBp0wA3N0XLIZWpVg2YMkUeL14st4kjItI4BkBSv//8Bzh2DKhVC3jiCaWrITV67jnAyws4eBDYuFHpaoiIHI4BkNTvvffk7bPPAjVqKFsLqZOPD/D00/J48WJlayEiqgIMgKRu+/cDO3fKYd/Jk5WuhtTshRcAV1dg82YgKUnpaoiIHIoBkNRtyRJ5+9hjQL16ytZC6taoETBihDx+911layEicjAGQFKvU6eAb7+Vx9OnK1sLacOLL8rbb7/l9nBEpGkMgKReH30kZwD37g3cd5/S1ZAWdOwI9OgB3LghdwchItIoBkBSp9xcYNUqeczeP7Iny5IwK1bIfaWJiDSIAZDU6dNPZQhs2RIYOFDpakhLhg4F6tcHsrKAb75RuhoiIodgACT1KS6W+/4CcuFnF/4zJjtydwcmTpTHH37IhaGJSJP4zknqs2ED8McfcuHnMWOUroa06Omn5Q4hiYlAfLzS1RAR2R0DIKmPpffvySfl7g1E9ubrC4weLY8//FDZWoiIHIABkNTl2DFg/Xp5/NxzytZC2mZZWPy774AzZ5SthYjIzhgASV2WL5fXZA0cCDRrpnQ1pGXt2wPh4XKpIS4JQ0QawwBI6nH1qpz9CwCTJilbC+mDZUmYlSuB/HxlayEisiMGQFKPr74CcnKApk2BAQOUrob0YMgQoGFD4MIFLglDRJrCAEjqIETJ5I+JE7n0C1UNNzdgwgR5vHKlsrUQEdkR30VJHXbvBn79FfD0BJ54QulqSE+efFIGwfh4+W+QiEgDGABJHSy9f2PGAD4+ytZC+uLvDzz8sDxmLyARaYRTBsCzZ89izJgxqFOnDqpXr4777rsPiYmJ1seFEJgzZw6CgoLg6emJXr16IS0trdRzFBQUYPLkyfD19YWXlxeGDBmCM7cs5ZCdnY2oqCiYTCaYTCZERUUhJyenKk6RKiM9Hfj+e3ls2aGBqCpZhoG/+AK4fFnZWoiI7MDpAmB2dja6d+8Od3d3rF+/HocOHcJ7772HWrVqWdssWrQIS5YswbJly7B//34EBASgX79+yMvLs7aZNm0a1q1bh5iYGOzatQuXL19GZGQkioqKrG1GjRqFlJQUxMbGIjY2FikpKYiKiqrK06WKWL0auHED6NZNLs1BVNUeeAC4914gLw/4+mulqyEisp1wMq+88oro0aPHbR8vLi4WAQEBYsGCBdb78vPzhclkEitWrBBCCJGTkyPc3d1FTEyMtc3Zs2eFi4uLiI2NFUIIcejQIQFAJCQkWNvEx8cLAOLIkSMVqtVsNgsAwmw2V+ocqRKKioRo3FgIQIg1a5SuhvTsvffkv8MOHYQoLla6GiKyAd+/hbC5B/D69es4ffo0jh49ikuXLtn6dPjxxx8RGhqK4cOHw8/PDx06dMDHH39sffz48ePIyMhARESE9T6j0Yjw8HDs2bMHAJCYmIjr16+XahMUFITg4GBrm/j4eJhMJnTp0sXapmvXrjCZTNY25AQ2bQJOnJD7/g4frnQ1pGdjxwJGI5CcDPz3v0pXQ0Rkk7sKgJcvX8bKlSvRq1cvmEwmNG7cGK1bt0bdunXRqFEjjB8/Hvv377+rgv78808sX74czZs3x4YNGzBhwgRMmTIF//znPwEAGRkZAAB/f/9S3+fv7299LCMjAx4eHvC5ZbLArW38/PzK/Hw/Pz9rm1sVFBQgNze31Bc52KpV8jYqSs4AJlJKnTolH0K4MwgRqVylA+D777+Pxo0b4+OPP0bv3r2xdu1apKSk4OjRo4iPj8fs2bNx48YN9OvXDwMGDMDvv/9eqecvLi5Gx44dMX/+fHTo0AHPPvssxo8fj+XLl5dqZzAYSv1ZCFHmvlvd2qa89nd6nujoaOuEEZPJhAYNGlT0tOhuZGQA//63PB4/XtlaiICSySBffy0XJSciUqlKB8A9e/Zg69at+O9//4s333wTAwYMQNu2bdGsWTN07twZTz75JFavXo3z589jyJAh2L59e6WePzAwEK1bty51X6tWrXDq1CkAQEBAAACU6aXLzMy09goGBASgsLAQ2dnZd2xz/vz5Mj8/KyurTO+ixcyZM2E2m61fp0+frtS5USV99pmc/BEWBrRtq3Q1RHIiUnAwcO2anBFMRKRSlQ6A3377Lc6dO4fi4uI7tjMajXj++efx9NNPV+r5u3fvjqNHj5a677fffkOjRo0AAE2aNEFAQADi4uKsjxcWFmL79u3o1q0bACAkJATu7u6l2qSnpyM1NdXaJiwsDGazGfv27bO22bt3L8xms7VNeedUs2bNUl/kIMXFgOXaz2eeUbYWIguDoaQXcMUKuUMNEZEa3dXMERcXcf78ebvORrHYt2+fcHNzE++88474/fffxZdffimqV68uvvjiC2ubBQsWCJPJJNauXSsOHjwoHnvsMREYGChyc3OtbSZMmCDq168vNm3aJJKSkkTv3r1F+/btxY0bN6xtBgwYINq1ayfi4+NFfHy8aNu2rYiMjKxwrZxF5EBxcXLGpckkxJUrSldDVCInR4hq1eS/z717la6GiO4C37+FuKsAaDAYHBYAhRDip59+EsHBwcJoNIqWLVuKVatWlXq8uLhYzJ49WwQEBAij0Sh69uwpDh48WKrNtWvXxKRJk0Tt2rWFp6eniIyMFKdOnSrV5uLFi2L06NHC29tbeHt7i9GjR4vs7OwK18l/QA40YoR8g504UelKiMoaM0b++3z2WaUrIaK7wPdvIQxCVH4Mw8XF5bazaPUkNzcXJpMJZrOZw8H2lJkJ1K8PXL8OpKRw8WdyPlu3Ar17AzVryp1qqldXuiIiqgS+f9uwE8iyZcuwYcMGXLhwwZ71EAFr1sjw16ULwx85p/BwoEkTIDe3ZJtCIiIVuesAuHz5cgwcOBD+/v5o2LAhhg4dinnz5uHnn39Genq6PWskPREC+Mc/5DGXfiFn5eICPPmkPP70U2VrISK6CzYNAd+4cQPJyclISkqyfp0+fRoGgwH+/v44d+6cI2p2GuxCdoA9e4Du3QEvL7kOYI0aSldEVL7Tp4FGjeSHlmPHgHvuUboiIqogvn8DbnfzTZaFkoOCghAUFIRBgwZZH7t06RL++9//IiUlxS4Fks589pm8/dvfGP7IuTVoAEREABs2AKtXA2+/rXRFREQVxkkgNuAnCDu7ehUICADy8oBt2+R1VkTO7F//Ah59FKhXDzh5EnB1VboiIqoAvn/f5TWA69evh8lksnctpHdr18rw16QJcP/9SldD9NceegioXRs4exa4aeF5IiJnd1cBsH///jAajfauhfTOMvw7bpy8yJ7I2RmNwJgx8viTT5SthYioEvguS87h5ElgyxZ5/PjjytZCVBmW2cD//jfAZbGISCUYAMk5rFkjZ1P27g00bqx0NUQV17490LGjXLvyyy+VroaIqEIYAEl5xcUlw79PPKFoKUR3Zdw4efv554qWQURUUQ4LgC4uLujduzcSExMd9SNIK3buBI4fB7y9gWHDlK6GqPJGjgTc3IDERODwYaWrISL6Sw4LgJ9++inCw8MxZcoUR/0I0orVq+Xto49yT1VSp7p1gQED5DF7AYlIBe5qHUCLvLw8eHt727MeVeE6QnZw+bJc++/KFWDXLrkLCJEaffstMGIE0LCh7NHmTHYip8X3bxt7AO+//35kZGTYqxbSo++/l+GveXOgWzelqyG6e4MHAyYTcOoUsGOH0tUQEd2RTQEwNDQUXbp0wZEjR0rdn5ycjAcffNCmwkgnvvhC3j7+OPC/LQaJVKlaNWD4cHnMYWAicnI2BcB//OMfePLJJ9GjRw/s2rULv/32G0aMGIHQ0FAuFE1/7dw5YPNmeTxqlLK1ENlDVJS8/fZb4No1ZWshIroDN1ufYPbs2fDw8EC/fv1QVFSE/v37Y//+/ejYsaM96iMti4mRa/916wY0bap0NUS269FDrmN54oRcGHrkSKUrIiIql009gOnp6ZgyZQrmzZuH1q1bw93dHSNHjmT4o4qxDP9attIiUjsXl5J/zxwGJiInZlMAbNq0KXbu3Ilvv/0WiYmJWLt2LZ5//nksXLjQXvWRVqWlAcnJcu20ESOUrobIfizDwBs2AOfPK1sLEdFt2BQAV69ejeTkZAwaNAgA0L9/f2zduhVLly7F888/b5cCSaMsW2Y9+CBQp46ytRDZ0733Ap07A0VF8jIHIiInZFMAHFnO9S0dO3bEnj17sG3bNluemrSsuLgkAHL4l7To8cflLYeBichJVToAnjp16i/bNG7cGLt37wYAnD17tvJVkbbt3i3XSqtZE4iMVLoaIvt79NGSreGOHlW6GiKiMiodADt16oTx48dj3759t21jNpvx3XffITg4GGvXrrWpQNIgy+SPv/0N8PRUthYiR/D1BSIi5DGHgYnICVV6GZjDhw9j/vz5GDBgANzd3REaGoqgoCBUq1YN2dnZOHToENLS0hAaGorFixdj4MCBjqib1KqgAPjXv+Qxh39Jy0aOBH75Bfj6a+DNN7nQORE5lbveCzg/Px+//PILdu7ciRMnTuDatWvw9fVFhw4d0L9/fwQHB9u7VqfDvQTvwrp1wLBhQL16chiY+6WSVuXlAX5+QH4+kJQEdOigdEVE9D98/7ZhIehq1aph2LBhGDZsmD3rIa2zDP+OGsXwR9rm7S2vcf3uOzkMzABIRE7Epnfg5ORkFBYW2qsW0rrcXODnn+Xx6NHK1kJUFSwrJcTEyNnvREROwqat4EJDQ+Hq6ooWLVqgffv2uO+++9C+fXu0b98efn5+9qqRtOLf/5bXALZsCbRrp3Q1RI734IOyJ/DUKSA+HujeXemKiIgA2NgD+Msvv8DHxwdt2rSBi4sLvvzyS/Tv3x+BgYEIDAzEwIED8eqrr+Lrr7+2V72kZpbZkCNH8oJ40gdPT2DoUHnM/weJyInc9SQQAGjZsiUWL16MwYMHW+/bsGEDJk6ciAkTJiArKwsHDhxAamoqTp8+bZeCnQkvIq2ES5cAf3/gxg3g8GHZC0ikB+vXy55APz/g7Fm5PiARKYrv3zYOAZ88ebLMbN/+/ftj0aJF+Oabb/DNN9/YVBxpyNq1Mvy1b8/wR/rSt6/c7jAzE9i6FejXT+mKiIhsGwIOCwvDypUry9zfoUMHrF+/3panJq2xfBgoZ/tAIk1zd5eLngMcBiYip2FTAPz73/+O5cuX4+mnn0ZaWhqKi4tRWFiIjz76CD4+PvaqkdTu/HlgyxZ5PGKEsrUQKeGxx+Tt2rVyIhQRkcJsCoAtW7bEvn37cObMGbRt2xbVq1eHl5cXVqxYgejoaHvVSGr3/fdyCYzOnYGmTZWuhqjq3X8/EBQEmM3ymkAiIoXZfDVyixYtEBsbizNnziApKQkuLi4ICQlBYGCgPeojLbDM/n30UWXrIFKKi4v89//++3IrRMvMYCIihdg0C1jvOIuoAs6cARo2BIQATp8G6tdXuiIiZSQkAGFhQI0ackKIp6fSFRHpFt+/bRwCJvpL334rw1+PHgx/pG+dO8vfgcuXgY0bla6GiHSOAZAci7N/iSQXl5LZwN9+q2wtRKR7DIDkOMePA3v3ln7jI9Izy+/Bjz9yNjARKYoBkBzH0svRq5fcBYRI78LC5GzgvDwOAxORohgAyXG+/17ecu0/IsnFBXjkEXn83XfK1kJEuuawAOji4oLevXsjMTHRUT+CnNnJk8C+fYDBwCUviG42fLi8/fe/OQxMRIpxWAD89NNPER4ejilTpjjqR5AzW7tW3vbsyeFfopt16wYEBMhFoTdvVroaItIphwXAcePGYfbs2di9e7ejfgQ5M8vwr2W4i4gkV9eS3wvOBiYihdgUADdt2nTbx1auXGnLU5OanT0LWIL/sGHK1kLkjCzDwD/8ABQWKloKEemTTQFw0KBBmDFjBgpv+g8sKysLgwcPxsyZM20ujlRq3Tp5GxYG1KunbC1EzqhHD3lpRE4OsGWL0tUQkQ7ZFAB37NiBn376CZ06dUJaWhp+/vlnBAcH4/Lly/j111/tVSOpjWX4l2v/EZXP1bWkd5yzgYlIATYFwC5duiA5ORnt2rVDSEgIHn74YcyYMQNbtmxBgwYN7FUjqcn588COHfKYw79Et2f5gLRuHXD9urK1EJHu2DwJ5OjRo9i/fz/q168PNzc3HDlyBFevXrVHbaRGP/wAFBcDoaFA48ZKV0PkvHr2BHx9gUuXSj40ERFVEZsC4IIFCxAWFoZ+/fohNTUV+/fvt/YIxsfH26tGUhMO/xJVjJsbMGSIPLZcN0tEVEVsCoBLly7FDz/8gI8++gjVqlVDmzZtsG/fPgwbNgy9evWyU4mkGhcvllzQzuVfiP7aww/LW0vPORFRFXGz5ZsPHjwIX1/fUve5u7tj8eLFiIyMtKkwUqF//xsoKgLatweaNVO6GiLn17cvUKOGXDopMRHo1EnpiohIJ2zqAbw1/N0sPDzclqcmNeLiz0SVU60aMHCgPOYwMBFVIZt6AOfOnXvHx998801bnp7UJDcXiIuTxwyARBU3dKjcEWTdOmD+fKWrISKdsCkArrvlE+v169dx/PhxuLm54Z577mEA1JP16+VSFi1aAK1bK10NkXoMGgS4uwNHjsivli2VroiIdMCmAJicnFzmvtzcXIwbNw4PWy5uJn344Qd5O3SoklUQqY/JBPTuDWzYIHsBuYsSEVUBm9cBvFXNmjUxd+5czJo1y95PTc6qoAD4+Wd5zABIVHk3zwYmIqoCdg+AAJCTkwOz2eyIpyZntG0bkJcHBAQAnTsrXQ2R+jz0EGAwAPv2yRnBREQOZtMQ8Icffljqz0IIpKen4/PPP8eAAQNsKoxUxNJr8dBDgItDPlMQaVtAANC1KxAfL3+fJk5UuiIi0jibAuD7779f6s8uLi6oW7cuxo4di5m8jkUfiovl+n8Ah3+JbPHwwzIArlvHAEhEDmcQQgili1Cr3NxcmEwmmM1m1KxZU+lylLF3r+y58PYGsrIAo1HpiojU6dgxoHlzwNUVyMwEatdWuiIizeL7t4OuASQdsQz/Pvggwx+RLZo1A4KD5W46lklVREQOUukh4OnTp1e47ZIlSyr79KQ2XP6FyH6GDgVSU+XvVVSU0tUQkYZVOgCWt/ZfeQwGQ6WLIZWxLFzr7l6ynRUR3b2HHgLefluuCZifL7eKIyJygEoHwKVLl6JNmzZwdXV1RD2kJpbJH717y8Vsicg2HTsCgYFAerpcXomrKRCRg1T6GsAOHTrg0qVLAICmTZvi4sWLdi+KVOLm5V+IyHYuLsDgwfL4p5+UrYWINK3SAbBWrVr4888/AQAnTpxAcXGx3YsiFUhPBxIS5PGQIcrWQqQlNwdALtJARA5S6QD4yCOPIDw8HE2aNIHBYEBoaCiaNm1a7petoqOjYTAYMG3aNOt9QgjMmTMHQUFB8PT0RK9evZCWllbq+woKCjB58mT4+vrCy8sLQ4YMwZkzZ0q1yc7ORlRUFEwmE0wmE6KiopCTk2Nzzbrx44/ytnNnoF49ZWsh0pI+fQBPT+D0aeDXX5Wuhog0qtLXAK5atQrDhg3DsWPHMGXKFIwfPx7e3t52L2z//v1YtWoV2rVrV+r+RYsWYcmSJfjss89w77334u2330a/fv1w9OhRax3Tpk3DTz/9hJiYGNSpUwczZsxAZGQkEhMTrdcujho1CmfOnEFsbCwA4JlnnkFUVBR+4rBLxVj+njj8S2Rfnp5Av37yQ9ZPPwH33ad0RUSkRcIG48aNE7m5ubY8Rbny8vJE8+bNRVxcnAgPDxdTp04VQghRXFwsAgICxIIFC6xt8/PzhclkEitWrBBCCJGTkyPc3d1FTEyMtc3Zs2eFi4uLiI2NFUIIcejQIQFAJCQkWNvEx8cLAOLIkSMVrtNsNgsAwmw223K66nPlihDVqgkBCHHggNLVEGnPxx/L369OnZSuhEiTdPv+fRObFoJevXq1Q3r/Jk6ciEGDBqFv376l7j9+/DgyMjIQERFhvc9oNCI8PBx79uwBACQmJuL69eul2gQFBSE4ONjaJj4+HiaTCV26dLG26dq1K0wmk7UN3cGmTXKJikaN5MK1RGRfgwbJ2/37gXPnlK2FiDTJ6XYCiYmJQVJSEqKjo8s8lpGRAQDw9/cvdb+/v7/1sYyMDHh4eMDHx+eObfz8/Mo8v5+fn7VNeQoKCpCbm1vqS5f+8x95O3gwwPUeiewvMFBeXwtwVxAicginCoCnT5/G1KlT8cUXX6DaHRZAvXWRaSHEXy48fWub8tr/1fNER0dbJ42YTCY0aNDgjj9Tk4qLSwJgZKSytRBpGZeDISIHcqoAmJiYiMzMTISEhMDNzQ1ubm7Yvn07PvzwQ7i5uVl7/m7tpcvMzLQ+FhAQgMLCQmRnZ9+xzfnz58v8/KysrDK9izebOXMmzGaz9ev06dM2na8qJSXJJWBq1AB69VK6GiLtsgTATZuAq1eVrYWINMepAmCfPn1w8OBBpKSkWL9CQ0MxevRopKSkoGnTpggICEBcXJz1ewoLC7F9+3Z069YNABASEgJ3d/dSbdLT05GammptExYWBrPZjH379lnb7N27F2az2dqmPEajETVr1iz1pTuW3r+ICMBoVLYWIi1r1w5o0AC4dg3YvFnpaohIY2wOgDt37sSYMWMQFhaGs2fPAgA+//xz7Nq1q9LP5e3tjeDg4FJfXl5eqFOnDoKDg61rAs6fPx/r1q1Damoqxo0bh+rVq2PUqFEAAJPJhKeeegozZszA5s2bkZycjDFjxqBt27bWSSWtWrXCgAEDMH78eCQkJCAhIQHjx49HZGQkWrRoYetfibZZhqMsvRNE5BgGQ8ki6xwGJiI7sykAfv/99+jfvz88PT2RnJyMgoICAEBeXh7mz59vlwJv9fLLL2PatGl4/vnnERoairNnz2Ljxo2lZiO///77GDp0KEaMGIHu3bujevXq+Omnn0rtX/zll1+ibdu2iIiIQEREBNq1a4fPP//cITVrxtmzcgjYYAAefFDpaoi0z/JB6z//kdffEhHZiUGIu99rqEOHDnjhhRfw+OOPw9vbG7/++iuaNm2KlJQUDBgw4I4zarUgNzcXJpMJZrNZH8PBq1YBzz4LdO0KxMcrXQ2R9hUUAL6+wOXLckmY0FClKyLSBN29f5fDph7Ao0ePomfPnmXur1mzJrdV0yIO/xJVLaNR7goCAL/8omwtRKQpNgXAwMBAHDt2rMz9u3btsstewORErl6VsxEBBkCiqmS53IIBkIjsyKYA+Oyzz2Lq1KnYu3cvDAYDzp07hy+//BIvvvginn/+eXvVSM5g82a5+0fDhtz9g6gqDRwob/ftA7KylK2FiDTDzZZvfvnll2E2m/HAAw8gPz8fPXv2hNFoxIsvvohJkybZq0ZyBtz9g0gZ9eoB7dsDv/4KbNgAjBmjdEVEpAE2LwPzzjvv4MKFC9i3bx8SEhKQlZWFefPm2aM2chZClA6ARFS1LHsDcxiYiOzEpgAYHR2NTz/9FNWrV0doaCg6d+6MGjVq4NNPP8XChQvtVSMpLSVFbkjv5cXdP4iUYLkOMDYWKCpSthYi0gSbAuDKlSvRsmXLMve3adMGK1assOWpyZmsXy9v+/bl7h9ESujSBfDxAbKzgb17la6GiDTApgCYkZGBwMDAMvfXrVsX6enptjw1ORPLsJPlYnQiqlpubkD//vKYw8BEZAc2BcAGDRpg9+7dZe7fvXs3goKCbHlqchaXLpUs+swASKQcLgdDRHZk0yzgp59+GtOmTcP169fRu3dvAMDmzZvx8ssvY8aMGXYpkBQWFye3oGrTRi4BQ0TK6N9fzsBPTpbX5PJDNhHZwOZlYC5duoTnn38ehYWFAIBq1arhlVdewcyZM+1SICnM0tvAvX+JlOXnB3TqJNcDXL8eeOoppSsiIhWzaQjYYDBg4cKFyMrKQkJCAn799VdcunQJb775pr3qIyUVF5dMAGEAJFIeh4GJyE4MQgihdBFqpfnNpP/7X9nj4O0NXLwIuLsrXRGRvu3fD3TuLH8nL1wAPDyUrohIlTT//l0BlR4Cnj59OubNmwcvLy9Mnz79jm2XLFly14WRE7D0MvTrx/BH5AxCQoC6deWWcLt3Aw88oHRFRKRSlQ6AycnJuH79uvX4dgzcLkz9eP0fkXNxcZGz8f/5T/n7yQBIRHeJQ8A20HQX8oUL8qJzIYAzZ+R+pESkvG++AUaOlDPzU1OVroZIlTT9/l1BNu8FTBq1YYMMf+3bM/wROZN+/WRPYFqa/HBGRHQXGACpfBz+JXJOtWvLyVkAsHGjsrUQkWoxAFJZRUWyBxDg7h9EzsiyLVxsrLJ1EJFqMQBSWfv3y2VfTCYgLEzpaojoVpYAuGmT/MBGRFRJDIBUlmX4NyJCbkJPRM6lc2egVi0gO1t+YCMiqqS7WgeworgOoEpx+JfIubm5AX37At99J39fu3ZVuiIiUpm7WgewIrgOoEpdvFjSoxARoWwtRHR7/fuXBMDZs5WuhohUptIBcOvWrY6og5zFpk1y+ZfgYC7/QuTMLNcB7t0rh4J9fJSth4hUhdcAUmmW4V/LmwsROacGDYBWrYDiYmDzZqWrISKVscsV/ocOHcKpU6dQWFhY6v4hQ4bY4+mpqgjBAEikJv37A4cPy+Vg/vY3pashIhWxKQD++eefePjhh3Hw4EEYDAZYdpWzXP9XxOUJ1CUtDTh3DqhWDbj/fqWrIaK/MmAA8MEHJTv38NprIqogm4aAp06diiZNmuD8+fOoXr060tLSsGPHDoSGhmLbtm12KpGqjKX3LzxchkAicm49e8rf1TNnZE8gEVEF2RQA4+PjMXfuXNStWxcuLi5wcXFBjx49EB0djSlTptirRqoqHP4lUhdPTxkCgZLfXyKiCrApABYVFaFGjRoAAF9fX5w7dw4A0KhRIxw9etT26qjqXLsG7NghjxkAidTD8vvKAEhElWBTAAwODsaBAwcAAF26dMGiRYuwe/duzJ07F02bNrVLgVRFduwACgqA+vXlzEIiUgdLANy+XX6QIyKqAJsC4BtvvIHi4mIAwNtvv42TJ0/i/vvvxy+//IIPP/zQLgVSFbl5+JcXkhOpR+vWcs3O/Hxg506lqyEilbBpFnD/m4YKmzZtikOHDuHSpUvw8fHhTiBqw+v/iNTJYJC/t59+CsTFcQcfIqoQuy8EXbt2bYY/tTl9Gjh0CHBxAfr0UboaIqqsvn3l7aZNytZBRKph80LQmzdvxubNm5GZmWkdDrb49NNPbX16qgobN8rbTp2A2rWVrYWIKs/ywS0lBcjKAurWVbQcInJ+NvUAvvXWW4iIiMDmzZtx4cIFZGdnl/oileDwL5G6+fkB7dvLY24LR0QVYFMP4IoVK/DZZ58hKirKXvVQVSsqKhk2YgAkUq++fYFff5W/zyNHKl0NETk5m3oACwsL0a1bN3vVQkpITASyswGTCejcWelqiOhuWa4DjIuT28IREd2BTQHw6aefxldffWWvWkgJcXHytndvwM3mS0KJSCn33w94eACnTgHHjildDRE5OZve8fPz87Fq1Sps2rQJ7dq1g7u7e6nHlyxZYlNxVAUsw7+W3gMiUicvL6BbN2DbNvl73by50hURkROzKQAeOHAA9913HwAgNTW11GNcCkYFrlwB9uyRxwyAROrXt29JAHzuOaWrISInZlMA3Lp1q73qICXs2gUUFgING7K3gEgL+vUD3ngD2LJFTvBydVW6IiJyUnZfCJpU5ObhX/bYEqlfSIic0JWTIyd4ERHdRqV7AKdPn4558+bBy8sL06dPv2NbXgPo5Hj9H5G2uLrKCV3r1skJXpzZT0S3UekA+Nlnn+G1116Dl5cXkpOTb9uO1wA6ucxMuWsAwO3fiLSkXz8ZADdtAl5/XelqiMhJVToA5uTkWLd8O3nyJPbv3486derYvTBysC1b5G379nIXASLSBkuP/p49cqKXl5ey9RCRU6r0NYA+Pj44fvw4AODEiRNl9v8lleDwL5E2NWsmJ3YVFgI7dypdDRE5qUr3AD7yyCMIDw9HYGAgDAYDQkND4XqbmWZ//vmnzQWSAwhRsgA0AyCRthgMchj4k0/kB70BA5SuiIicUKUD4KpVqzBs2DAcO3YMU6ZMwfjx4+Ht7e2I2shR/vhD7hbg7i53DyAibenbVwZAywc9IqJb3NU6gAP+94kyMTERU6dOZQBUG8ubQrduvD6ISIt695a3Bw4AFy4Avr7K1kNETsemdQBXr17N8KdGluv/+vVTtg4icgw/PyA4WB5v26ZoKUTknLgQtN4UFZXMAOb1f0TaZekFtPy+ExHdhAFQb5KS5C4BJpPcNYCItOmBB+Qtt+wkonIwAOqNZfj3gQcAN5u2giYiZxYeLmcEHzkCnDundDVE5GQYAPWG6/8R6YOPD9CxozxmLyAR3YIBUE/y84Hdu+Uxt38j0j7LdYAMgER0CwZAPYmPBwoKgMBAoEULpashIkezXAfIiSBEdAsGQD2xvAn07i2vDSIibevRQ17re/y4/CIi+h8GQD25OQASkfZ5ewOdO8tjDgMT0U0YAPXi8mVg3z55zABIpB+8DpCIysEAqBe7dgE3bgCNG8svItKHm68DFELZWojIaTAA6gWHf4n0KSwMMBrlWoC//aZ0NUTkJBgA9YIBkEifPD2Bbt3kMYeBieh/GAD1IDtbbgEHlAwHEZF+cDkYIroFA6AebN8ur/1p2RIIClK6GiKqajdPBCkuVrYWInIKDIB6wOFfIn3r1Anw8gIuXABSU5WuhoicAAOgHjAAEumbh4dcFBrgdYBEBMAJA2B0dDQ6deoEb29v+Pn5YejQoTh69GipNkIIzJkzB0FBQfD09ESvXr2QlpZWqk1BQQEmT54MX19feHl5YciQIThz5kypNtnZ2YiKioLJZILJZEJUVBRycnIcfYpV6/x5wPJ306uXoqUQkYIsv//btytaBhE5B6cLgNu3b8fEiRORkJCAuLg43LhxAxEREbhy5Yq1zaJFi7BkyRIsW7YM+/fvR0BAAPr164e8vDxrm2nTpmHdunWIiYnBrl27cPnyZURGRqKoqMjaZtSoUUhJSUFsbCxiY2ORkpKCqKioKj1fh9u2Td62bw/UqaNoKUSkoJsDIK8DJCLh5DIzMwUAsX37diGEEMXFxSIgIEAsWLDA2iY/P1+YTCaxYsUKIYQQOTk5wt3dXcTExFjbnD17Vri4uIjY2FghhBCHDh0SAERCQoK1TXx8vAAgjhw5UqHazGazACDMZrPN5+kwzzwjBCDECy8oXQkRKamwUAgvL/n/wYEDSldDpChVvH87mNP1AN7KbDYDAGrXrg0AOH78ODIyMhAREWFtYzQaER4ejj179gAAEhMTcf369VJtgoKCEBwcbG0THx8Pk8mELl26WNt07doVJpPJ2uZWBQUFyM3NLfXl9Hj9HxEBgLt7yXqAHAYm0j2nDoBCCEyfPh09evRAcHAwACAjIwMA4O/vX6qtv7+/9bGMjAx4eHjAx8fnjm38/PzK/Ew/Pz9rm1tFR0dbrxc0mUxo0KCBbSfoaKdOAceOAa6uQM+eSldDRErjdYBE9D9OHQAnTZqEAwcO4Ouvvy7zmMFgKPVnIUSZ+251a5vy2t/peWbOnAmz2Wz9On36dEVOQzmW6/9CQoCaNRUthYicQHi4vLWsDUpEuuW0AXDy5Mn48ccfsXXrVtSvX996f0BAAACU6aXLzMy09goGBASgsLAQ2dnZd2xz/vz5Mj83KyurTO+ihdFoRM2aNUt9OTXLp3zO/iUiQK4H6OkJZGUBhw8rXQ0RKcjpAqAQApMmTcLatWuxZcsWNGnSpNTjTZo0QUBAAOLi4qz3FRYWYvv27ej2v+tbQkJC4O7uXqpNeno6UlNTrW3CwsJgNpuxb98+a5u9e/fCbDZb26iepQeQAZCIALkeYFiYPOYwMJGuOV0AnDhxIr744gt89dVX8Pb2RkZGBjIyMnDt2jUActh22rRpmD9/PtatW4fU1FSMGzcO1atXx6hRowAAJpMJTz31FGbMmIHNmzcjOTkZY8aMQdu2bdG3b18AQKtWrTBgwACMHz8eCQkJSEhIwPjx4xEZGYkWLVoodv52c/o08OefgIsL0L270tUQkbOwfCC0fEAkIl1yU7qAWy1fvhwA0OuWXqvVq1dj3LhxAICXX34Z165dw/PPP4/s7Gx06dIFGzduhLe3t7X9+++/Dzc3N4wYMQLXrl1Dnz598Nlnn8HV1dXa5ssvv8SUKVOss4WHDBmCZcuWOfYEq4rl0z2v/yOim916HeBfXDtNRNpkEIJXAt+t3NxcmEwmmM1m57se8OmngU8+AV56CVi0SOlqiMhZ5OcDtWoBBQXAkSOAFkY8iCrJqd+/q4jTDQGTnVh6AC2f9omIAKBaNaBrV3nM6wCJdIsBUIvOnJHr/7m4lGwAT0RkwesAiXSPAVCLLJ/qO3QATCZlayEi58P1AIl0jwFQi7j+HxHdSdeuckmYc+eAP/5QuhoiUgADoBZZhnV4/R8RlcfTE7Dsg87rAIl0iQFQa86dA37/XS7tcP/9SldDRM7K8gGR1wES6RIDoNbcfP1frVqKlkJETozXARLpGgOg1nD4l4gqIiwMcHOTuwadPKl0NURUxRgAtYYTQIioIry85E5BALBrl7K1EFGVYwDUkvR04OhRXv9HRBVjWSd0505l6yCiKscAqCU7dsjb9u0BHx9layEi52f5oMgASKQ7DIBawuv/iKgyLD2Ahw8DFy4oWwsRVSkGQC3h/r9EVBl16gCtW8tjXgdIpCsMgFqRlSU/xQNAz57K1kJE6sFhYCJdYgDUit275W3r1vJTPRFRRXAiCJEuMQBqheU/b87+JaLKsPyfkZQEXLmibC1EVGUYALWCAZCI7kajRkCDBkBREZCQoHQ1RFRFGAC14PJl+ekdYAAkosrjdYBEusMAqAUJCfLTe8OG8ouIqDIYAIl0hwFQCzj8S0S2sPzfkZAAXL+ubC1EVCUYALWAAZCIbNGqldw96OrVkstJiEjTGADVrrCw5MJtBkAiuhsuLlwOhkhnGADVLikJuHZNrv3XqpXS1RCRWlk+QHJHECJdYABUO8un9R49AINB2VqISL1uDoDFxcrWQkQOxwCodrz+j4jsoWNHwNMTuHgROHJE6WqIyMEYANWsuLhkuIYBkIhs4eEBdOkij3kdIJHmMQCq2aFDQHY2UL060KGD0tUQkdpZPkha9hYnIs1iAFQzy6f0rl0Bd3dlayEi9eveXd7u2aNsHUTkcAyAasbr/4jInrp0kZPJ/vgDOH9e6WqIyIEYANVKCAZAIrKvWrWANm3kMXsBiTSNAVCtTp4EzpwB3NzkEDARkT1YhoF5HSCRpjEAqpWl969jR8DLS9laiEg7unWTt+wBJNI0BkC14vAvETmCpQcwMRHIz1e2FiJyGAZAtWIAJCJHaNoU8POT+4wnJipdDRE5CAOgGmVllazUb9nAnYjIHgwGDgMT6QADoBpZLs5u3RqoU0fZWohIe7geIJHmMQCqEYd/iciRLD2Au3fLJaeISHMYANWIAZCIHCkkRO4NnJUlF4UmIs1hAFSby5eBpCR5zABIRI5gNAKhofKYw8BEmsQAqDYJCUBREdCwofwiInKEm4eBiUhzGADVhsO/RFQVOBGESNMYANVm1y55ywBIRI4UFiZv09KAnBxFSyEi+2MAVJMbN4C9e+Wx5dM5EZEj+PsD99wjZwEnJChdDRHZGQOgmhw8CFy5AtSsKdcAJCJyJA4DE2kWA6CaWP4TDgsDXPjSEZGDcUcQIs1iilATy3/Clv+UiYgcydIDmJAgL0EhIs1gAFQTBkAiqkqtW8tLTq5ckZNBiEgzGADV4tw54MQJOfTbpYvS1RCRHri4AJ07y2NOBCHSFAZAtYiPl7ft2gHe3srWQkT60bWrvLWsQEBEmsAAqBYc/iUiJVhGHNgDSKQpDIBqYdmOiQGQiKqSJQAePswFoYk0hAFQDa5dA5KS5DEDIBFVpbp1gaZN5fH+/crWQkR2wwCoBomJwPXrQEAA0Lix0tUQkd5YegF5HSCRZjAAqsHN1/8ZDMrWQkT6Y5kIwusAiTSDAVANOAGEiJR0cw+gEMrWQkR2wQDo7IRgACQiZd13H+DhAVy4ABw/rnQ1RGQHDIDO7o8/gKwswGgEOnZUuhoi0iOjEejQQR5zGJhIExgAnZ2l9y80VP4nTESkBC4ITaQpDIDOjsO/ROQMuCA0kaYwADo7LgBNRM7A0gOYkgIUFChaChHZjgHQmeXkAGlp8jgsTNFSiEjnGjeWi0IXFgLJyUpXQ0Q2YgB0ZpYlF+65B/D3V7oaItIzg4ELQhNpCAOgM+P1f0TkTLggNJFmMAA6MwZAInIm7AEk0gwGQGdVVFTyKZsBkIicQadOcij4+HEgM1PpaojIBgyAzio1Fbh8GfD2Btq0UboaIiLAZAJatZLH7AUkUjUGQGdlGf7t2hVwdVW2FiIiC8t1gJb/o4hIlXQfAP/+97+jSZMmqFatGkJCQrBz506lS5Is/7l2765sHUREN+vdW95+8gmQl6dsLUR013QdAL/55htMmzYNr7/+OpKTk3H//fdj4MCBOHXqlNKlcQFoInJOI0YAzZvLPcqXLFG6GiK6SwYhhFC6CKV06dIFHTt2xPLly633tWrVCkOHDkV0dPRffn9ubi5MJhPMZjNq1qxpv8LS04GgIHmxdU4OYM/nJiKy1XffAcOHAzVqAH/8Afj5KV0RUaU47P1bRdyULkAphYWFSExMxKuvvlrq/oiICOy5zbUtBQUFKLhpC6Tc3FzHFBcfL2/btmX4IyLn88gjckbw/v3A4MGyR5DIUYYNk19kV7oNgBcuXEBRURH8b9lhw9/fHxkZGeV+T3R0NN566y3HF8f1/4jImRkMwMKF8nrAffvkF5GjNG/OAOgAug2AFgaDodSfhRBl7rOYOXMmpk+fbv1zbm4uGjRoYP+iHn8cCAgAQkPt/9xERPbwwAPAf/4D/Pab0pWQ1llmnpNd6TYA+vr6wtXVtUxvX2ZmZpleQQuj0Qij0ej44tq1k19ERM5s0CD5RUSqo9tZwB4eHggJCUFcXFyp++Pi4tCNQ69ERESkYbrtAQSA6dOnIyoqCqGhoQgLC8OqVatw6tQpTJgwQenSiIiIiBxG1wHw0UcfxcWLFzF37lykp6cjODgYv/zyCxo1aqR0aUREREQOo+t1AG3FdYSIiIjUh+/fOr4GkIiIiEivGACJiIiIdIYBkIiIiEhnGACJiIiIdIYBkIiIiEhnGACJiIiIdIYBkIiIiEhnGACJiIiIdIYBkIiIiEhndL0VnK0sm6jk5uYqXAkRERFVlOV9W8+boTEA2iAvLw8A0KBBA4UrISIiosrKy8uDyWRSugxFcC9gGxQXF+PcuXPw9vaGwWCwy3Pm5uaiQYMGOH36tGb3J+Q5qp/Wzw/gOWqB1s8P4DneLSEE8vLyEBQUBBcXfV4Nxx5AG7i4uKB+/foOee6aNWtq9pfZgueoflo/P4DnqAVaPz+A53g39NrzZ6HP2EtERESkYwyARERERDrDAOhkjEYjZs+eDaPRqHQpDsNzVD+tnx/Ac9QCrZ8fwHOku8dJIEREREQ6wx5AIiIiIp1hACQiIiLSGQZAIiIiIp1hACQiIiLSGQZAJ/P3v/8dTZo0QbVq1RASEoKdO3cqXVIZc+bMgcFgKPUVEBBgfVwIgTlz5iAoKAienp7o1asX0tLSSj1HQUEBJk+eDF9fX3h5eWHIkCE4c+ZMqTbZ2dmIioqCyWSCyWRCVFQUcnJyHHJOO3bswODBgxEUFASDwYAffvih1ONVeU6nTp3C4MGD4eXlBV9fX0yZMgWFhYUOP8dx48aVeV27du2qmnOMjo5Gp06d4O3tDT8/PwwdOhRHjx4t1UbNr2NFzk/tr+Hy5cvRrl0764K/YWFhWL9+vfVxNb9+FT1Htb+Gt4qOjobBYMC0adOs92nhddQEQU4jJiZGuLu7i48//lgcOnRITJ06VXh5eYmTJ08qXVops2fPFm3atBHp6enWr8zMTOvjCxYsEN7e3uL7778XBw8eFI8++qgIDAwUubm51jYTJkwQ9erVE3FxcSIpKUk88MADon379uLGjRvWNgMGDBDBwcFiz549Ys+ePSI4OFhERkY65Jx++eUX8frrr4vvv/9eABDr1q0r9XhVndONGzdEcHCweOCBB0RSUpKIi4sTQUFBYtKkSQ4/x7Fjx4oBAwaUel0vXrxYqo0zn2P//v3F6tWrRWpqqkhJSRGDBg0SDRs2FJcvX7a2UfPrWJHzU/tr+OOPP4qff/5ZHD16VBw9elS89tprwt3dXaSmpgoh1P36VfQc1f4a3mzfvn2icePGol27dmLq1KnW+7XwOmoBA6AT6dy5s5gwYUKp+1q2bCleffVVhSoq3+zZs0X79u3Lfay4uFgEBASIBQsWWO/Lz88XJpNJrFixQgghRE5OjnB3dxcxMTHWNmfPnhUuLi4iNjZWCCHEoUOHBACRkJBgbRMfHy8AiCNHjjjgrErcGo6q8px++eUX4eLiIs6ePWtt8/XXXwuj0SjMZrPDzlEI+cbz0EMP3fZ71HaOmZmZAoDYvn27EEJ7r+Ot5yeE9l5DIYTw8fER//jHPzT3+pV3jkJo5zXMy8sTzZs3F3FxcSI8PNwaALX8OqoNh4CdRGFhIRITExEREVHq/oiICOzZs0ehqm7v999/R1BQEJo0aYKRI0fizz//BAAcP34cGRkZpc7DaDQiPDzceh6JiYm4fv16qTZBQUEIDg62tomPj4fJZEKXLl2sbbp27QqTyVTlfx9VeU7x8fEIDg5GUFCQtU3//v1RUFCAxMREh54nAGzbtg1+fn649957MX78eGRmZlofU9s5ms1mAEDt2rUBaO91vPX8LLTyGhYVFSEmJgZXrlxBWFiY5l6/8s7RQguv4cSJEzFo0CD07du31P1afB3Vyk3pAki6cOECioqK4O/vX+p+f39/ZGRkKFRV+bp06YJ//vOfuPfee3H+/Hm8/fbb6NatG9LS0qy1lnceJ0+eBABkZGTAw8MDPj4+ZdpYvj8jIwN+fn5lfrafn1+V/31U5TllZGSU+Tk+Pj7w8PBw+HkPHDgQw4cPR6NGjXD8+HHMmjULvXv3RmJiIoxGo6rOUQiB6dOno0ePHggODrb+XEu9t9avttexvPMDtPEaHjx4EGFhYcjPz0eNGjWwbt06tG7d2vqmroXX73bnCGjjNYyJiUFSUhL2799f5jEt/R6qHQOgkzEYDKX+LIQoc5/SBg4caD1u27YtwsLCcM8992DNmjXWi5Xv5jxubVNeeyX/PqrqnJQ670cffdR6HBwcjNDQUDRq1Ag///wzhg0bdtvvc8ZznDRpEg4cOIBdu3aVeUwLr+Ptzk8Lr2GLFi2QkpKCnJwcfP/99xg7diy2b99+25+rxtfvdufYunVr1b+Gp0+fxtSpU7Fx40ZUq1bttu208DqqHYeAnYSvry9cXV3LfCrJzMws8wnG2Xh5eaFt27b4/fffrbOB73QeAQEBKCwsRHZ29h3bnD9/vszPysrKqvK/j6o8p4CAgDI/Jzs7G9evX6/y8w4MDESjRo3w+++/W2tTwzlOnjwZP/74I7Zu3Yr69etb79fK63i78yuPGl9DDw8PNGvWDKGhoYiOjkb79u2xdOlSzbx+dzrH8qjtNUxMTERmZiZCQkLg5uYGNzc3bN++HR9++CHc3Nysz62F11HtGACdhIeHB0JCQhAXF1fq/ri4OHTr1k2hqiqmoKAAhw8fRmBgIJo0aYKAgIBS51FYWIjt27dbzyMkJATu7u6l2qSnpyM1NdXaJiwsDGazGfv27bO22bt3L8xmc5X/fVTlOYWFhSE1NRXp6enWNhs3boTRaERISIhDz/NWFy9exOnTpxEYGAjA+c9RCIFJkyZh7dq12LJlC5o0aVLqcbW/jn91fuVR22tYHiEECgoKVP/6VeQcy6O217BPnz44ePAgUlJSrF+hoaEYPXo0UlJS0LRpU82+jqrj4EkmVAmWZWA++eQTcejQITFt2jTh5eUlTpw4oXRppcyYMUNs27ZN/PnnnyIhIUFERkYKb29va50LFiwQJpNJrF27Vhw8eFA89thj5U7xr1+/vti0aZNISkoSvXv3LneKf7t27UR8fLyIj48Xbdu2ddgyMHl5eSI5OVkkJycLAGLJkiUiOTnZugRPVZ2TZdmCPn36iKSkJLFp0yZRv359uyxbcKdzzMvLEzNmzBB79uwRx48fF1u3bhVhYWGiXr16qjnH5557TphMJrFt27ZSS2hcvXrV2kbNr+NfnZ8WXsOZM2eKHTt2iOPHj4sDBw6I1157Tbi4uIiNGzcKIdT9+lXkHLXwGpbn5lnAQmjjddQCBkAn83//93+iUaNGwsPDQ3Ts2LHUEg/OwrJmk7u7uwgKChLDhg0TaWlp1seLi4vF7NmzRUBAgDAajaJnz57i4MGDpZ7j2rVrYtKkSaJ27drC09NTREZGilOnTpVqc/HiRTF69Gjh7e0tvL29xejRo0V2drZDzmnr1q0CQJmvsWPHVvk5nTx5UgwaNEh4enqK2rVri0mTJon8/HyHnuPVq1dFRESEqFu3rnB3dxcNGzYUY8eOLVO/M59jeecGQKxevdraRs2v41+dnxZewyeffNL6/1/dunVFnz59rOFPCHW/fhU5Ry28huW5NQBq4XXUAoMQQlRdfyMRERERKY3XABIRERHpDAMgERERkc4wABIRERHpDAMgERERkc4wABIRERHpDAMgERERkc4wABIRERHpDAMgERERkc4wABIRERHpDAMgETlcr169MG3atDLHVFavXr1gMBhgMBiQkpJi03ONGzfO+lw//PCDXeojIm1gACSiKrV27VrMmzevQm31GhbHjx+P9PR0BAcH2/Q8S5cuRXp6up2qIiItcVO6ACLSl9q1aytdgtOrXr06AgICbH4ek8kEk8lkh4qISGvYA0hEdnXlyhU8/vjjqFGjBgIDA/Hee++VevzWXr3vvvsObdu2haenJ+rUqYO+ffviypUrGDduHLZv346lS5dahzFPnDgBAIiNjUWPHj1Qq1Yt1KlTB5GRkfjjjz9K/YwpU6bg5ZdfRu3atREQEIA5c+aUqqO4uBgLFy5Es2bNYDQa0bBhQ7zzzjvWx4UQWLRoEZo2bQpPT0+0b98e3333XaX+Lr7++mtUq1YNZ8+etd739NNPo127djCbzRV+nl69emHy5MmYNm0afHx84O/vj1WrVuHKlSt44okn4O3tjXvuuQfr16+vVH1EpF8MgERkVy+99BK2bt2KdevWYePGjdi2bRsSExPLbZueno7HHnsMTz75JA4fPoxt27Zh2LBhEEJg6dKlCAsLsw6Hpqeno0GDBgBkyJw+fTr279+PzZs3w8XFBQ8//DCKi4utz71mzRp4eXlh7969WLRoEebOnYu4uDjr4zNnzsTChQsxa9YsHDp0CF999RX8/f2tj7/xxhtYvXo1li9fjrS0NLzwwgsYM2YMtm/fXuG/i5EjR6JFixaIjo4GALz11lvYsGED1q9fX+meuTVr1sDX1xf79u3D5MmT8dxzz2H48OHo1q0bkpKS0L9/f0RFReHq1auVel4i0ilBRGQneXl5wsPDQ8TExFjvu3jxovD09BRTp04VQggRHh5uPU5MTBQAxIkTJ8p9vpvb3klmZqYAIA4ePGj9vh49epRq06lTJ/HKK68IIYTIzc0VRqNRfPzxx+U+3+XLl0W1atXEnj17St3/1FNPiccee+wv67nZTz/9JIxGo3jnnXeEj4+PSE1NvWP78s751vO5ceOG8PLyElFRUdb70tPTBQARHx9f5jkBiHXr1lWqbiLSNl4DSER288cff6CwsBBhYWHW+2rXro0WLVqU2759+/bo06cP2rZti/79+yMiIgJ/+9vf4OPj85c/Z9asWUhISMCFCxesPX+nTp2yTpxo165dqe8JDAxEZmYmAODw4cMoKChAnz59yn3+Q4cOIT8/H/369St1f2FhITp06HDH2m4VGRmJ1q1b46233sLGjRvRpk2bSn2/xc3n4+rqijp16qBt27bW+yy9l5ZzJCK6EwZAIrIbIUSl2ru6uiIuLg579uzBxo0b8dFHH+H111/H3r170aRJk9t+3+DBg9GgQQN8/PHHCAoKQnFxMYKDg1FYWGht4+7uXup7DAaDNSh6enresS5Lu59//hn16tUr9ZjRaKzUOW7YsAFHjhxBUVFRqSHmyirvfG6+z2AwAECpYXAiotvhNYBEZDfNmjWDu7s7EhISrPdlZ2fjt99+u+33GAwGdO/eHW+99RaSk5Ph4eGBdevWAQA8PDxQVFRUqv3Fixdx+PBhvPHGG+jTpw9atWqF7OzsStXZvHlzeHp6YvPmzeU+3rp1axiNRpw6dQrNmjUr9WW5DrEikpKSMHz4cKxcuRL9+/fHrFmzKlUnEZGjsAeQiOymRo0aeOqpp/DSSy+hTp068Pf3x+uvvw4Xl/I/a+7duxebN29GREQE/Pz8sHfvXmRlZaFVq1YAgMaNG2Pv3r04ceIEatSogdq1a8PHxwd16tTBqlWrEBgYiFOnTuHVV1+tVJ3VqlXDK6+8gpdffhkeHh7o3r07srKykJaWhqeeegre3t548cUX8cILL6C4uBg9evRAbm4u9uzZgxo1amDs2LF/+TNOnDiBQYMG4dVXX0VUVBRat26NTp06ITExESEhIZWql4jI3hgAiciuFi9ejMuXL2PIkCHw9vbGjBkzbrvkSc2aNbFjxw588MEHyM3NRaNGjfDee+9h4MCBAIAXX3wRY8eORevWrXHt2jUcP34cjRs3RkxMDKZMmYLg4GC0aNECH374IXr16lWpOmfNmgU3Nze8+eabOHfuHAIDAzFhwgTr4/PmzYOfnx+io6Px559/olatWujYsSNee+01AMBnn32GJ554otxh70uXLmHgwIEYMmSItX1ISAgGDx6M119/HbGxsZWqlYjI3gyishftEBER5syZg23btmHbtm12fd5evXrhvvvuwwcffGC35zQYDFi3bh2GDh1qt+ckInXjNYBERHdhw4YNWLRokUOe++9//ztq1KiBgwcP2vQ8EyZMQI0aNexUFRFpCXsAiYicyNmzZ3Ht2jUAQMOGDeHh4XHXz5WZmYnc3FwAchkcLy8vu9RIROrHAEhERESkMxwCJiIiItIZBkAiIiIinWEAJCIiItIZBkAiIiIinWEAJCIiItIZBkAiIiIinWEAJCIiItKZ/wc5l6kja+SG2wAAAABJRU5ErkJggg==", - "text/html": [ - "\n", - "
    \n", - "
    \n", - " Figure\n", - "
    \n", - " \n", - "
    \n", - " " - ], - "text/plain": [ - "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure()\n", - "plt.plot(x_stag,q, color = 'red');\n", - "plt.xlabel('distance, $x$ [m]', size = 10)\n", - "plt.ylabel('final ice flux, $q(x,T)$', size = 10)\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "bf0cf6b0", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "c0c6d074", - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.6" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} \ No newline at end of file diff --git a/src/_build/jupyter_execute/sections/radar/apres/apres-range-frequency.ipynb b/src/_build/jupyter_execute/sections/radar/apres/apres-range-frequency.ipynb deleted file mode 100644 index c476e56..0000000 --- a/src/_build/jupyter_execute/sections/radar/apres/apres-range-frequency.ipynb +++ /dev/null @@ -1,76 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "208ac01a-26af-4c51-b33b-3284ed3ae494", - "metadata": {}, - "source": [ - "(frequency-and-range)=\n", - "# Frequency and range" - ] - }, - { - "cell_type": "markdown", - "id": "6780cd12-b423-4758-b78a-58654775f710", - "metadata": {}, - "source": [ - "Many of the material on this and following pages can be found in the [ApRES manual](https://github.com/ldeo-glaciology/phase-sensitive-radar-processing/blob/5cce6bd838cb70e290316195af9ceefe3d4a52ee/other%20documents/ApRES%20Manual%20V102.1.pdf), Brennan et al., ????, and Nicholls et al. 2015. \n", - "\n", - "ApRES emits 'chirps', which consist of continuous radio waves lasting 1 second. Due each chirp the frequency of the emmitted radio wave increased linearly with time from $f1$ to $f2$ where the bandwidth $B = f2-f1$. The signal is transmitted downwards into the ice sheet and is partly reflected back to the radar's receiving antenna where it is compared to the transmitted signal to determine the travel time of the signal and hence the range to sub-surface reflectors. Specifically, at every moment during a chirp the radar measures the difference between the frequency of the reveived signal and signal being tranmistted in that instant. Because the transmitted signal is always increasing in frequency and because the reveived signal was tranmitted a few milliseconds earlier than it is received, the recieved signal is always lower frequency than the transmitted signal. \n", - "\n", - "\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "id": "94be9e38-af6d-4a73-8f14-e3724a9d0365", - "metadata": {}, - "source": [ - "## TO do: add cartoon of chirp and delay in received signal" - ] - }, - { - "cell_type": "markdown", - "id": "5d099010-a5e2-4b33-851e-79dd8bb430c9", - "metadata": {}, - "source": [ - "## To do: derive Equation 1 from Brennan et al. " - ] - }, - { - "cell_type": "markdown", - "id": "14ab8fb3-07b7-496c-8fdb-c81fa032e669", - "metadata": {}, - "source": [ - "This expression describes how the frequency difference between the transmitted signal and the received signal relates to the range to a reflector detected by ApRES. What we havent discussed is how this frequency difference is calculated. Next, we discuss how combining and summing the received and transmitted signals, then filtering the result, allows this to be computed using the concept of *beat frequency*" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.11" - }, - "vscode": { - "interpreter": { - "hash": "d30c63c32c419ea9f0bba7809c4e773ec43b1ff3bce90afeee7dfc4932bbd9b5" - } - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} \ No newline at end of file diff --git a/src/_build/jupyter_execute/sections/radar/apres/chirps.ipynb b/src/_build/jupyter_execute/sections/radar/apres/chirps.ipynb deleted file mode 100644 index b1dc006..0000000 --- a/src/_build/jupyter_execute/sections/radar/apres/chirps.ipynb +++ /dev/null @@ -1,575 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# The fundamental operation of ApRES\n", - "This ppage describes the fundemental operation of the Autonomous Radio-echo sounder, including \n", - "- a description of the linear chirps the system emits, \n", - "- how individual and multiple reflectors are represented in the returned signal,\n", - "- how the range to these reflectors is encoded in the frequency content of returned signal, and \n", - "- how to extract the range to reflectors using a fourier transform. " - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "import scipy\n", - "from numpy.random import default_rng\n", - "\n", - "#%matplotlib widget" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Define a function which returns a sawtooth signal with a period of 1 s. So that we can demonstrate what it looks like when the return is delayed by a given time, we add to the function an optional delay in seconds. The bandwidth $B$ the center frequency $f_c$ are set by the radar." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "t_sawtooth = np.linspace(0,3,900)\n", - "def sawtooth_with_delay(delay = 0):\n", - " B = 200e6 # bandwidth\n", - " f_c = 300e6 3 # center frequency\n", - " return (scipy.signal.sawtooth(2*np.pi*(t_sawtooth-delay))+1)/2 * B + (f_c-B/2)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next we use this function to create two sawtooth signals: one with zero delay and the other with a delay of 0.1 s." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "tx = sawtooth_with_delay()\n", - "rx = sawtooth_with_delay(delay = 0.1)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "A delay of 0.1s says that it took the radio waves 0.1s to travel from the radar, to some reflector, and back to the radar. This is the 'two-way travel time', often shortened to TWTT, but we will use $T$. To compute the range $R$, from the TWTT we use \n", - "\n", - "$$\n", - "T = 2R\\frac{\\sqrt\\epsilon}{c},\n", - "$$\n", - "\n", - "$$\n", - "R = \\frac{cT}{2\\sqrt\\epsilon}\n", - "$$\n", - "\n", - "where $c$ is the speed of light in a vacuum and $\\epsilon$ is the dialectric constant of ice.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "def range_to_reflector(T):\n", - " ep = 3.1\n", - " c = 299792458\n", - " return c*T/2/ep**0.5" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's quickly use this function to compute how deep in the ice a reflector would need to be to cause a delay of 0.1s in the return of the radio-wave. " - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Depth to refletor in ice: ~8514 km\n" - ] - } - ], - "source": [ - "print(f\"Depth to refletor in ice: ~{range_to_reflector(0.1)/1e3:.0f} km\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This is obvious MUCH deeper than any ice we will ever encounter; we choose 0.1s purely so that we can see the delay in the plots below. \n", - "\n", - "## Plotting the frequency ramps and returns\n", - "Let's first plot the frequency of the transmitted signal as a function of time. " - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkoAAAGzCAYAAADQVjjVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABaxElEQVR4nO3de1xUZf4H8M9wG7mLILdEATFTQUMxQ03xnqal1pplJuVarpcy5aeiXbSLuO2auVaGZcomLl2Ucre84AWSTFOEFClTwlsOubY6KCIgnN8frrOOnHNghmHOA3zer9e8XjHnzJlnpnM8n3mec76PTpIkCURERERUg4PWDSAiIiISFYMSERERkQIGJSIiIiIFDEpEREREChiUiIiIiBQwKBEREREpYFAiIiIiUsCgRERERKTASesGiKi6uhrnzp2Dp6cndDqd1s0hIiKiOpAkCZcvX0ZwcDAcHGzTF8SgJOPcuXMICQnRuhlERERkhTNnzqBNmzY22RaDkgxPT08AN75oLy8vjVtDREREdVFSUoKQkBDTedwWGJRk3Bxu8/LyYlAiIiJqZGx52Qwv5iYiIiJSwKBEREREpIBBiYiIiEgBgxIRERGRAgYlIiIiIgUMSkREREQKGJSIiIiIFDAoERERESlgUCIiIiJSIGxQSkpKgk6nw6xZs0zPSZKERYsWITg4GK6uroiLi8PRo0fNXldeXo6ZM2fCz88P7u7uePDBB3H27Fk7t56IiIiaAiGD0oEDB7B69Wp07drV7Pk333wTb731Ft555x0cOHAAgYGBGDJkCC5fvmxaZ9asWUhPT0daWhqys7Nx5coVjBw5ElVVVfb+GERERNTICReUrly5ggkTJuCDDz6Aj4+P6XlJkvD2229j4cKFGDt2LCIjI5GSkoKrV69iw4YNAACj0Yg1a9Zg2bJlGDx4MKKjo7F+/XocOXIEO3bs0OojEdWbwViGvYUXYDCWad0UIgDcJ0k8BmMZ9v/yu823K1xQmj59Oh544AEMHjzY7PmioiIUFxdj6NChpuf0ej369++PvXv3AgBycnJQWVlptk5wcDAiIyNN68gpLy9HSUmJ2YNIFMnfFKL30l14/IP96LN0Fz45cFrrJlEz98mB0+jDfZIEcnOfnJxy0ObbFioopaWl4dChQ0hKSqqxrLi4GAAQEBBg9nxAQIBpWXFxMVxcXMx6om5fR05SUhK8vb1Nj5CQkPp+FCKbSM4qRNLXP0GSbvxdLQELNuXzVzxpxmAsw/yNR1B9yz45f9MR7pOkGYOxDImb/rdP2powQenMmTN4/vnnsX79erRo0UJxPZ1OZ/a3JEk1nrtdbeskJibCaDSaHmfOnLGs8UQNwGAsQ9KWn2o8XyVJOHnhqgYtIgJW7jyO289HkgQcOnVRk/YQFV0obbCQBAgUlHJycnD+/Hn06NEDTk5OcHJyQlZWFv72t7/BycnJ1JN0e8/Q+fPnTcsCAwNRUVGBixcvKq4jR6/Xw8vLy+xBpLWVO4/LPu+gA0L93OzcGqIb4X3D9/I/JKUGPFERqfn2+IUG3b4wQWnQoEE4cuQI8vLyTI+YmBhMmDABeXl5CA8PR2BgIDIyMkyvqaioQFZWFnr37g0A6NGjB5ydnc3WMRgMyM/PN61D1BionZDG92yLIG9XO7eISDm86wD0CPWRXUbUkAzGMrybWdig7+HUoFu3gKenJyIjI82ec3d3h6+vr+n5WbNmYcmSJejQoQM6dOiAJUuWwM3NDY8//jgAwNvbG5MnT8acOXPg6+uLVq1aISEhAVFRUTUuDicSWdGFUsVlMwdF2LElRDeohffH7mF4J20ohXdbEiYo1cXcuXNRVlaGadOm4eLFi+jVqxe2b98OT09P0zrLly+Hk5MTxo0bh7KyMgwaNAjr1q2Do6Ojhi0nsoxSV/KMAe15QiJNqJ2QGN5JC2rh3ZZ0ksSR5duVlJTA29sbRqOR1yuR3RmMZYhN2iW77B9T7kVse187t4iaO7V98vF72mLJ2Cg7t4gIeD4tF1/mnTN7rrr8Ks68Pc6m529hrlEiohuWytzpBvAibtJOjsodbexNIi0kZxXWCEkNhUGJSCBqBz8v4iat7CiQr0P3OK9NIg0olU5pKAxKRIKo7eDnL3fSQnJWIb7IM8gu4z5JWlC7Xm720A42fz8GJSJBqB38iSPu4i93sju18P7MfeHcJ8nu1C7gHn13MJ7uE27z92RQIhJAbQf/s/3a27lFROp1k57qG2rXthAB6qVT5g2/q0Hek0GJSABqvUkNdfATqWHdJBKRFqVTGJSINKZ2QuLFsqQV1k0i0ahV4e4T0brB3pdBiUhjrMJNomF4JxFpNf8lgxKRxliFm0TD3iQSjZbzXzIoEWlIq65kIiXsTSIRaRneGZSINMQq3CQaDgWTaLQO7wxKRBphFW4S0bZ8+SrcHAomrWg9FMygRKQBVuEmESVnFSLlu1OyyzgUTFrQujcJYFAi0gSrcJNo1MI7h4JJK2uzixSX2esHJYMSkZ2xCjeJqLaipwzvZG8GYxlW75EPSvb8QcmgRGRnOacuKi5jFW7SAsM7iUgpvI+x8z7JoERkZ3tPyNdN4q3XpBVOoUOiUQvvgzoF2LUtDEpEdqR28PMCbtKCCBfLEt1ObULmHqE+dm0LgxKRHSkd/BN68YRE2lAbCmZ4Jy2INiEzgxKRnagd/LHhvnZuDdENHAom0WhdN+l2DEpEdiJSVzIRwKFgEo+IQ8EMSkR2IFpXMhGgPIUOh4JJKyIOBTMoEdmB0gkJ4C930obaFDocCiat7CiQn0JHy6FgBiWiBqZ2QuJ1IKQFtSrcHAomrSRnFeKLPIPsMi1/UDIoETUgg7GMvUkkHLWLZedzCh3SgFp4f+a+cE33SQYlogZUdKEUksIyzulGWmAVbhKR2s0uT/UNtWtbbsegRNSAvj0uf+t1fGw7npBIE6zCTaIR/WYXBiWiBmIwluHdzELZZcMig+zcGiIxb70mEq1u0u0YlIgaiNLB76ADQv3c7NwaohtDwUpEOCFR89MYwjuDElEDUDv4x/cU4+Cn5kdpKHjGgPbcJ0kTovcmAQxKRA2iMRz81LyoDQX3iWht59YQNY7eJECwoLRq1Sp07doVXl5e8PLyQmxsLLZs2WJartPpZB9/+ctfTOvExcXVWD5+/HgtPg41U43l4KfmhUPBJJrGMhTspHUDbtWmTRssXboUERE3vqCUlBQ89NBDyM3NRZcuXWAwmBei2rJlCyZPnoyHH37Y7PkpU6bg1VdfNf3t6soTE9kPe5NINBwKJhFty5evwi3aULBQQWnUqFFmf7/xxhtYtWoV9u3bhy5duiAwMNBs+ZdffokBAwYgPDzc7Hk3N7ca6xLZA3uTSEQsekqiSc4qRMp3p2SXiTYULNTQ262qqqqQlpaG0tJSxMbG1lj+22+/4auvvsLkyZNrLEtNTYWfnx+6dOmChIQEXL58WfW9ysvLUVJSYvYgssba7CLFZTwhkRY4hQ6JRq0Kt4hDwUL1KAHAkSNHEBsbi2vXrsHDwwPp6eno3LlzjfVSUlLg6emJsWPHmj0/YcIEhIWFITAwEPn5+UhMTMQPP/yAjIwMxfdMSkrC4sWLbf5ZqHkxGMuweo98UGIVbtKC2gkJYHgnbdRW9FS0fyt1kiQpzbCgiYqKCpw+fRqXLl3Cxo0b8eGHHyIrK6tGWLrrrrswZMgQrFy5UnV7OTk5iImJQU5ODrp37y67Tnl5OcrLy01/l5SUICQkBEajEV5eXvX/UNQsLNh0WHbYbczdwVg+PlqDFlFz96/D5zBjQ67sssQRd7E6PNmdwViG2KRdsstG3x2Mt+v5b2VJSQm8vb1tev4WrkfJxcXFdDF3TEwMDhw4gBUrViA5Odm0zp49e3Ds2DF88skntW6ve/fucHZ2xvHjxxWDkl6vh16vt80HoGZJ7dqkQZ0C7Nwaohv2npCvm8Q53UgrjXEKHWGvUbpJkiSz3h4AWLNmDXr06IFu3brV+vqjR4+isrISQUGcMoIajtqEjj1CfezbGCKoh3dRT0jUtDXWm12E6lFasGABhg8fjpCQEFy+fBlpaWnIzMzE1q1bTeuUlJTgs88+w7Jly2q8vrCwEKmpqRgxYgT8/PxQUFCAOXPmIDo6Gn369LHnR6FmRPQJHal5UgrvE3pxnyRt5Jy6qLhM5OvlhApKv/32GyZOnAiDwQBvb2907doVW7duxZAhQ0zrpKWlQZIkPPbYYzVe7+Ligp07d2LFihW4cuUKQkJC8MADD+CVV16Bo6OjPT8KNSOsm0SiUQvvseG+dm4N0Q1KQ8Ei9yYBAl7MLYKGuBiMmia1CxMfv6ctloyNsnOLiJRvLNAB2Js4UOiTEjVNav9WfmfDfbIhzt/CX6NEJLLG2pVMTReHgklEjXkomEGJqB52FMiX4Be9K5maLlbhJtE09qFgBiUiKyVnFeKLPIPsMp6QSAuswk0iUgrvjeWuYAYlIiuoVTx+5r5wnpDI7gzGMvYmkXDUwntjGQpmUCKyglrdpKf6htq1LUQAUHShFEp35nAKHdJCU5lCh0GJyEK8WJZE9O1x+Vuv42PbsQo3aUKtdEpjCu8MSkQWYt0kEo3BWIZ3Mwtllw2L5KwEZH9qPygb2xQ6DEpEFmisJfipaVMK7w46INTPzc6tIboxFKyksU2hw6BEZAH2JpFo1ML7+J4M76QNpaHgGQPaN7p9kkGJqI7Ym0QiYngn0agNBfeJaG3n1tQfgxJRHal1JfOERFpgeCcRNbWhYAYlojpqSl3J1DSwN4lE0xSHghmUiOqgqXUlU+PH3iQSUVMsesqgRFQHSgd/Y+1KpsZvbXaR4rLGekKixq2pTqHDoERUC7WDv7F2JVPjZjCWYfUe+aDUmAr5UdPRVKpwy2FQIlLRlA9+aryUrk0a08gK+VHT0VSqcMthUCJS0ZQPfmqc1K5NGtQpwM6tIWpaVbjlMCgRKWjqBz81TmoTMvcI9bFvY4jQtKpwy2FQIlKg1pvUFA5+anw4ITOJqKmXTmFQIpLBW69JRKybRKJpDqVTGJSIZLAKN4mG4Z1E1NSqcMthUCKS0dS7kqnxYW8SiaYpVuGWw6BEdJvm0JVMjQt7k0hETbEKtxwGJaLbsAo3iYZDwSSaplqFWw6DEtEtWIWbRLQtv1j2eQ4FkxaaWyFeBiWi/2puBz81DslZhUj57pTsMg4FkxZyTl1UXNYUC/EyKBH9F6twk2jUwjuHgkkre0/I3+zSVAvxMigRgVW4SUy1FT1leCd7U/u3sqkW4mVQIoJ6V3JTPfhJbAzvJCKl8D6hV9O9hpNBiQjKXclN7e4Najw4hQ6JRi28x4b72rk19sOgRM2e2sHPC7hJC6ybRCJqrhMyCxWUVq1aha5du8LLywteXl6IjY3Fli1bTMvj4+Oh0+nMHvfee6/ZNsrLyzFz5kz4+fnB3d0dDz74IM6ePWvvj0KNSHPsSiaxqQ0FM7yTFprzhMxCBaU2bdpg6dKlOHjwIA4ePIiBAwfioYcewtGjR03r3H///TAYDKbH119/bbaNWbNmIT09HWlpacjOzsaVK1cwcuRIVFVV2fvjUCPQXLuSSWwcCibRNOcpdJy0bsCtRo0aZfb3G2+8gVWrVmHfvn3o0qULAECv1yMwMFD29UajEWvWrMHHH3+MwYMHAwDWr1+PkJAQ7NixA8OGDWvYD0CNjlIV7qbelUzi4lAwiaa5DwUL1aN0q6qqKqSlpaG0tBSxsbGm5zMzM+Hv748777wTU6ZMwfnz503LcnJyUFlZiaFDh5qeCw4ORmRkJPbu3av4XuXl5SgpKTF7UNOnVoW7qXclk7iUwjuHgkkrzX0oWLigdOTIEXh4eECv12Pq1KlIT09H586dAQDDhw9Hamoqdu3ahWXLluHAgQMYOHAgysvLAQDFxcVwcXGBj495T0BAQACKi+WnAACApKQkeHt7mx4hISEN9wFJCKzCTSJSC+8cCiat7CiQP382h94kQLChNwDo2LEj8vLycOnSJWzcuBGTJk1CVlYWOnfujEcffdS0XmRkJGJiYtCuXTt89dVXGDt2rOI2JUmCTqdTXJ6YmIjZs2eb/i4pKWFYauJYhZtEoxbeORRMWknOKsQXeQbZZc3lB6VwQcnFxQURETe+/JiYGBw4cAArVqxAcnJyjXWDgoLQrl07HD9+46QXGBiIiooKXLx40axX6fz58+jdu7fie+r1euj1eht/EhIVC/mRiNTC+3yGd9KAWnh/5r7wZrNPCjf0djtJkkxDa7f7/fffcebMGQQFBQEAevToAWdnZ2RkZJjWMRgMyM/PVw1K1LwUXShVXMZCfqQFhncSkVrdpKf6htq1LVoSqkdpwYIFGD58OEJCQnD58mWkpaUhMzMTW7duxZUrV7Bo0SI8/PDDCAoKwsmTJ7FgwQL4+flhzJgxAABvb29MnjwZc+bMga+vL1q1aoWEhARERUWZ7oIj+va4/K3XMwa0bza/kEgsrMJNomnOdZNuJ1RQ+u233zBx4kQYDAZ4e3uja9eu2Lp1K4YMGYKysjIcOXIEf//733Hp0iUEBQVhwIAB+OSTT+Dp6WnaxvLly+Hk5IRx48ahrKwMgwYNwrp16+Do6KjhJyNRGIxleDezUHZZn4jWdm4NEW+9JjE157pJtxMqKK1Zs0ZxmaurK7Zt21brNlq0aIGVK1di5cqVtmwaNRFKB7+DDgj1c7Nza4jUh4Kb2wmJxMDwbk74a5SIbEXt4B/fs/kd/CQGDgWTaNibZI5BiZoNHvwkGg4Fk2jYm1QTgxI1Czz4SURKVbg5FExa4VBwTQxK1CywN4lEo1aFm0PBpJVt+fJVuJvzUDCDEjV57E0i0XAKHRJRclYhUr47JbusOQ8FMyhRk7c2u0hxGU9IpAVOoUOiUQvvzX0omEGJmjSDsQyr98gHJZ6QSAuswk0iqq3oaXP+t5JBiZo0pYN/DE9IpJGcUxcVl7EKN2mB4V0dgxI1WWoH/6BOAXZuDdENe0/I103i9XKkFU6ho45BiZostQkde4T62LcxRFAP77xejrTAm11qx6BETRIndCQRKYX3Cb24T5I21IaCGd5vYFCiJol1k0g0auE9NtzXzq0huoFDwbVjUKImh13JJCIOBZNoOBRcNwxK1OSwK5lEw6FgEpHSFDocCjbHoERNzo4C+RL87E0irSidkACGd9KG2hQ6HAo252TJyps3b7b4DYYMGQJXV56cyD6SswrxRZ5BdhlPSKQFtRMSwztpQa0KN4eCa7IoKI0ePdqijet0Ohw/fhzh4eEWvY7IGmoH/zP3hfOERHZnMJaxN4mEo3azy3zOWFCDxUNvxcXFqK6urtPDza35zg1D9qd2sexTfUPt2hYiACi6UApJYRmn0CEtsAq35SwKSpMmTbJoGO2JJ56Al5eXxY0ishQvliURfXtc/tbr+Nh2PCGRJliF23IWDb2tXbvWoo2vWrXKovWJrMW6SSQag7EM72YWyi4bFhlk59YQsXSKtXjXGzV6PPhJRErh3UEHhPrxsgSyv6ILpYrL+INSmdVBaeDAgVi8eHGN5y9evIiBAwfWq1FElmBvEolGLbyP78nwTtpQGgqeMaA990kVFg293SozMxNHjhxBbm4uUlNT4e7uDgCoqKhAVlaWzRpIpIa9SSQihncSjdpQcJ+I1nZuTeNSr6G3HTt2oLi4GPfeey9OnjxpoyYR1R27kkk0DO8kIg4FW69eQSkoKAhZWVno2rUrevbsiczMTBs1i6hutuXLV+FmVzJphb1JJBoOBdeP1UFJp9MBAPR6PVJTU/H888/j/vvvx3vvvWezxhGpSc4qRMp3p2SXsSuZtMDeJBIRi57Wj9XXKEmSeRm1F198EZ06dcKkSZPq3Sii2qhV4WZXMmllbXaR4jKekEgLnEKn/qwOSkVFRfDz8zN77uGHH0bHjh2Rk5NT74YRqamtaBoPfrI3g7EMq/fIByVW4SYtqP2gBBje68rioFRSUgIA8PHxwZUrV2osb9u2Ldq2bVv/lhEpYAl+EpFSeB/DfZI0ovaDkuG97iwOSi1btjRdnyRHkiTodDpUVVXVq2FESliCn0SjFt4HdQqwc2uI+IPSliwOSrt37zb9tyRJGDFiBD788EPccccdNm0YkRxeLEsiUpuQuUeoj30bQwT10in8QWkZi+9669+/v+kRFxcHR0dH3HvvvWbP9+/f36rGrFq1Cl27doWXlxe8vLwQGxuLLVu2AAAqKysxb948REVFwd3dHcHBwXjyySdx7pz5RWpxcXHQ6XRmj/Hjx1vVHhIPb70m0XBCZhIRq3DbjlBzvbVp0wZLly7FwYMHcfDgQQwcOBAPPfQQjh49iqtXr+LQoUN46aWXcOjQIWzatAk///wzHnzwwRrbmTJlCgwGg+mRnJyswachW2NvEomI4Z1EwyrctmX1XW8NYdSoUWZ/v/HGG1i1ahX27duHyZMnIyMjw2z5ypUrcc899+D06dNmF5C7ubkhMDDQLm0m+2EVbhINwzuJiFW4bcsmPUpqF3dbq6qqCmlpaSgtLUVsbKzsOkajETqdDi1btjR7PjU1FX5+fujSpQsSEhJw+fJl1fcqLy9HSUmJ2YPEw65kEg17k0g0rMJtexb3KI0dO9bs72vXrmHq1KmmSXFv2rRpk1UNOnLkCGJjY3Ht2jV4eHggPT0dnTt3rrHetWvXMH/+fDz++OPw8vIyPT9hwgSEhYUhMDAQ+fn5SExMxA8//FCjN+pWSUlJWLx4sVXtJftgVzKJhr1JJCJW4bY9i4OSt7e32d9PPPGEzRoDAB07dkReXh4uXbqEjRs3YtKkScjKyjILS5WVlRg/fjyqq6trTJkyZcoU039HRkaiQ4cOiImJwaFDh9C9e3fZ90xMTMTs2bNNf5eUlCAkJMSmn4vqR+ngZ1cyaYVVuEk0rMLdMCwOSmvXrm2Idpi4uLggIuLGPzIxMTE4cOAAVqxYYbogu7KyEuPGjUNRURF27dpl1pskp3v37nB2dsbx48cVg5Jer4der7ftByGbUTv42ZVMWmAVbhINq3A3HKEu5pYjSRLKy8sB/C8kHT9+HLt374avr2+trz969CgqKysRFBTU0E2lBsCDn0TEKtwkmpxTFxWXMbzXj8VB6emnn67Teh999JHFjVmwYAGGDx+OkJAQXL58GWlpacjMzMTWrVtx/fp1PPLIIzh06BD+9a9/oaqqCsXFxQCAVq1awcXFBYWFhUhNTcWIESPg5+eHgoICzJkzB9HR0ejTp4/F7SHtsQQ/iYZVuElEe0/I3+zCKtz1Z3FQWrduHdq1a4fo6GhIkmTTxvz222+YOHEiDAYDvL290bVrV2zduhVDhgzByZMnsXnzZgDA3Xffbfa63bt3Iy4uDi4uLti5cydWrFiBK1euICQkBA888ABeeeUVODo62rSt1PBYgp9ExCrcJBq1fytZhbv+LA5KU6dORVpaGn755Rc8/fTTeOKJJ9CqVSubNGbNmjWKy0JDQ2sNZiEhIcjKyrJJW0h7al3JPPhJC6zCTSJSCu8TenGftAWL6yi99957MBgMmDdvHv75z38iJCQE48aNw7Zt22zew0TNm1JXMu/eIK2wbhKJRi28x4bXfh0v1c6qgpN6vR6PPfYYMjIyUFBQgC5dumDatGlo164drly5Yus2UjOkdvDzhERaYN0kEhGHghtevStz35x4VpIkVFdX26JNROxKJuGoDQUzvJMWOBRsH1YFpfLycvzjH//AkCFD0LFjRxw5cgTvvPMOTp8+DQ8PD1u3kZoZdiWTiDgUTKJhFW77sPhi7mnTpiEtLQ1t27bFU089hbS0tDrVMyKqK6WDn13JpBUOBZNoWIXbfiwOSu+//z7atm2LsLAwZGVlKd5lZu1cb9S8qR387EomrSiFdw4FkxYMxjL2JtmRxUHpySefhE6na4i2UDPHKtwkIrXwzqFg0kLRhVIo3WPOQry2Z1XBSaKGwCrcJBq18M6hYNLKt8flr5eLj23HQrwNwKKLuQ8fPmzRnW1Hjx7F9evXLW4UNT+swk0iUgvv8xneSQMGYxnezSyUXTYsknOaNgSLglJ0dDR+//33Oq8fGxuL06dPW9woan6KLpQqLmMVbtICwzuJSCm8O+iAUD83O7emebBo6E2SJLz00ktwc6vb/4yKigqrGkXNj1JX8owB7fmrnTSh1pvE8E5aUAvv43vyxoKGYlFQ6tevH44dO1bn9WNjY+Hqyv9xpE6tK7lPRGs7t4aIVbhJTJxCRxsWBaXMzMwGagY1Z+xKJtGoDQXzhERaYHjXTr2nMCGqD3Ylk4g4FEyiYW+SdhiUSFMsmkai4VAwiYa9SdpiUCLNsAQ/iUgpvHMomLTCoWBtWRSU5s2bh2vXrjVUW6gZYRVuEpFaeOdQMGllW36x7PMcCrYPi4LS8uXLYTQaAQCTJk1CaalyyiVSk3PqouIyVuEmLTC8k4iSswqR8t0p2WUcCrYPi4LSHXfcgdzcXADA+vXrGZTIantPyF8sy0J+pBVOoUOiUQvvHAq2H4uCUkJCAh588EH07t0bAJCamorvv/8eZWVlDdI4aprULkxkIT/SAqtwk4hqK3rK8G4fFgWl6dOnIzc3FyNHjoQkSXj33XfRu3dveHl5oVOnThg/fjyWLl2KLVu2NFR7qQlQOvgn9OI1IKQNtaFghnfSAsO7OCwqOAkAXbp0QZcuXfDRRx9h3759cHd3x+HDh5GXl4e8vDx8+eWXeOONN3D58uWGaC81cmoHf2y4r51bQ3SD0lAw774krXAKHXFYHJRuOnHihOm/e/XqhV69epn+liSpfq2iJkvp4NcB6BHqY9/GEEE9vPMCbtIC6yaJpUHqKOl0uobYLDVyagf/Yzz4SSMcCibRqA0FM7zbHwtOkt2wBD+JhkPBJCIOBYuFQYnsgl3JJCKlKtwcCiatcChYPAxKZBfsSibRqFXh5lAwaUUpvHMoWDsMSmQXOwrkS/CzN4m0wCrcJCK18M6hYO0wKFGDS84qxBd5BtllPCGRFliFm0SjFt45FKytBglKDg4OGDhwIHJychpi89SIqB38z9wXzhMS2R0L+ZGI1ML7fIZ3TTVIUProo4/Qv39/PPfccw2xeWpE1OomPdU31K5tIQKAogvKc1SykB9pgeFdbA0SlOLj4/HKK6/g22+/teh1q1atQteuXeHl5QUvLy/ExsaaTYciSRIWLVqE4OBguLq6Ii4uDkePHjXbRnl5OWbOnAk/Pz+4u7vjwQcfxNmzZ23yucgyrJtEIvr2uPyt1zMGtOc+SZpgFW6xWR2U4uPj8c0339iyLWjTpg2WLl2KgwcP4uDBgxg4cCAeeughUxh688038dZbb+Gdd97BgQMHEBgYiCFDhphNlzJr1iykp6cjLS0N2dnZuHLlCkaOHImqqiqbtpVqx7pJJBqDsQzvZhbKLusT0drOrSFi6ZTGwOqgdPnyZQwdOhQdOnTAkiVL8Ouvv9a7MaNGjcKIESNw55134s4778Qbb7wBDw8P7Nu3D5Ik4e2338bChQsxduxYREZGIiUlBVevXsWGDRsAAEajEWvWrMGyZcswePBgREdHY/369Thy5Ah27NhR7/ZR3fHgJxEphXcHHRDq52bn1hCpDwXzB6UYrA5KGzduxK+//ooZM2bgs88+Q2hoKIYPH47PP/8clZWV9W5YVVUV0tLSUFpaitjYWBQVFaG4uBhDhw41raPX69G/f3/s3bsXAJCTk4PKykqzdYKDgxEZGWlaR055eTlKSkrMHlQ/7E0i0aiF9/E9Gd5JGxwKFl+9rlHy9fXF888/j9zcXHz//feIiIjAxIkTERwcjBdeeAHHjyufLJUcOXIEHh4e0Ov1mDp1KtLT09G5c2cUF9+owxMQEGC2fkBAgGlZcXExXFxc4OPjo7iOnKSkJHh7e5seISEhFreb/oe9SSQihncSDYeCGwebXMxtMBiwfft2bN++HY6OjhgxYgSOHj2Kzp07Y/ny5RZtq2PHjsjLy8O+ffvwpz/9CZMmTUJBQYFp+e0T7kqSVOskvLWtk5iYCKPRaHqcOSN/kqe6YVcyiYbhnUSkVIWbQ8FisTooVVZWYuPGjRg5ciTatWuHzz77DC+88AIMBgNSUlKwfft2fPzxx3j11Vct2q6LiwsiIiIQExODpKQkdOvWDStWrEBgYCAA1OgZOn/+vKmXKTAwEBUVFbh48aLiOnL0er3pTrubD7Letnz53jt2JZNW2JtEolGrws2hYLFYHZSCgoIwZcoUtGvXDt9//z0OHjyIqVOnwtPT07TOsGHD0LJly3o1UJIklJeXIywsDIGBgcjIyDAtq6ioQFZWFnr37g0A6NGjB5ydnc3WMRgMyM/PN61DDSs5qxAp352SXcauZNICe5NINJxCp3FxsvaFy5cvxx/+8Ae0aNFCcR0fHx8UFRXVeZsLFizA8OHDERISgsuXLyMtLQ2ZmZnYunUrdDodZs2ahSVLlqBDhw6mu+3c3Nzw+OOPAwC8vb0xefJkzJkzB76+vmjVqhUSEhIQFRWFwYMHW/tRqY7UDn52JZNW1mYr/xvEExJpgVPoNC5WB6WzZ89iw4YNePrpp82e/+ijj/Dvf/8b8+bNs3ibv/32GyZOnAiDwQBvb2907doVW7duxZAhQwAAc+fORVlZGaZNm4aLFy+iV69e2L59u1kv1vLly+Hk5IRx48ahrKwMgwYNwrp16+Do6GjtR6U6qq1oGg9+sjeDsQyr98gHJZ6QSAuswt346CRJkqx5YWhoKDZs2FBjSGv//v0YP368RT1JoikpKYG3tzeMRiOvV6ojg7EMsUm7ZJeNvjsYb4+PtnOLiIAFmw7LnpTG3B2M5dwnSQNK+yQAfJc4kOG9nhri/G31NUrFxcUICgqq8Xzr1q1hMMjPFE9NF0vwk2jUfrkP6qR8cwdRQ+H1co2T1UEpJCREdi63b7/9FsHBwfVqFDUuPPhJRGoTMvcI9ZFdRtSQWDqlcbL6GqU//vGPmDVrFiorKzFw4EAAwM6dOzF37lzMmTPHZg0k8fHWaxINJ2QmEbEKd+NkdVCaO3cu/vOf/2DatGmoqKgAALRo0QLz5s1DYmKizRpIYmNvEomI4Z1EwyrcjZfVQUmn0+HPf/4zXnrpJfz4449wdXVFhw4doNfrbdk+Ehy7kkk0DO8kIk7I3HhZHZRu8vDwQM+ePW3RFmqEWIWbRMPeJBINJ2Ru3OoVlHbu3ImdO3fi/PnzqK6uNlv20Ucf1athJD5W4SbRsDeJRKQ0pxvA8N4YWB2UFi9ejFdffRUxMTEICgqqdWJaalpYhZtExCrcJBq1Od0Y3hsHq4PS+++/j3Xr1mHixIm2bA81EqzCTaJhFW4SDed0axqsrqNUUVHBiWabKZbgJxEphfcx3CdJIzmnLiouY3hvPKwOSn/84x+xYcMGW7aFGglW4SbRsAo3iWjvCfm6SfxB2bhYPfR27do1rF69Gjt27EDXrl3h7Oxstvytt96qd+NIPLxYlkTEKtwkGrV/K/mDsnGxOigdPnwYd999NwAgPz/fbBkv7G661LqSOd5OWmAVbhKRUnif0Iv7ZGNjdVDavXu3LdtBjYRSVzJ7k0grrJtEolEL77HhvnZuDdWX1dcoUfOjdvDzhERa4FAwiYhDwU1LvYLSnj178MQTTyA2Nha//vorAODjjz9Gdna2TRpHYmFXMomGQ8EkGg4FNz1WB6WNGzdi2LBhcHV1RW5uLsrLywEAly9fxpIlS2zWQBIDu5JJRDsK5KfQYW8SaYVVuJseq4PS66+/jvfffx8ffPCB2R1vvXv3xqFDh2zSOBKH0sHPrmTSSnJWIb7IM8gu4wmJtMAq3E2T1UHp2LFj6NevX43nvby8cOnSpfq0iQSjdvCzK5m0oFbx+Jn7wrlPkt0ZjGXsTWqirA5KQUFBOHHiRI3ns7OzER4eXq9GkThYgp9EpHax7FN9Q+3aFiIAKLpQCklhGatwN25WB6Vnn30Wzz//PPbv3w+dTodz584hNTUVCQkJmDZtmi3bSBpSu/WaBz9pgRfLkoi+PS5fOiU+th2rcDdyVtdRmjt3LoxGIwYMGIBr166hX79+0Ov1SEhIwIwZM2zZRtII53QjEbFuEonGYCzDu5mFssuGRQbZuTVka1YHJQB44403sHDhQhQUFKC6uhqdO3eGh4eHrdpGGiu6UKq4jCX4SQusm0QiUgrvDjog1M/Nzq0hW6tXUAIANzc3xMTE2KItJBilruQZA9rzhESaYG8SiUYtvI/vyfDeFFgdlF599VXV5S+//LK1myYBqHUl94lobefWELE3icTE8N70WR2U0tPTzf6urKxEUVERnJyc0L59ewalRo5dySQataFgnpBICwzvzYPVQSk3N7fGcyUlJYiPj8eYMWPq1SjSFruSSUQcCibRsDepebDppLheXl549dVX8dJLL9lys2RnLJpGouFQMImGvUnNh02DEgBcunQJRqPR1pslO2EJfhKRUnjnUDBpZW12keIy/qBsWqweevvb3/5m9rckSTAYDPj4449x//3317thZH+swk0iUgvvHAomLRiMZVi9Rz4osRBv02N1UFq+fLnZ3w4ODmjdujUmTZqExMTEejeM7C/n1EXFZTz4SQsM7yQipWuTxrAQb5Nk9dBbUVGR2aOwsBD79u3DkiVL4OnpadU2k5KS0LNnT3h6esLf3x+jR4/GsWPHzNbR6XSyj7/85S+mdeLi4mosHz9+vLUftdnYe0L+YllW4SatcAodEo3atUmDOgXYuTVkD1b3KM2ePbvO67711lt1Wi8rKwvTp09Hz549cf36dSxcuBBDhw5FQUEB3N3dAQAGg8HsNVu2bMHkyZPx8MMPmz0/ZcoUs1pPrq78B1WN2sHPKtykBU6hQyJSm5C5R6iPfRtDdlGv8gA5OTmoqqpCx44dAQA///wzHB0d0b17d9N6Op2uztvcunWr2d9r166Fv78/cnJy0K9fPwBAYGCg2TpffvklBgwYgPDwcLPn3dzcaqxLypQO/gm9eA0IaUNtKJjhnbTACZmbJ6uD0qhRo+Dp6YmUlBT4+NxI0RcvXsRTTz2F++67D3PmzKl3427ePdeqVSvZ5b/99hu++uorpKSk1FiWmpqK9evXIyAgAMOHD8crr7xi9ZBgU6d28MeG+9q5NUQ3KA0F8+5L0grrJjVPVgelZcuWYfv27aaQBAA+Pj54/fXXMXTo0HoHJUmSMHv2bPTt2xeRkZGy66SkpMDT0xNjx441e37ChAkICwtDYGAg8vPzkZiYiB9++AEZGRmy2ykvL0d5ebnp75KSknq1vbFhVzKJRi2884REWmDdpObL6qBUUlKC3377DV26dDF7/vz587h8+XK9GzZjxgwcPnwY2dnZiut89NFHmDBhAlq0aGH2/JQpU0z/HRkZiQ4dOiAmJgaHDh0yGxa8KSkpCYsXL653mxsjdiWTiDgUTKJRGwpmeG/arL7rbcyYMXjqqafw+eef4+zZszh79iw+//xzTJ48uUYPj6VmzpyJzZs3Y/fu3WjTpo3sOnv27MGxY8fwxz/+sdbtde/eHc7Ozjh+XP4f38TERBiNRtPjzBn54NAUsQo3iYZDwSQiDgU3X1b3KL3//vtISEjAE088gcrKyhsbc3LC5MmTzW7Vt4QkSZg5cybS09ORmZmJsLAwxXXXrFmDHj16oFu3brVu9+jRo6isrERQUJDscr1eD71eb1WbGzNW4SYRKYV3DgWTVjgU3LxZHZTc3Nzw3nvv4S9/+QsKCwshSRIiIiJMt/FbY/r06diwYQO+/PJLeHp6ori4GADg7e1tdnt/SUkJPvvsMyxbtqzGNgoLC5GamooRI0bAz88PBQUFmDNnDqKjo9GnTx+r29bUGIxl7E0i4aiFdw4Fk1aU/q3kUHDzYHVQusnd3R1du3a1RVuwatUqADcKRt5q7dq1iI+PN/2dlpYGSZLw2GOP1diGi4sLdu7ciRUrVuDKlSsICQnBAw88gFdeeQWOjo42aWdTUHShFJLCMhbyIy2wCjeJSC28cyi4eahXUNqzZw+Sk5NRWFiIzz//HHfccQc+/vhjhIWFoW/fvhZvT5KUTt3mnnnmGTzzzDOyy0JCQpCVlWXxezc33x6XH2+Pj23HQn6kCVbhJtGohXcOBTcfVl/MvXHjRgwbNgyurq7Izc013V5/+fJlLFmyxGYNJNszGMvwbmah7LJhkfLXcRE1JFbhJhGphff5DO/NhtVB6fXXX8f777+PDz74AM7Ozqbne/fujUOHDtmkcdQwlA5+Bx0Q6udm59YQ3RgKVsIq3KQFhne6yeqgdOzYMdO0Irfy8vLCpUuX6tMmakBqB//4nrwwkbShNBQ8Y0B77pOkCbXeJIb35sXqoBQUFIQTJ07UeD47O7vGvGskDpbgJ9GoDQX3iWht59YQsQo3mbM6KD377LN4/vnnsX//fuh0Opw7dw6pqalISEjAtGnTbNlGshEe/CQiDgWTaNSGgvmDsvmx+q63uXPnwmg0YsCAAbh27Rr69esHvV6PhIQEzJgxw5ZtJBthbxKJhkPBJCIOBdOt6lUe4I033sDChQtRUFCA6upqdO7cGR4eHrZqG9kQe5NIRCx6SqLhUDDdzqqht8rKSgwYMAA///wz3NzcEBMTg3vuuYchSWDsSibRcAodEpFSeOdQcPNlVVBydnZGfn4+dDqdrdtDDWRbfrHs8+xKJi2wCjeJSC28cyi4+bL6Yu4nn3wSa9assWVbqIEkZxUi5btTssvYlUxayDl1UXEZq3CTFhjeSYnV1yhVVFTgww8/REZGBmJiYmpMhvvWW2/Vu3FUf2oHP7uSSSt7T8hfLMtCfqQVTqFDSiwKSocPH0ZkZCQcHByQn5+P7t27AwB+/vlns/U4JCeO2oqm8eAne1O7sYCF/EgLrMJNaiwKStHR0TAYDPD398epU6dw4MAB+Ppy9mRR8eAnESmF9wm9eA0IaUNtKJjhnSy6Rqlly5YoKioCAJw8eRLV1dUN0iiyDZbgJ9GohffYcP7oIm0oDQXz7ksCLOxRevjhh9G/f38EBQVBp9MhJiYGjo6Osuv+8ssvNmkgWYd1k0hESuFdB6BHqI99G0ME9X8reQE3ARYGpdWrV2Ps2LE4ceIEnnvuOUyZMgWenp4N1TaqB1bhJtGonZAeY3gnjXAomGpj8V1v999/PwAgJycHzz//PIOSgNibRCJieCfRcCiY6sLq8gBr1661ZTvIhliFm0TD8E4iUqrCzaFgupXVBSdJXKzCTaJhbxKJRq0KN4eC6VYMSk0Mq3CTaNibRKJhFW6yBINSE8Iq3CSitdlFist4QiItsAo3WYJBqQlhFW4SjcFYhtV75IMST0ikBRbiJUsxKDURPPhJRErhfQz3SdIIq3CTpRiUmghW4SbRqIX3QZ0C7NwaohtYhZssxaDUBPBiWRIRq3CTaFiFm6zBoNQEqHUl8+AnLbAKN4mIVbjJGgxKTQC7kkk0rJtEomEVbrIWg1Ijx65kEg2HgklEHAomazEoNXJKJfjZlUxa4VAwiYZDwVQfDEqNmFoJfnYlk1Z2FMhPocPeJNKK0g9KgOGdaseg1EipVeFmVzJpJTmrEF/kGWSX8YREWlD7QcnwTnUhVFBKSkpCz5494enpCX9/f4wePRrHjh0zWyc+Ph46nc7sce+995qtU15ejpkzZ8LPzw/u7u548MEHcfbsWXt+lAandrHsfFY8Jg2ohfdn7gvnPkl2ZzCWsTeJ6k2ooJSVlYXp06dj3759yMjIwPXr1zF06FCUlpaarXf//ffDYDCYHl9//bXZ8lmzZiE9PR1paWnIzs7GlStXMHLkSFRVVdnz4zQYVuEmEaldLPtU31C7toUIAIoulEJSWMYpdKiunLRuwK22bt1q9vfatWvh7++PnJwc9OvXz/S8Xq9HYGCg7DaMRiPWrFmDjz/+GIMHDwYArF+/HiEhIdixYweGDRvWcB/ATliFm0TDi2VJRN8ely+dEh/bjj8oqc6E6lG6ndFoBAC0atXK7PnMzEz4+/vjzjvvxJQpU3D+/HnTspycHFRWVmLo0KGm54KDgxEZGYm9e/fap+ENiLdek4hYN4lEYzCW4d3MQtllwyKD7NwaasyE6lG6lSRJmD17Nvr27YvIyEjT88OHD8cf/vAHtGvXDkVFRXjppZcwcOBA5OTkQK/Xo7i4GC4uLvDxMb+YOSAgAMXF8nfjlJeXo7y83PR3SUlJw3woGyi6UKq4jCck0gLDO4lIKbw76IBQPzc7t4YaM2GD0owZM3D48GFkZ2ebPf/oo4+a/jsyMhIxMTFo164dvvrqK4wdO1Zxe5IkQafTyS5LSkrC4sWLbdPwBqbUlTxjQHuekEgT7E0i0aiF9/E9Gd7JMkIOvc2cORObN2/G7t270aZNG9V1g4KC0K5dOxw/fuMf68DAQFRUVODiRfOid+fPn0dAgPyM5YmJiTAajabHmTPyB5jW1LqS+0S0tnNriNibRGJieCdbEiooSZKEGTNmYNOmTdi1axfCwsJqfc3vv/+OM2fOICjoxphzjx494OzsjIyMDNM6BoMB+fn56N27t+w29Ho9vLy8zB4iYlcyiYZDwSQahneyNaGG3qZPn44NGzbgyy+/hKenp+maIm9vb7i6uuLKlStYtGgRHn74YQQFBeHkyZNYsGAB/Pz8MGbMGNO6kydPxpw5c+Dr64tWrVohISEBUVFRprvgGiN2JZOItuXLX/fHoWDSCnuTyNaECkqrVq0CAMTFxZk9v3btWsTHx8PR0RFHjhzB3//+d1y6dAlBQUEYMGAAPvnkE3h6eprWX758OZycnDBu3DiUlZVh0KBBWLduHRwdHe35cWyKRdNINMlZhUj57pTsMg4FkxbYm0QNQaigJElKpcFucHV1xbZt22rdTosWLbBy5UqsXLnSVk3TFEvwk2jUqnBzKJi0sja7SHEZf1CStYS6RolqUjshATz4SRu1FT1leCd7MxjLsHqPfFBiFW6qDwYlweWcuqi4jAc/aYFT6JCIlML7GO6TVE8MSoLbe0K+bhJPSKQVTqFDolEL74M6yZeFIaorBiWBqR38PCGRFnixLIlIbULmHqE+ssuI6opBSWBKB/+EXjwhkTbUhoJ5vRxpgRMyU0NjUBKU2sEfG+5r59YQ3aA0FMzeJNIK6yZRQ2NQEhS7kkk0auGdJyTSAoeCyR4YlATErmQSEYeCSTQcCiZ7YFASEKtwk2g4FEwi2lEgP4UOe5PIlhiUBMMq3CQipfDOoWDSSnJWIb7IM8gu4w9KsiUGJYEYjGXsTSLhqIV3DgWTFtRmLHjmvnDuk2RTDEoCKbpQCqXZ7liFm7TAKXRIRGo3uzzVN9SubaGmj0FJIN8el7/1Oj62HatwkybUbr1meCct8GYXsjcGJUEYjGV4N7NQdtmwyCA7t4aIc7qRmFg3ieyNQUkQSge/gw4I9XOzc2uIbgwFK+EUOqQF1k0iLTAoCUDt4B/fkwc/aUNpKHjGgPbcJ0kT7E0iLTAoCYAHP4lGbSi4T0RrO7eGiL1JpB0GJY3x4CcRcSiYRKM2FMwflNSQGJQ0xt4kEg2HgklEHAomrTAoaYi9SSQiFj0l0XAomLTEoKShtdlFist4QiItcAodEpFSeOdQMNkDg5JGDMYyrN4jH5RYyI+0wCrcJCK18M6hYLIHBiWNKF2bNIaF/EgjOacuKi5jeCctMLyTCBiUNKB2bdKgTgF2bg3RDXtPyF8syyrcpBVOoUMiYFDSgNqEjj1CfezbGCKoh3dW4SYtcAodEgWDkp1xQkcSkVJ4n9CL+yRpQ20omOGd7IlByc5YN4lEoxbeY8N97dwaohuUhoJ59yXZG4OSHbFuEomIQ8EkGrV/K/mDkuyNQcmO2JtEouFQMImIQ8EkEgYlO2FvEomIVbhJNBwKJtEwKNkJJ3Qk0bAKN4lIKbxzKJi0IlRQSkpKQs+ePeHp6Ql/f3+MHj0ax44dMy2vrKzEvHnzEBUVBXd3dwQHB+PJJ5/EuXPm/9jHxcVBp9OZPcaPH2/vj2NmW36x7POc0JG0wEJ+JCK18M6hYNKKUEEpKysL06dPx759+5CRkYHr169j6NChKC290Rtz9epVHDp0CC+99BIOHTqETZs24eeff8aDDz5YY1tTpkyBwWAwPZKTk+39cUySswqR8t0p2WWc0JG0wCrcJBqGdxKVk9YNuNXWrVvN/l67di38/f2Rk5ODfv36wdvbGxkZGWbrrFy5Evfccw9Onz6Ntm3bmp53c3NDYGCgXdqtRu3g54SOpBVW4SbRsAo3iUqoHqXbGY1GAECrVq1U19HpdGjZsqXZ86mpqfDz80OXLl2QkJCAy5cvN2RTFakd/POG8+An+2MVbhINq3CTyITqUbqVJEmYPXs2+vbti8jISNl1rl27hvnz5+Pxxx+Hl5eX6fkJEyYgLCwMgYGByM/PR2JiIn744YcavVE3lZeXo7y83PR3SUmJTT4DD34SEW+9JtGwCjeJTNigNGPGDBw+fBjZ2dmyyysrKzF+/HhUV1fjvffeM1s2ZcoU039HRkaiQ4cOiImJwaFDh9C9e/ca20pKSsLixYtt+wFQe28Skb3x1msSEatwk8iEHHqbOXMmNm/ejN27d6NNmzY1lldWVmLcuHEoKipCRkaGWW+SnO7du8PZ2RnHj8sHl8TERBiNRtPjzBn5E4klWDeJRMQq3CQaVuEm0QnVoyRJEmbOnIn09HRkZmYiLCysxjo3Q9Lx48exe/du+PrW/iv46NGjqKysRFBQkOxyvV4PvV5f7/bfSq0rmQc/aYFVuElEHAom0QkVlKZPn44NGzbgyy+/hKenJ4qLb9Qe8vb2hqurK65fv45HHnkEhw4dwr/+9S9UVVWZ1mnVqhVcXFxQWFiI1NRUjBgxAn5+figoKMCcOXMQHR2NPn362O2zsCuZRMMpdEg0HAqmxkCooLRq1SoANwpG3mrt2rWIj4/H2bNnsXnzZgDA3XffbbbO7t27ERcXBxcXF+zcuRMrVqzAlStXEBISggceeACvvPIKHB0d7fEx2JVMwuFQMImIVbipMRAqKEmSpLo8NDS01nVCQkKQlZVly2ZZTOngZ1cyaYVDwSQaVuGmxkLIi7kbM7WDn13JpJUdBfJT6LA3ibTAKtzUmDAo2ZDawc+uZNJKclYhvsgzyC7jCYm0wCrc1JgwKNmQ2sE/nwc/aUAtvD9zXzj3SbI7FuKlxoZByUZ48JOI1OomPdU31K5tIQKAogulistYiJdExKBkI6zCTaJh3SQS0bfH5UunzBjQnvskCYlByQZ46zWJiHWTSDQGYxnezSyUXdYnorWdW0NUNwxKNqDWlcwTEmmB4Z1EpBTeHXRAqJ+bnVtDVDcMSjbArmQSDXuTSDRq4X18T4Z3EheDUj2xK5lEw94kEhHDOzVWDEr1pFSFm13JpBUOBZNoGN6pMWNQqge1KtzsSiatbMuXr8LNoWDSCnuTqDFjULISS/CTiJKzCpHy3SnZZRwKJi2wN4kaOwYlK7EEP4lGLbxzKJi0sja7SHEZf1BSY8CgZAVW4SYR1Vb0lOGd7M1gLMPqPfJBiT8oqbFgULJCzqmListYhZu0wPBOIlIK72O4T1IjwqBkhb0n5OsmcbydtMIpdEg0auF9UKcAO7eGyHoMShZSO/g53k5a4MWyJCK1CZl7hPrYtzFE9cCgZCGlg39CL56QSBtqQ8EM76QFTshMTQmDkgXUDv7YcF87t4boBg4Fk2hYN4maEietG9CYsCuZRMOhYKqPqqoqVFZW2nSb5y9fQ9aP53CHp2ONZSOjguGj1+HatWs2fU9qPpydneHoWHPfakgMSnXErmQSkdIUOhwKJjWSJKG4uBiXLl2y+bbLKqqwaIC/7LIgbycUFSnXVSKqi5YtWyIwMBA6nc4u78egVEdKJySAv9xJG2pT6HAomNTcDEn+/v5wc3Oz6Qnn3KWrcLx2vcbz3q7OCGR4p3qQJAlXr17F+fPnAQBBQUF2eV8GpTpQOyHxOhDSgloVbg4Fk5qqqipTSPL1tW2g/vfla7hy3QE6J5cay4J9veDixMtiqX5cXW+cb8+fPw9/f3+7DMNxr62FwVjG3iQSjtrFsvNZ8ZhU3Lwmyc3NtlPaVFyvhsEof+1Raw89QxLZzM1919bX1ynhnluLogulkBSWsQQ/aYFVuMkWbH19x/nLyhdo+3robfpe1LzZ69qkmxiUavHtcflbr+Nj2/GERJpgFW4STcX1avyntEJ2WSt3F/YmUaPGvVdFsbEM72YWyi4bFmmfi8iIbsUq3CQitd4kf88WdmyJ2BYtWoS7777bbu938uRJ6HQ65OXlWfX6uLg4zJo1y6Ztqov4+HiMHj3a7u+rhEFJRXKWfEhy0AGhfrYd3yeqi6ILpYrLeL0cacFevUlanbRtKSEhATt37jT9LRcI6htubGnTpk147bXXtG6G5njXm4rPcn6Fg75mIBrfk7/cSRtKQ8EzBrTnPkmaEKk3SZIkVFVVwclJzFObh4cHPDw8tG5GnbVq1UrrJgiBPUpW4C930oJBZSi4T0RrO7eGCDj9eykyj53HhSvlNZbZsjcpPj4eWVlZWLFiBXQ6HXQ6HU6ePInMzEzodDps27YNMTEx0Ov12LNnDwoLC/HQQw8hICAAHh4e6NmzJ3bs2GG2zdDQUCxZsgRPP/00PD090bZtW6xevdq0vKKiAjNmzEBQUBBatGiB0NBQJCUlmZbrdDokJydj5MiRcHNzQ6dOnfDdd9/hxIkTiIuLg7u7O2JjY1FY+L9j9taht0WLFiElJQVffvml6TNlZmYiLCwMABAdHQ2dToe4uDjT69euXYtOnTqhRYsWuOuuu/Dee++Zfabvv/8e0dHRaNGiBWJiYpCbm1vrd/vee++hQ4cOaNGiBQICAvDII4+Ylt3ei2cwGPDAAw/A1dUVYWFh2LBhA0JDQ/H222+bfS8ffvghxowZAzc3N3To0AGbN282La+qqsLkyZMRFhYGV1dXdOzYEStWrKi1nVpiULIQrwMhrShdxM2hYNLCJwdOI+6vmXjxi6OYnHIQ2wt+M1tuy96kFStWIDY2FlOmTIHBYIDBYEBISIhp+dy5c5GUlIQff/wRXbt2xZUrVzBixAjs2LEDubm5GDZsGEaNGoXTp0+bbXfZsmWmQDFt2jT86U9/wk8/3SgH87e//Q2bN2/Gp59+imPHjmH9+vUIDQ01e/1rr72GJ598Enl5ebjrrrvw+OOP49lnn0ViYiIOHjwIAJgxY4bsZ0pISMC4ceNw//33mz5T79698f333wMAduzYAYPBgE2bNgEAPvjgAyxcuBBvvPEGfvzxRyxZsgQvvfQSUlJSAAClpaUYOXIkOnbsiJycHCxatAgJCQmq3+vBgwfx3HPP4dVXX8WxY8ewdetW9OvXT3H9J598EufOnUNmZiY2btyI1atXm4o/3mrx4sUYN24cDh8+jBEjRmDChAn4z3/+AwCorq5GmzZt8Omnn6KgoAAvv/wyFixYgE8//VS1rVoSKiglJSWhZ8+e8PT0hL+/P0aPHo1jx46ZrSNJEhYtWoTg4GC4uroiLi4OR48eNVunvLwcM2fOhJ+fH9zd3fHggw/i7NmzNmkje5NIC2oXcXMomOzNYCxD4qYjqP5v7RRJAt7bfcLUs+Tvadu6Sd7e3nBxcYGbmxsCAwMRGBhoVmjw1VdfxZAhQ9C+fXv4+vqiW7duePbZZxEVFYUOHTrg9ddfR3h4uFnPBgCMGDEC06ZNQ0REBObNmwc/Pz9kZmYCAE6fPo0OHTqgb9++aNeuHfr27YvHHnvM7PVPPfUUxo0bhzvvvBPz5s3DyZMnMWHCBAwbNgydOnXC888/b9re7Tw8PODq6gq9Xm/6TC4uLmjd+kbvsK+vLwIDA03DX6+99hqWLVuGsWPHIiwsDGPHjsULL7yA5ORkAEBqaiqqqqrw0UcfoUuXLhg5ciT+7//+T/V7PX36NNzd3TFy5Ei0a9cO0dHReO6552TX/emnn7Bjxw588MEH6NWrF7p3744PP/wQZWVlNdaNj4/HY489hoiICCxZsgSlpaWmAOjs7IzFixejZ8+eCAsLw4QJExAfH8+gVFdZWVmYPn069u3bh4yMDFy/fh1Dhw5Faen/LmB988038dZbb+Gdd97BgQMHEBgYiCFDhuDy5cumdWbNmoX09HSkpaUhOzsbV65cwciRI1FVVVWv9rE3ibTCoqckkqILpaaQdFO1BBgu3bheyUPvbNf2xMTEmP1dWlqKuXPnonPnzmjZsiU8PDzw008/1ehR6tq1q+m/dTodAgMDTT0k8fHxyMvLQ8eOHfHcc89h+/btNd731tcHBAQAAKKiosyeu3btGkpKSur1+f7973/jzJkzmDx5suk6Jw8PD7z++uumob0ff/wR3bp1MyskGhsbq7rdIUOGoF27dggPD8fEiRORmpqKq1evyq577NgxODk5oXv37qbnIiIi4ONTcxaAW78Xd3d3eHp6mvU8vf/++4iJiUHr1q3h4eGBDz74oMb/G5EIdcXb1q1bzf5eu3Yt/P39kZOTg379+kGSJLz99ttYuHAhxo4dCwBISUlBQEAANmzYgGeffRZGoxFr1qzBxx9/jMGDBwMA1q9fj5CQEOzYsQPDhg2zun08IZEWOIUOiaZNS1fodDd6km5y0AFBLVtAB9i9bpK7u7vZ3//3f/+Hbdu24a9//SsiIiLg6uqKRx55BBUV5nfnOTubBzqdTofq6moAQPfu3VFUVIQtW7Zgx44dGDduHAYPHozPP/9c9vU3iyDKPXdzm9a6+fqbvTm3utmzJklKpZGVeXp64tChQ8jMzMT27dvx8ssvY9GiRThw4ABatmxptq7S9uWeV/teP/30U7zwwgtYtmwZYmNj4enpib/85S/Yv3+/xe2XU2ys2cNVX0L1KN3OaDQC+N+V90VFRSguLsbQoUNN6+j1evTv3x979+4FAOTk5KCystJsneDgYERGRprWsQarcJMWOIUOicjL1RnTB0TA4b8Fkh10wLQBEfDz0CPQu0WDBCUXF5c6jwrs2bMH8fHxGDNmDKKiohAYGIiTJ09a/J5eXl549NFH8cEHH+CTTz7Bxo0bTdfa2ILcZ3JxuTFP3q3PBwQE4I477sAvv/yCiIgIs8fNi787d+6MH374wWwobN++fbW2wcnJCYMHD8abb76Jw4cP4+TJk9i1a1eN9e666y5cv37d7ALxEydO4NKlSxZ95j179qB3796YNm0aoqOjERERYXbBe318cuA0hi7/xibbupVQPUq3kiQJs2fPRt++fREZGQngxozXwP+6OG8KCAjAqVOnTOu4uLjU6A4MCAgwvf525eXlKC//310bt3eTjuG0EKQRTqFDohraOQDd27aE4dI1BLVsAT8PPVq6uaB1A5UECA0Nxf79+3Hy5El4eHio3roeERGBTZs2YdSoUdDpdHjppZcs7tVZvnw5goKCcPfdd8PBwQGfffYZAgMDa/S01EdoaCi2bduGY8eOwdfXF97e3vD394erqyu2bt2KNm3aoEWLFvD29saiRYvw3HPPwcvLC8OHD0d5eTkOHjyIixcvYvbs2Xj88cexcOFCTJ48GS+++CJOnjyJv/71r6rv/69//Qu//PIL+vXrBx8fH3z99deorq5Gx44da6x71113YfDgwXjmmWewatUqODs7Y86cOXB1dbVoSpGIiAj8/e9/x7Zt2xAWFoaPP/4YBw4cMAU+a91+3ZwtCdujNGPGDBw+fBj/+Mc/aiy7/X+KJEm1/o9SWycpKQne3t6mx613UwDAoE4Bsq8jamhhfu6mX+23mj6gPcM7acbN5cZvbD8PPaLaeMPvv3O5BXo1XN2khIQEODo6onPnzmjdurXqNS3Lly+Hj48PevfujVGjRmHYsGFm19bUhYeHB/785z8jJiYGPXv2xMmTJ/H111/DwcF2p80pU6agY8eOput1vv32Wzg5OeFvf/sbkpOTERwcjIceeggA8Mc//hEffvgh1q1bh6ioKPTv3x/r1q0zBQwPDw/885//REFBAaKjo7Fw4UL8+c9/Vn3/li1bYtOmTRg4cCA6deqE999/H//4xz/QpUsX2fX//ve/IyAgAP369cOYMWMwZcoUeHp6okWLuv9/nzp1KsaOHYtHH30UvXr1wu+//45p06bV+fVK5K6bsxWdZM3AZgObOXMmvvjiC3zzzTdmKfOXX35B+/btcejQIURHR5uef+ihh9CyZUukpKRg165dGDRoEP7zn/+Y9Sp169YNo0ePxuLFi2u8n1yPUkhICEJmfQpHvRv2Jg7kL3fSzCcHTmPBpnxUSRIccGM+t2f7MySRda5du4aioiKEhYVZdIK73X9Ky/HrxTJIAHQA7vBxRSt3Tn7bnJw9e9Z0/e+gQYPs9r5y+7DBWIY+S3fh+rWrOPP2OBiNRnh5ednk/YQaepMkCTNnzkR6erpZ4a2bwsLCEBgYiIyMDFNQqqioQFZWlik59+jRA87OzsjIyMC4ceMA3CiSlZ+fjzfffFP2ffV6PfT6mge4A4ClD0cxJJGmHu3ZFv3ubI2TF64i1M+N+yMJoZW7Hh56Z1Rcr4aLkwMnvm0Gdu3ahStXriAqKgoGgwFz585FaGioau0lewnydkXS2CjM/8f3Nt+2UEFp+vTp2LBhA7788kt4enqariny9vY2jYPOmjULS5YsQYcOHdChQwcsWbIEbm5uePzxx03rTp48GXPmzIGvry9atWqFhIQEREVFme6Cq6vts/vhzhAOu5H2grxdGZBIOAxIzUtlZSUWLFiAX375BZ6enujduzdSU1Nr3OWmlUd7tkV0oB4dl9t2u0IFpVWrVgGAWcl24EaZgPj4eAA3KrCWlZVh2rRpuHjxInr16oXt27fD09PTtP7y5cvh5OSEcePGoaysDIMGDcK6devMCpTVRSBPTERERACAYcOG1avEjj00xHlbyGuUtFZSUgJvb2+bjnESEYnAVtcoEWlFbR9uiPM3+0yJiIiIFDAoERE1Q/WtFk2kFXvvu0Jdo0RERA3LxcUFDg4OOHfuHFq3bg0XFxeLCgYSaUWSJFRUVODf//43HBwcTFXMGxqDEhFRM+Lg4ICwsDAYDAacOyc/hyCRyNzc3NC2bVubFv9Uw6BERNTMuLi4oG3btrh+/Xqd508jEoGjoyOcnJzs2gvKoERE1AzpdDo4OzsLUwOHSFS8mJuIiIhIAYMSERERkQIGJSIiIiIFvEZJxs1i5SUlJRq3hIiIiOrq5nnblpOOMCjJ+P333wEAISEhGreEiIiILPX777/D29vbJttiUJLRqlUrAMDp06dt9kU3VyUlJQgJCcGZM2c4b1498Hu0HX6XtsPv0jb4PdqO0WhE27ZtTedxW2BQknGziJW3tzd3Whvx8vLid2kD/B5th9+l7fC7tA1+j7Zjy2KUvJibiIiISAGDEhEREZECBiUZer0er7zyCvR6vdZNafT4XdoGv0fb4XdpO/wubYPfo+00xHepk2x5Dx0RERFRE8IeJSIiIiIFDEpEREREChiUiIiIiBQwKBEREREpaLZB6b333kNYWBhatGiBHj16YM+eParrZ2VloUePHmjRogXCw8Px/vvv26mlYrPke8zMzIROp6vx+Omnn+zYYjF98803GDVqFIKDg6HT6fDFF1/U+hrukzVZ+j1yn1SWlJSEnj17wtPTE/7+/hg9ejSOHTtW6+u4X5qz5nvkfilv1apV6Nq1q6kwZ2xsLLZs2aL6Glvsj80yKH3yySeYNWsWFi5ciNzcXNx3330YPnw4Tp8+Lbt+UVERRowYgfvuuw+5ublYsGABnnvuOWzcuNHOLReLpd/jTceOHYPBYDA9OnToYKcWi6u0tBTdunXDO++8U6f1uU/Ks/R7vIn7ZE1ZWVmYPn069u3bh4yMDFy/fh1Dhw5FaWmp4mu4X9Zkzfd4E/dLc23atMHSpUtx8OBBHDx4EAMHDsRDDz2Eo0ePyq5vs/1RaobuueceaerUqWbP3XXXXdL8+fNl1587d6501113mT337LPPSvfee2+DtbExsPR73L17twRAunjxoh1a13gBkNLT01XX4T5Zu7p8j9wn6+78+fMSACkrK0txHe6XtavL98j9su58fHykDz/8UHaZrfbHZtejVFFRgZycHAwdOtTs+aFDh2Lv3r2yr/nuu+9qrD9s2DAcPHgQlZWVDdZWkVnzPd4UHR2NoKAgDBo0CLt3727IZjZZ3Cdti/tk7YxGIwCoTjbK/bJ2dfkeb+J+qayqqgppaWkoLS1FbGys7Dq22h+bXVC6cOECqqqqEBAQYPZ8QEAAiouLZV9TXFwsu/7169dx4cKFBmuryKz5HoOCgrB69Wps3LgRmzZtQseOHTFo0CB888039mhyk8J90ja4T9aNJEmYPXs2+vbti8jISMX1uF+qq+v3yP1S2ZEjR+Dh4QG9Xo+pU6ciPT0dnTt3ll3XVvujU71a3IjpdDqzvyVJqvFcbevLPd/cWPI9duzYER07djT9HRsbizNnzuCvf/0r+vXr16DtbIq4T9Yf98m6mTFjBg4fPozs7Oxa1+V+qayu3yP3S2UdO3ZEXl4eLl26hI0bN2LSpEnIyspSDEu22B+bXY+Sn58fHB0da/R6nD9/vkbyvCkwMFB2fScnJ/j6+jZYW0Vmzfco595778Xx48dt3bwmj/tkw+E+aW7mzJnYvHkzdu/ejTZt2qiuy/1SmSXfoxzulze4uLggIiICMTExSEpKQrdu3bBixQrZdW21Pza7oOTi4oIePXogIyPD7PmMjAz07t1b9jWxsbE11t++fTtiYmLg7OzcYG0VmTXfo5zc3FwEBQXZunlNHvfJhsN98gZJkjBjxgxs2rQJu3btQlhYWK2v4X5ZkzXfoxzul/IkSUJ5ebnsMpvtj5ZdX940pKWlSc7OztKaNWukgoICadasWZK7u7t08uRJSZIkaf78+dLEiRNN6//yyy+Sm5ub9MILL0gFBQXSmjVrJGdnZ+nzzz/X6iMIwdLvcfny5VJ6err0888/S/n5+dL8+fMlANLGjRu1+gjCuHz5spSbmyvl5uZKAKS33npLys3NlU6dOiVJEvfJurL0e+Q+qexPf/qT5O3tLWVmZkoGg8H0uHr1qmkd7pe1s+Z75H4pLzExUfrmm2+koqIi6fDhw9KCBQskBwcHafv27ZIkNdz+2CyDkiRJ0rvvviu1a9dOcnFxkbp37252q+akSZOk/v37m62fmZkpRUdHSy4uLlJoaKi0atUqO7dYTJZ8j3/+85+l9u3bSy1atJB8fHykvn37Sl999ZUGrRbPzduBb39MmjRJkiTuk3Vl6ffIfVKZ3PcIQFq7dq1pHe6XtbPme+R+Ke/pp582nW9at24tDRo0yBSSJKnh9kedJP33yiYiIiIiMtPsrlEiIiIiqisGJSIiIiIFDEpEREREChiUiIiIiBQwKBEREREpYFAiIiIiUsCgRERERKSAQYmIiIhIAYMSERERkQIGJSLSXFxcHGbNmqV1MywSFxcHnU4HnU6HvLy8WtePj483rf/FF180ePuIyDYYlIjIruRC0aZNm/Daa69p0yAZs2bNwujRo2tdb8qUKTAYDIiMjKx13RUrVsBgMNigdURkT05aN4CIqFWrVlo3wcyBAwfwwAMP1Lqem5sbAgMD67RNb29veHt717dpRGRn7FEiIruJj49HVlYWVqxYYRqGOnnyZI1epri4OMycOROzZs2Cj48PAgICsHr1apSWluKpp56Cp6cn2rdvjy1btpheI0kS3nzzTYSHh8PV1RXdunXD559/blH7Kisr4eLigr1792LhwoXQ6XTo1atXnV//+eefIyoqCq6urvD19cXgwYNRWlpqURuISCwMSkRkNytWrEBsbKxpyMpgMCAkJER23ZSUFPj5+eH777/HzJkz8ac//Ql/+MMf0Lt3bxw6dAjDhg3DxIkTcfXqVQDAiy++iLVr12LVqlU4evQoXnjhBTzxxBPIysqqc/scHR2RnZ0NAMjLy4PBYMC2bdvq9FqDwYDHHnsMTz/9NH788UdkZmZi7NixkCSpzu9PROLh0BsR2Y23tzdcXFzqNGTVrVs3vPjiiwCAxMRELF26FH5+fpgyZQoA4OWXX8aqVatw+PBhREVF4a233sKuXbsQGxsLAAgPD0d2djaSk5PRv3//OrXPwcEB586dg6+vL7p162bRZzMYDLh+/TrGjh2Ldu3aAQCioqIs2gYRiYdBiYiE1LVrV9N/Ozo6wtfX1yx4BAQEAADOnz+PgoICXLt2DUOGDDHbRkVFBaKjoy1639zcXItDEnAj2A0aNAhRUVEYNmwYhg4dikceeQQ+Pj4Wb4uIxMGgRERCcnZ2Nvtbp9OZPafT6QAA1dXVqK6uBgB89dVXuOOOO8xep9frLXrfvLw8q4KSo6MjMjIysHfvXmzfvh0rV67EwoULsX//foSFhVm8PSISA69RIiK7cnFxQVVVlU232blzZ+j1epw+fRoRERFmD6VroJQcOXLErDfLEjqdDn369MHixYuRm5sLFxcXpKenW7UtIhIDe5SIyK5CQ0Oxf/9+nDx5Eh4eHjYpDeDp6YmEhAS88MILqK6uRt++fVFSUoK9e/fCw8MDkyZNqvO2qqurcfjwYZw7dw7u7u51vqV///792LlzJ4YOHQp/f3/s378f//73v9GpUydrPxYRCYA9SkRkVwkJCXB0dETnzp3RunVrnD592ibbfe211/Dyyy8jKSkJnTp1wrBhw/DPf/7TbNhr3bp1piE7Ja+//jo++eQT3HHHHXj11Vfr/P5eXl745ptvMGLECNx555148cUXsWzZMgwfPtzqz0RE2tNJvHeViJqJRYsWITMzE5mZmfXeVlxcHO6++268/fbbFr1Op9MhPT29TpW/iUh77FEiomZj27ZtePPNN222vffeew8eHh44cuRIretOnToVHh4eNntvIrIP9igREVnh119/RVlZGQCgbdu2cHFxUV3//PnzKCkpAQAEBQXB3d29wdtIRPXHoERERESkgENvRERERAoYlIiIiIgUMCgRERERKWBQIiIiIlLAoERERESkgEGJiIiISAGDEhEREZECBiUiIiIiBQxKRERERAoYlIiIiIgU/D9pABDHc2b+PwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
    " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots()\n", - "ax.plot(t_sawtooth,tx/1e6,'.', label ='transmitted signal')\n", - "ax.set_xlabel('time, $t$ [s]')\n", - "ax.set_ylabel('frequency, $f$ [MHz]')\n", - "ax.legend()\n", - "ax.set_xlim(0, 3);" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Then we can add to the plot the returned signal after a delay of 0.1s (as resulting from a reflection from a ~9000 km deep reflector)" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkoAAAGzCAYAAADQVjjVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABz4ElEQVR4nO3de1wU5f4H8M+C3G8KKGCigBipoKmooaZ4T9MudjLLSsos81KmHE3NUiupzjHzeMrMTD2lhy5q1+MFTfBC3hCPF8wUMW9LZtqiiIAwvz/8uceVmWF2doYd2M/79eKVzDMMz24zzHef7zPfxyQIggAiIiIiqsLN2R0gIiIiMioGSkREREQSGCgRERERSWCgRERERCSBgRIRERGRBAZKRERERBIYKBERERFJYKBEREREJKGesztgRJWVlTh79iwCAgJgMpmc3R0iIiJSQBAEXLp0CY0bN4abmzZjQQyURJw9exaRkZHO7gYRERGpcOrUKTRp0kSTYzFQEhEQEADg+hsdGBjo5N4QERGREkVFRYiMjLTex7XAQEnEjXRbYGAgAyUiIqJaRstpM5zMTURERCSBgRIRERGRBAZKRERERBIYKBERERFJYKBEREREJIGBEhEREZEEBkpEREREEhgoEREREUlgoEREREQkwbCBUlpaGkwmEyZMmGDdJggCZs6cicaNG8PHxwfJyck4dOiQzc+VlpZi/PjxCA0NhZ+fH+677z6cPn26hntPREREdYEhA6Xdu3fjo48+Qps2bWy2v/POO3j33Xfxz3/+E7t370Z4eDj69u2LS5cuWfeZMGEC1qxZg/T0dGzbtg2XL1/GoEGDUFFRUdMvg4iIiGo5wwVKly9fxvDhw7F48WI0aNDAul0QBLz33nuYPn06hgwZgvj4eCxfvhxXrlzBypUrAQAWiwVLlizB3Llz0adPH7Rr1w6fffYZDhw4gI0bN9bci7CcAQq2XP8vkQbMlhJk55+H2VKi7gA8J0ljDp+TAM9L0pTZUoKdx//Q/LiGWxR37NixuPfee9GnTx+88cYb1u0FBQUoLCxEv379rNu8vLzQo0cPZGdn47nnnkNOTg7Ky8tt9mncuDHi4+ORnZ2N/v37i/7O0tJSlJaWWr8vKipS/wL2/gv47kVAqARMbsDg+UD7J9Ufj1zeoi35eGvtzxAEwM0EpA1JwCMdmyo/AM9J0tjnu09i6uoDqFR7TgLA9n8AG18FBIHnJTnsxjl57eoVzY9tqBGl9PR07N27F2lpaVXaCgsLAQBhYWE228PCwqxthYWF8PT0tBmJunUfMWlpaQgKCrJ+RUZGqnsBljP/uyEB1//73QR+WiLVFmXlI+0/14MkAKgUgGmrDyr/FG85A3z7wi3n5As8J0k1s6UEL6+6HiQB18/Jl1cfsG9kaft8IGMGrCc2/1aSA8yWEmvgrgfDBEqnTp3Ciy++iM8++wze3t6S+5lMJpvvBUGosu1W1e0zdepUWCwW69epU6fs6/wNOxf+74Zk/eUVwIXj6o5HLs1sKUHa2p+rbK8QBJw4r/BT05Z3ANzy10MQgFO7HO8guaQFm47eekZBEIC9v15UdgDLGSDj1arb+beSVCo4X6xbkAQYKFDKycnBuXPn0KFDB9SrVw/16tVDVlYW/vGPf6BevXrWkaRbR4bOnTtnbQsPD0dZWRkuXrwouY8YLy8vBAYG2nzZzXIGyF5QdbvJDQiOsf945PIWbDoqut3NBESF+lZ/AMsZIGeZtp0il2a2lGDlLvEPkoLSG9WWd8S3828lqbT96Hldj2+YQKl37944cOAA9u3bZ/1KTEzE8OHDsW/fPsTExCA8PBwZGRnWnykrK0NWVha6dOkCAOjQoQM8PDxs9jGbzTh48KB1H91IXfztRwBBt+n7u6nOkbshDevYFBFBPtUf5NROiQYTENlJfefIZUkF7yYAHaIaiLbZkAve+beSVDBbSvB+Zr6uv8Mwk7kDAgIQHx9vs83Pzw8hISHW7RMmTMCcOXPQokULtGjRAnPmzIGvry8ee+wxAEBQUBBGjhyJSZMmISQkBMHBwUhNTUVCQgL69OmjX+flLv7oHvr9XqqzCs4XS7aN7x2r8CBbxLd3SOENiewmF7w/2klh8C71gRIAuv9VZc/IlUkF71oyTKCkxOTJk1FSUoIxY8bg4sWL6Ny5MzZs2ICAgADrPvPmzUO9evUwdOhQlJSUoHfv3li2bBnc3d3165jkxc9P7qSO1FDyuJ7Nld2QLGeAnKXibbwhkQpyNyRFwbvcB8oOTzF4J7vJBe9aMnSglJmZafO9yWTCzJkzMXPmTMmf8fb2xoIFC7Bggch8IT3IXvwpvPjJbnJDyV1jGyo7iFTwzhsSqSB3Q3qMo0nkJG+JPOyiB8PMUaq1Ns6UbuPFTypIXfyaTOJmKphUcDgVzNEk0tiirHx8s+9sjfwuBkqO2D4fOPCFeBsvflJB7uJXPIlbMnhnKpjUWX9QvA6d4lTwBZnJtvxASXaSKp2iFwZKaknVArmBFz/ZqbqLX9End9ngPYXBO9ltUVY+lv/0q2ib4lTw4e/Ft9+dynOS7JYjU7NrYr8Wmv8+BkpqST56DaDv67z4yW5yk2WnDryj+k/uDN5JY3LBu+JU8Pb5wK5F4m0xyeo7Ry4r+5j4wy4P3NkYT3fVvhYXAyW1pB69ThgKdH2hZvtCtZ7cZNkH7myM57o3r/4gcpNlGbyTCnLB+5QBDgbvLDBJKsj9rZwy4A5dficDJTXkHr3uM7NGu0J1g9xQsqKLX26yLIN3UkH34L3PLAbvZDep4H14Z4VzOFVgoKQGH70mjUkNJSt+9FouFczgnVSobjSpWgzeSWNywXtSTIhuv5eBkr346DVpTO7id7wKN4N3sp/udZMYvJMKDi+hoxIDJXuxCjdpzOGhZFbhJo3JpYJZN4mcQZMldFRioGQPVuEmjWkylMxUMGlM11Qwg3dSweEldBzAQMkeLMFPGpOqwq3JauxMBZMKTAWT0WiSCnYAAyWlOJRMGpOrwq14KJlVuEljUsE7U8HkLA6ngh3EQEkpDiWThliFm4xILnhXnAqWCt75gZJU2pgnvoROTYwmAQyUlDuyVnw7L35SgVW4yWjkgnfFqWC54J2pYFJhUVY+vt5nFm2ridEkgIGSMnIXP29IZCdW4SYjkgveX3Y4eGcqmOwnF7w/e3dMjYwmAQyUqid38Xd5gTckshurcJPR6B+8z+bfSrKbXN2kp7pF1Vg/GChVR65uUufRNdoVqhscfvT6Qr50Gwv5kQqswk1G48y6SbdioCTHcpZ1k0hTmjx6fTxTfPvdqTwnyW6swk1G5My6SbdioCQn+z3pNs5NIhU0qcK9da54W0yy+o6Ry2IVbjIaZ9dNuhUDJTn7Vopv58VPKuhahdvkBgTHqOwZuTJdU8H8QEkqGGk0CWCgpA4vflLB4QUd5T65tx/B4J3sxlQwGY3RRpMABkr242gSqaDJxEQuoUMa06QKN1PBpCFnV+EWw0DJXrwhkQpSNySA80DIOXStws1UMKnk7CrcYhgo2YNDyaSC3A1Jk6eKGLyTnXSvws1UMKlghCrcYhgo2YNDyWQns6WEo0lkOPpW4QaDd7KbZlW4LeIfSh3BQEkpDiWTCgXniyFItCla0w0Adi6UbuMNiezEJXTIiDSpwr39H8AHnTXr0w0MlJTqM4sXP9lt+1HxR69TkpopuyFZzgDZC8TbeEMiFViFm4xGk4ddts8HMmYAkh9N1WOgpAQvflLBbCnB+5niNWb6x0coO4jUJ3eek6SCJo9en9op3cYq3KSCw3WTqksFO4iBkhK8+EkFqYvfzQREhfpWfwC5T+5xA9V3jFxWwfliyTbFk2ULtohv53w5UkH3JXQ0wEBJlhtw3wJe/GQ3uYt/WEdHL34TENlJfefIZUmlgsf1bK68blLOUvE2zpcjFTQZTZL6QKmReroevbYbswOIVJCzJ7qFrhc/F2QmFeRSwV1jGyo7iFTwztEkUkH3VLBGDDWitHDhQrRp0waBgYEIDAxEUlIS1q5da203mUyiX3/729+s+yQnJ1dpHzZsmLoOBTV29CWRC9J9KJmf3EkFXVPB0T3Ud4xclq6pYA0ZakSpSZMmeOuttxAbe/0NWr58Oe6//37k5uaidevWMJttC1GtXbsWI0eOxEMPPWSzfdSoUZg9e7b1ex8f51TzJNek72gSP7mT/ZgKJiNaf1C8CrcmqWANGSpQGjx4sM33b775JhYuXIgdO3agdevWCA8Pt2n/5ptv0LNnT8TE2NY38vX1rbIvUU3QfSiZo0mkgr5FT1MYvJPdFmXlY/lPv4q2KU4FSy2hozFDpd5uVlFRgfT0dBQXFyMpKalK+2+//YYffvgBI0eOrNK2YsUKhIaGonXr1khNTcWlS5dkf1dpaSmKiopsvojUWLqtQLJN8VDykbXi2zmaRCposoSO3A2JwTvZSa4Kt+JUsNwSOhoz1IgSABw4cABJSUm4evUq/P39sWbNGrRq1arKfsuXL0dAQACGDBlis3348OGIjo5GeHg4Dh48iKlTp+K///0vMjIyJH9nWloaZs2apflrIdditpTgo63igZLiKtxyFz9vSGQnuRsSoDB4lzsnGbyTCtUVPXVsCR2T+o5JMFygFBcXh3379uHPP//EqlWrMGLECGRlZVUJlj755BMMHz4c3t7eNttHjRpl/Xd8fDxatGiBxMRE7N27F+3btxf9nVOnTsXEiROt3xcVFSEyMlLDV0WuQOrif1DpshByF3+XF3hDIrvl/HpRsk1R8G45A2S8Jt3O4J3spPsSOj2nA29NUdk7cYZLvXl6eiI2NhaJiYlIS0tD27ZtMX/+fJt9tm7diiNHjuCZZ56p9njt27eHh4cHjh6VjmC9vLysT9rd+CKyh9zF37tlmLKDyE2W7TxaXcfIpWUfE6+bpPiGdCEfkktCcAkdUkH3JXTu0v5vpeECpVsJgoDS0lKbbUuWLEGHDh3Qtm3ban/+0KFDKC8vR0SEwiUjiFSQW9CxQ1SD6g/AybKkMbngXdENCQCOZ4pv7/Qcl9Ahu+leOkWnVTQMlXqbNm0aBgwYgMjISFy6dAnp6enIzMzEunXrrPsUFRXhyy+/xNy5c6v8fH5+PlasWIGBAwciNDQUeXl5mDRpEtq1a4euXbvW5EshF6LJgo6sm0Qakwreh3dWeE5azgBbq/6dBQC0HCy+nUiGXCpYs9IpOjyMZahA6bfffsMTTzwBs9mMoKAgtGnTBuvWrUPfvn2t+6Snp0MQBDz66KNVft7T0xObNm3C/PnzcfnyZURGRuLee+/Fa6+9Bnd395p8KeRCWDeJjEYueE+KCVF2EKng3eQGBMeItxHJkEoFKx5NuiBeWR6Arh8oDRUoLVmypNp9nn32WTz77LOibZGRkcjKytK6W0SSWIWbjEjXVHD7EQzeyW5yfysVl06RSgXfnarrOWn4OUpERlYjQ8lEdmAqmIxI11RwTLL6jinAQInIARvzxEvwG30omeoufatwM3gn+9X2VDADJSKVFmXl4+t9ZtE2xUPJh78X367zUDLVTZpU4eZoEmlMKnivLalgBkpEKshVPH727hjlVbh3LRJv03komeoes6WEo0lkOHLBu+JUsJOX0GGgRKSC3GTZp7pFVX8AuSrcfKqIVCg4XyxVGlL5Ejo7F0q3cTSJ7FRXltBhoERkJ90ny/aZxU/uZLftR8UfvU5JaqZ8CZ3sBeJtrMJNKsiVTlG+hI7Umm6oseCdgRKRnXStm5QwlBWPyW5mSwnezxR/MKB/vMJVCaSCd56TpIIma7qd2indVoPBOwMlIjvU1hL8VLdJBe9uJiAq1Lf6A8gF73ED1XeMXFbB+WLJNsVL6BRsEd9ew8E7AyUiO7AKNxmNXPA+rKOjwbsJiOykvnPksqRSweN6NldeNylnqXhbDX+gZKBEpJAmo0lyQ8mcLEsq6Bu8pzB4J7vJpYK7xjZUdhCp4N0JHygZKBEpJDeUrLhuktRQMkeTSAUuoUNGpGsqOLqH+o6pxECJSCFdh5J5QyIVmAomo6mLqWAGSkQK1LWhZKr9OJpERqRv0dMUp/ytZKBEpIDUxV9bh5Kp9lu6rUCyjaNJ5AyaLKHj5CrcYhgoEVVD7uJXPJQsefHzqSKyn9lSgo+2igdKrMJNzlBXqnCLYaBEJEP/iz+Fn9zJblJzkx5UWsiPVbhJYzm/XpRsq01VuMUwUCKSUVdK8FPdITc3qXfLMGUHYRVu0lj2MfGHXWpbFW4xDJSIJGhSgl9usiw/uZMKcgsyd4hqUP0BWIWbNCb3t7K2VeEWw0CJSILcULKii59rupHG9F2QmfPlSB2p4H14Z4XnpIGqcIthoEQkQWooWZMq3Aa4+Kn2YRVuMhq54D0pJkTZQQxeOoWBEpEIuYufVbjJGVg3iYxI11SwQUqnMFAiEqHrUDJvSKSCXCqYdZPIGVwlFcxAiegWrjCUTLWPrqlgBu+kQl2swi2GgRLRLaQu/ro0lEy1C1PBZDR1tQq3GAZKRDeRu/gVDyWzCjdpTCp4ZyqYnMFsKXF8NMmgVbjFMFAi+n+swk1GJBe8K04FSwXvBrshUe1QcL4YgkSb8kK8r0m3Gyx4Z6BE9P9YhZuMRi54V5wKlgvemQomFbYfFZ8vl5LUTFkh3gv5gFSoZcBCvAyUiMAq3GRMcsH7yw4H70wFk/3MlhK8n5kv2tY/PkLZQY5nim/v9JwhC/EyUCICq3CT8egfvM9m8E52kwre3UxAVKhv9QewnAG2zhVvaznYgZ7ph4ESETR49PqC+CcsAKzCTarIjSYxeCdnkAveh3V0sG6SyQ0IjnGgd/phoEQuT5NHr6WGku9O5ad2spvuVbgZvJMKui6h036EYf9WGipQWrhwIdq0aYPAwEAEBgYiKSkJa9eutbanpKTAZDLZfN111102xygtLcX48eMRGhoKPz8/3HfffTh9+nRNvxSqRTSpwi01lByTrL5j5LJYhZuMxpWX0DFUoNSkSRO89dZb2LNnD/bs2YNevXrh/vvvx6FDh6z73HPPPTCbzdav//znPzbHmDBhAtasWYP09HRs27YNly9fxqBBg1BRUVHTL4dqAV2rcBt4KJmMTddUsIFvSGRc+i7IbOzgvZ6zO3CzwYNtJ3K9+eabWLhwIXbs2IHWrVsDALy8vBAeHi768xaLBUuWLMGnn36KPn36AAA+++wzREZGYuPGjejfv7++L4BqHV2rcBt4KJmMi6lgMhpXHk0CDDaidLOKigqkp6ejuLgYSUlJ1u2ZmZlo1KgRbr/9dowaNQrnzp2ztuXk5KC8vBz9+vWzbmvcuDHi4+ORnZ0t+btKS0tRVFRk80V1n75VuGH4i5+MSZMq3EwFk4ZcPRVsuEDpwIED8Pf3h5eXF0aPHo01a9agVatWAIABAwZgxYoV+PHHHzF37lzs3r0bvXr1QmlpKQCgsLAQnp6eaNDAdiQgLCwMhYWFkr8zLS0NQUFB1q/IyEj9XiAZgv5VuI1/8ZPx6FqFm6lgUmljnvj901VSwYZKvQFAXFwc9u3bhz///BOrVq3CiBEjkJWVhVatWuGRRx6x7hcfH4/ExEQ0a9YMP/zwA4YMGSJ5TEEQYDKZJNunTp2KiRMnWr8vKipisFTHsQo3GY3uVbiZCiYVFmXl4+t9ZtE2xangw9+Lb68lqWDDBUqenp6Ijb3+5icmJmL37t2YP38+Fi1aVGXfiIgINGvWDEePXr/phYeHo6ysDBcvXrQZVTp37hy6dOki+Tu9vLzg5eWl8Ssho9KkkN+pndJtrMJNKuhbhRsM3slucsH7s3fHKBtN2j4f2FX1/g2g1qSCDZd6u5UgCNbU2q3++OMPnDp1ChER18umd+jQAR4eHsjIyLDuYzabcfDgQdlAiVxLwfliyTZFhfwAoGCL+HYW8iMVuIQOGZFU8G4C8FS3qOoPIBe816JUsKFGlKZNm4YBAwYgMjISly5dQnp6OjIzM7Fu3TpcvnwZM2fOxEMPPYSIiAicOHEC06ZNQ2hoKB588EEAQFBQEEaOHIlJkyYhJCQEwcHBSE1NRUJCgvUpOCKpBR3H9WyufLJszlLxNhbyIxVYhZuMRi54V/ywi2zR01m1Jng3VKD022+/4YknnoDZbEZQUBDatGmDdevWoW/fvigpKcGBAwfwr3/9C3/++SciIiLQs2dPfP755wgICLAeY968eahXrx6GDh2KkpIS9O7dG8uWLYO7u7sTXxkZhdyCjl1jGyo7iNTFzwncpIImj17LpYIZvJMKutZNqmXBu6ECpSVLlki2+fj4YP369dUew9vbGwsWLMCCBQu07BrVEZos6Ch18Uf3UN8xcllyqWDFk2WlUsEM3kkFLqFjy/BzlIi0ouuCjjABkZ3Ud45clq6pYE7gJhVcuQq3GAZK5DL0vfhTat3FT87HVDAZje6p4FoYvDNQIpfg6iX4yZikqnAzFUzOwlRwVQyUyCVwKJmMRq4Kt+JUsOQSOkwFkzrrD4pX4XblVDADJarzOJRMRqP/EjopDN7Jbouy8rH8p19F2xSngqWC91r8gZKBEtV5S7cVSLYpHko+slZ8ey2++Ml5uIQOGY1c8K44FSwXvNfiVDADJarTzJYSfLRVPFBSdEMC5C9+3pDITqzCTUZUXdFTx4L32p0KZqBEdZrUxf+g0huS3MXf5QXekMhuOb9elGxjFW5yBv2D99m1+m8lAyWqs+Qu/t4tw5QdRK5uUufR6jpGLi37mHjdJMXz5S6IlxMAUOsK+ZExcAkdeQyUqM6SW9CxQ1SD6g/AukmkMbngXfF8ueOZ4tvvTuU5SXZjFe7qMVCiOkn3BR05N4lUkAreh3dWeE5azgBb54q3xSSr7xi5LLlUMEunXMdAieok1k0io5EL3pNiQpQdRCp4N7kBwTEqe0auTNdUcB35QMlAieocVuEmI9I1Fdx+BIN3shtTwcowUKI6h0PJZDRMBZMRSS2hw1SwLQZKVOdszBMvwc+hZHIWqRsSwOCdnENuCR3FqWCpKtx1LBVcz56dv/32W7t/Qd++feHjo+DmRKSBRVn5+HqfWbRN8VDy4e/Ft9ehoWSqOXI3JKaCyRnkqnArTgXLFeKtY6lguwKlBx54wK6Dm0wmHD16FDExdSeyJOOSu/ifvTtGeRXuXYvE2+rQUDLVDLOlhKNJZDhyD7u8zCV0qrA79VZYWIjKykpFX76+CtaGIdKI3GTZp7pFVX8AuYu/jg0lU80oOF8MQaJN8RI6OxdKt9WxGxLpj0vo2M+uQGnEiBF2pdEef/xxBAYG2t0pInvpPlm2z6w6d/GT/rYfFX/0OiWpmfIldLIXiLfVwRsS6Y9VuO1nV+pt6dKldh184UKZT0JEGtK1blIdvfhJX2ZLCd7PFH8woH98hLKDSAXvPCdJBU1Kp5zaKd1WB6pwi+FTb1TrsQQ/GZFU8O5mAqJCFUxLkAve4waq7xi5rILzxZJtih92Kdgivr0Oz5dTHSj16tULs2bNqrL94sWL6NWrl0OdIrIHq3CT0cgF78M6Ohq8m4DITuo7Ry5LKhU8rmdz5XWTciQyS3V4vpxdqbebZWZm4sCBA8jNzcWKFSvg5+cHACgrK0NWVpZmHSSSwyrcZET6Bu8pDN7JbnKp4K6xDZUdROpvZR3/QOlQ6m3jxo0oLCzEXXfdhRMnTmjUJSLlHB5K5mgSaYzBOxmRrqng6B7qO1YLOBQoRUREICsrC23atEHHjh2RmZmpUbeIlFl/ULwKt+KhZFbhJo0xFUxGw1SwY1QHSiaTCQDg5eWFFStW4MUXX8Q999yDDz74QLPOEclZlJWP5T/9KtqmeCiZVbhJQxxNIiPSt+hpSp3/W6l6jpIg2JZRe+WVV9CyZUuMGDHC4U4RVUeuCrfioWRW4SaNLd1WINnG0SRyBk2W0JFa0w1wieBddaBUUFCA0NBQm20PPfQQ4uLikJOT43DHiORUVzTNoRL8rMJNKpgtJfhoq3igxCrc5AxyHygBhcG73JpuLhK82x0oFRUVAQAaNGiAy5cvV2lv2rQpmjZt6njPiCToXoKfVbhJBang/UGl5ySrcJPGcn69KNmmKHh3sTXdpNgdKNWvX986P0mMIAgwmUyoqKhwqGNEUliCn4xGLnjv3TJM2UFYhZs0ln1MvG6S4g+UclW4XSh4tztQ2rx5s/XfgiBg4MCB+Pjjj3Hbba7xhpFzsQo3GZHcgswdohpUfwBW4SaNyf2tVPSBEpCuwu1iwbvdT7316NHD+pWcnAx3d3fcddddNtt79FBXU2HhwoVo06YNAgMDERgYiKSkJKxduxYAUF5ejilTpiAhIQF+fn5o3LgxnnzySZw9aztJLTk5GSaTyeZr2LBhqvpDxiM3lMzJsuQM+i7IXPcfvSZ9SAXvwzsrPCflqnC72AdKQ6311qRJE7z11lvYs2cP9uzZg169euH+++/HoUOHcOXKFezduxczZszA3r17sXr1avzyyy+47777qhxn1KhRMJvN1q9FiySebKJaR2ooWZMFHV0k307aYhVuMhq54D0pJkTZQVy0CrcY1U+96WHw4ME237/55ptYuHAhduzYgZEjRyIjI8OmfcGCBejUqRNOnjxpM4Hc19cX4eHhNdJnqjlyFz8XdCRnYN0kMiJdU8F1vAq3GE1GlOQmd6tVUVGB9PR0FBcXIykpSXQfi8UCk8mE+vXr22xfsWIFQkND0bp1a6SmpuLSpUuyv6u0tBRFRUU2X2Q8ug4l84ZEKjAVTEbDVLD27B5RGjJkiM33V69exejRo62L4t6wevVqVR06cOAAkpKScPXqVfj7+2PNmjVo1apVlf2uXr2Kl19+GY899hgCAwOt24cPH47o6GiEh4fj4MGDmDp1Kv773/9WGY26WVpaGmbNmqWqv1QzOJRMRrQxT3wJHaaCyVlYhVt7dgdKQUFBNt8//vjjmnUGAOLi4rBv3z78+eefWLVqFUaMGIGsrCybYKm8vBzDhg1DZWVllSVTRo0aZf13fHw8WrRogcTEROzduxft27cX/Z1Tp07FxIkTrd8XFRUhMjJS09dFjpG6+DmUTM6yKCsfX+8zi7YpTgUfWSu+ncE7qcAq3PqwO1BaulQidaERT09PxMZe/yOTmJiI3bt3Y/78+dYJ2eXl5Rg6dCgKCgrw448/2owmiWnfvj08PDxw9OhRyUDJy8sLXl5e2r4Q0ozcxa94KFny4nfNoWRyjFzF42fvjlF2TspVPHbRGxKpxyrc+jHUZG4xgiCgtLQUwP+CpKNHj2Lz5s0ICak+5XLo0CGUl5cjIiJC766SDvS/+FNc9uIn9eQmyz7VLar6A8hVPO7yAs9Jsps2Vbhfk2534eDd7kDp6aefVrTfJ598Yndnpk2bhgEDBiAyMhKXLl1Ceno6MjMzsW7dOly7dg1/+ctfsHfvXnz//feoqKhAYeH1+QHBwcHw9PREfn4+VqxYgYEDByI0NBR5eXmYNGkS2rVrh65du9rdH3I+uUevWYKfnEH3ybKdR6vvHLksh6twX8gHIIi3uVAVbjF2B0rLli1Ds2bN0K5dOwiCxJuq0m+//YYnnngCZrMZQUFBaNOmDdatW4e+ffvixIkT+PbbbwEAd955p83Pbd68GcnJyfD09MSmTZswf/58XL58GZGRkbj33nvx2muvwd3dXdO+kv50X9PNxS9+Uod1k8hoNKnCfTxTfHun51yqCrcYuwOl0aNHIz09HcePH8fTTz+Nxx9/HMHBwZp0ZsmSJZJtUVFR1QZmkZGRyMrK0qQv5HxyQ8lc042cgXWTyIg0KZ2yda54W8vB4ttdiN11lD744AOYzWZMmTIF3333HSIjIzF06FCsX79e8xEmcm0OV+G+kC/d5mIl+Ekb+o4mue5kWVJP19IpJjcgOEZlz+oOVQUnvby88OijjyIjIwN5eXlo3bo1xowZg2bNmuHy5cta95FckCZVuKWGku9O5Q2J7MbRJDIiXatwtx/Bv5XQoDL3jYVnBUFAZWWlFn0i0ncoOSZZfcfIZbEKNxmNvg8WgMH7/1MVKJWWluLf//43+vbti7i4OBw4cAD//Oc/cfLkSfj7+2vdR3IxHEomI9I1FcwbEqmgbxVuBu832D2Ze8yYMUhPT0fTpk3x1FNPIT09XVE9IyKldK3CzaFkUoGpYDIaTapwczRJEbsDpQ8//BBNmzZFdHQ0srKyJJ8yU7vWG7k2fatwgxc/qSIVvDMVTM5gtpRwNKkG2R0oPfnkkzCZTHr0hVwcS/CTEckF74pTwVLBO1PBpELB+WKp0pDKCvECwM6F0m38QGlDVcFJIj2wCjcZjVzwrjgVLBe8MxVMKmw/Kj5fLiWpmbJCvJYzQPYC8TYW4q3Crsnc+/fvt+vJtkOHDuHatWt2d4pcjyZVuE/tlG7jxU8qyAXvLzN4JycwW0rwfqb4gwH94xWuaSo1N4mFeEXZFSi1a9cOf/zxh+L9k5KScPLkSbs7Ra6n4HyxZJviEvwFW8S38+InFbiEDhmRVPDuZgKiQn2rP4Dc3KS4geo7VofZlXoTBAEzZsyAr6+C/xkAysrKVHWKXI/UUPK4ns2VT5bNWSrexircpILcaBKX0CFnkAveh3XUYEHmyE7qO1eH2RUode/eHUeOHFG8f1JSEnx8FPyPI5cmN5TcNbahsoNIXfycwE0qaFKFWy4VzOCdVOCCzM5hV6CUmZmpUzfIlek6lBzdQ33HyGXJpYIV102SSgUzeCcVuISO8zi8hAmRIziUTEakayqYNyRSgQsyOw8DJXIqfYumpfDiJ7sxFUxGo3sqmMG7LAZK5DSalOBnFW7SmFTwzlQwOQtTwc5lV6A0ZcoUXL16Va++kAthFW4yIrngXXEqWDJ4ZyqY1Fl/sFB0O1PBNcOuQGnevHmwWCwAgBEjRqC4WDrKJZKT8+tFyTblVbhfk27nxU920j94T2HwTnZblJWP5T/9KtqmOBUsFbzzA6UidgVKt912G3JzcwEAn332GQMlUi37mPhkWcWF/C7kA1KrHbGQH6nAJXTIaOSCd8WpYLngnalgRewKlFJTU3HfffehS5cuAIAVK1Zg165dKCkp0aVzVDfJTUxUXIX7eKb49k7PsZAf2Y1VuMmIqit66ljwzlSwUnYFSmPHjkVubi4GDRoEQRDw/vvvo0uXLggMDETLli0xbNgwvPXWW1i7dq1e/aU6QOriH95Z4RwQyxlg61zxtpaDHegZuSq5VDCrcJMz6B+8z2bwrpBdBScBoHXr1mjdujU++eQT7NixA35+fti/fz/27duHffv24ZtvvsGbb76JS5cu6dFfquXkLv6kmBBlB5G6+E1uQHCMyp6RK5NKBSt++vKCeDkBAKzCTapwCR3jsDtQuuHYsWPWf3fu3BmdO3e2fi8IEnNHyOVJXfwmAB2iGlR/ALmLv/0IfkIiu8kF74ofvZZKBd+dynOS7KZ7FW4G73bRpY6SyWTS47BUy8ld/I+yBD85ia6p4Jhk9R0jlyWXCmYV7prHgpNUY1iCn4yGqWAyIl1TwfxAaTcGSlQjuKAjGZFUFW6mgslZmAo2HgZKVCM4lExGI1eFW3EqmEvokMakgnemgp2HgRLViI154iX4OZRMzsAldMiI5IJ3xalgqeCdqWDVGCiR7hZl5ePrfWbRNsVDyYe/F9/OoWRSgVW4yWjkgnfFqWC54J2pYNV0CZTc3NzQq1cv5OTk6HF4qkXkLv5n745RNpq0fT6wa5F4G4eSyU6aFPI7tVO6jVW4SQW54P1lBu9OpUug9Mknn6BHjx544QUWtHJ1cnWTnuoWVf0B5C5+DiWTCgXnpdeoVLyETsEW8e0s5EcqcAkdY9MlUEpJScFrr72G7du32/VzCxcuRJs2bRAYGIjAwEAkJSXZLIciCAJmzpyJxo0bw8fHB8nJyTh06JDNMUpLSzF+/HiEhobCz88P9913H06fPq3J6yL76F43qc8sXvxkt+1HxR+9HtezufLJsjlLxdtYyI9UYBVuY1MdKKWkpGDLFolPVSo1adIEb731Fvbs2YM9e/agV69euP/++63B0DvvvIN3330X//znP7F7926Eh4ejb9++NsulTJgwAWvWrEF6ejq2bduGy5cvY9CgQaioqNC0r1Q9Xesm8eInFcyWEryfKf5gQNfYhsoOIhW8cwI3qcAq3ManOlC6dOkS+vXrhxYtWmDOnDk4c+aMw50ZPHgwBg4ciNtvvx2333473nzzTfj7+2PHjh0QBAHvvfcepk+fjiFDhiA+Ph7Lly/HlStXsHLlSgCAxWLBkiVLMHfuXPTp0wft2rXDZ599hgMHDmDjxo0O94+U48VPRiQVvLuZgKhQ3+oPIBe8R/dQ3zFyWXKpYJZOMQbVgdKqVatw5swZjBs3Dl9++SWioqIwYMAAfPXVVygvL3e4YxUVFUhPT0dxcTGSkpJQUFCAwsJC9OvXz7qPl5cXevTogezsbABATk4OysvLbfZp3Lgx4uPjrfuIKS0tRVFRkc0XOYZVuMlo5IL3YR0dDd5NQGQn9Z0jl+VwKpilU3Tn0BylkJAQvPjii8jNzcWuXbsQGxuLJ554Ao0bN8ZLL72Eo0elb5ZSDhw4AH9/f3h5eWH06NFYs2YNWrVqhcLC63V4wsLCbPYPCwuzthUWFsLT0xMNGjSQ3EdMWloagoKCrF+RkZF295v+h1W4yYj0Dd5TGLyT3TRJBbMKt+40mcxtNpuxYcMGbNiwAe7u7hg4cCAOHTqEVq1aYd68eXYdKy4uDvv27cOOHTvw/PPPY8SIEcjLy7O237rgriAI1S7CW90+U6dOhcVisX6dOiV+kydlOJRMRsPgnYxIqgq3XalgVuHWnepAqby8HKtWrcKgQYPQrFkzfPnll3jppZdgNpuxfPlybNiwAZ9++ilmz55t13E9PT0RGxuLxMREpKWloW3btpg/fz7Cw8MBoMrI0Llz56yjTOHh4SgrK8PFixcl9xHj5eVlfdLuxhept/6g+Ogdh5LJWZgKJqORq8KtOBXMKtw1QnWgFBERgVGjRqFZs2bYtWsX9uzZg9GjRyMgIMC6T//+/VG/fn2HOigIAkpLSxEdHY3w8HBkZGRY28rKypCVlYUuXboAADp06AAPDw+bfcxmMw4ePGjdh/S1KCsfy3/6VbRN8VAyq3CThjiaREaj+xI6rMKtqXpqf3DevHl4+OGH4e3tLblPgwYNUFBQoPiY06ZNw4ABAxAZGYlLly4hPT0dmZmZWLduHUwmEyZMmIA5c+agRYsW1qftfH198dhjjwEAgoKCMHLkSEyaNAkhISEIDg5GamoqEhIS0KdPH7UvlRSSu/gVDyWzCjdpbOk26b9BHE0iZ+ASOrWL6kDp9OnTWLlyJZ5++mmb7Z988gl+//13TJkyxe5j/vbbb3jiiSdgNpsRFBSENm3aYN26dejbty8AYPLkySgpKcGYMWNw8eJFdO7cGRs2bLAZxZo3bx7q1auHoUOHoqSkBL1798ayZcvg7u6u9qWSQtUVTXPo4udQMqlgtpTgo63igZKiGxIA7Fwo3cYbEtmJVbhrH5MgCIKaH4yKisLKlSurpLR27tyJYcOG2TWSZDRFRUUICgqCxWLhfCWFzJYSJKX9KNr2wJ2N8d6wdtUf5LsXpT+5932dBSbJbtNW7xe9KT14Z2PMU3JOWs4A81qJt/GcJBW+338W41bmirb9NLWXsg+UUudkwlDgocUO9rB20+P+rXqOUmFhISIiIqpsb9iwIcxm8ZXiqe5iCX4yGrlP7r1bSj/cYUPqkzvPSVIp+5h43STF8+XkFmRmIV5dqA6UIiMjRddy2759Oxo3buxQp6h2YRVuMiK5BZk7RDUQbbMhF7zHDVTdL3Jdcn8rFc2XA6QXZOZ8Od2onqP0zDPPYMKECSgvL0evXr0AAJs2bcLkyZMxadIkzTpIxpfz60XJNk6WJWfQd0FmVuEmdaSC9+GdFZ6Tcgsyc76cblQHSpMnT8aFCxcwZswYlJWVAQC8vb0xZcoUTJ06VbMOkvHpOpTMi59UYBVuMhq54D0pJkTZQbggs1OoDpRMJhPefvttzJgxA4cPH4aPjw9atGgBLy8vLftHBsehZDIa1k0iI9I1FcwFmXWlOlC6wd/fHx07dtSiL1QLSZXg51AyOQtTwWQ0TAXXbg4FSps2bcKmTZtw7tw5VFZW2rR98sknDnWMjE+uBL/ioWSpEvy8IZFKG/PEl9BhKpicReoDJcBUcG2gOlCaNWsWZs+ejcTERERERFS7MC3VLXJVuBUPJcuV4OdQMqmwKCsfX+8TL0+iOBV8ZK34dgbvpILcB0rFwbvUB0qAwXsNUB0offjhh1i2bBmeeOIJLftDtYTcZNmXHS7Bz6Fksp9c8P7s3THKbkhywTtvSGQn3dd0Y/BeI1TXUSorK+NCsy5K/xL8s3nxk93kJss+1S2q+gPIBe9dXuA5SXaTmy+nfE2316TbGbzXCNWB0jPPPIOVK1dq2ReqJViFm4xG98mynUer7xy5LKnSKYo/UF7IByCxyhjXdKsxqlNvV69exUcffYSNGzeiTZs28PDwsGl/9913He4cGQ+rcJMRsW4SGY3c30pFHygB4Him+PZOz/EDZQ1SHSjt378fd955JwDg4MGDNm2c2F138dFrMhrWTSIj0qQK99a54m0tBzvQM7KX6kBp8+bNWvaDagmHq3BfyJdu4w2JVNB3NInBO9lP1yrcJjcgOEZlz0gN1XOUyPVoUoVbaij57lTekMhuHE0iI9K1Cnf7EfxbWcMcCpS2bt2Kxx9/HElJSThz5gwA4NNPP8W2bds06RwZi65DyTHJ6jtGLoupYDIafR8sAIN3J1AdKK1atQr9+/eHj48PcnNzUVpaCgC4dOkS5syZo1kHyRg4lExG5HAVbqaCSWP6VuFm8O4MqgOlN954Ax9++CEWL15s88Rbly5dsHfvXk06R8YhdfFzKJmcRZMq3Ie/F9/OVDCpoEkVbo4mGY7qQOnIkSPo3r17le2BgYH4888/HekTGYzcxa94KJkl+ElDmlXh3rVIvI2pYLKT2VLC0aQ6SnWgFBERgWPHjlXZvm3bNsTEMI1SV7AEPxmRrlW4mQomFQrOF0uVhlRWhRsAdi6UbuMHSqdRHSg999xzePHFF7Fz506YTCacPXsWK1asQGpqKsaMGaNlH8mJ5B69Vl6CX2pNN/DiJ7vpPlm2zywG72S37UfFS6ekJDVTVoXbcgbIXiDexircTqW6jtLkyZNhsVjQs2dPXL16Fd27d4eXlxdSU1Mxbtw4LftITqLJmm6ndkq38eInFXStm8QldEgFs6UE72eKPxjQPz5C2UGkgneek06nOlACgDfffBPTp09HXl4eKisr0apVK/j7+2vVN3KygvPFkm2KS/AXbBHfzoufVOASOmREUsG7mwmICvWt/gBywXvcQPUdI004FCgBgK+vLxITE7XoCxmM1FDyuJ7NlddNylkq3sYbEqnAKtxkNHLB+7COGizIHNlJfedIE6oDpdmzZ8u2v/qqzLwUMjy5oeSusQ2VHUTq4ucNiVTQZDRJLhXM+XKkAhdkrvtUB0pr1qyx+b68vBwFBQWoV68emjdvzkCpltN1KDm6h/qOkcuSSwUrrpsklQpm8E4qcAkd16A6UMrNza2yraioCCkpKXjwwQcd6hQ5F4eSyYh0TQXzhkQqMBXsGjRdFDcwMBCzZ8/GjBkztDws1TB9i6al8OInuzEVTEbDVLDr0DRQAoA///wTFotF68NSDdGkBD+rcJPGpIJ3poLJWZZuK5BsU5wKPrJWfDuDd0NRnXr7xz/+YfO9IAgwm8349NNPcc899zjcMap5rMJNRiQXvCtOBUsG70wFk/3MlhJ8tFU8UFJchVvubyU/UBqK6kBp3rx5Nt+7ubmhYcOGGDFiBKZOnepwx6jm5fx6UbJNeRXu16TbefGTnfQP3lMYvJPdpOYmPai0EK/cigVdXuA5aTCqU28FBQU2X/n5+dixYwfmzJmDgIAAVcdMS0tDx44dERAQgEaNGuGBBx7AkSNHbPYxmUyiX3/729+s+yQnJ1dpHzZsmNqX6jKyj4lPllVchftCPiC12hGrcJMKXEKHjEZublLvlmHKDiL3sEvn0eo6RrpRPaI0ceJExfu+++67ivbLysrC2LFj0bFjR1y7dg3Tp09Hv379kJeXBz8/PwCA2Wy2+Zm1a9di5MiReOihh2y2jxo1yqbWk4+PgqFQFyZ38Suuwn08U3x7p+dYhZvspskSOnKPXjN4JxXkFmTuENWg+gPwYZdax6HyADk5OaioqEBcXBwA4JdffoG7uzvat29v3c9kMik+5rp162y+X7p0KRo1aoScnBx0794dABAeHm6zzzfffIOePXsiJsZ2tW9fX98q+5I0qYt/eGeFc0AsZ4Ctc8XbWg52oGfkquRSwYqCd67pRhrTfUFmjnAakupAafDgwQgICMDy5cvRoMH1KPrixYt46qmncPfdd2PSpEkOd+7G03PBwcGi7b/99ht++OEHLF++vErbihUr8NlnnyEsLAwDBgzAa6+9pjolWNfJXfxJMSHKDiJ18ZvcgOAY8TYiGVKpYMVPX14QLycAgEvokCqsm+SaVAdKc+fOxYYNG6xBEgA0aNAAb7zxBvr16+dwoCQIAiZOnIhu3bohPj5edJ/ly5cjICAAQ4YMsdk+fPhwREdHIzw8HAcPHsTUqVPx3//+FxkZGaLHKS0tRWlpqfX7oqIih/pe2+g6lNx+BC9+sptc8K740WupVPDdqTwnyW6swu26VAdKRUVF+O2339C6dWub7efOncOlS5cc7ti4ceOwf/9+bNu2TXKfTz75BMOHD4e3t7fN9lGjRln/HR8fjxYtWiAxMRF79+61SQvekJaWhlmzZjnc59qIQ8lkRLqmgmOS1XeMXJZcKpijSXWb6qfeHnzwQTz11FP46quvcPr0aZw+fRpfffUVRo4cWWWEx17jx4/Ht99+i82bN6NJkyai+2zduhVHjhzBM888U+3x2rdvDw8PDxw9Kv7Hd+rUqbBYLNavU6fEA4e6SN8q3Lz4yX5MBZMR6ZoK5gdKQ1M9ovThhx8iNTUVjz/+OMrLy68frF49jBw50uZRfXsIgoDx48djzZo1yMzMRHR0tOS+S5YsQYcOHdC2bdtqj3vo0CGUl5cjIiJCtN3LywteXl6q+lybaVKFm6NJpDGp4J2pYHIWpoJdm+pAydfXFx988AH+9re/IT8/H4IgIDY21voYvxpjx47FypUr8c033yAgIACFhYUAgKCgIJvH+4uKivDll19i7tyqQ+v5+flYsWIFBg4ciNDQUOTl5WHSpElo164dunbtqrpvdY3ZUsLRJDIcueBdcSqYS+iQxqT+VjIV7BpUB0o3+Pn5oU2bNlr0BQsXLgRwvWDkzZYuXYqUlBTr9+np6RAEAY8++miVY3h6emLTpk2YP38+Ll++jMjISNx777147bXX4O7urkk/64KC88VSpSGVl+DfuVC6jTckshOX0CEjkgveFaeCpYJ3poJrBYcCpa1bt2LRokXIz8/HV199hdtuuw2ffvopoqOj0a1bN7uPJwhSt25bzz77LJ599lnRtsjISGRlZdn9u13N9qPi+faUpGbKS/BnLxBvYyE/UoFVuMlo5IJ3xalgueCdqeBaQfVk7lWrVqF///7w8fFBbm6u9fH6S5cuYc6cOZp1kLRntpTg/UzxiYX948XncVUhNTeJhfxIBU2qcJ/aKd3G4J1UkAveX2bw7jJUB0pvvPEGPvzwQyxevBgeHh7W7V26dMHevXs16RzpQ+ridzMBUaG+1R9Abm5S3ED1HSOXVXC+WLJN8RI6BVvEtzN4JxW4hA7doDpQOnLkiHVZkZsFBgbizz//dKRPpCO5i39YR0efdDMBkZ3Ud45cllQqeFzP5sony+YsFW9jFW5SQW40iUvouBbVgVJERASOHTtWZfu2bduqrLtGxqFvCf4UfkIiu8mlgrvGNlR2EKngnRO4SQXdq3AzeK9VVAdKzz33HF588UXs3LkTJpMJZ8+exYoVK5CamooxY8Zo2UfSCEvwkxHpmgqO7qG+Y+Sy5FLBLJ3ielQ/9TZ58mRYLBb07NkTV69eRffu3eHl5YXU1FSMGzdOyz6SRrigIxkNU8FkRA6nglmFu05xqDzAm2++ienTpyMvLw+VlZVo1aoV/P39teobaYijSWRE+hY9TWHwTnbTJBXMKtx1iqrUW3l5OXr27IlffvkFvr6+SExMRKdOnRgkGRiHksloNFlCh1W4SWNSwbtdqWBW4a5TVAVKHh4eOHjwIEwmk9b9IZ2sP1goup1DyeQMrMJNRiQXvCtOBbMKd52jejL3k08+iSVLlmjZF9LJoqx8LP/pV9E2xUPJh78X386hZFIh59eLkm2swk3OoHvwzirctZbqOUplZWX4+OOPkZGRgcTExCqL4b777rsOd44cJ3fxKx5K3j4f2LVIvI1DyaRC9jHxybKswk3OwiV0SIpdgdL+/fsRHx8PNzc3HDx4EO3btwcA/PLLLzb7MSVnHNUVTXPo4udQMqkg92ABq3CTM7AKN8mxK1Bq164dzGYzGjVqhF9//RW7d+9GSIjC1ZOpxul+8feZxYuf7CYVvA/vrHAOCKtwk8bkUsGswk12zVGqX78+CgoKAAAnTpxAZWWlLp0ibbAEPxmNXPCeFKPwQxercJPGpFLBip++lEsFM3iv9ewaUXrooYfQo0cPREREwGQyITExEe7u7qL7Hj9+XJMOkjoswU9GJBW8mwB0iGpQ/QFYhZs0Jve3UtEEbkA6FczgvU6wK1D66KOPMGTIEBw7dgwvvPACRo0ahYCAAL36Rg6QG0pm3SRyBrkb0qMOB++swk3q6JoK5gTuOsHup97uueceAEBOTg5efPFFBkoGpetQMi9+UoELMpPRMBVMSqguD7B0qUQETU7HoWQyGi6hQ0YkVYWbqWC6meqCk2RcUhc/h5LJWbggMxmNXBVuxalgySV0mAquSxgo1TFyF7/ioWSpi583JFJBk9EkpoJJQ/ovoZPCv5V1CAOlOkTu4lc8lCx38XMomVRYuq1Ask1xKvjIWvHtDN5JBVbhJnswUKpD5C7+lx2++DmUTPYzW0rw0VbxQEnRDQmQD955QyI7sQo32YuBUh2h/8U/mxc/2U0qeH9Q6TkpF7x3eYHnJNmNVbjJXgyU6ghW4SajkQvee7cMU3YQubpJnUer6xi5NIdLp1zIl25jId46iYFSHcAq3GREulbh5mRZUkGT0inHM8W3353Kc7KOYqBUB7AKNxmNvlW4wblJpIomVbi3zhVvi0lW3zEyNAZKdYCuQ8m8IZEKrJtERqNrFW6TGxAco7JnZHQMlGo5DiWT0bAKNxmRrqng9iP4t7IOY6BUy2lShZtDyaQhpoLJaJgKJkcwUKrFdK3CzaFkUmljXqHodqaCyVmkPlACDN6pegyUaindq3BzKJlUWJSVj6/3mUXbFKeCD38vvp2pYFJB7gMlU8GkhKECpbS0NHTs2BEBAQFo1KgRHnjgARw5csRmn5SUFJhMJpuvu+66y2af0tJSjB8/HqGhofDz88N9992H06dP1+RL0Z2+VbjBi5/sJhe8P3t3jPIq3LsWibcxFUx2MltKOJpEDjNUoJSVlYWxY8dix44dyMjIwLVr19CvXz8UFxfb7HfPPffAbDZbv/7zn//YtE+YMAFr1qxBeno6tm3bhsuXL2PQoEGoqKioyZejG5bgJyOSmyz7VLeo6g8gF7wzFUwqFJwvhiDRpngJnZ0Lpdv4gdIl1HN2B262bt06m++XLl2KRo0aIScnB927d7du9/LyQnh4uOgxLBYLlixZgk8//RR9+vQBAHz22WeIjIzExo0b0b9/f/1eQA1hFW4yGt0ny/aZxeCd7Lb9qHjplJSkZsqX0MleIN7GD5Quw1AjSreyWCwAgODgYJvtmZmZaNSoEW6//XaMGjUK586ds7bl5OSgvLwc/fr1s25r3Lgx4uPjkZ2dXTMd15Emj16f2indxircpIKudZMYvJMKZksJ3s8UfzCgf3yEsoNIBe88J12KoUaUbiYIAiZOnIhu3bohPj7eun3AgAF4+OGH0axZMxQUFGDGjBno1asXcnJy4OXlhcLCQnh6eqJBA9vJzGFhYSgsFH8ap7S0FKWlpdbvi4qK9HlRGig4XyzZpniybMEW8e3Mt5MKXEKHjEgqeHczAVGhvtUfQC54jxuovmNU6xg2UBo3bhz279+Pbdu22Wx/5JFHrP+Oj49HYmIimjVrhh9++AFDhgyRPJ4gCDCZTKJtaWlpmDVrljYd15nUUPK4ns2V103KWSrexnw7qcAq3GQ0csH7sI6OBu8mILKT+s5RrWPI1Nv48ePx7bffYvPmzWjSpInsvhEREWjWrBmOHr3+xzo8PBxlZWW4eNG26N25c+cQFia+YvnUqVNhsVisX6dOiV9gziY3lNw1tqGyg0hd/LwhkQq6p4IZvJMK+gbvKfxb6WIMFSgJgoBx48Zh9erV+PHHHxEdHV3tz/zxxx84deoUIiKu55w7dOgADw8PZGRkWPcxm804ePAgunTpInoMLy8vBAYG2nwZka5DydE91HeMXBZTwWQ0XEKHtGao1NvYsWOxcuVKfPPNNwgICLDOKQoKCoKPjw8uX76MmTNn4qGHHkJERAROnDiBadOmITQ0FA8++KB135EjR2LSpEkICQlBcHAwUlNTkZCQYH0KrjbiUDIZ0fqD4vP+mAomZ2EqmLRmqEBp4cLr9SqSk5Ntti9duhQpKSlwd3fHgQMH8K9//Qt//vknIiIi0LNnT3z++ecICAiw7j9v3jzUq1cPQ4cORUlJCXr37o1ly5bB3d29Jl+OpvQtmpbCi5/stigrH8t/+lW0TXEqWGoJHd6QSAWmgkkPhgqUBEGqNNh1Pj4+WL9+fbXH8fb2xoIFC7BggUT9i1pGkxL8UjckgBc/2U2uCrfiVLDcEjpMBZMKS7cVSLYpTgUfWSu+ncG7yzLUHCWqSu6GBCi8+OVuSLz4SYXqip46toQOU8FkP7OlBB9tFQ+UFFfhlvtbyQ+ULouBksHl/HpRsk3RxW85A2S8Jt3Oi5/spP8SOrMZvJPdpIL3B5Wek3LBe5cXeE66MAZKBpd9TLxukuIb0oV8QGq1I5bgJxW4hA4ZjVzw3ruleFmYKuQeduk8Wl3HqE5goGRgche/ohsSABzPFN/e6TnekMhurMJNRiS3IHOHqAaibTb4sAvJYKBkYFIX//DOCm9IljPA1rnibS0HO9AzclVyqWA+ek3OoPuCzJye4PIYKBmU3MWfFBOi7CBSF7/JDQiOUdkzcmVSqWDFo0kXxCvLA+ANiVRh3STSGwMlg9J1KLn9CF78ZDe54F3xo9dSqeC7U3lOkt1YhZtqAgMlA+JQMhmRrqngmGT1HSOXxVQw1QQGSgakbxVuXvxkP6aCyYg25okvocNUMGmJgZLBaFKFm6NJpDGp4J2pYHKWRVn5+HqfWbRNcSr48Pfi25kKppswUDIQs6WEo0lkOHLBu+JUMJfQIQ3JrVjw7N0xyqtw71ok3sZUMN2EgZKBFJwvlioNqbwE/86F0m28IZGduIQOGZHcwy5PdYuq/gByVbiZCqZbMFAykO1HxR+9TklqprwEf7bEQsCswk0qyD16rXwJHak13cDgneym+8MufWbxbyXZYKBkEGZLCd7PFJ9Y2D8+QtlBpC5+LgtBKui/phuDd7KfrnWT+LeSRDBQMgipi9/NBESF+lZ/ALmLP26g+o6Ryyo4XyzZxjXdyBm4hA45AwMlA5C7+Id1dPTiNwGRndR3jlyWVCp4XM/mjj96zRsSqcAq3OQMDJQMQN+LP4UXP9lNLhXcNbahsoOwCjdpiFW4yVkYKDkZL34yIk1SwazCTRqSSwVzNIn0xEDJyTiUTEajayqYj16TSrqmgvmBkmQwUHIijiaREela9JRVuEkFpoLJmRgoOdHSbQWSbRxNImfQZAkdVuEmjUkF70wFU01goOQkZksJPtoqHiixCjc5A6twkxHJBe+KU8FSwTtTwaQAAyUnkZqb9KDSQn6swk0ay/n1omQbq3CTM+gevDMVTAowUHICublJvVuGKTsIq3CTxrKPiU+WVVyF+9RO6TYG76QCl9AhI2Cg5ARyCzp2iGpQ/QFYhZs0Jhe8K6rCDQAFW8S3M3gnFbiEDhkFA6Uapu+CjqzCTepIBe/DOys8Jy1ngJyl4m2swk0qyKWCuYQO1SQGSjWMVbjJaOSC96SYEGUHkQreOYGbVJJKBSt++lIuFczgnezAQKkGsW4SGZGuqeDoHqr7Ra5L7m+log+UgHQqmME72YmBUg2SG0pm3SRyBqaCyYh0TQXzAyXZiYFSDdJ1KJkXP6mgaxVupoJJBaaCyWgYKNUQDiWT0bAKNxmRVPDOVDA5i6ECpbS0NHTs2BEBAQFo1KgRHnjgARw5csTaXl5ejilTpiAhIQF+fn5o3LgxnnzySZw9a/vHPjk5GSaTyeZr2LBhNf1ybEhd/BxKJmdgFW4yIrngXXEqWDJ4ZyqY1DFUoJSVlYWxY8dix44dyMjIwLVr19CvXz8UFxcDAK5cuYK9e/dixowZ2Lt3L1avXo1ffvkF9913X5VjjRo1Cmaz2fq1aNGimn45VnIXv+KhZKmLnzckUkGbKtyvSbczeCc76R+8p/BvJalSz9kduNm6detsvl+6dCkaNWqEnJwcdO/eHUFBQcjIyLDZZ8GCBejUqRNOnjyJpk2bWrf7+voiPDy8RvotR+7iVzyULHfxcyiZVHC4CveFfACCeBsL+ZEKrMJNRmWoEaVbWSwWAEBwcLDsPiaTCfXr17fZvmLFCoSGhqJ169ZITU3FpUuX9OyqJLmL/2WHL34OJZP9NKnCfTxTfHun51jIj+zGKtxkZIYaUbqZIAiYOHEiunXrhvj4eNF9rl69ipdffhmPPfYYAgMDrduHDx+O6OhohIeH4+DBg5g6dSr++9//VhmNuqG0tBSlpaXW74uKijR5Dfpf/LN58ZPdNHn0eutc8baWgx3oGbkqVuEmIzNsoDRu3Djs378f27ZtE20vLy/HsGHDUFlZiQ8++MCmbdSoUdZ/x8fHo0WLFkhMTMTevXvRvn37KsdKS0vDrFmztH0BkB9N4sVPzqDro9cmNyA4RmXPyJU5XDrlQr50G6twk4MMmXobP348vv32W2zevBlNmjSp0l5eXo6hQ4eioKAAGRkZNqNJYtq3bw8PDw8cPSoeuEydOhUWi8X6deqU+I3EHrpX4ebFTyroWoW7/QiOcJLdNCmdIpUKvjuV5yQ5zFAjSoIgYPz48VizZg0yMzMRHR1dZZ8bQdLRo0exefNmhIRU/yn40KFDKC8vR0REhGi7l5cXvLy8HO7/zViFm4xG3yrc4GRZUkXXVHBMsvqOEf0/QwVKY8eOxcqVK/HNN98gICAAhYWFAICgoCD4+Pjg2rVr+Mtf/oK9e/fi+++/R0VFhXWf4OBgeHp6Ij8/HytWrMDAgQMRGhqKvLw8TJo0Ce3atUPXrl1r7LXoOpTMGxKpoO+CzAzeyX5MBVNtYKhAaeHChQCuF4y82dKlS5GSkoLTp0/j22+/BQDceeedNvts3rwZycnJ8PT0xKZNmzB//nxcvnwZkZGRuPfee/Haa6/B3d29Jl4Gh5LJcLggM4mpqKhAeXm5037/BxsP47YA8b/LbRr74urVq/IHuPQbcGQT4B9Zta31EMArBKjuGFSreHh41Ni9/AZDBUqCIFGX5f9FRUVVu09kZCSysrK07JbdNKnCzaFk0hBTwXQzQRBQWFiIP//802l9uHS1HN0jgO4Rjaq0+Xm5o/i8GQXiA/P/c+UPoKvE38rAxkBBgeMdJcOpX78+wsPDYTKZauT3GSpQqgt0rcLNoWRSaWNeoeh2poJd040gqVGjRvD19a2xG84NZdcqUXD+MhpJPD8QHeoPz3rVPGtUfB4oLgHgW7XNu/71QInqFEEQcOXKFZw7dw4AJOcda42BkoZ0r8LNp4pIhUVZ+fh6n1m0TXEq+PD34tuZCq51KioqrEGSkodh9HD+4hWY6nmKtkUEeSPQ31v+ANfKgNLfgXoSAV5wE0Di+FS7+fhc/2B37tw5NGrUqEbScIYsD1Bb6VuFG/zkTnaTC96fvTtG2WjS9vnALom1EpkKrnVuzEny9RUZiakBZdcqcaG4TLStvq8nGgZUEyQBQHmxdFtgYwZJddyNc7em5tcxUNIIS/CTEcnVTXqqW1T1B5AL3pkKrtVqOt12Q9m1Csm28EAFQRIAlEosSeXTAPAPU9Erqk1q+txloKQRVuEmo9G9blKfWQzeyW6XS6+Jbm8U4FX9vCTgetrtyh/ibQGcl0TaY6CkAU0evT61U7qNVbhJBV3rJjF4JxXKrlXi3KVS0TZ/Lw9lB7ks/mACfEMMn3KbOXNmldI2ejpx4gRMJhP27dun6ueTk5MxYcIETfukREpKCh544IEa/71SGChpoOC8dL5c8WTZgi3i2/noNanAJXTIiM5dEq9pZAKqHU1KTk7GhBfGS48meQU42Dv9paamYtOmTdbvxQICR4MbLa1evRqvv/66s7vhdHzqTQPbj4oX+xjXs7nyukk5S8XbOIGbVGAVbjIauUncDfw8laXdyq9It3n4QRAEVFRUoF49Y97a/P394e/v7+xuKBYcHOzsLhgCR5QcZLaU4P1M8RozXWMbKjuI1Cd33pBIBd1TwQze6f+ZLSXIzj8Ps6Wk2n2lRpMAoFE1T7qlpKQgKysL8z/8BKbb2sN0W3ucOHUWmdl7YLqtPdb/dBCJd3WBl5cXtm7divz8fNx///0ICwuDv78/OnbsiI0bN9ocMyoqCnPmzMHTTz+NgIAANG3aFB999JG1vaysDOPGjUNERAS8vb0RFRWFtLQ0a7vJZMKiRYswaNAg+Pr6omXLlvjpp59w7NgxJCcnw8/PD0lJScjP/9/94ebU28yZM7F8+XJ88803MJlMMJlMNmuctmvXDiaTyWaliqVLl6Jly5bw9vbGHXfcgQ8++MDmNe3atQvt2rWDt7c3EhMTkZubK/u+AsAHH3yAFi1awNvbG2FhYfjLX/5ibbs19WY2m3HvvffCx8cH0dHRWLlyJaKiovDee+/ZvC8ff/wxHnzwQfj6+qJFixbWFTWA6+UpRo4ciejoaPj4+CAuLg7z58+vtp/OxEDJQVJVuN1MQFSogsdv5T65R/dQ3zFyWUwFU034fPdJdH3rRzy2eCe6vvUjPt99UnJfudGkYAWjSfPnz0dSx/YYNfxBmHM3wJy7AZGN//d02+RZf0NaWhoOHz6MNm3a4PLlyxg4cCA2btyI3Nxc9O/fH4MHD8bJk7Z9nDt3rjWgGDNmDJ5//nn8/PP1v+n/+Mc/8O233+KLL77AkSNH8NlnnyEqKsrm519//XU8+eST2LdvH+644w489thjeO655zB16lTs2bMHADBu3DjR15SamoqhQ4finnvugdlshtlsRpcuXbBr1y4AwMaNG2E2m7F69WoAwOLFizF9+nS8+eabOHz4MObMmYMZM2Zg+fLlAIDi4mIMGjQIcXFxyMnJwcyZM5Gamir7vu7ZswcvvPACZs+ejSNHjmDdunXo3r275P5PPvkkzp49i8zMTKxatQofffSRtfjjzWbNmoWhQ4di//79GDhwIIYPH44LFy4AACorK9GkSRN88cUXyMvLw6uvvopp06bhiy8k6gcagDHHJ2sJuSrcwzoq/OQuVYUbJiCyk+q+ketaf1B8sitTwaQVs6UEU1cfQOX/ryhVKQDTVh9E99sbip5jjowmAUCQnw8865ng6+2N8EahVdpnv/46+vbta/0+JCQEbdu2tX7/xhtvYM2aNfj2229tApeBAwdizJgxAIApU6Zg3rx5yMzMxB133IGTJ0+iRYsW6NatG0wmE5o1a1bl9z711FMYOnSo9eeTkpIwY8YM9O/fHwDw4osv4qmnnhJ9Tf7+/vDx8UFpaSnCw8Ot2xs2bGh9DTdvf/311zF37lwMGTIEABAdHY28vDwsWrQII0aMwIoVK1BRUYFPPvkEvr6+aN26NU6fPo3nn39e8n09efIk/Pz8MGjQIAQEBKBZs2Zo166d6L4///wzNm7ciN27dyMxMREA8PHHH6NFixZV9k1JScGjjz4KAJgzZw4WLFiAXbt24Z577oGHhwdmzZpl3Tc6OhrZ2dn44osvrO+l0XBESSW5Qn6Awk/uclW4O6TwkzvZbVFWPpb/9Ktom+JUsFTwztEk+n8F54utQdINFYKAE+erziFydDQJgHyBScB6476huLgYkydPRqtWrVC/fn34+/vj559/rjKi1KZNG+u/TSYTwsPDrSMkKSkp2LdvH+Li4vDCCy9gw4YNVX7vzT8fFnZ9hCshIcFm29WrV1FUVFT9a5Tx+++/49SpUxg5cqR1npO/vz/eeOMNa2rv8OHDaNu2rU0h0aSkJNnj9u3bF82aNUNMTAyeeOIJrFixAleuiM8DO3LkCOrVq4f27dtbt8XGxqJBg6orTtz8vvj5+SEgIMBm5OnDDz9EYmIiGjZsCH9/fyxevLjK/xsjYaCkktxk2amswk1OIBe8K04FywXvTAXT/4sO9YPbLTX/3E0m0XPsj8vi5QAAZaNJAICrFvHt3oEArt+Mb/bXv/4Vq1atwptvvomtW7di3759SEhIQFmZbcDm4WFbksBkMqGyshIA0L59exQUFOD1119HSUkJhg4dajN/59afv1EEUWzbjWOqdePnFy9ejH379lm/Dh48iB07dgCoflF5MQEBAdi7dy/+/e9/IyIiAq+++iratm0ruliy1PHFtsu9r1988QVeeuklPP3009iwYQP27duHp556qsr/GyNhoKQCq3CTEVVX9NSx4J2pYPqfiCAfpA1JgPv/BwLuJhPmDImvco6VXavE7xKBUkSQt7LRpMu/ASUX4enhgYpbAw4f8aeytm7dipSUFDz44INISEhAeHg4Tpw4Uf3vukVgYCAeeeQRLF68GJ9//jlWrVplnWujBU9PT1RUVFTZBsBme1hYGG677TYcP34csbGxNl83Jn+3atUK//3vf1FS8r+J9TeCKDn16tVDnz598M4772D//v04ceIEfvzxxyr73XHHHbh27ZrNBPFjx46JBlVytm7dii5dumDMmDFo164dYmNjbSa8GxHnKKmQ8+tFyTZW4SZn0D94n83gnWw80rEput/eECfOX0FUqK9dc5MaKF3T7VoZUHR9HmhUZAR25h7EiVNn4e/ng+DbWgDu4iNNsbGxWL16NQYPHgyTyYQZM2bYPaozb948RERE4M4774Sbmxu+/PJLhIeHo379+nYdR05UVBTWr1+PI0eOICQkBEFBQWjUqBF8fHywbt06NGnSBN7e3ggKCsLMmTPxwgsvIDAwEAMGDEBpaSn27NmDixcvYuLEiXjssccwffp0jBw5Eq+88gpOnDiBv//977K///vvv8fx48fRvXt3NGjQAP/5z39QWVmJuLi4Kvvecccd6NOnD5599lksXLgQHh4emDRpEnx8fOxaUiQ2Nhb/+te/sH79ekRHR+PTTz/F7t27rQGfEXFESYXsY+J1kxQ/en1BJnpmIT9SgUvokDNEBPkgqXmI6N89ublJAd4KP6PfVIU79bkn4e7mhlbJf0HDhN44+Yd0SYJ58+ahQYMG6NKlCwYPHoz+/fvbzK1Rwt/fH2+//TYSExPRsWNHnDhxAv/5z3/g5qbdbXPUqFGIi4uzztfZvn076tWrh3/84x9YtGgRGjdujPvvvx8A8Mwzz+Djjz/GsmXLkJCQgB49emDZsmXWAMPf3x/fffcd8vLy0K5dO0yfPh1vv/227O+vX78+Vq9ejV69eqFly5b48MMP8e9//xutW7cW3f9f//oXwsLC0L17dzz44IMYNWoUAgIC4O2tMIUKYPTo0RgyZAgeeeQRdO7cGX/88Yd1Qr1RmQQ1ic06rqioCEFBQbBYLAgMDLRpM1tKkJRWdVgSAH6a2ktZoLRpNrB1btXtd6cCvWeo6TK5MLlz8rFOTTFnSIJom43vXpQOlF7K42hSHXL16lUUFBQgOjrarhucvU5fvCIZKN0RHlh92u1aGXDukHibbwhQv6mDPSRHnT59GpGRkdi4cSN69+5dY79X7hyWu3+rxdSbnaQ+uQ/vrHA0yXJGPEgCgJhk9R0jlyWXCmYVbnIGTZ50k1rTDQD8w6XbSDc//vgjLl++jISEBJjNZkyePBlRUVGytZfqAgZKdpCbB5IUE6LsIFLzQExuQHCMyp6RK9M1FcynL0kFR+sm4VqZ9JputWDx27qqvLwc06ZNw/HjxxEQEIAuXbpgxYoVVZ5yq2sYKNlBajTJBKBDVNVaElXIfXJvP4Kf3MlucsG74ircxzPFt9+dynOS7MbRpLqrf//+1mKaroSTuRWSuyE9qsVq7PzkTipILaHDVDA5y5Wya5JtHE2i2oiBkkJSNySA80DIOeSW0FGcCpaqws1UMKlUdLVcdLvi0aQK6QKVHE0iZ2CgpIDcDUnxPBCOJpGG5KpwK04Fy1XhZiqYVPj90lX8eUU8UHK4Crd/GEeTyCkYKFXDbCnhaBIZjlzdpJe5hA45Qdm1Spgt4pO4G/p7Ka/CXfy7eJtXgAO9I1KPgVI1Cs4XQ6rQlKI13QBg50LpNt6QyE5cQoeMSO5JtxB/r+oPcFMVblHuCo5BpAMGStXYflT80euUpGbKbkiWM0D2AvE23pBIBVbhJqPR/Um3wMZMu5HTMFCSUWgpwfuZ4jVm+sdHKDuI1Cd33pBIBbnRJE3my3EJHVJB17pJPg2uz09ykpSUFDzwwAO6/x6TyYSvv/5a1c/WVB9vNXPmTNx55501/ntrGusoyViUJR4kuZmAqFDf6g8g98k9bqD6jpHLKjhfLNnG+XLkDLqPJgU0VtkzbcyfPx9GX+mrNvSxNmOgJOPLnDNw86oaEA3r6OgndxMQ2cmxzpFLkkoFj+vZnFW4ySmcVYW7rKwMnp76p+OCgoJ0/x2Oqg19rM2YelPB8U/uKfzkTnYzy6SCu8Y2VHYQVuEmDZVdOIXSo5nwKDZXadO6CndycjLGjRuHiRMnIjQ0FH379gUA5OXlYeDAgfD390dYWBieeOIJnD//vw8UlZWVePvttxEbGwsvLy80bdoUb775prX9zJkzeOSRR9CgQQOEhITg/vvvx4kTJ6ztN6e1Fi1ahNtuuw2VlZU23bzvvvswYsQI6/ffffcdOnToAG9vb8TExGDWrFm4du1/hTiPHj2K7t27w9vbG61atUJGRka1b9NXX32FhIQE+Pj4ICQkBH369EFxcXGVPgLApUuXMHz4cPj5+SEiIgLz5s1DcnIyJkyYYN0nKioKc+bMwdNPP42AgAA0bdoUH330kc3vnDJlCm6//Xb4+voiJiYGM2bMQHm5ePmHuoyBkp1YN4mcRWoSt12pYFbhJq3s/Rc8FrRB8/88ijvSu6DBkXSbZj1Gk5YvX4569eph+/btWLRoEcxmM3r06IE777wTe/bswbp16/Dbb79h6NCh1p+ZOnUq3n77bcyYMQN5eXlYuXIlwsKuz3m6cuUKevbsCX9/f2zZsgXbtm2Dv78/7rnnHpSVVU0nPvzwwzh//jw2b95s3Xbx4kWsX78ew4cPBwCsX78ejz/+OF544QXk5eVh0aJFWLZsmTU4q6ysxJAhQ+Du7o4dO3bgww8/xJQpU2TfJrPZjEcffRRPP/00Dh8+jMzMTAwZMkQy3TZx4kRs374d3377LTIyMrB161bs3bu3yn5z585FYmIicnNzMWbMGDz//PP4+ef/lcMJCAjAsmXLkJeXh/nz52Px4sWYN2+ebF/rIkMFSmlpaejYsSMCAgLQqFEjPPDAAzhy5IjNPoIgYObMmWjcuDF8fHyQnJyMQ4cO2exTWlqK8ePHIzQ0FH5+frjvvvtw+vRpTfrIeSDkDHKTuB1OBbMKN9nLcgb47kWYhOsjKyahEk22TbOOLDUKUFg3yc4q3LGxsXjnnXcQFxeHO+64AwsXLkT79u0xZ84c3HHHHWjXrh0++eQTbN68Gb/88gsuXbqE+fPn45133sGIESPQvHlzdOvWDc888wwAID09HW5ubvj444+RkJCAli1bYunSpTh58iQyMzOr/P7g4GDcc889WLlypXXbl19+ieDgYPTu3RsA8Oabb+Lll1/GiBEjEBMTg759++L111/HokWLAAAbN27E4cOH8emnn+LOO+9E9+7dMWfOHNm3yWw249q1axgyZAiioqKQkJCAMWPGwN/fv8q+ly5dwvLly/H3v/8dvXv3Rnx8PJYuXYqKiooq+w4cOBBjxoxBbGwspkyZgtDQUJvX/corr6BLly6IiorC4MGDMWnSJHzxhUSR2jrMUIFSVlYWxo4dix07diAjIwPXrl1Dv379rMOLAPDOO+/g3XffxT//+U/s3r0b4eHh6Nu3Ly5dumTdZ8KECVizZg3S09Oxbds2XL58GYMGDRI9UezB0SRyFl2LnrIKN9nrQj4g2KafTEIFPC0nAAD+XgpXk7ezCndiYqLN9zk5Odi8eTP8/f2tX3fccb1ERn5+Pg4fPozS0lJrEHOrnJwcHDt2DAEBAdafDw4OxtWrV5GfL57mHj58OFatWoXS0utB3ooVKzBs2DC4u7tbjzl79mybPo0aNQpmsxlXrlzB4cOH0bRpUzRp0sR6zKSkJNm3qW3btujduzcSEhLw8MMPY/Hixbh48aLovsePH0d5eTk6dfrfPNigoCDExcVV2bdNmzbWf5tMJoSHh+PcuXPWbV999RW6deuG8PBw+Pv7Y8aMGTh58qRsX+siQ03mXrdunc33S5cuRaNGjZCTk4Pu3btDEAS89957mD59OoYMGQLg+lBsWFgYVq5cieeeew4WiwVLlizBp59+ij59+gAAPvvsM0RGRmLjxo0OrXzM0SRyBi6hQ0ZTFhQND5ObdUQJAASTO8qComACdKvC7efnZ/N9ZWUlBg8ejLfffrvKvhERETh+/LhsFyorK9GhQwesWLGiSlvDhuLz/gYPHozKykr88MMP6NixI7Zu3Yp3333X5pizZs2y3qNu5u3tLZouM5lMsv10d3dHRkYGsrOzsWHDBixYsADTp0/Hzp07ER0dbbPvjePfekyx3+vhYRvQmkwm6/yrHTt2YNiwYZg1axb69++PoKAgpKenY+5cifS9QRRaSjQ/pqFGlG5lsVz/tBEcHAwAKCgoQGFhIfr162fdx8vLCz169EB2djaA69F8eXm5zT6NGzdGfHy8dR81WIWbnIFL6JARXfEOw+luaRBM10dRBJM7Tnebg3K/CIQHeVcfKGlUhbt9+/Y4dOgQoqKiEBsba/Pl5+eHFi1awMfHB5s2bZL8+aNHj6JRo0ZVfl7qSTIfHx8MGTIEK1aswL///W/cfvvt6NChg80xjxw5UuV4sbGxcHNzQ6tWrXDy5EmcPfu/1//TTz9V+1pNJhO6du2KWbNmITc3F56enlizZk2V/Zo3bw4PDw/s2rXLuq2oqAhHj0oXqhWzfft2NGvWDNOnT0diYiJatGiBX3/91a5j1LTPd59Ev3lbND+uoUaUbiYIAiZOnIhu3bohPj4eAFBYeP3piBsT8W4ICwuz/g8sLCyEp6cnGjRoUGWfGz9/q9LSUuswKnD9pLrZg0qXhbCcAbL/Kd7GKtykgiZL6LAkAOngYtwwXG7SA56WEygLikK5XwTq+3qioZJJ3HJzk+yowj127FgsXrwYjz76KP76178iNDQUx44dQ3p6OhYvXgxvb29MmTIFkydPhqenJ7p27Yrff/8dhw4dwsiRIzF8+HD87W9/w/3334/Zs2ejSZMmOHnyJFavXo2//vWvNumxmw0fPhyDBw/GoUOH8Pjjj9u0vfrqqxg0aBAiIyPx8MMPw83NDfv378eBAwfwxhtvoE+fPoiLi8OTTz6JuXPnoqioCNOnT5d9nTt37sSmTZvQr18/NGrUCDt37sTvv/+Oli1bVtk3ICAAI0aMwF//+lcEBwejUaNGeO211+Dm5lbtyNXNYmNjcfLkSaSnp6Njx4744YcfRAMzozBbSjB19QFU6lBOyrAjSuPGjcP+/fvx73//u0qb2JBidSeA3D5paWkICgqyfkVGRtq0926psCrshXxA7LbW4SlW4SZVokP94CZy2o7t2VxZ8A4Awc2vT9i+FYN3UsnX8/pn7HK/CBQ3TkK53/WVCsIDFQRJgPSIkX+YXVW4GzdujO3bt6OiogL9+/dHfHw8XnzxRQQFBcHN7fo5P2PGDEyaNAmvvvoqWrZsiUceecQ6D8fX1xdbtmxB06ZNMWTIELRs2RJPP/00SkpKEBgYKPl7e/XqheDgYBw5cgSPPfaYTVv//v3x/fffIyMjAx07dsRdd92Fd999F82aNQMAuLm5Yc2aNSgtLUWnTp3wzDPP2JQrEBMYGIgtW7Zg4MCBuP322/HKK69g7ty5GDBggOj+7777LpKSkjBo0CD06dMHXbt2RcuWLeHtrfD/D4D7778fL730EsaNG4c777wT2dnZmDFjhuKfr2kF54t1CZIAwCQYsJzn+PHj8fXXX2PLli02+dfjx4+jefPm2Lt3L9q1a2fdfv/996N+/fpYvnw5fvzxR/Tu3RsXLlywGVVq27YtHnjgAcyaNavK7xMbUYqMjETkhC/g7uWL7Km9lH1yt5wB3ou/ZZKjG/DSQd6QSLXPd5/EtNUHUSEIcMP19dye66EwSLph77+A7yYAQgUAN6DvTKDri9p3lgzv6tWrKCgoQHR0tF03zltdKC7FmYslEACYANzWwAfBfnYsXFt8HrDc9CRnYGOnLlVSlxUXF+O2227D3LlzMXLkSGd3x2Fi57DZUoKub/2Ia1ev4NR7Q2GxWGSDXXsYKvUmCALGjx+PNWvWIDMzs8oktejoaISHhyMjI8MaKJWVlSErK8s6ma9Dhw7w8PBARkaGtZaG2WzGwYMH8c474hNavby84OVV9QJ3A/DWQwnKgiTgejA0eP7/bkgmd2DwewySyCGPdGyK7rc3xInzVxAV6qv8fLxZ+yeB5r2BC8evlwLgOUkOCvbzgr+XB8quVcKznpuyCdw38wsFvAKvp+HcvbjorYZyc3Px888/o1OnTrBYLJg9ezaA64MKdVVEkA/ShiTg5X/vqn5nOxkqUBo7dixWrlyJb775BgEBAdY5RUFBQfDx8YHJZMKECRMwZ84ctGjRAi1atMCcOXPg6+trHf4MCgrCyJEjMWnSJISEhCA4OBipqalISEiwPgWn1IaJ3XF7pJ2fcHhDIh1EBPmoC5BuFnQbz0fSlKoA6Wb1PBkg6eTvf/87jhw5Ak9PT3To0AFbt25FaGios7ulq0c6NkW7cC/EaVwT01CB0sKF158YS05Ottm+dOlSpKSkAAAmT56MkpISjBkzBhcvXkTnzp2xYcMGBAT873HSefPmoV69ehg6dChKSkrQu3dvLFu2zFrnQqlwtTcm3pCIiMhJ2rVrh5ycHGd3wylU37dlGHKOkrMVFRUhKChI0xwnEZERaDVHichZ5M5hPe7fhn3qjYiIiMjZGCgREbmgGxWYiWqbmj53DTVHiYiI9OXp6Qk3NzecPXsWDRs2hKenp12FCImcRRAElJWV4ffff4ebmxs8PWvmQQAGSkRELsTNzQ3R0dEwm802y2gQ1Ra+vr5o2rSptaio3hgoERG5GE9PTzRt2hTXrl1DRUWFs7tDpJi7uzvq1atXo6OgDJSIiFyQyWSCh4dHlRXkicgWJ3MTERERSWCgRERERCSBgRIRERGRBM5REnGjWHlRUZGTe0JERERK3bhva7noCAMlEX/88QcAIDIy0sk9ISIiInv98ccfCAoK0uRYDJREBAcHAwBOnjyp2RvtqoqKihAZGYlTp05x3TwH8H3UDt9L7fC91AbfR+1YLBY0bdrUeh/XAgMlETeKWAUFBfGk1UhgYCDfSw3wfdQO30vt8L3UBt9H7WhZjJKTuYmIiIgkMFAiIiIiksBASYSXlxdee+01eHl5ObsrtR7fS23wfdQO30vt8L3UBt9H7ejxXpoELZ+hIyIiIqpDOKJEREREJIGBEhEREZEEBkpEREREEhgoEREREUlw2UDpgw8+QHR0NLy9vdGhQwds3bpVdv+srCx06NAB3t7eiImJwYcfflhDPTU2e97HzMxMmEymKl8///xzDfbYmLZs2YLBgwejcePGMJlM+Prrr6v9GZ6TVdn7PvKclJaWloaOHTsiICAAjRo1wgMPPIAjR45U+3M8L22peR95XopbuHAh2rRpYy3MmZSUhLVr18r+jBbno0sGSp9//jkmTJiA6dOnIzc3F3fffTcGDBiAkydPiu5fUFCAgQMH4u6770Zubi6mTZuGF154AatWrarhnhuLve/jDUeOHIHZbLZ+tWjRooZ6bFzFxcVo27Yt/vnPfyran+ekOHvfxxt4TlaVlZWFsWPHYseOHcjIyMC1a9fQr18/FBcXS/4Mz8uq1LyPN/C8tNWkSRO89dZb2LNnD/bs2YNevXrh/vvvx6FDh0T31+x8FFxQp06dhNGjR9tsu+OOO4SXX35ZdP/JkycLd9xxh8225557Trjrrrt062NtYO/7uHnzZgGAcPHixRroXe0FQFizZo3sPjwnq6fkfeQ5qdy5c+cEAEJWVpbkPjwvq6fkfeR5qVyDBg2Ejz/+WLRNq/PR5UaUysrKkJOTg379+tls79evH7Kzs0V/5qeffqqyf//+/bFnzx6Ul5fr1lcjU/M+3tCuXTtERESgd+/e2Lx5s57drLN4TmqL52T1LBYLAMguNsrzsnpK3scbeF5Kq6ioQHp6OoqLi5GUlCS6j1bno8sFSufPn0dFRQXCwsJstoeFhaGwsFD0ZwoLC0X3v3btGs6fP69bX41MzfsYERGBjz76CKtWrcLq1asRFxeH3r17Y8uWLTXR5TqF56Q2eE4qIwgCJk6ciG7duiE+Pl5yP56X8pS+jzwvpR04cAD+/v7w8vLC6NGjsWbNGrRq1Up0X63Ox3oO9bgWM5lMNt8LglBlW3X7i213Nfa8j3FxcYiLi7N+n5SUhFOnTuHvf/87unfvrms/6yKek47jOanMuHHjsH//fmzbtq3afXleSlP6PvK8lBYXF4d9+/bhzz//xKpVqzBixAhkZWVJBktanI8uN6IUGhoKd3f3KqMe586dqxJ53hAeHi66f7169RASEqJbX41Mzfso5q677sLRo0e17l6dx3NSPzwnbY0fPx7ffvstNm/ejCZNmsjuy/NSmj3voxiel9d5enoiNjYWiYmJSEtLQ9u2bTF//nzRfbU6H10uUPL09ESHDh2QkZFhsz0jIwNdunQR/ZmkpKQq+2/YsAGJiYnw8PDQra9GpuZ9FJObm4uIiAitu1fn8ZzUD8/J6wRBwLhx47B69Wr8+OOPiI6OrvZneF5WpeZ9FMPzUpwgCCgtLRVt0+x8tG9+ed2Qnp4ueHh4CEuWLBHy8vKECRMmCH5+fsKJEycEQRCEl19+WXjiiSes+x8/flzw9fUVXnrpJSEvL09YsmSJ4OHhIXz11VfOegmGYO/7OG/ePGHNmjXCL7/8Ihw8eFB4+eWXBQDCqlWrnPUSDOPSpUtCbm6ukJubKwAQ3n33XSE3N1f49ddfBUHgOamUve8jz0lpzz//vBAUFCRkZmYKZrPZ+nXlyhXrPjwvq6fmfeR5KW7q1KnCli1bhIKCAmH//v3CtGnTBDc3N2HDhg2CIOh3PrpkoCQIgvD+++8LzZo1Ezw9PYX27dvbPKo5YsQIoUePHjb7Z2ZmCu3atRM8PT2FqKgoYeHChTXcY2Oy5318++23hebNmwve3t5CgwYNhG7dugk//PCDE3ptPDceB771a8SIEYIg8JxUyt73keekNLH3EYCwdOlS6z48L6un5n3keSnu6aeftt5vGjZsKPTu3dsaJAmCfuejSRD+f2YTEREREdlwuTlKREREREoxUCIiIiKSwECJiIiISAIDJSIiIiIJDJSIiIiIJDBQIiIiIpLAQImIiIhIAgMlIiIiIgkMlIiIiIgkMFAiIqdLTk7GhAkTnN0NuyQnJ8NkMsFkMmHfvn3V7p+SkmLd/+uvv9a9f0SkDQZKRFSjxIKi1atX4/XXX3dOh0RMmDABDzzwQLX7jRo1CmazGfHx8dXuO3/+fJjNZg16R0Q1qZ6zO0BEFBwc7Owu2Ni9ezfuvffeavfz9fVFeHi4omMGBQUhKCjI0a4RUQ3jiBIR1ZiUlBRkZWVh/vz51jTUiRMnqowyJScnY/z48ZgwYQIaNGiAsLAwfPTRRyguLsZTTz2FgIAANG/eHGvXrrX+jCAIeOeddxATEwMfHx+0bdsWX331lV39Ky8vh6enJ7KzszF9+nSYTCZ07txZ8c9/9dVXSEhIgI+PD0JCQtCnTx8UFxfb1QciMhYGSkRUY+bPn4+kpCRryspsNiMyMlJ03+XLlyM0NBS7du3C+PHj8fzzz+Phhx9Gly5dsHfvXvTv3x9PPPEErly5AgB45ZVXsHTpUixcuBCHDh3CSy+9hMcffxxZWVmK++fu7o5t27YBAPbt2wez2Yz169cr+lmz2YxHH30UTz/9NA4fPozMzEwMGTIEgiAo/v1EZDxMvRFRjQkKCoKnp6eilFXbtm3xyiuvAACmTp2Kt956C6GhoRg1ahQA4NVXX8XChQuxf/9+JCQk4N1338WPP/6IpKQkAEBMTAy2bduGRYsWoUePHor65+bmhrNnzyIkJARt27a167WZzWZcu3YNQ4YMQbNmzQAACQkJdh2DiIyHgRIRGVKbNm2s/3Z3d0dISIhN4BEWFgYAOHfuHPLy8nD16lX07dvX5hhlZWVo166dXb83NzfX7iAJuB7Y9e7dGwkJCejfvz/69euHv/zlL2jQoIHdxyIi42CgRESG5OHhYfO9yWSy2WYymQAAlZWVqKysBAD88MMPuO2222x+zsvLy67fu2/fPlWBkru7OzIyMpCdnY0NGzZgwYIFmD59Onbu3Ino6Gi7j0dExsA5SkRUozw9PVFRUaHpMVu1agUvLy+cPHkSsbGxNl9Sc6CkHDhwwGY0yx4mkwldu3bFrFmzkJubC09PT6xZs0bVsYjIGDiiREQ1KioqCjt37sSJEyfg7++vSWmAgIAApKam4qWXXkJlZSW6deuGoqIiZGdnw9/fHyNGjFB8rMrKSuzfvx9nz56Fn5+f4kf6d+7ciU2bNqFfv35o1KgRdu7cid9//x0tW7ZU+7KIyAA4okRENSo1NRXu7u5o1aoVGjZsiJMnT2py3Ndffx2vvvoq0tLS0LJlS/Tv3x/fffedTdpr2bJl1pSdlDfeeAOff/45brvtNsyePVvx7w8MDMSWLVswcOBA3H777XjllVcwd+5cDBgwQPVrIiLnMwl8dpWIXMTMmTORmZmJzMxMh4+VnJyMO++8E++9955dP2cymbBmzRpFlb+JyPk4okRELmP9+vV45513NDveBx98AH9/fxw4cKDafUePHg1/f3/NfjcR1QyOKBERqXDmzBmUlJQAAJo2bQpPT0/Z/c+dO4eioiIAQEREBPz8/HTvIxE5joESERERkQSm3oiIiIgkMFAiIiIiksBAiYiIiEgCAyUiIiIiCQyUiIiIiCQwUCIiIiKSwECJiIiISAIDJSIiIiIJDJSIiIiIJDBQIiIiIpLwf31nEL6vshXZAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
    " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots()\n", - "ax.plot(t_sawtooth,tx/1e6,'.C0', label ='transmitted signal')\n", - "ax.plot(t_sawtooth,rx/1e6,'.C1', label ='received signal')\n", - "ax.set_xlabel('time, $t$ [s]')\n", - "ax.set_ylabel('frequency, $f$ [MHz]')\n", - "ax.legend()\n", - "ax.set_xlim(0, 3);" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In orange above is the frequency of a signal received from a single reflector as a function of time. But in general we simultaneously receive signals from a whole range of depth. To give a feel for what this looks like, below is plotted the frequency of ten signals with random delays (i.e. depths)." - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The time delays associated with these signals are [0.05030683 0.13084193 0.10330119 0.06233049 0.0591932 0.13744466\n", - " 0.05530811 0.13759185 0.10054563 0.07625694] s\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkoAAAGzCAYAAADQVjjVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAADHCklEQVR4nOy9eXhb5Zn+/zmSLdmyLXmRIzuJHdvZcOIEshVCFkjYd9oZKC20hGFoOxRapnC1Q/tth2GmpTPzazudzpSlBUpb2szFkpbQsiXgLED2Bdsxie3Y8RInkTd5kWzLOuf3x7Fly5ZkHcUJTng+16U2R+dEedXq1bn13O97P4qmaRqCIAiCIAjCGEyf9AAEQRAEQRAmKyKUBEEQBEEQIiBCSRAEQRAEIQIilARBEARBECIgQkkQBEEQBCECIpQEQRAEQRAiIEJJEARBEAQhAiKUBEEQBEEQIpDwSQ9gMqKqKsePHyctLQ1FUT7p4QiCIAiCEAOaptHV1cXUqVMxmSamFiRCKQzHjx8nLy/vkx6GIAiCIAhx0NDQwPTp0yfktUQohSEtLQ3Q/4e22+2f8GgEQRAEQYiFzs5O8vLygvfxiUCEUhiG7Da73S5CSRAEQRDOMSZy2Yws5hYEQRAEQYiACCVBEARBEIQIiFASBEEQBEGIgAglQRAEQRCECIhQEgRBEARBiIAIJUEQBEEQhAiIUBIEQRAEQYiACCVBEARBEIQIiFASBEEQBEGIwKQVSk888QSKovDQQw8Fn9M0jccee4ypU6eSnJzM5ZdfTkVFRcjf6+vr48EHH8TpdJKSksLNN99MY2PjWR69IAiCIAjnA5NSKO3evZtnnnmGhQsXhjz/H//xH/z0pz/lf/7nf9i9ezc5OTlcddVVdHV1Ba956KGH2LBhA+vXr2f79u10d3dz4403EggEzvbbEARBEAThHGfSCaXu7m7uvPNOfvWrX5GRkRF8XtM0/uu//ovvfe97fO5zn6OkpIQXXngBr9fLH/7wBwA8Hg/PPvssP/nJT7jyyitZtGgRv//97ykrK2PTpk2f1FsShNOm2ePjg5oWmj2++F7A0wS1W/X/FoQJ4LQ/kyCfS+GcYNIJpa9//evccMMNXHnllSHP19bWcuLECa6++urgc1arlcsuu4wPPvgAgL179+L3+0OumTp1KiUlJcFrzgoy+YUJ5OmtNVz643f54q92suLH7/J/u+uNvcC+38J/lcALN+n/ve+3Z2agwqeG/9tdz4rT+UwCvP/f8F/z5XMpTBjNHh87j7ZO+OtOKqG0fv169u3bxxNPPDHm3IkTJwBwuVwhz7tcruC5EydOYLFYQipRo68JR19fH52dnSGPaKiaSvmpj3Af/oDjVR+jqerwyff/G/VnJXz0/DdQf7YgOPk1VcVXVs7AwADv1NQxIFagEANPb6nhib9+jKbpx6oG3321fMyveFVTKXeX0d62j+MflqMOBEBV4fBb8NqDoKlomsKp/kK0174pIl6Im2aPj396pQx1xGfyn14tC1tZUjWVCnc5vmMdNFcfQQsMQNM+2P4zeOf7BAIKpf2rCASAjQ+BpwlNVek++BHvVNfK96QQM0Pi/d4X9kz4a08aodTQ0MA3v/lNfv/735OUlBTxOkVRQo41TRvz3GjGu+aJJ57A4XAEH3l5eVFfr9xdRkf1XzncXIfW08jJo1Uhk//gQCE1/XM4OFAQnPy+8nJ6W1r5/94pJT8thffqGqL+G4LQ7PHx4zc+HvN8QNOoa/GGPFfZWklKoIWqrVvo6D/IiZ0V8NH/gUf/nAVUExt7P4eVdtz+QmjYJTckIS5+sbkKbdRzmgb7jrWHPKdqKq9Xv4b1RAN7S98gyZdE656NcOowbHoMVVP4bf9nSVFVtvlXghZAa6mm7c+v8cu2bqaccsv3pBATo8X7RDNphNLevXs5deoUS5YsISEhgYSEBLZs2cJ///d/k5CQEKwkja4MnTp1KnguJyeH/v5+2tvbI14TjkcffRSPxxN8NDREnpyqplLn3kpf1hzMndVoVheurr36N8Xg5N8/cBF9JNM+MC04+b1V1TzZ0cPVKSlsrG1iTUF0MSYItS09Y25IACYFCpy2kOfmZMym+uN3MasqSquf5K5NULASKv4EwFb/ShJMzbw3sIbshKMA+MrL2dRwnGNHa9l0NA7rRPjU0ezx8Ydd4b8ftVEf1oqWCtLUdo5V7CI9y8+J6sNkJfZA+UsAHAwUoahW9mgFzKUZFBO+kwNsT0jiwoYa3lYS5HtSiIlw4n0imTRC6YorrqCsrIwDBw4EH0uXLuXOO+/kwIEDFBUVkZOTwzvvvBP8O/39/WzZsoVLL70UgCVLlpCYmBhyTXNzM+Xl5cFrwmG1WrHb7SGPSFS0VJBmmwdlO8lyrMFaW4liy4R3vg/ok9+kWmnXUihWRkx+i40MXw+bEq08tHQBCWbz6f5PJpznvF/VEvb5+y+fSa4jOXisaipvVT6Ns9NFj6kNa6+P9Etug0Mb4dg2VE3BrWi41ULyEw6iKKBNW4q3qppyfwD9G+ZMfs0I5wu/2FwV9nkFWFIwvORB1VRq2qswuY9jUjXM/So5yWUo2XOhZjMA7QPTSFK85Gh95FiqYfHdkJLNbPyU5+Zz2zSnfE8K4xJNvE8UCWf01Q2QlpZGSUlJyHMpKSlkZWUFn3/ooYf40Y9+xOzZs5k9ezY/+tGPsNlsfPGLXwTA4XBw77338vDDD5OVlUVmZiaPPPIICxYsGLM4PB6GJn+m+2OUnkJUUy0JyW7w5sKx94PVJJvixaElkGOpRrvobrzNHspNVnKysljoTJfJL4xLs8fH/5bWhD23YlZ28M9D9kZRXwKHvZUUW5eStHgxSt12cFcCunj3BfIwm1qZqgFL1uFraGe7xUZWVxdtObmsK5pxNt6WcA4T7Yb0hc/kh4j3ytZKFtgd1O33k5mehLXdS/q8eXDwj4BuBXvUbOxKD4vMNSiKhrbyYQJ1rbybmsnl+VNpd2RScDbemHBOE0m8TySTRijFwre//W18Ph/3338/7e3tXHzxxbz99tukpaUFr/nZz35GQkICt99+Oz6fjyuuuILf/OY3mE9TnKiayus1r1OSlsax/f1kZndgaVdJnzcfPvxvYEQ1SVG41bwLRdHwZt/M9la/3JAEQ0Sa/KNtt4qWCuxaB4c8Pi6ccgF+zUWu7yPIngt/+tqweMeLNZCKK7kGbcZ39WqSiHfBALUtPRHPPXjFrOCfVU0loA7QVneA9EQ7Sb2ZZGS26utEu04CuhVsNTfTr+bq1aQl9+BraGdzk74hZ1fvAF+1p5zx9ySc25yNahJMcqFUWloacqwoCo899hiPPfZYxL+TlJTEL37xC37xi19M6FgqWiqwJ6Zx9PBmshIzhye/rw2OvQ8Ml5KHqkksuQdSsqH9OBanU25IQkxEm/x3LBv+5T5U4XRoGnPIYaA/m9nOxPBWcFC8g7c7ne0WEe+CMSJZwQ+sCbWCy91ltJ16g+TGPCy2RqwdPtLX3q5bwYdfD1rBvkAhCxJ2BqtJ3nd36+I9EfItZkzjbNIRhLNRTYJJtEZpsqNpKnTvxNFSTEKSH6vPS3rhfGjStyIGS8n0con54HApWVUx2VKYVjCDK+WGJMRAuJ1uQ4z85V7RUoFD86DVtKL29eBKysfXuhe8bSFW8Mh1INqiQSt4IECiVJOEGDFiBdedKkXx2OhM3Ivdt4KkxavGsYLvGbaCfV7a7OnyXSmMy9mqJoEIpZhQNRW/twr7yXRIqcbuXU5Gpk8vJbfVASNKyaSMKSWf8vtBUeSGJIzL01tq+POB42HPffEzY6tJJvdxFE83mVYXns53ccyYD3ueA0ZUk0gJindf9s1yQxIME0m8j7aCy91lpKrd9LSeYu60q/Bm+nQr2DkH9v82KN6teEkJpOJKrEGbsUq3gkW8CwZ4fnvtWfu3RCjFQLm7jJ7GI3hOnsBlXYRqqSR9+e1wcD0c3RxmV9FgKVl2FQkGaPb4eMJgNWmg0U+6Iwmvx0rR9DSUyj9D0+6w1aSgFWxCrGAhZqKJ99FWcJ17K5aeYuwJCZj6pjJvVrpuBb/xHWCseAfwVHSyI7+IrN5eEe9CTDR7fDyzLbxQ+tbVsyf83xOhNA5DpWS/J4DZ1oe3M5mi6+9BObQRDr2Kqim8OrACVyCVBHMLUzXQLnkQz5Z9MvkFQ+wdFdg3kkevvyBkHYimqZjdzZhUSOqbSrarGwUFDup9D8vUQmapXjwjqkliBQtGMSre02zz6GvciSuwFkUDpeUIHIos3n1TbkV1FXCg5ijJxXNFvAsxEWlt0mcvmsrfrSia8H9PhNI4DJWSewN9OG3zSC+ehlL+ChzfB+i/kHoG8qlXNBYFenElHsVnX4Nqt8vkFwzxQXX4xbK3XjSVr66eGTwesoIT3RbS05PQcOFM8kF38+B5hdaBaSQkNLOKRn1t0hWP49myj60quAcGxAoWYiLaYtmR4n3ICjYf34nZW0hgoB6LqVovpB/8A6oGrw6soGiEeAcNb/oqnvL4uH5qLi19AyLehXGJtjbpiuLIwdKngwilKIwsJTsSErDbFpJr69F7aJW/hKoR9NtT1VSKk7bC4i/jbfbI5BcMEW3yf+e6C0KOh6zgXl+3Xk3K8aLMXAONuwFdvHu0FHpVB8VJW1Eu/go+hy7e91cdxZydjVjBwnhE+0yOFu9DVrC/oR9Hdgcq2bp4r3gFgIOBmfQM5NNg0oLivXfOg+wpXsrVfh/vWpIkiFeIiVhDTycSEUpRqGytDF9KHjH5Iy2WlRRuwQiRJv+dF+ePSeEOWsEpfXo1afp0OPERHHlzRAudJEDTLbe5N+CtqhbxLhgimhU8WryHWMG9OeQmV4xJ4R75g1JZeBvWzz/G4rqjvJdXyINLSuR7UhgXI6GnE4kIpSjUdtQMl5L9ddi6N+u7N2o2B6tJoVuv18nWa8Ew0Sb/8qKskOPRVnC2qxvF1w77fgdICx1h4ohkBX/xM2PF+0gr2Orzkl4wDyo3Dp7X85AcyojolLU/oH3j6/wmw8XV2gBb65vO/BsSznmiWcEj18tNNCKUolCcmoq/US8lW3zd+uTf9M9A+GpSr+sW9hTO5Fp/Lx2ODPnVLsSEkf5ZIVZwcolub/S0wOG/hM9NuujLIt4Fw0QT76NTuF+vfg1rq5u+QSs4rdCFYjJBjxsYtIKxYcWn775c9Qi+hna2JSSR1tzEW9L8VoiBaJ/J0eJ9ohGhFIVjVR8MRvDn6LlJYVK4R269ti5dLaVkwRCxlpKHWugsmn4zfU26FWzpPIKS4oQDvwckN0mYOGK1gsvdZaT1HaKufoD09GTdCs7LBy0wuIg7jBVcsFpykwTDRLOCz2Q1CUQoRaXAe3FoCrdb3yYbtpS88mEpJQuGMZLCbU9Mo/LAr8lWlxDw15GoNI6Twi1WsGCcWK3gofVyqikVR0orDstqQ1awiHfBCEas4IlGhFIUjg28h923QkrJwhnBaAq31vUhDvcFaKm1uhVcOD9qNUmsYCEeIon30VZwRUsFaQl2THV95DgWYE1OEStYOCMYsYLfPPrXCf/3RShFoSh1Jd5Mn5SShQmn2eOLuZpU2VrJArsDrSExtIWOWMHCBBNNvI+2gmvaq0hoA6UD0r0lWMw1uhUsLXSECSbSd2U4Kzi1L/L3aryIUIpCD0l6BL+vHXb9ChhbStYw4dl1VFK4BUPUtvRETDIancI9J2M2Rz8uxeEzD7bQqdCrSeUvA2IFCxNDPC10+uvrcdpdtHTUk2XpiZrCLVawEA/RxHskK3iiEaEUhaKCiwZzkzYMRgKEieDPvkUi+AXDvF8V3m9ft3zGmBTutyqfxtnposfUqrfQWbQUpbc9+Jl8dWAFTrpIVrwhKdwfTi8g7USzWMFCTBhN4Ta5j2NSNcx+cLo6gy10wqVwixUsxEM08R7RCq7vm/BxiFCKQs+p9yWCX5hwmj0+/re0Juy5a0pyQ47L3WWkdXRy1HsYpzZXb6GjKMGMmqEWOh8pLi5QjqMsvC2Ywi3iXYgVIyncQ1bwQJM/tIVOyxEAytQiXANpNJq1kBY6WrKTS9AozS8SK1iIiWji/Z/CiPchK3iiEaEUhcxEb9QIft+sB9hunyZBfoIhIk1+kwIFTlvweKiU7PX7me7IRXXk6i103FUhi2WteEkJpOJKrEGbfa2kcAuGqW3piXhudAr3kBWcnpg2nMJddBk07QXA6U/gEJlcGOgNpnD7HGvoa2vnqZMt3FQ0XaxgYVziaaHTX19Pln3KhI9FhFIUFOeskBTu0RH8LPw8mMDidMqvdiEmok3+O5aFLkwcKiVbvSkkKtnMKlqiW8HlLwHhFsuCrztdUrgFw0Sygh9YM3PM1uthK7gNa6+P9Etug0Mb4dg2VE3hbRawWKmj1awGU7i9VdU82dHD1SkpbKxtEitYGJdo1aSR4j2cFTzRiFCKxuBi2TK1iFmj/HZt7Q8IqComWwrTCmbIr3YhJmKN4B9ZSjZ5IM+ykt4jL4zTQuduWSwrGCaaFbxiVnbI8ZAVfLyjHqc2h6TFq1DqtoO7EtDFu50ePiKHVYnbYck9+BraRbwLhjCSwj3WCs4O+/dOBxFK0ejSc5Oc/gQqlUwu1ZqCW699De1sbjrBKb8fFEUmvjAusU7+oRTukrQ0+hv0XUXdzaU48oujttCRrddCPBi1ggc6NbKmpqMoueT6PtLF+/7fBq1gP0kU4sZsUtFmrJLoFMEw0azg0T8oA+oAbXUHgl00XEkSD3B2qX4zfCl55cP65PcH9MXeETd6C8IwsVaThlK4jx7eQnpiGuZ+lfRMbzA3KdzuS5bcg2Zz4unrxSI3JCFGYrWCh8R7cdY8ArZErN4pzLnIgWLLhHe+D4RJ4UYJWsEi3gUjxGoFl7vLaDv1BmpjznAXjRlzJ3w8IpTGIVopWSa/ECtGqknBFO6W4tAWOoMp3GVq4VgreOXDHG/vYGpuLikZsvVaiA2jLXRqjxxmSlsWM2aspevw9nFa6IgVLBgnVitY1VTqTpaSeNxGZ+Le0C4aE4wIpShIKVmYKGItJceSwh3JCm7GRFVHB7Nmz5LPpDAu8bTQSXdnYbUm4Sl/C8eM+ZLCLUw4kcT7aCu43F1Gemc3LeoJZqddPtxFIzlzwsckQikKZYECKSULE8Jb5SfCPj+6lBwxhXtEQ+ZIVvC2ji6y09JpbQ1fthaEIeJJ4VbrE9FSjpDky9et4MrIKdxiBQvxEE28j7aC69xb8TuLmdKfRMLUmcNdNM4AIpSi8NHAAiklC6fN01tqeOHDY2HPjS4lh03hNpmgvR4YawVrKx7Gs2UfO/KLyOz1UZuYyBWF+WflfQnnLnuPRb6hREzh9vQMi3fXFDj4B0CsYGFiMCre02zzoGwnWY41mFoDenSKpulNmScYEUpRKFB9ISncHu9F0tNNMES0yR+ulGz3dFKf2ES2MiKFu/ptqNwQ1gr2BQokhVswzAfV4W8mUVO4HUl4PVaKpqehtFQDEFBN1PYvwmxuDknh9mzZR2v+DKo8HrGChZgw2kLHfHwn5p5C1LZjJCpVYMuCg3+EV+6Z8LGJUIpC04gU7t45D5J8+bW4P/6Y5HkXyA1JiInxQtPClpL9yaTNXTKcwr3rV8GebkWqF8+IhszeVr+kcAuGiLaxIGoKd99Usl3dKClOaNoDwFb/SiymZtzqzJAUbtVuZ9Pu/UybN1+sYGFc4knh9jf048juQCVbb6Fz6M9waEOwSfhEIkIpCilqSnDyWz//GEffK6Xo8tUk9fvlhiSMi9HJH7aUPCKFe0wLnZn3SwsdwTCRxPudF+dHTeHWlFx9sayvHY5tR9UU3IqGWy0kP+FgSAq3Lt5zqDrpFitYGJdoVnDkFG6GW+hkzw1awRXqxN+bRShFYZm5PDj52ze+znuzikmsrmbuHCklC+NjNII/WEpurSW5a9OYFO6RLXQo+Vu8tiWyXk4wRDTxvrwoK+Q4ohU8oiGzL5CH2dTKVA1J4RbiJpIVPF4Kt9XnJb1gnm65oVvBx/oXTvj4RChFwWWpg5t/ga+hnW0JSZhqqjmYncuF9pRPemjCJCeeFG5/o15Ktvi69ckfLYV72hd432JjWVcb7bJeToiRSOJdAZYUZASPx1jBcxaR6z2gXxmpIbNEpwhxEO27cuQCbhjbkDkj06eL966TwJAVfHLCxyhCKQrK1z9Eu+iu4ORPyMyk0GrGpEy8ByqcX8SXwm0fnvwjcpPaB6aN2XpNSjaz8VOem89t05xyQxLGJdoN6QthxPui6TdDuW4FW2srw6dwh2nILNEpghHitYKtvT7Sl98OrTVw+PWgFdxyvltvTz75JAsXLsRut2O321m+fDlvvPFG8LyiKGEf//mf/xm85vLLLx9z/o477ohvQI6p+MrLZfILhjDS0FHTVOjeOTaFe3CxbEA14VGzsdMbsvU6oKq8m5rJ5UX5tDsmPmBNOP8wKt4rD/ya7MAS1NZaEpQGSeEWJpxYrWBVU3m9+jUK+hOoTzxOtjI3bENm3Qpum/BxTiqhNH36dH784x+zZ88e9uzZw9q1a7nllluoqKgAoLm5OeTx3HPPoSgKf/M3fxPyOvfdd1/IdU8//XRc49FUVUrJgmGMNHT0e6uwn0wPTeEeVUq2mpvpJ2VMQ2aLv49dvQNiBQvjElcLHfcFaKm1uhU8ooVOpBRusYIFo0RK4R5tBVe0VGDXOqhOTGaWkq1bwWEaMlvxYgtM/PdhwoS/4mlw0003hRz/8Ic/5Mknn2THjh3Mnz+fnJyckPN//vOfWbNmDUVFRSHP22y2MdfGg+/QIXZYbGR1ddGWk8s6mfxCDMSawl3uLqOn8QiBk/0UuhYT8FfqpeRDG0NKyb5AIQsSdg6ncL+7m3KTlZxEyLeIFSyMj5Fq0lAKNynV2HvWkJ65O6wV7NASQq3g1mO8IVawECPRUrhHW8E17VU4NI3c6j6SnJfoVvDMTHjjO8AI8a4oXGH+cMLHOqkqSiMJBAKsX7+enp4eli9fPub8yZMn+ctf/sK999475tyLL76I0+lk/vz5PPLII3R1dcU1Bl/NUakmCYYwksJdd6oUf6dKcrYFX5eNouvv0UvJTXuB6LuKxAoWYsWoFWx2N4emcIsVLEww8bTQ0WpaSbCaMJ8M6FbwofAtdFyWoxM+3klVUQIoKytj+fLl9Pb2kpqayoYNG5g3b96Y61544QXS0tL43Oc+F/L8nXfeSWFhITk5OZSXl/Poo49y8OBB3nnnnYj/Zl9fH319fcHjzs5OAHZPLyDrxEmpJgkxYSSFu6KlgrQEO/3JvVi7sphz7SqU8leg5QhUvByc/Da8WAOpuJJr0GZ8V7eCTVZyRLwLMfL89tqI58JZwYluC2kOE16PleIZaboV3FYHjLCC1dzBtUnr8GzZx/t5M7AO9LOrd4CvihUsjIPRFO4M93FUj58s1xwCA2V6C53XHkfVCAbxHlYyudm8CwVtwsc76SpKc+fO5cCBA+zYsYN/+Id/4O677+bQoUNjrnvuuee48847SUpKCnn+vvvu48orr6SkpIQ77riDl19+mU2bNrFv376I/+YTTzyBw+EIPvLy8gDoP1aHTVK4hRgxksJd015FQhtYm03MKLiS9gN/BVWF7T8NmfzDLXTAU9EpLXQEQzR7fDyzLbxQGnlDgmEruNfXradw53hRZq6Bg+vh6OawAZO+7JtR7Xb2Vx0lMTubQrGChXGIJ4V7oHFUC52KDQCUqUW4BtJoNA8H8bLm/034mCedULJYLMyaNYulS5fyxBNPcOGFF/Lzn/885Jpt27Zx+PBh/v7v/37c11u8eDGJiYlUVUVRsI8+isfjCT4aGvT/E5MXzMdls8kNSRiXeCZ/f309TruLkzVVZCX2QMUrgJ6bNCaFe9bXUV0F0tNNMEQk8f7ZUZ/JoBXsCWBO6dNTuJfdABV/hkOvBlvouAKpJJhbmKqBdsmDeJs90kJHMESsKdwwwgpWGW6hgwI1mwFw+hM4RCYXBnqDXTS0z3xlwsc86YTSaDRNC7HFAJ599lmWLFnChRdeOO7fr6iowO/3k5ubG/Eaq9UajCQYegDktLVjNilyQxLGxWgKtx7Br2HuV8lJLtMj+MdJ4ZYbkmCEaOL9imJXyHG5u4xUtZveQB9O2zw9hbv8FTiuV+KHWujUKxqLAr24Eo/is6+RFG7BMLGmcI+0gtPTk9Bw6T3dupsHzyu8zQIWK3W0mtVgFw3PX98I+/qnw6QSSt/97nfZtm0bdXV1lJWV8b3vfY/S0lLuvPPO4DWdnZ289NJLYatJNTU1PP744+zZs4e6ujr++te/ctttt7Fo0SJWrFhheDyblQTWFOSd1nsSzn+MLJYNKSWPjOCPksLdm/dF9hTO5Gq/j3ctSXJDEmLCaAq3pacYR0IC9uQSPYU7axaUvxRevC/+suQmCYYxksId0Qpu3A3o4t1ODx+Rw6rE7bDqEXwN7ahpaRM+7kkllE6ePMmXvvQl5s6dyxVXXMHOnTt58803ueqqq4LXrF+/Hk3T+MIXvjDm71ssFjZv3sw111zD3Llz+cY3vsHVV1/Npk2bMMcxiednOWTyC+MSrZQ8evKHlJJjTOG2Ll3N4rqjvJdXyINLSuQzKYxLPCncfU07cQXWYuk8oqdwR2uhk32z7L4UDGMkhTvECsaFc/p0OPERHHkzuNnFTxKFuDGbVLSC1Xirqnmus3fCxz2pdr09++yz417zla98ha98JbwHmZeXx5YtWyZsPGsKpOu1MD7xlJLT0k1Y272kz5sP9R8MntcXwTqUXi4y1QS3XrdvfJ3fZLi4Rhtga30TV80sOOPvSTi3iSeFO0ddQsBfR2KCG7yBkBRu24jcJG3ROr2aJLsvBQMYTeEusqVQH3CTa5tHdko3ik+Bfb8DQnOTLjNVgGLCd3KA7RYb6e3S6+2sIpNfGI9YS8lDk9/a6qZvsJScVuhCMZmgxw3ok9+DDSs+vZo0WErelpBEWnMTb4kVLMTAmU7h7nXdwp7CmVzr76XDkSHVJCEmYrWCh1K4jzdYmJHixJ5coq9N6mkJacgc0kLnohFWcObE53iJUBKE0yBSBP/oUnK5u4y0vkPU1Q+Qnp6sl5Lz8kELwME/BCd/H0mApleTBkvJsg5EMEKsVnBlayUL7A60hsTQFjpiBQsTjBEruKa9Ck3TcLR6SfYt063gFOe4LXSGrOB2u2PCxy9CSRDiJFoE/+hSct2pUlRTKo6UVhyW1fo2V1877PoVMGLyaykUK80hpWRZByIYYdOh8C10RlvBczJmc/TjUhw+c2gKt1sX/yOt4JEp3ENW8NWDVrAgjEekH5QQJYU7yYSpVyNRaRynIfO6kI0F87NEKAnCpCBaCne4UnJagh1TXR85jgVYk1P0UnLFhsFIgHFKyVJNEmLk6S01/OlAc9hzo63gtyqfxtnposfUirczmaJFS3UruL0eECtYmBii/aAMZwWb3MdRPN1kJeUQsJQZtoLPxNpiEUqCEAfRFsv+U5gI/oQ2UDog3VuCxVyjh6Yd/EOEFG4Nj/ciSeEWDBFNvH9lVdFYK7ijk6Pewzi1uXpukqJA9dtQuUGsYGFCaPb4Yq4mDVnBA02jUrijWMHaonVoyU4uQaM0v+iMWcEilATBIKeTwt3SUU+WZbwU7gckhVswTLTFsvesLAgeD1nBXr+f6Y5cVEcuubYecFfBrl8FU7iLVC+eQStYw4Rn11ER74Ihalt6InZeG91CZ8gKTk9MG07hTnFC+ctAeCvYl30zfW3tPHWyhZuKpp8xK1iEkiAYJO4Ubj84XZ3BCP5wQX7Kwttg4ed5v7efG6dPlRRuISZiXSwLw1aw1ZtCopLNrKIlKC1HoPwlYDiFO0S8z7xfxLtgmPerwkenrFs+Y0wLnWEruE1voZOXD7724PKEVwdW4KSLZMWrV5OueBxvs4cnO3q4OiWFjbVNZ8wKFqEkCAYwksIdUkoeGcHfcgTQGzrOGmG5DUXwB1QVLdnGiSlTJIVbiIlYc5NGWsEmD+RZVtJ75AVwzpEWOsKE0uzx8b+lNWHPXVMS2lIsohVcuREYFu8fKS4uUI6jLLwNn+PstdARoSQIBqht6Yl4bnQKd0gpuTeH3OQKlKLLoGkvANkDZhoSVFYMdb1ecg++hnY2N53glN8PivQZFMYnnhY6Q1Zwd3Mpjvzi6Cnc074gPd0Ew0QS7yYFCpy24PEYK9ju0lvooITkJlnxkhJIxZVYgzb72rO6Xk6EkiAYIFIp+YE1M8ekcI8sJVt7faRfchsc2gjHtqFqCh+YcsgPmBhIbAxuvfZWVVPuD6Ab+5HcfUEYxmg1aWRD5vRMb3CxbLjdlyy5B1KywQQWp1MsNyEmoon3O5aNbaFTnDWPJJ9uBc92WPUWOu98Hwi30w183elnNTpFhJIgxEi0UvKKWdnBPw+lcBf0JXDUewSnNpekxatQ6raDuxIYKiXnccykkaMqwWqS5CYJRjgdK9jq8+pbr5v2AFCmFo61glc+TEBVMdlSmFYwQz6TQkwYbaFTe+QwGb0Z5FlW4mvdO05u0t1nPTpFhJIgxEispeShFO5DHi8lUy7QS8m+j/R1IPt/G76UPGOVbL0WDBOrFaxqKgF1gLa6A6Qn2ocbMisKdOm9scQKFiaCeFropLuzsFqTdCt4RvTcpE+iIbMIJUGIASOl5Dr3VrSkYorQGOifPSlLycL5wVvl4VO4R1vB5e4y2k69gdqYQ0KSX7eCl98OrTVw+HWxgoUJw0g1yaF5UOsT0VKOkOTLn7RWsAglQYgBIxH8abZ5KFUHsfSW4ErKn5SlZOHc5+ktNbzw4bGw50ZbwXWnSlE8NjoT92L3rRi2ggc3FogVLEwERqxgTVMxu5sxeXpCW+hMQitYhJIgjIPRCH7z8Z0o7hwcSQN4Ot/VS8l7ngPGVpMkhVuIh2gp3OGs4FS1m57WU8yddhXeTJ9uBbccgYqXxQoWJoznt9dGPDfaCvZ7q0h0W0JTuBUF2uoAcPoTqFQyuVRr+sStYBFKghCFaDckCF9K9jf043B20ONJ1Cd/5Z+haXfYalKv63MkX34t7o8/JnneBXJDEmJivNDT0VawpacYe0ICpr6pzJuVjqJpsP2nEVrogKeiU8S7YIhmj49ntoUXSqNTuMvdZfQ0HqHX1x2awn3wD3BUD5h8mwUsVupoNaufuBUsQkkQorD3WHvEc4+G6emmb71mePIP9nSD8KVk6+cf4+h7pRRdvpqkfr/ckIRxMdpCJ802j77GnbgCa1E09BTuqC10vi4p3IJhIon3z476TKqaSt3JUtRmBbOtLzSF+9CfgincizhKOTmsStyOdsmDeLbs+8TEuwglQYjCB9Xhc5NG35DGS+EOqCZq+xdhNjcHb0jaFY/TvnU/780qJrG6mrlzZskNSRgXoy10zMd3YvYWEhiox2Kq1n+ISwq3MIFEE+9XFLtCjsvdZaR3duNJ7SRbKY6Ywl2uuLjOdBCzScNnX4Nqt39i4l2EkiBEINrkH3lDgvFTuLf6V2IxNeNWZwZ7uvkca9iWkISpppqD2blcaE854+9JOLeJJ4Xb39CPI7sDlWxdvI+oJo3eet2b90V2F85kSVc7myWFW4iRaA2ZlxRkBI+HrGC/s5gp/mTS5iwaP4V7cLPLJyneRSgJQgQiTf47L843nMLtVjTcaiH5CcM93YYWyyZkZlJoNWNSlLP11oRzlGhWcOQUbobFe/ZcqNkMQPvAtDFbr61LV5NXWcHHJRdy2zSniCRhXAw3ZLbNg7KdZDnWYK2tHCc6ZTg36ZNsoSNCSRDCEG3yLy/KCv45mMLdn0B94nGylfAp3L5AHmZTK1M1ZOu1EDeRrOCYUrgL5sHBPwK6FexRs7HTG7L1un3j62ydPY9lnjbaHZln5T0J5zZGW+iYj+/E3FOI2lpLgtIwTnTKukkRnSJCSRDCEGspuaKlArvWQXViMrOUbL2ULCncwhkgmng3msK91b8Sq7mZflJCtl6LFSwYwUgK9+s1r1OSloa/UbeCLb5uPTcpSgp3r+sWdhfOZFlXB+2f4A9KEUqCMIpYS8nBCH5NI7e6l6SUS2IoJUsKtxAfsVrBsaRwj7GCh7ZeixUsGCBWK3iop9vRw1tCxftgCjdMbitYhJIgjMJICrdD86DVtJJgNWE+GYihlCwp3IJxjFjBdadKMXXa6M08jL13lVjBwhlj06HwLXTCpXDTvRNHS7Eu3kc1ZJ7sVrAIJUEYgdEUbpP7OIqnm6ykHAKWMn3yR0jhHlqY+L7FxrKutk+0lCycW0QS7+Gs4LQEO71+H1MTFmKdny5WsHBGeHpLDX860Bz2XLgUbvvJdEipxu5dPmwFD6ZwT3YrWISSIAzS7PEZriYNNPpDI/gHU7ghfCmZlGxm46c8N192FQkxEU28h7OCE9rA0mQiK30plo7DuhX8xneAcC10JIVbME60jgVfWVUUNoXbc/LEYE+3St0KPrg+mMI92a1gEUqCMEhtS0/EUPzREfzBho4RUrgjlZIDqsq7qZlcXpQvu4qEcYmnhU5/fT1Ou4uTNVVkJfbAocgtdHxTbpUUbsEw0Ta73LOyIHg8ZAX7O1WSsy34umwUXX8PyqGNcOjVYAq3K5BKgrmFqRqfeAp3OEQoCcIg71eF33q9bvmMMRH8wYaOI1O4u5sHzyv81n8rJea9DAyWkrUrHsezZR9bVbAO9LOrd0B2FQnjEm3rdeQWOhpmPzhdnUHxHr6nm0Zv+ir+0urhxmmSwi3EhuHcpAQ7A8mJWL1TmHPtKpTyV+D4PmA4hbte0VgU6MWVePQTT+EOhwglQUCf/P9bWhP23DUluSHHYxo65nhRZq6BRt1yOxgowq552aot4QbrBpSLv4LPoU/+/VVHSczOptAiu4qE6Bjt6Ra0gkeK98EU7jK1CNdAGo3m4Z5uvXMexFOyFKdJ4WNrkqRwCzFhNDcpoQ2szSZmFFxJ+4G/gqpC+UvhW+gs/vInnsIdDhFKgkDkyW9SoMBpCx6HlJKnWEDJwTl9Opz4CI68GbQ3/CRRiBuzSUWbewPequpJN/mFyU20rdejW+iEWMFhUrid/gQOkcmFgd5gCx3r5x/jWF0jDdPymDVb+gwK4xNPC50xVnCUFjqTIYU7HCKUhE890Sb/HcvGKSVf5EDxtcO+3wEjFstqKRQrzaCY8J0cmJSTX5jcxJrCPdoKDqZwDzYZVTWFt1nAYqWOVrMabKHTvvF1dtozyBgI0Noa/t8ShJEYrSYFreB+lZzksqB4H6omTcYU7nBMKqH05JNPsnDhQux2O3a7neXLl/PGG28Ez69btw5FUUIel1xySchr9PX18eCDD+J0OklJSeHmm2+msbHxbL8V4Rwi7lLyjLV0Hd4OPS0hDR1DJv9FX560k1+YvBhJ4X69+jWsrW76Bq3gtEIXiskEPW5g0Aqmh4/IYVXidlj1SHDrtb25iVqzmSsK88/K+xLOXeJJ4R7TQmfTPwO6FTxrxHq5oRTuPYUzudbfS4cjY1JV3SeVUJo+fTo//vGP2bNnD3v27GHt2rXccsstVFRUBK+59tpraW5uDj7++te/hrzGQw89xIYNG1i/fj3bt2+nu7ubG2+8kUAgcLbfjnAOEM/k72/QS8me8rdwzIgewT9USpYgP8EIRlK40/oOUVc/QHp6sr42KS8ftMDgIu4wVnDBaslNEgwTawp3ZWsly3KWUnt4a8QUbqc/gUolk0u1ppAU7sV1R3kvr5AHl5RMqs/kpBJKN910E9dffz1z5sxhzpw5/PCHPyQ1NZUdO3YEr7FareTk5AQfmZnDW6w9Hg/PPvssP/nJT7jyyitZtGgRv//97ykrK2PTpk2fxFsSJjlGcpOGI/jTMPerpGd6g5N/Mjd0FM4tjKZwq6ZUHCmtOCyr9ZiKGK1gEe+CEWK1gudkzGZf9S8p6rk0NIXbrX/XhrWCB1O4f5Ph4mptgK31TWflPcXKpBJKIwkEAqxfv56enh6WL18efL60tJQpU6YwZ84c7rvvPk6dOhU8t3fvXvx+P1dffXXwualTp1JSUsIHH3xwVscvTH6MpnBrXR+OjeAfp6HjZC0lC5MXoyncpro+chwLsCan6DvdxAoWJhgjVvBblU9T1DGH2oFN2H0rDFnBac1NvKUksKYg76y8r1iZdEKprKyM1NRUrFYrX/va19iwYQPz5s0D4LrrruPFF1/k3Xff5Sc/+Qm7d+9m7dq19PX1AXDixAksFgsZGRkhr+lyuThxInxPGtDXNXV2doY8hPMbIyncla2VLLA70BoSQyP4Y2joOFlLycLkJJ4UbqUD0r0lWMw1KCnOcVvoSDVJMEqk78qwVnBHJ4dO7mFW2mV4M33nhRU86YTS3LlzOXDgADt27OAf/uEfuPvuuzl06BAAn//857nhhhsoKSnhpptu4o033uDIkSP85S9/ifqamqbpfWUi8MQTT+BwOIKPvLzJpWaFicdICvecjNkc/bgUh888GMFfoVeTyl8G9FIygEMZ29BxspaShcnH6aRwt3TUk2WJnsItVrAQD9HEezgr2Ov3M92eQzfJzJuVrlvBu34FjLWCNUx4dh2dVCnc4Zh0QslisTBr1iyWLl3KE088wYUXXsjPf/7zsNfm5uYyY8YMqqr0hY85OTn09/fT3h666OzUqVO4XK6I/+ajjz6Kx+MJPhoawpcYhfMHIyncb1U+jbPTRY+pFW9nMkWLlqL0tg9uc9Uj+J10kax4Q1K4P5xeQNqJ5klZShYmH2cyhVusYCEeoon3SFaw1ZtCopLNrKIlKC1HoGJD8LtyTAud7FvOiRY6k04ojUbTtKC1NprW1lYaGhrIzdWTk5csWUJiYiLvvPNO8Jrm5mbKy8u59NJLI/4bVqs1GEkw9BDOX4ymcKd1dHLUexinNpf04ml6dXIwo2Yogv8jxcUFynGUhbcFU7gn++QXJg9GUriHrOChrdfBFO6WI0D4FG7tisfRkp1cgkZpfpFYwUJMRBPv/xRGvCe0gckDedbVdJ/YAhpRW+h401edE0G8k0ooffe732Xbtm3U1dVRVlbG9773PUpLS7nzzjvp7u7mkUce4cMPP6Suro7S0lJuuukmnE4nn/3sZwFwOBzce++9PPzww2zevJn9+/dz1113sWDBAq688spP+N0JkwWjKdxev5/pjlxURy65th5wV4UslrXiJSWQiiuxBm32tZLCLRimtqUn4rnRKdxDVnB6YtpwCnfRZdC0F4DsATP1ZpWLVF8whdvnWENfWztPnWzhpqLpYgUL4xJPC50xVvCIFO6egXwaTMPi3TfrAbbbp50TQbwJn/QARnLy5Em+9KUv0dzcjMPhYOHChbz55ptcddVV+Hw+ysrK+O1vf0tHRwe5ubmsWbOG//u//yMtLS34Gj/72c9ISEjg9ttvx+fzccUVV/Cb3/wG8yT9P0A4u8STwq15+0k0pw+Wkt+A8qHJP+i3Kwq3mnehKODtTme7xU9GVxebEnP41iSe/MLkIZIV/MCamWNSuN+qfJppnS66TM1keG2kr70NDm2EY9tQNYUPTDnkD5gYSGwMpnB7393NM6Ykrs3KYGNtEw8tXXC23ppwjhKtmjRSvA9VkzLcx2EohdtWhpK9KiSF24YXq5pKcfJbKAtvg1mfh8bjWJzOSV91n1RC6dlnn414Ljk5mbfeemvc10hKSuIXv/gFv/jFLyZyaMJ5gtEU7qw2CHggL2clvUdeIKl4ZejkV7w4tITBxbJ364tlTVZyZLGsECPRrOAVs7JDjoet4BMUW5eRtHgxSt12cFcCQ1ZwHsdMbVypKrDkHnwN7XoLHRHvQowY6ek2ZAXX7feTmZ6Etd1L+rx5cPCPwHAKd6WSyc3mXUHxHqhrxWRLYdq0aZO+6j6prDdBOJOcTgp3d3MpjvziYAR/tIaOsvVaMELcVrDdRa7vI3DOgf2/DW8Fz1g16bdeC5OPaFbw6B+UAXWAtroDoSncigJdJwHdCm5IUFkxaLkNiffNTSc45feDokz6z6QIJeFTQ6zVpHhSuFlyD6Rkg4lzopQsTA5itYKHxHtx1jySfPquotkOK4otE975PhAuNwl83eki3gXDxGoFl7vLaDv1Bmpjjh7E2+sjffnt0FoDh18ftoIDI6zglQ/r4t0f0Bd7RwxqmTyIUBI+FRgpJWuaCt07x6ZwN+0BoEwtHNPQUVv5MAFV1UvJBTPkhiTEhNEWOrVHDpPRm0GeZSW+1r3gjdZC527JTRIME6sVPFThVDw2OhP3YvetIGnxqghWsEbOKCv4XBLvIpSETwVGSsl+bxX2k+mhKdznWSlZ+OSJp4VOujsLqzVJt4JnzJcUbmHCiSTeR1vB5e4yUtVuelpPMXfaVXgzfeetFSxCSfhU8FZ5+BY24UrJPY1H8Jw8MZjCXXlelpKFT5Z4UrjV+kS0lCMk+fJ1K7gycgq3WMFCPEQT76Ot4Dr3Viw9xdgTEjD1TdVTuG2Z8MZ3gPPLChahJJz3PL2lhhc+PBb2XLhSst8TwGzr01O4r79HLyUPZtSMLiVri9bh2bJv0kfwC5OLvcfaI54b3UJH01TM7mZMnp7hFjquKXDwD4BYwcLEYFS8p9nm0de4E1dgLYqGnsIdtYXOuWsFi1ASzmuiTf5IpeTeQB9O2zw9hbv8FT3xuOLlsKVknzpTUrgFw3xQHX6x7OggvyErONFtId2RhNdjpWh6Gkr3ycHzCq0D00hIaA5J4fZs2cdWFdwDA2IFCzFhtIWO+fhOzN5CAgP1WEzV46Zwe7wXnbM/KEUoCec144WmhSslOxISsNsW6incqgrbfxph8oPXmyIp3IIhom0sGJ3CPWQF9/q6SeqbSnaOF2XmGmjcDegVTo+WQq/q0FO4L/5KsIXO/qqjmLOzEStYGI94Urj9Df04sjtQydZb6ERJ4e6d8yC2NdfRX3sU27wLzrkflCKUhPMWo5M/bCk5agT/18+ZCH5h8hBJvN95cf6YFO6gFZzSh6bk4lx2A1T8GY68Gaxw9pEEaLrlNvcGaaEjGCaaFTxavAetYJXhFjrZc6FmMwDtA9Ow4iVVTQ220LF+/jG6PtxB8oULcdls59xnUoSScN5iNII/WEr212Hr3qzv3hiRwj1y8lPyt3htS85Jv1345Igm3pcXZYUcR7SCj+8DRiyW1VIoVppBMeE7OaCncIt4FwwQyQoeHZ0SYgWnJ+nRKQXzgk3CA6oJj5qNnd7h9XJrf0D7xtd5Nn0KU1vbMJvOPStYhJJwXhJPCre/US8lW3zd+uSPksLdm/dF9hTO5Fp/Lx2OjHPuF5LwyRBJvCvAkoKM4PEYKzi5hFzvAciaBeUvBcV7yGLZi758zi6WFT45on1XjlzADaOs4JEp3D1uALb6V2I1N9NPir77ctUj+Bra2ZaQRFpzE28pCawpyDvj72miEaEknJdEKyVHTuEeEcE/mMINeil59NZr69LVLK47ynt5hTy4pERuSMK4RLshfSGMeF80/Wb6mnQr2NJ5RN96LS10hAnGkBV8shS1WcFs6wtN4T74B1RNwa1ouNVC8hMGq0kFq8/J3KTRiFASzktiLSWPl8IdtpS88mHaN77ObzJcXK0NsLW+6ay8J+HcxmgLncoDvyZbXULAX0ei0jhOCvc6qSYJhonVClY1lderX6PIb8GT2kW2Uhw2hdsXyMNsamWqRogVfK6LdxFKwnlHrKXkWFK4x5SSB1O4z/VSsnB2MWIFD6VwO9wXoKXW6lZw4Xw48HsgfAp3r+sWdhfOZFlXB+3n8A1JOLtESuEebQVXtFRg1zqoTkxmlpJN2pxF46dwn0dWsAgl4bwj0uQfXUqOJYV7TCl5KIX7PJj8wtnDiBU8lMIdIt5jsILzKiv4uORCbpvmlM+kMC7RUrhHW8E17VVomkZudS9JKZdgra0cJ4X7/LKCE4xc/Nprrxn+B6666iqSk5PHv1AQJoBok390KbnuVCkpnSop2RZ8XTYuuOEefVfRiBTukFLyyIaOXV205eSy7hye/MLZY9Oh8C10wlnBZnczePpxuRYT8Ffo1aTqt4ERVrDSwyJzTYgVvHX2PJZ52mifWUDB2XhTwjlLPC10tJpWEqx2zCcDJKQ0wKHqkBRum+LFoSWEWsEmKznnwQ9KQ0Lp1ltvNfTiiqJQVVVFUVGRob8nCPEQbfKHKyWnJdjpT+7F2pXFnGtXhU3htuHFGkjFlVyDNuO7ejXpPJn8wtnh6S01/OlAc9hz4azgRLeFNIcJr8dK8Yw03QpuqwNGWMFqbvCG5Nmyjw+nF2CqOcrBkgV81Z5yNt6WcA5jNIU7w30c1eMnyzWHwECZ3kLntcdDgngPK5ncbN6lV5Nct7DbksWy8nI+Og9+UBq23k6cOIGqqjE9bDbb+C8oCBNEtMn/T2Emf0IbWJtNzCi4kvYDfx03hdtT0XnORvALnwzRxPtXVhWFtYLHpHAfXA9HN4e1gn3ZNwdb6CRdMIdCqxmTopyttyecg8STwj3Q6A9toVOxAYAytQjXQBqNZi2khY6W7KTQ087hkovOCyvYkFC6++67Ddlod911F3a73fCgBMEo8Uz+/vp6nHYXJ2uqyErsGTeFW3UVSE83wRDRcpPuWVkQPA6mcHeqJE+xgGnqcAr3oVdRNYVXB1bgCqSSYG5hqgbaJQ/ibfZICrdgiNqWnojnoqZw900l29WNghJM4Xb6EzhEJhcGeoMp3D7HGvra2tlEIivSU2h3ZJ7R93M2MCSUnn/+edLS0mK+/sknn8TpdBoelCAYxWgKt8l9HJOqYe5XyUkuC0bwR0rh7rUt4S+tHm6cJjckITZizU2CYSt4IDkRq3fKsBU8IoW7ZyCfekVjUaAXV+JRfPY1ksItGOb9qvDRKQ+smRk1hVvDpfd0624ePK/wNgtYrNTRalaDKdzeqmqe7OhhRYKZPb0DXHgeWMGy600454l16zWMKiWPjOAfDPIrU4uYNcJyG0rh9syaidOk8LE1SW5IQkzEmps0xgqesZauLb8ck8IdIt4Xnz9br4WzR7PHx/+W1oQ9t2JWdshxLA2Z7fTwETmsStweTOEeEu/vJFi4d27heWEFxy2U1q5dy7/8y7+Meb69vZ21a9ee1qAEwQjRSsmjI/hHN3QcvfXa6U+gUsnkUq0pZOv1sbpGGqblMWv2LLkhCeMSTwud/gbdCvaUv4Ujv1hSuIUJJ5J4NylQ4BxeUzzGClZycE6fDic+CmnI7CeJQtyYTep5k8IdjriFUmlpKf/zP//DrbfeSk/P8I2qv7+fLVu2TMjgBCEW4i0lB1O43R8Png9TSh7cer3TnkHGQIDW1vD/liCMxGgKt95CJw1zv0p6pjco3iOlcPc2e+jo9WE5z25Iwpkjmni/Y9lY8V6cNY+AbdAKvsiB4muHfb8DojdkPh/F+2lZb5s2beLEiRNccskl1NXVTdCQBCF2Yi0lD0XwW1vd9A2WktMKXSgmU7ChY6RS8raEJOzNTdSazVxRmH9W3pdw7hJXCvfoFjqDKdxlauFYK9h1C55ZM3GZTKRkSENmITaMivfaI4eZ0palW8GHt0NPCxz+S3jxfh6lcIfjtIRSbm4uW7ZsYeHChSxbtozS0tIJGpYgxEakFO7RpeRydxlpfYc41jDA1Bk5eik5Lx+0QLCh46eplCycOWJN4a5srWSB3YHWEDmFW6xgYSKIR7ynu7OwWpN0K3hG9BY657sVHLdQUgYXaFmtVl588UW++c1vcu211/LLX/5ywgYnCNGIlsI9upRc596KllTMlJw+Ai2zhkvJu34FfPpKycKZI9YU7jkZszn6cSkOn3mwhU6FWMHCGSHSD0qI3EJHSzlCki9frGBOQyhpmhZy/P/+3//jxRdf5Cc/+clpD0oQxsNoBH+abR5K1UGs7SXkFM3SS8kVGwYjAT59pWThzGAkhfutyqdxdrroMbXi7UymaNFS3QpurwfEChYmhmg/KMNVk0zu45g8PaHi/VNuBcctlGpra8dkJP3N3/wNO3bs4LnnnjvtgQlCNIxG8JuP70Rx5+CwDtBW+waO7CmDllu4FG4Nj/ciSeEWDGE0hTuto5Oj3sM4tbmkF0/Tq/TVb0PlBrGChQmh2eOLuZo0ZAUPNI1K4Y5iBWuL1qElOzner9E4Pf+8tYIN9XoD6OzsBCAjI4Pu7u4x5/Pz88nPl185wpkjnhRuf0M/mc4OejyFev+sileB4RRun6mNVdpQCvcDwRTu6cVzKUyxnZeTX5hYDKVwu7eSEHCS5zCjWnPJtfWAuxp2/SqYwj3UP+syUwUaJjy7jrJj1iKyqmukIbMQE7UtPWgRzo38QQm6FVy6bT2Ziekk9WXjdHWjpDhh1zPAKCvYZEZRNLzZN9PX1s7WXj/z5hXrVnBG7KHU5wqGhVJ6enpwfVI4NE1DURQCgcBpDUwQImE0hTvDfRwGI/idIyL4h4L8bHixqqkUJ7+FsvA2mPV53m9q5sbpU9nUN8BdC+SGJETHcAq3bR70bCNJuYRZRUtQWt6A8qEWOkVjxfvMr4t4FwwTKTpl3fIZIT8oh6zgaZ0uukzNJLMQZ146tFYHlye8OrCCRRxlP0V8OXED2hWP42328IwpiWuzMnj3hJuHli44S+/s7GJYKL333nvBP2uaxvXXX8+vf/1rpk2bNqEDE4RwGEnhHiol1+33k5mehNbnwpnkhhZdaA2lcFeO6Hqtrf0BgbpWtGQbJ6ZM4aGZM+SGJIyL0RTuTPfHqC05pE/303vkBZKKV0YU75T8LV7TEp4Z7On2roh3IQaiRadcU5IbcjxsBZ+g2LqM9HnTUBQvVG4EhsV7uamN65SDmC/8W7yONWzvOE5GVxebEnP41nncscDwGqXLLrss+Lj88ssxm81ccsklIc9fdtllcQ3mySefZOHChdjtdux2O8uXL+eNN94AwO/3853vfIcFCxaQkpLC1KlT+fKXv8zx46GL1C6//HIURQl53HHHHXGNR5h8GEnhHtpVlJ6YRlJvDrnJFShFl0HTXgCyB8w0JKisGGx8y5J78DW0s7npBKf8flCU83biCxNHPC10/A39OJwdDDQ3jJ/CPe0L0tNNMIzRFG6v3890Ry6q3UWu9wCghOQmWfGSEkjFlViDNvvaT9V6uUnV62369On8+Mc/Zs+ePezZs4e1a9dyyy23UFFRgdfrZd++fXz/+99n3759vPrqqxw5coSbb755zOvcd999NDc3Bx9PP/30J/BuhDOBkRTu4V1FbVh7faRfchsc2gjHtqFqCh+YcsgPmBhIbAxuvfZWVVPuD6Ab+5HcfUEYxmg1SW/IPLaFTrjdlyy5B1KywQQWp/O8vyEJE0M8KdxJvhQSlWxmO6wotkx45/tAuNwk8HWnf6qiUwxbb2eSm266KeT4hz/8IU8++SQ7duzg3nvv5Z133gk5/4tf/ILPfOYz1NfXhywgt9ls5OTknJUxC2cPoyncRX0JHPZWUmxdStLixSh128FdCQyVkvM4ZmrjSlUJVpO2W2xkdXXJYlkhJk7HCra2e0mfN1/f6cbw1usQK3jlwwTqWjHZUpg2bdp5f0MSJgbjKdwVTOnNYFr6Cnytf8Vqzg0R7zbFi0NLGNzpdrcenWKykvMpqCbBBFWUoi3ujpdAIMD69evp6elh+fLlYa/xeDwoikJ6enrI8y+++CJOp5P58+fzyCOP0NXVNeHjE84+sZaSh1K4D3m8lEy5QC8l+z4C5xzY/9vwpeQZqz5VpWRhYojVClY1lYA6QFvdAdIT7cPVJEWBrpOAWMHCxHA6KdzdzaWf+hTucBiuKH3uc58LOe7t7eVrX/saKSkpIc+/+uqrcQ2orKyM5cuX09vbS2pqKhs2bGDevHljruvt7eWf/umf+OIXv4jdbg8+f+edd1JYWEhOTg7l5eU8+uijHDx4cEw1aiR9fX309fUFj4ciEITJg5FScp17K6lJxRRRw0D/bGY7E8OXkhWFW827UBTwdqez3eKXapJgiLfKw6dwj7aCy91ltJ16g+TGPCy2RqwdPtLX3q5bwYdfH7aCB0ZZwe/u1n+5J4JYwUIsGKkmhaRw96whPXP3GCt4ZDUpaAW3H/9UWcGGhZLD4Qg5vuuuuyZsMABz587lwIEDdHR08Morr3D33XezZcuWELHk9/u54447UFV1TMuU++67L/jnkpISZs+ezdKlS9m3bx+LFy8O+28+8cQT/Mu//MuEvg9hYjESwZ9mmwcfb8OiXYLLlo+v9XUpJQsTztNbanjhw2Nhz422gutOleLw2OhM3MsU3+ewLk7XreDBjQViBQsTgRErWNNUzO5m8PTjci0m4B9M4RYreAyGhdLzzz9/JsYRxGKxMGuWfuNbunQpu3fv5uc//3lwQbbf7+f222+ntraWd999N6SaFI7FixeTmJhIVVVVRKH06KOP8q1vfSt43NnZSV5e3gS9I+F0MRrBn+n+GNWdg2P6AJ7OdymaMx+2/X/A2GpSMIV7VpEE+QkxEy2FO5wVnKp209Pqo2TaVXR1+Sjw1UNrFVS8PCze8WINpOJKrkGb8V3dChbxLhjg+e21Ec+NtoL93ioS3RbSHCa8HqsexKso0FYH6FZweYLKisBYK7jFYmH6p8gKnlS73sKhaVrQFhsSSVVVVWzatImsrKxx/35FRQV+v5/c3NyI11it1mAkwdBDmBwY7ek2cut1jydRj+Cv/DM07Q67q6jX9Tlsa66jv/YotnkXyA1JiInxQk9HW8GWnmLsCQmY+qYyb1Y6iqbB9p9GaKEDnopOaaEjGKLZ4+OZbeGF0ugU7nJ3GT2NR+j1dZPUN5XsHC/KzDVwcD0c3Sy7gkdhuKL0d3/3dzFdF0+/t+9+97tcd9115OXl0dXVxfr16yktLeXNN99kYGCAv/3bv2Xfvn28/vrrBAIBTpzQ1wdkZmZisVioqanhxRdf5Prrr8fpdHLo0CEefvhhFi1axIoVKwyPR/jk2XusPeK50ZM/WEoencJ98A9A+FKy9fOP0b51B8kXLsRmMnNlkbTfEaJjtIVOmm0efYfeJj/pBhQNlJYjUDGUwh2uhY6kcAvGiSTePzvqMzlkBad4AiSm9KFpuTiXXQa7fg2HXg2mcGcPpFJvVrlCVdAueRDPln26eP8UVt4NC6Xf/OY3zJgxg0WLFqFpE6soT548yZe+9CWam5txOBwsXLiQN998k6uuuoq6ujpee+01AC666KKQv/fee+9x+eWXY7FY2Lx5Mz//+c/p7u4mLy+PG264gX/+53/GLF805yQfVIfPTRp9QwopJaebhlO4u08MnldoHZhGUkIzqwJefW3SFY/TvnU/z6ZP4ZrWNk65psgNSRgXoy10Mt0fo3gLCSTUYzEl6z/EJYVbmECiifcril0hx0NWsC/QR65tHun501DKX4Hj+4ARLXSUNpYEenElHcVnX4NqMX1qxbthofS1r32N9evXc/ToUf7u7/6Ou+66i8zMzAkZzLPPPhvxXEFBwbjCLC8vjy1btkzIWIRPnmiTf+QNCYZLyQFfP+kU4RwqJf9FX3t2MFCER0sBzURx0laUi7+C17GGbR3HSWtu4q3CmXyrQNalCdGJN4U7M7sDta9QF+8jGjKH7r7U8OV9kT2WLK6uruZdS66kcAsxEa0h85KCjODxkBWc2VOMJeEj7Mklegq3czb86Wvhxfviu4M93T6t4t3wGqVf/vKXNDc3853vfIeNGzeSl5fH7bffzltvvTXhFSbh002kyX/nxfljUrjrTpXi9wQwp/Sh4cI5fTqc+AiOvBlcm9RHEqDpfvvcGyQ3STBMNCt4dAudISt4KIU7N7kCJXsu1GwGoH1g2pgUbuvS1SyuO8p7eYU8uKREPpPCuMTTkLmvcSeuwFosnUf06JRoLXQGc5M+zS104lrMbbVa+cIXvsA777zDoUOHmD9/Pvfffz8zZsygu7t7oscofAqJNvmXFw0v4g+mcNtS6Av04bTNI9vVjeJrh32/A0bsdNNSKFaaQTHhOznwqQtNE06fSFbw6GrSSCs4PT0Jq89LesG8YJNRVdNDeh1Kb/CGpK18mPaNr/ObDBdXawNsrW86829IOOcx2kLHfHwnZm8hAX8diUojeCO30NEWrdOjUz7lPyhPe9fbUONZTdNQVXUixiQIMZeSK1oqsGsdHG+wMCPFiT25BGeSD3paQho6hkz+i74sk18wTDTxPvqG9Hr1a1hb3fQN7ipKK3ShmEzQ4wYGrWBsWPHp1aRVj+BraGdbQpJuBSsJrBErWBgHIyncr9e8TklaGv7GfhzZHVh83XpuUpQU7l7XLewpnMm1/l46HBmf2h+UcQmlvr4+/vjHP3LVVVcxd+5cysrK+J//+R/q6+tJTU2d6DEKnzJiLSUHI/g1DUerl2TfMr2UnOKUCH5hwonVCh5qoVNXP0B6erJuBeflgxaAg38IbwUXrBYrWDBMrFZwZWsly3KWUnt4a2gLncEUbhArOBqGhdL9999Pbm4u//7v/86NN95IY2MjL730Etdffz0m06SPZRLOAYykcDs0D1pNKwlJJky9mpSShTOCESu47lQpqikVR0orDstqsYKFM8amQ+Fb6Iy2gudkzGZf9S8p6rmUhCS/bgUXzge3/l0bUE141GzsiBUcDsO73p566iny8/MpLCxky5YtEXeZxdvrTfh0YzSFO8N9HNXjJ8s1h8BAmT75I6RwK4qGz3ULeyxZXFtdTalj6qcqC0SIn0jiPZwVnJZgh6Mt5GQtwDqQMmgF94VYwSEtdC6SFjqCcZ7eUsOfDjSHPTfaCn6r8mlmdsyhdmATMwc+S2rhSd0Kbq8HYKt/JVZzM/1qbngr+FO+K9iwUPryl7+sx5wLwgTT7PEZriYNNPrJdCQNR/APpnDDcCl5ZENH69LVLH5tIy/kFfKNT3EpWYidaOI9nBWc1QaBDkhPLkFJPqRbwVulhY4wcUTrWPCVVUVjreCOTo7WNzBv+mq8io+CvHwo+z+o3ICqKbgVDV+gkAUJO4et4APSQmeIuAInBeFMUNvSEzEU32gKd7CUrPSwyFwzppR8zWAp+aqZBWf+jQnnLPG00Omvr8dlL6Slo54LHD1w6O2QFjojq0m+KZ+VFG7BMNE2u9yzsiB4HEzh7tTImppOb1cK8xY7UFqqYdevgincrkAqjeYWpmqgYcKz6yg7Zi0S8T6IoUVFH330kaGdbRUVFQwMDBgelPDp5P2q8Fuv1y2fETGFOz09SV8sm+SD7ubB8wq/9d9KiXkvA6QEU7g9W/bx4fQC0k40y64iISaibb0eKd6Hqkkm93FMqobZD05XZ1C8h+vppiga2kV38td2DzdOy6Wlb0DWJgnjYjg3KcHOQHIiVu8U5ly7Sm+hU/4SMJzCXa9oLAr04kqswTfz/qB4Ty6e+6mvJoFBobRo0SJaW1tjvn758uXU19cbHpTw6aPZ4+N/S2vCnrumJLShccSGjo265XYwUIRd87JVW8IN1g0oF38Fn2MNqt0uk1+IGaM93Yas4BDxPtjTrUwtwjWQRqNZYxWNQfF+vN+CKyeXj61Jn8ogP8E4RnOTEtrA2mxiRsGVtB/465gWOla8pKqpFCdt1Vvo2Jbw1GALHRHvOoasN03T+P73v4/NZovp+v7+/rgGJXz6iDT5TQoUOIc/b8OlZJWUKRbozsE5PWNMCreNAIW4MZtUPYX7QPWnOoJfME5tS0/Ec6Nb6IRYwb055NgqULJXBVO4nf4EdpDJpYEmipO3oiy8Da9jDc2tHqo6OvjMpZeKSBLGJZ4WOkNW8MmaKi6Y0RO1hY532hfY3uono6uLTYk5fEvEO2BQKK1evZrDhw/HfP3y5ctJTk4e/0LhU020yX/HsvCl5P7kXqxdWcy5yBF+67WicJmpImTrtUx+wQiRrOAH1syMmMKdlm7C2u4lfV5oCvfbLGCxUkeryaxbbmt/gPfd3WwzJTEnK4vW1hbISDsr70s4dzFaTcpwHwdVw9yvkmMrC4r3YE+3UZtdNJsTz/FaLLKAOwRDQqm0tPQMDUP4NGN08me1gdJsYsb8tXQd3kD6lFzZei1MKNGs4BWzsoN/DrbQ6XTT5esmnSLSClPGpHDb6eEjcliXuCG49Xq7xUZmVxe1iTl8qzD/rLwv4dwlnhTuY/v9ZKYnDYv3wZ5uZWoRs1QvlUomNw9Wk7SVD3P8wFGm5ubSmmgRy20EkhApfKLEM/n7G+px2l14yt/CMSN6BL+kcAvxEKsVPJTCfaxhgKkzckDJCZvC7Sdp2AqWFG4hDqJZwUZTuJ3+BCqVTC7VmoLVJF9DO82YqOroYNbsWfKZHIEIJeETJdZqUkVLBfbENI4e3kJ6YhrmfpX0TG9w8kdK4e5t9tDR65NSshAzsVrBqqZS596KllTMlJw+Ai2zIlvBksItnCaxWsHjpXCHWMFmNVhN8lZVs62ji+y0dN0KFoKIUBI+MYxUk2raq9C6PsTRUhw6+QerSWVqIbNGbb3udd2CZ9ZMXCYTKRmf3oaOgjGMhJ6m2eahVB3E2l5CTtEsug5vl4bMwoRjxAp+q/JpigZTuO2+FWEbMg9ZwasSt4dawb4eahMTuUKs4BAMCaXvfOc79Pb2nqmxCJ8ynt9eG/Hc6FLyArsDrSERUqqxe5fHVEq2Ll3NsbpGGqblSSlZiAmjLXTMx3eiuHNwWAdoq31Dt4L3PAeIFSxMHJHEezgr2O7p5Ejvx8xKuwxvpk+s4AnAkFD62c9+hsfjAeDuu++mpyeyZyoI0Wj2+HhmW3ihNDqFe07GbI5+XIrDZ8ZlXYRqqdCrSeUvA5FLye0bX2enPYOMgYCUkoVxiSeF29/Qj8PZQY8nkaLpwy10xAoWJopo4j2cFex3FjOlP4mEqTOZNytdt4J3/QoYawUHU7jzi8jq7RXxHgFDQmnatGns378fgN///vcilIS4ibQ26bOjgvyGSsnOThc9pla8nckULVqK0ts+uM1Vj+BfxFHKB0vJI1O47SeaqTWbpZQsjEt8Kdx6C53sUS10xAoWJgKj4j3NNg/KdpLlWIOpNaCncFdsCH5XjhbvvuxbJIU7BgwJpUceeYSbb76ZSy+9FIAXX3yRXbt24fP5zsjghPOTaGuTrih2hRwPlZLrE5vIVuaSXjxNb8o8mFEzFMFfrri4znQQ84V/KyncgmGMpHAPWcEDTaNSuFuOAHqfwdr+RZjNzSEp3Fqyk+P9Go3T88UKFmLCqHg3H9+JuacQte0YiUqVnsIdoYUOaHjTV0kKdwwYEkpf//rX2b9/PzfeeCOapvG///u/XHrppdjtdoqLi7njjjv48Y9/zBtvvHGmxiucB0Rr6LikICN4HFJK9ieTNncJubYecFeFLJa14iUlkIorsQZt9rV4q6pl8guGMJLCPWQFpyemkdSbQ25yBUrRZdC0F4Ct/pVYTM241ZkUJ+kp3D7HGvra2tna0sKUnCliBQvjEk8LHX9DP47sDlSyQ1roHAzMpGcgnwbTcAsd36wHeN8+jSVdrWxOtEoLnSgY3vU2f/58vvvd71JUVMSOHTvo6upi+/btPPTQQ2RkZPDnP/+Z22+//UyMVTgPMNzQMVwpeURDx9DFsuDrTtdTuH09bJLJL8SIkRTuYSu4DWuvj/RLboNDG+HYNlRNwa1ouNVC8hMODqdwV1XzZEcP16SkUHXCLVawMC7RqkkjxfsYK3hIvGfPDbbQaR+YFtLTTVl4Gyz8PLPxU56bz23TnPI9GQVDydwjqa6uDv754osv5uKLLw4ea5p2eqMSzluMpnBnuj9G6SlENdWSbGuB/MgR/NoiSeEWjBPr1msYaQV3M6e/mKTFi1HqtoO7EtDFuy+Qh9nUylSNYJCftNARjGCkp9uQFVw3OoX74B8B3Qr2qNnYlR4WmWuC4j1Q18q7qZlcnj+VdkcmBWfjjZ2jnJEcJUVRzsTLCuc48aRw+xv1UrLF1016wXAEf7Cho2y9Fk4TQw2ZR1rBcxaR6/sInHNg/2/DW8EzVsnWa8EwsaZwq5pKQB2gre5AaAq3okDXSUC3gq3mZvpJCUnh3tx0Aou/j129A1xoTznj7+lcRgInhbNGfCnc4SP42wemhezeYMk9kJINJrA4nXJDEmLCSAr36zWvs2j6zVCuW8HW2koUWya8830guhUs4l0wQqxWcLm7jLZTb6A25uhBvL0+0pffDq01cPj18FbwYAp3uT+ASYNCixmTFDeiIkJJOCsYKSVrmgrdO8emcDftAUaUkukNVpO0lQ8TUFVMthSmFcyQG5IQE0ZSuO2JaVQe+DXZgSWorbUkKA3gjdZC525J4RYMYySFu+5UKYrHRmfiXuy+FSQtXhWzFSziPXZEKAlnBSOlZL+3CvvJ9NAU7hhLyaf8flAUuSEJ42I0hVvr+hCH+wK01FrdCi6UFG5h4jGSwp2qdtPTeoq5067Cm+kTK/gMIUJJOCu8VX4i7PPhSsk9jUfwnDwxmMJdaaiUjAaD/yEIEYknhVutH9VCJ0oKt1jBQjwYTeG29BRjT0jA1DdVT+G2ZcIb3wHECp5IRCgJZ5ynt9TwwofHwp4LV0r2ewKYbX16Cvf19+il5MGMmtGlZG3ROjxb9kkEv2CIvcfaI54b3UJH01TM7mZMnp7hFjquKVFTuMUKFowSTwp3X+NOXIG1KBp6dMqhaC10xAqOlzMilEwmE2vXrmXv3r1n4uWFc4hokz9SKbk30IfTNk9P4S5/RU88rng5bCnZp86UFG7BMB9Uh18sOzrIb8gKTnRbSHck4fVY9Z5u3ScHzyu0DkwjISE0hduzZR9bVXAPDIgVLMREXCnc3kICA/VYTNXjpnB7vBfJD8o4OSNC6bnnnuOyyy7jG9/4xpl4eeEcYrzQtHClZEdCAnbbQj2FW1Vh+08jTH7welMkhVswRLSNBaNTuIes4F5ft97TLceLMnMNNO4G9AqnR0uhV3XoQX4XfyXYQmd/1VHM2dmIFSyMx5lO4e6d8yC2NdfRX3sU27wL5AelQc6IUFq3bh3//M//zPvvv2/o7z355JMsXLgQu92O3W5n+fLlIe1QNE3jscceY+rUqSQnJ3P55ZdTUVER8hp9fX08+OCDOJ1OUlJSuPnmm2lsbJyQ9yUYw+jkD1tKjhrB/3W226dJCrdgiEji/c6L88ekcAet4JQ+NCUX57IboOLPcOTNYIWzjyRA0y23uTdICx3BMNGs4NHiPWgFG0jhtn7+Mbo+3EHyhQtx2WzymTRI3EJp3bp1bN26dSLHwvTp0/nxj3/Mnj172LNnD2vXruWWW24JiqH/+I//4Kc//Sn/8z//w+7du8nJyeGqq66iq6sr+BoPPfQQGzZsYP369Wzfvp3u7m5uvPFGAoHAhI5VGB+jEfzBUrK/Dlv3Zn33xogU7pGTn5K/xWtbIn67YIho4n15UVbIcUQr+Pg+YMRiWS2FYqUZFBO+kwPSQkcwTCQreHR0SogVnJ6kR6cUzAs2CVc1PQ/JoYyITln7A9o3vs6z6VOY2tqG2SRWsFHiFkpdXV1cffXVzJ49mx/96Ec0NTWd9mBuuukmrr/+eubMmcOcOXP44Q9/SGpqKjt27EDTNP7rv/6L733ve3zuc5+jpKSEF154Aa/Xyx/+oC+q9Hg8PPvss/zkJz/hyiuvZNGiRfz+97+nrKyMTZs2nfb4hNg50yncvXlfZE/hTK7199LhyJBfSEJMGG3IHLSCk0vI9R6ArFlQ/lJQvIcslr3oy7JYVjBMtO/KkQu4YawVnFboQjGZoMcNDFrB2LDi03dfrnoEX0M72xKSSGtu4i0lgTUFeWf8PZ1vxC2UXnnlFZqamnjggQd46aWXKCgo4LrrruPll1/G7/ef9sACgQDr16+np6eH5cuXU1tby4kTJ7j66quD11itVi677DI++OADAPbu3Yvf7w+5ZurUqZSUlASvEc4O0UrJIyd/ZWsly3KWUnt4q6EUbuvS1SyuO8p7eYU8uKREbkjCuMTakHlkCndfk24FWzqP6FuvpYWOMMHEbQXjwpmXD1pgcBF3GCu4YLXkJk0Ap7VGKSsri29+85vs37+fXbt2MWvWLL70pS8xdepU/vEf/5GqqsjWSyTKyspITU3FarXyta99jQ0bNjBv3jxOnNBzeFwuV8j1LpcreO7EiRNYLBYyMjIiXhOOvr4+Ojs7Qx7C6RFrKXlOxmz2Vf+Sop5LQ1O43fpOubCl5JUP077xdX6T4eJqbYCt9adfzRTOf4y20Kk88Guy1SUE/HUkKo3jpHCvk2qSYJhYrWBVU3m9+jWKbCn0DVrB2a5uFF877PsdEN0KFvF+ekzIYu7m5mbefvtt3n77bcxmM9dffz0VFRXMmzePn/3sZ4Zea+7cuRw4cIAdO3bwD//wD9x9990cOnQoeH50w11N08ZtwjveNU888QQOhyP4yMuT0uTpEGspWdVU3qp8mqKOOdQObMLuWyGlZOGMYMQKjpjCfeD3QPgU7l7XLWIFC4aJlMI92gquaKnArnVwvMHCjBQn9uQSfadbTwsc/kt48S5W8IQRt1Dy+/288sor3HjjjcyYMYOXXnqJf/zHf6S5uZkXXniBt99+m9/97nc8/vjjhl7XYrEwa9Ysli5dyhNPPMGFF17Iz3/+c3JycgDGVIZOnToVrDLl5OTQ399Pe3t7xGvC8eijj+LxeIKPhobwX6hCbESa/KNLyeXuMtI6Ojl0cg+z0i7Dm+mTUrJwRjBiBS+wO9AaRqVwixUsTDDRUrhHW8E17VVomoaj1Uuyb5luBac4pYXOWSJuoZSbm8t9993HjBkz2LVrF3v27OFrX/saaWlpwWuuueYa0tPTT2uAmqbR19dHYWEhOTk5vPPOO8Fz/f39bNmyhUsvvRSAJUuWkJiYGHJNc3Mz5eXlwWvCYbVag5EEQw8hPqJN/tGl5LpTpXj9fqbbc+gmWY/g97XDrl8BUkoWJo5Nh8Jb7+Gs4KMfl+LwmYdTuMUKFiaYeFroaDWtJCSZMPVquhUcNYVbrOCJJCHev/izn/2M2267jaSkpIjXZGRkUFtbG/Nrfve73+W6664jLy+Prq4u1q9fT2lpKW+++SaKovDQQw/xox/9iNmzZwd329lsNr74xS8C4HA4uPfee3n44YfJysoiMzOTRx55hAULFnDllVfG+1aFGIk2+cOVktMS7GjefhLN6cwqWoLS8gbUbR+MBNAnv03x4tASBkvJgxH8Jis5MvmFGHl6Sw1/OtAc9lw4K3hap4suUzPJnQsoXrJUF+/t9cCwFewYtIK1FQ/j2bKPD6cXkFZdw1sFhXxLrGBhHIymcGe4j6N6/GS55hAYKNNb6Lz2eEgQ72Elk5vNu/RqkusW9liyuLa6mlLHVNbJD8rTIu6KUmNjY3Bb/kiee+45/v3f/z2u1zx58iRf+tKXmDt3LldccQU7d+7kzTff5KqrrgLg29/+Ng899BD3338/S5cupampibfffjukivWzn/2MW2+9ldtvv50VK1Zgs9nYuHEjZrmhnnGiTf5/CjP5E9rA5IE862q6T2yRCH5hwokm3r+yqiisFXzUexinNlfPTVIUqH4bKjeEtYJ9gQJpoSMYwkgQ75AVPNDkD22h01INQJlahGsgjUazFtJCR0t2cgkapflFYgVPAHELpaeffpoLLrhgzPPz58/nqaeeius1n332Werq6ujr6+PUqVNs2rQpKJJAX8j92GOP0dzcTG9vL1u2bKGkpCTkNZKSkvjFL35Ba2srXq+XjRs3yuLss0A8Efz99fU47S5aOurJsvSMk8L9AKqrQG5IgiGi5Sbds7IgeBxiBTtyUR25egsddxXs+hWqpgyL90ErWMOEt9UvKdyCIWpbeiKeG53CPWQFpyem6S10XN362qSmPQA4/QkcIpMLA73BFG6fYw19be08dbKFm4qmixU8AcQtlE6cOEFubu6Y57Ozs2luDl/mFs5fjKZwm9zHMaka5n6VnOSyYAR/uBRuZeFtsPDzvN/bz43Tp8oNSYiJWHOTYNgKtnpTSFSyB63gI1D+EqBbbmPE+8z7pYWOYJj3q8JHpzywZuaY3KS3Kp/G2emix9Smt9DJywdfOxzbjqopvM0CFit1tJrVYAq3t6qaJzt6uDolhY21TbIreAKIWyjl5eWF7eX2/vvvM3Xq1NMalHBuEevWaxhVSh4ZwX/wj4BeSp41wnIbmvwBVUVLtnFiyhS5IQkxEWtu0hgr2LKS3iMvSAsdYcJp9vj439KasOdWzMoOOR6ygo931OPU5gxbwYPtSg4GirDTw0fksCpxOyy5B19Du7TQOQPELZT+/u//noceeojnn3+eY8eOcezYMZ577jn+8R//kfvuu28ixyhMcqKVkkdH8IeUkodSuBUFuk4Ceim5UsnkUq0puPXa19DO5qYTnPL7QZE+RcL4xNNCp79Bt4K7m0tx5BdHT+Ge9gXZfSkYJpJ4NylQ4LQFj4es4IFOjayp6ShKrt5CByUkN8lPEoW4MZtUtBmrJDrlDBH3rrdvf/vbtLW1cf/999Pf3w/o64O+853v8Oijj07YAIXJj9FS8tCuooyeZNLnzYfWKjj8emgp2WQObr32vrtb3+mWCPqKb0GIjtEU7qOHN5OVmIm5XyU90xvMTQq3+5Il96DZnHiO12KRG5IQI9HE+x3Lxor34qx51Lbsw9qZxZyLHCh9KrzzfWBEdIqicJmpAlDwdaez3eInq6uLtpxc2ek2gcRdUVIUhX//93/H7XazY8cODh48SFtbGz/4wQ8mcnzCJCfWUvJQBH9Bb0KwlBxM4T6m9+GLVkqWX+5CrMSVwt1SHNpCZzCFu0wtHGsFr3yY4+0dTM3NJSVDUriF2DAq3muPHGZKWxYzZqyl6/D2cVro3C25SWeQ025hkpqayrJlyygpKcFqtU7EmIRziEgp3KNLyeXuMtL6DnGscYDZM4tQhhYmagEpJQsTSqxWcCwp3JGs4GZMVHV0MGv2LPlMCuMSj3hPd2dhtSbhKX8Lx4zoLXQkhfvMErf1BrB582Y2b97MqVOnUFU15Nxzzz13WgMTJj/RUrhHl5Lr3FtJTSpmSk4NgZPFzLkoLXwKt5SShdPkrfLwKdyjreA5GbMp3baeTF8GWemLCPgHU7jr9QpnNCt4mymJOVlZtLa2QEZa2H9PEIYwUk1yaB7U+kS0lCMk9awhPXO3WMGfMHFXlP7lX/6Fq6++ms2bN9PS0kJ7e3vIQzi/MRrBn2abh1J1EGt7CTlFs/RScsWGkBRuKSULp8vTW2p44cNjYc+NtoKHt1634u1MpmjRUt0KHpHCHWIFDzZk3m6xkenroTYxkSsK88/K+xLOXYxWk0zu45g8PaEtdMQK/kSJu6L01FNP8Zvf/IYvfelLEzke4RzBaAR/pvtjVHcOjukDtNW+QdH0yBH8wRTuWUVkVddINUmIiWjiPZwVbPd0Up/YzZz+YhwXTENRvGNSuG0Ehq3ggtV4D1RLCx3BEM9vj9zGK5wVXLffT+ZgCnfxjLQxVvCOEVawtmgdni37aF1wIVWHj/CZ5cvlM3kGiLui1N/fH7XRrHD+Ek8Kt7+hH4ezgx5Poh7BX7EBCJ/C3TvnQZIvvxb3xx+TPO8CuSEJMTFe6OloK9jvLGaKP5m0uUtiSuH27DoqLXQEQzR7fDyzLbxQGvmDEqKkcJe/DBA2YNKXfTOq3c6m3fuZNm++bgULE85p5SiF6/UmnP/sPRbZWo2cws3w5EeBms0AtA9MG5PCbf38Yxx9r5Siy1eT1O+XG5IwLkbFe5ptHpTtJMuxBlNrIKYUbmmhIxglknj/7KjPZNQU7sHlCa8OrGARRykftIK1Kx7H2+wZbKGTQ9VJt1jBZ4i4rbfe3l6eeeYZNm3axMKFC0lMTAw5/9Of/vS0BydMTj6oDv+rJVIKd91+P5npSWh9LpxJbmjRvzwCqgmPmo1d6WGRuSaYwt2+8XXem1XMRdXVzF28WG5IwrgYbaGT6f4YpacQ1VRLsq0F8leFpHDb8GJVUylOfktP4TYt4ZnBnm7v9g1w1wIR70J0oon3K4pdIccRreARKdw9A/mUm9q4TjmI+cK/xetYw/aO42R0dbEpMYdvSQr3GSNuofTRRx9x0UUXAVBeXh5yTlGU0xqUMHmJNvnDpXCXbltPZmI6Sb1Z5NgqUIpug4PrAdjqX4nV3Ey/mhuy9XpbQhKmmmoOLriQr9pTzvh7Es5tjLTQGWkFZ2Z3YGlXSZ83b2wKt6Jwq3kXiqLhnfYF3m/1s6TdzeacHP5RbkhCDERryLykICN4PGQFpziLmdJaTtqcRXoKd8rckOgUG16sgVRcyTVos7+rR6fIermzQtxC6b333pvIcQjnCJEm/50X50dP4fbaSF97GxzaCMe2oWoKbkXDFyhkQcLOsSncmZlMt5oxiegWxsFoT7cM93FQGWyh0xqyWLZ9YBpJo7Zek5LN7NZjvJGbz23TnHJDEsYl1obMQynci6bfzJFNvyTLeSPW2kqUmZlhU7h18Q5eiU45q5x24KTw6SHa5F9elBX8czCFuz+B+sTjZCtzSVq8CqVuO7grAX3y+wJ5mE2tTNWQFG4hLk67IXPhfGjaA4ywgukN2XodUFXeTc3k8qJ82h2ZZ+V9Cec2RlO4Kw/8muzAEtTWWhKUBknhnmScllDatm0bd911F8uXL6epqQmA3/3ud2zfvn1CBidMLmItJVe0VGDXOqhOTGaWkq2Xkn0f6d3Y9/82OPmteEkJpOJKrJEUbiEuYk3hVjWVgDpAW90B0hPtYRsyB61gUsY0ZLb4+9jVO8CFYgUL4xBXCx33BWiptVh83SG5SZFSuN+32FjW1Ua7/KA8K8QtlF555RWuueYakpOT2b9/P319fQB0dXXxox/9aMIGKEwOjJSSa9qr0DSN3OpeklIu0UvJtjCl5ODkZzCFW6pJgjFiTeEud5fRduoN1MYcvadbr4/05bdDa02wIbNb0XCrheQnDFeTvFXVlPsDmDQotIgVLIxPPCnckVroDFnBQ9WkoBWMn3Kxgs8acQulf/u3f+Opp57iV7/6VciOt0svvZR9+/ZNyOCEyUOknm4QfvJrNa0kWE2YTwaklCycEYykcNedKsXUaaM38zD23lXDVnDTXkCsYGFiMGIFa5qK2d08NoVbrOBJR9xC6fDhw6xevXrM83a7nY6OjtMZkzDJiNbTLVIEv+LpJisph4ClTJ/8e/Tef6OrScEUbgnyEwxgJIW7oqWCtAQ7vX4fUxMWYp2frlvBLUeg4mWxgoUJI9YUblVT8XurSHRbSB9M4S6anqZbwW11gFjBk4m4hVJubi7V1dVjnt++fTtFRUWnNShh8mC0p5tD8zDQ6A+d/JV/hqbdwNhScq/rc9jWXEd/7VFsksItxIiRFO6a9ioS2sDSZCIrfSmWjsMomgbbfxrSQscTFO/gqegU8S4YwkgKd7m7jJ7GI/T6uvUg3hwvysw1enTK0c1iBU8y4hZKX/3qV/nmN7/Jzp07URSF48eP8+KLL/LII49w//33T+QYhU+QaCncoyd/sJQ8OoX7oJ7gHq6UbP38Y3R9uIPkCxfistnkhiSMSzwtdPrr63HaXZysqSIrsQcqXgHCt9Dxzfq6pHALhjGSwl13qhS/J4A5pU9P4V52A1T8GQ69GkzhdgVSSTC3MFUD7ZIH8WzZJ+L9EyLuHKVvf/vbeDwe1qxZQ29vL6tXr8ZqtfLII4/wwAMPTOQYhU+QSCnco29II0vJaemm4RTu7hOD5xV+67+Vlea9VKpL9LVJVzxO+9b9PJs+hWta2zjlmiI3JGFcjKZw67lJGmY/OF2dwRY6ksItTBRGU7hT1W58gT5ybfNIz5+GUv4KHNfX9g6lcPuUNpYEenElHcVnX4NqMXGg5ijTi+dSmGKT78qzyGnFA/zwhz+kpaWFXbt2sWPHDtxuN//6r/86UWMTPmGiTf6RNySIUkpu1C23g4Ei7JqXrdoSbrBuQLn4K/gca9iWkERacxNvKQmsKcg74+9JOLeJJ4V7oFHPTdJw4UzyhVSTRm+97s37InsKZ3K138e7liQekhRuIQaMpnBbeopxJCRgTy7RU7izZkH5S0HxPrL/JYu/PKKnWy4tfQNSTTrLnHbgpM1mY+nSpXzmM58hNTV1IsYkTBKMpHCHlJJx4Zw+HU58BEfeDC6W9ZNEIW7MJhVt7g2yWFYwTDQreHQLnRAruDeH3OQKlOy5IQ2ZR2+9ti5dzeK6o7yXV8iDS0rkMymMS6zRKTDckLmvcSeuwFosnUf06JTRLXRG5SZtt9jI8PWwKdEq4v0TIG7r7fHHH496/gc/+EG8Ly1MAoymcBfZUqgPuMm1zSM7pRvFp8C+3wGhEfyXmSpAMeE7OaBvvZYIfsEAsTZkHm0FW9u9ek+3wSajqqYvgnUovVxkqgkulm3f+Dq/yXBxjTbA1vomrppZcMbfk3BuY7SFTqb7YxRvIQFzHYkJbvAGQqJTbCNa6GiL1unRKdLT7RMlbqG0YcOGkGO/309tbS0JCQnMnDlThNI5jtEU7uMNFmakOLFbS3AmVUBPX2hDx5GT/6K7ZfILhom1IXNQvHe66fJ1k04RaYUpKCYT9LgBXbx7sOHAp1eTVj0SbMic1tzEW4Uz+ZZYwcI4GEnhfr3mdUrS0ji2f2RD5vnw4X8D4Xq6afhct7DHksW11dWUOqbKD8pPiLiF0v79+8c819nZybp16/jsZz97WoMSPlmMpnA7NA1Hq5dkyzIsfUdQsp3wQeTJ782+me2t0tBRMEasVnC5u4y0vkPU1acxPT1Z31iQlwneFjj4hxHd2AOAV68mFazGe0C6sQvGiNUKrmytZFnOUsr3PElmYgZJvZkxNWS2Ll3N4tc28kJeId8QK/gTY0Kb4trtdh5//HG+//3vT+TLCmeZuFK4k0yYejUSlcZxUrjXSQq3YBgjVnDdqVJUUyqOlFYcltV6TIWvfawVrKVQrDSHWsGSwi0YYNOh8C10RlvBczJms6/6lxT1XKq30BlqyOzWv2tHWsEjU7iHrOCrB61g4ZNhQoUSQEdHBx6PZ6JfVjhLTEgKd5SGjr2uW9hTOJNr/b10ODLkhiTERCTxHs4KTkuwY6rrI8exAGtyir7TraclxAoOEe8XfVnEu2CYp7fU8KcDzWHPjbaC36p8mqKOOdQObMLuW0FaoUu3gtvrgWEr2BrJCpZdwZ8ocVtv//3f/x1yrGkazc3N/O53v+Paa6897YEJZ59mjy/malJlayUL7A7q9vvJHEzhLp6RJqVkYcKJJt7DWcFZbRDogPTkEpTkQygpTtj6/wFjreBgC51ZRWRV14gVLMREtI4FX1lVNNYK7ujk0MkqlmRfSY/ioyAvH8r+Dyo3iBV8DhC3UPrZz34WcmwymcjOzubuu+/m0UcfPe2BCWef2pYetAjnRqdwz8mYTem29WQmppPUl43T1a3fkHY9A8iuImFiiKeFTn99PS57IS0d9Vzg6IFDb0PT7rAbC3xTPhtM4ZYgPyFWom12uWdlQfB4yApO9PuZbs+hm2Tmz0pHaamGXb8KpnAXqV4OK5lcZqpAw4Rn11F2zFok4n2SELf1VltbG/Koqalhx44d/OhHPyItLS2u13ziiSdYtmwZaWlpTJkyhVtvvZXDhw+HXKMoStjHf/7nfwavufzyy8ecv+OOO+J9q58a3q8Kv/V63fIZY1K436p8Gmenix5Tmx7Bn5cPvvbBxGN98jvpIlnxBlO4PVv28eH0AtJONEspWYiJaFuvR4r3kVawaXQK98E/hO3ppigaLLqL93v7uXH6VAnyE2LCcG5Sgh2rN4VEJZtZRUtQWo5A+UvAcAp3SAudmfdLC51JRtwVpW9961sxX/vTn/40puu2bNnC17/+dZYtW8bAwADf+973uPrqqzl06BApKXqX5ObmUE/4jTfe4N577+Vv/uZvQp6/7777QrKekpOTESLT7PHxv6U1Yc9dU5IbcjxUSj7qPUGxdRnp86ahKN5gRs3Q5P/I1MaVSjXKwtvwOtag+lvll7sQM0Z6uoVYwelJwy10WnShVaYW4RpI45hZY5XaGBTvgWQnWl8XJ6ZM4aGZM+QzKYyL0dykrDYIeCAvdzXdJ7aQZEFa6JxjnFY8wN69ewkEAsydOxeAI0eOYDabWbx4cfA6xUB34zfffDPk+Pnnn2fKlCns3buX1atXA5CTkxNyzZ///GfWrFlDUVFRyPM2m23MtUJkIk1+kwIFTlvwOKSU7MhFtbj0CP6UuaG5SXixBlJxJdegzf4u3qpqnjElyeQXYqa2pSfiudEtdEKs4N4scmwVKEW36d3YgewBM+VmlYsCvRQnbQ2K9831x2mxWJiuKCKShHGJp4XOGCu44lVgRAr3yOiUaV9ge6ufjK4uNiXm8C1J4Z4UxG293XTTTVx++eU0Njayb98+9u3bR0NDA2vWrOHGG2/kvffe47333uPdd9+Ne3BDu+cyMzPDnj958iR/+ctfuPfee8ece/HFF3E6ncyfP59HHnmErq6uuMdxvhNt8t+xLHopebbDqkfwv6NHQozd6Qa+7nSJ4BcME8kKfmDNzDEp3COtYGuvj/RLboNDG+HYNlRN4QNTDvkBEwOJjfp6ubU/0Fvo+APoC/Mirc4ThGGMVpOCVnC/Sk5yWbCFzlA1aXQLHVKywQQWp1Mst0lE3ELpJz/5CU888QQZGcNbczMyMvi3f/s3fvKTn5z2wDRN41vf+hYrV66kpKQk7DUvvPACaWlpfO5znwt5/s477+SPf/wjpaWlfP/73+eVV14Zc81I+vr66OzsDHl8mjA6+RPawOSBPMtKfK17x8lNulu2XguGiWYFr5iVHfzzUAp3QV8CR71HcGpzSVq8CqVuO7grgSErOI9jJo0cVYEl9+BraJfcJMEQRqpJQ1bwQJPekNnq85JeMA8O/hHQreBZo9bLaSsfJqCqmGwpTCuYIZ/JSUTcQqmzs5OTJ0+Oef7UqVMTUr154IEH+Oijj/jjH/8Y8ZrnnnuOO++8k6SkpJDn77vvPq688kpKSkq44447ePnll9m0aRP79u0L+zpPPPEEDocj+MjL+/QsMo4ngr+/oR6n3UV3cymOGdFzk4YaOsoNSTBCrFbwUAr3IY+XkikXoNpd5Po+Aucc2P/boHi34iUlkIorsQZtxippyCwYJpoVPPoHZUAdoK3uAOmJdpJ6c8jI9OnLULr0e2b2gJmGBJUVgwu4h8T75qYTnPL7QazgSUXcQumzn/0s99xzDy+//DKNjY00Njby8ssvc++990at3sTCgw8+yGuvvcZ7773H9OnTw16zbds2Dh8+zN///d+P+3qLFy8mMTGRqqrwX76PPvooHo8n+GhoCC8czkdirSZVtFRgT0zj6OEtpCemYe5XSc/0BnOTwlWTpJQsxEOsVrCqqdS5t6IlFVOExkD/bENWsIh3wQixWsHl7jLaTr2B2pijp3D3+khffju01sDh18NbwSsfFit4EhP3Yu6nnnqKRx55hLvuugu/36+/WEIC9957b8hWfSNomsaDDz7Ihg0bKC0tpbCwMOK1zz77LEuWLOHCCy8c93UrKirw+/3k5uaGPW+1WrFarXGN+VzGSClZ01To3omjpZgEW+NgN/b5UP02AGVqIbNUL5VKJjcPLkzUVj5MoK5VLyVPmyY3JCEmjLTQSbPNg4+3YdEuwWXLx9f6OlZzbpRu7NKQWTCOESu47lQpDo+NzsS9TPF9Duvi9AhWcBtXjraCpf/lpCTuipLNZuOXv/wlra2t7N+/n3379tHW1sYvf/nL4FZ+o3z961/n97//PX/4wx9IS0vjxIkTnDhxAp/PF3JdZ2cnL730UthqUk1NDY8//jh79uyhrq6Ov/71r9x2220sWrSIFStWxDWu85Xnt9dGPDe6lOz3VmE/mQ4p1di9y4dLyW11ADj9CVQqmVyqNUkpWYgboy10zMd3orhzcCQN4Ol8V7eC9zwHiBUsTByRxHs4KzhV7aan9RRzp12FN9MnVvB5wGn3ektJSWHhwoVceOGFcQukIZ588kk8Hg+XX345ubm5wcf//d//hVy3fv16NE3jC1/4wpjXsFgsbN68mWuuuYa5c+fyjW98g6uvvppNmzZhlg9fkGaPj2e2hRdKo1O4y91l9DQewXPyBC7rIlRLhd7T7eAf4KgeMPk2C1is1NFqVqWULMRFPCnc/oZ+HM4OejyJFE1PQ6n8c0gK92grWLM58fT1YpEbkhAj0cR7OCvY0lOMPSEBU99U5s1K163gN74DjBXvAJ6KTnbkF5HV2yvifZJyWkJp27Zt3HXXXSxfvpymJr2z8e9+9zu2b98e1+tpmhb2sW7dupDrvvKVr+D1enE4HGNeIy8vjy1bttDa2kpfXx/V1dX8/Oc/jxgx8Gkl0tqkz44K8lM1lbqTpajNCubkPrydyRQtWorS2w6H/hRM4V7EUcrJYVXidrRLHsSzZZ9MfsEQe4+1RzwXOYUbkvqmku3qDqZww7AVPHpX0fH2Dqbm5pKSIQ2ZhfExKt7TbPPoa9yJK7AWRUNP4T4UWbz7ptwqKdznAHELpVdeeYVrrrmG5ORk9u/fT19fHwBdXV386Ec/mrABChNPtLVJVxS7Qo7L3WWkd3bjSe0kWykmvXiabrmNSuEuV1xcZzqI2aThs69Btdtl8guG+KA6/GLZSCncQ1uvNVw4k3zQcgSAgGqitn8RZnNzsC3EUAud1vwZVHk8zJo9Sz6TwrgYbaFjPr4Ts7eQwEA9FlO1XkiP0EIHNLzpq3hqMIVbWuhMXuIWSv/2b//GU089xa9+9SsSExODz1966aURt+ELk4NoDR2XFAznYg2Vkv3OYqb4k0mbu4RcWw+4q0JSuEP89sHFsjL5BSNEE+/hUriPflxKemIaSb055CZXoBRdBk17AdjqX4nF1IxbnRlM4fY5dPG+afd+ps2bT2treFEmCEMYaaETYgVnd6CSrYv3ilcAPYV7dE+33jkPsrt4KUu62tksQbyTmriF0uHDh4NtRUZit9vp6Og4nTEJZxDDDR1t86BsJ1mONZhaA2MaOkZaLCsp3IIRIon3Oy/ON5zC7VY03Goh+QkHQ1K4dfGeQ9VJN1cU5p+ttyaco0SzgkeK9zFW8JB4H0zhBmgfmIYVL6lqalC8Wz//GHmVFXxcciG3TXPK9+QkJm6hlJubS3V19Zjnt2/fPqbvmjB5MJrCbT6+E3NPIWprLcldm/TdGxEi+LVF6ySFWzBMNPG+vCgr5LjcXYbd00l9YhPZSvgUbl8gD7OplakaIVuvRbwLRohkBRtN4Q6oJjxqNnZ6h9fLrf0B7RtfZ+vseSzztNHukDW0k5m4hdJXv/pVvvnNb7Jz504UReH48eO8+OKLPPLII9x///0TOUZhgognhdvfqJeSLb5uffJv+mdgREPHEdWkXtct7C6cybKuDtplAbcQI3FbwXMWydZr4YwQ7bvSaAr3Vv9KrOZm+kkJiU7ZlpCEqaaag9m5XGg/vR3jwpklbqH07W9/m1tvvZU1a9bQ3d3N6tWr+fu//3u++tWv8sADD0zkGIUJIlopOXIK94jJP5jCDXopefTWa+vS1VJKFgwRqxU8JN4XTb8ZynUr2FpbKSncwhkhVis4lhTuMVbwUHTKQICEzEwKrWZMinK23poQB6cVD/DDH/6QlpYWdu3axY4dO3C73fzrv/7rRI1NmGBiLSWHpHAn+fVScuF8aNoDRCglr3xYSsmCYYykcNsT06g88GuyA0tQW2tJUBqkIbMw4cRqBQ+lcJs6bfRmHsbeu8qQFSzi/dwhLqHk9/tZs2YNR44cwWazsXTpUj7zmc+Qmpo60eMTJggjpeSIKdxSShYmEKMp3FrXhzjcF6Cl1upWcOH4KdzvW2ws62oTK1iImUjifbQVXNFSQVqCnV6/j6kJC7HOTxcr+DwlLqGUmJhIeXm5fvMUzgkiTf5wpeTQFO5KKSULE06zx2eomuTQPKj1iaHifTCFG8JbwaRkMxs/5bn5YgULMRFNvI+2gmvaq0hoA0uTiaz0pVg6DkdN4RYr+Nwlbuvty1/+Ms8+++xEjkU4Q0Sb/OFKyf5OleRsC74uG0XX36OXkgczakaXkrVF6ySFWzBMbUtPxKY2o1voaJqK2d2MydMz3ELHNSWYwh3JCg6oKu+mZnJ5Ub5YwcK4xNNCp7++HqfdxcmaKrISe6KmcIsVfO6SEO9f7O/v59e//jXvvPMOS5cuHdPn7ac//elpD044faJN/kil5P7kXqxdWcy5dhVK+St64nHFy8Pd2PFiDaTiSq7Bp96N6tBTuKcXz6UwxSaTXxiX96vCr5dbt3zGmBY6fm8ViW4LaQ4TXo+V4hlpKN0nBs8r/NZ/KyvNe6lUl4SkcL+fNwPrQD+7egf4qljBwjgYTeHOcB8HVcPsB6erM9hCZ2QK92Elk5vNuwANj/cids0uYtmhCj7KyWWd/KA8ZzAklD766CNKSkowmUyUl5ezePFiAI4cORJynVhyk4dok/+fwkz+rDZQmk3MKLmS9gN/xZmowvafRpj84PWm8Ax6Cve7fQPctUAmvxCdZo+P/y2tCXvumpLckOMhKzjg6yedIpw5XpSZa+Av3wL0Cqdd87KVJayzbkC5+Ct4HWtQ/a3srzrK9AvmkGcRK1iITjwp3AONfjLTk9D6XDiT3FDxKgBlahGugTSOmTVWqcMp3LY115G/+V3eLbmI25xp8oPyHMKQUFq0aBHNzc1MmTKFY8eOsXv3brKyssb/i8InQjyTv7++Hpe9kJM1VVwwoyc4+Yci+H2mNlZp+uT3zfo62+3TyOjqYlNiDt+SID8hBiKJd5MCBU5b8HjICk7pVEmZYoGeqTiXrYZdv4Yjb46ocAYoxI3ZpKLNvQHvgWqeMSWJeBdiJtYUbhi2ghlM4c6xVaBkrwqmcDv9Cewgk0sDTRQnD6Zw3/IY7RtfZ/uFS1lhs9DuyKTgTL4hYUIxtEYpPT2d2tpaAOrq6lBV9YwMSpgYolWTIkfwa5j7VXKSy4IR/EMp3CMj+Cn5W7y2JeK3C4aIJt7vWBamhU6CnYHkRKzeKcNW8HG9l2RwsayWQrHSDIoJ38kBSeEWDBNrdMpIKzgkhXuwSbiqKbzNAhYrdbSa1ZAU7mfTp3Cxp4M9vQOyK/gcw1BF6W/+5m+47LLLyM3NRVEUli5dijnCl9DRo0cnZIBCfMSTwn1sv15KtrZ7SZ83nMJdphYxS/VSOWi5KYqGL++L7LFkcW11NaWOqeK3CzFhtIVO0Aqev5auLb8kvXgl/OlrQfFuU7w4tAR9bdJFg4tlTVZyRLwLMRJrdAqMtYLTClNQTCbocQODVjA9fEQO6xI3wKpHgtEpac1NvFM4k2/NLRQr+BzDkFB65pln+NznPkd1dTXf+MY3uO+++0hLSztTYxNOg1hTuCtbK1mWs5TyPU+SmZhBUm8mGZmtISncTn8CO5RMLtWaQlK4F7+2kRfyCvnGkhK5IQnjEp94L8NlL8RT/hYFS4rHttBRFG4dFO/e7JvZ3uonq6uLNlksK8SIkYbMdadKSfEESEzpQ1NdOPMywdsyuIg7jBVcsBrvgWoR7+c4hne9XXvttQDs3buXb37zmyKUJimxlpLnZMzm7bLHuaBnBd1JHw1Wk+ZD/QfAqFKyyRySwv2bDBfXaANsrW/iqpkFZ+NtCecwsVaThlvobCYrMRNzv0p6pjco3oM3pJHVpKGGzHJDEgxgJIX79erXKLKlUB9wk2ubR3ZKN4pPgX2/A0ZYwYrCZaaKECtYxPu5Tdw5Ss8//7yIpEmKkRTutyqfpqhjDrUDm7D7VpBW6IpYSl6VuH1MKfktJYE1BXln5X0J5y5GqknBFO7RLXQO/B4In8Ld67qFPYUzudbfS4cjQ7K8hJgwksJt1zo43mBhRooTe3IJziQf9LTA4b+Ez0266MuSm3SecFq93oTJiZEU7rSOTg6d3MOstMvwZvpw5uWDFggpJftJCi0lSwS/YBAjVvACuwOtYVQKdwwNmRfXHeW9vEIeFCtYiAGjKdyapuFo9ZLsW4al8whKinPcFjqSwn1+IELpPMNoCrfX72e6PYdukpk3Kx3F1w67fgVE31Ukk18wwqZDJ8I+H84KPvpxKQ6feTiFu3A+uHXxr2r6IliHMrYh828yXFw9aAULQjTiSeHWalpJSDJh6tVIVBrHSeFeJ9Wk8wgRSucR8aRwW70pJCrZzCpagtJyBCo2DEYCSClZmBie3lLDnw40hz0Xzgp2drroMbXi7UymaNFS3Qpurwd08e7BhhWf/plc8TCeLfv4cHoBaSeaxQoWYsJoCrfJfRzF001WUg4BS1mwhc7IIF6PWMHnLSKUziOMpnAntIHJA3nW1XSf2AIaESf/UAS/9HQTjBBNvH9lVVFYK/io9zBObS7pxdP0lP/qt6FyQ1C895EEaLq9EShAtestdJKL54p4F8bFSBDvkBU80OQn3ZGE12OlaHoaSks1MJzC3WjWWEVjsIWOluzkEjRK84vECj4PEKF0nhBvCrfT7qKlo54sSw9UvAIMp3A3mIYnv2/WA6iuArkhCYaIJN4V4J6VBcHjECvYkYvqyCXX1gPuKtj1K1RNGRbvg1awhglvq5+nPHoLnZa+ARHvwrjUtvREPDc6hXvICk5PTCOpbyrZrm59bVLTHgCyB8zUm1UuUn0UJ+kp3D7HGvra2nnqZAs3FU0XK/g8QITSecKZTOFWFt4GCz/P+7393Dh9qtyQhJiIJt6/8JnwKdxjrODylwDdchsj3mfer7fQkRRuwQCRGjI/sGbmmNykYSu4DU3J1Te7+Nrh2HZUTeEDUw75ARMDiY3BFG5vVTVPdvRwdUoKG2ubxAo+DxChdB4Q69ZrGFVKHhnBf/CPwHAK90i/XVv7AwKqipZs48SUKXJDEmLCaAp30Aq2rKT3yAvgnCMtdIQJJVpD5hWzskOOI1rBg+1KdPGexzGTRo6qwJJ78DW0Swud8xARSucB0UrJoyP4Q0rJvTn61mtFga6TgF5KbkhQWTH4q31o8m9uOsEpvx8URSa+MC7xpHD3N+hWcHdzKY78MCncI7deT/uC7L4UDGO0IXPQCra7yPUeAJSQ3CQrXlICqbgSa9BmrJLolPMUEUrnAfGWkq29PtKX3w6tNXD49fCl5JUP65PfH9AXe+v/IQhRMZ7CvYX0xLSIKdyjc5NIyQYTWJxOuSEJMRFrQ+Yh8V6cNY8kn24Fz3ZYUWyZ8M73gXC5SeDrThfxfp4iQukcJ9ZS8lAEf0FfAke9R3Bqc0lavAqlbju4K4HopWSZ/EKsGLGCNU2F7p1jU7gHF8uWqYVjreCVDxNQVUy2FKYVzJDPpBATRsV77ZHDZPRmkGdZia91L3gji3dt0d0SnXIeI0LpHCdSCvfoUnK5u4y0vkMc8ngpmXKBXkr2faSvA9n/WyklCxNGrFawqqn4vVXYT6aHpnCLFSxMMPG00El3Z2G1JulW8IzoLXQkhfv8RoTSOUy0FO7RpeQ691a0pGKK0Bjonz1cSn7jO4CUkoWJ463y8Cnco63gcncZPY1H8Jw8MZjCXSlWsHBGMFJNcmge1PpEtJQjJPnyxQoWRCidqxiN4E+zzUOpOoiltwRXUr5eSo4awS+lZME4T2+p4YUPj4U9N9oKrjtVit8TwGzr01O4r79Ht4Kb9gJiBQsTg1Er2OxuxuTpCW2hI1bwp5pJJZSeeOIJli1bRlpaGlOmTOHWW2/l8OHDIdesW7cORVFCHpdccknINX19fTz44IM4nU5SUlK4+eabaWxsPJtv5YxjNILffHwnijsHR9IAns53cWRHjuCXFG4hHqKJ93BWcKraTW+gD6dtnr71uvwVaDkCFS+LFSxMGM9vr414LpwVnOi2hKZwKwq01QFjrWBt0To8W/axVQX3wIBYwecpk0oobdmyha9//evs2LGDd955h4GBAa6++mp6ekLXPFx77bU0NzcHH3/9619Dzj/00ENs2LCB9evXs337drq7u7nxxhsJBAJn8+2cMeJJ4fY39ONwdtDjSdQnf8UGIHwKd++cB7GtuY7+2qPY5l0gNyQhJsYLPR1tBVt6inEkJGC3LdRTuFUVtv80gngHT0WniHfBEM0eH89sCy+URv6ghGEruNfXradw53hRZq6Bg+vh6OawVrAv+2ZUu539VUcxZ2cjVvD5ScInPYCRvPnmmyHHzz//PFOmTGHv3r2sXr06+LzVaiUnJyfsa3g8Hp599ll+97vfceWVVwLw+9//nry8PDZt2sQ111xz5t7AWWLvsfaI50ZH8A+VklEhqW8qTlc3CgrUbAagfWAaVrxY1VSKk99CWXgb1lseo33j6yRfuBCbycyVRfln9P0I5z5GxXuabR59h94mP+kGFI3BhsyhLXR8pjZWaUMtdL4ebKEzvXguhSk2Ee/CuEQS758d9ZkcsoJTPAESU/rQtFycyy6DXb+GQ68GW+hkD6RSb1a5QlXQLnkQb7OHZ0xJXD81l3f7BrhrgYj385FJVVEajcfjASAzMzPk+dLSUqZMmcKcOXO47777OHXqVPDc3r178fv9XH311cHnpk6dSklJCR988MHZGfgZ5oPq8LlJo/32kFJyehIaLpxJPujWO7kHVBMeNRs7vSEp3O0bX+fZ9ClMbW3DbJJSsjA+RlvomI/vxOwtJOCvw9a9OaYUbunpJhghmni/otgVchzRCj6+DxhuoVOvaCwK9OJKPIrPvkZSuD8lTFqhpGka3/rWt1i5ciUlJSXB56+77jpefPFF3n33XX7yk5+we/du1q5dS19fHwAnTpzAYrGQkZER8noul4sTJ8Lvxunr66OzszPkMVmJNvlHp3CHlJJ7c8hNrkApugwadwOw1b8Sq7mZflL03RurHsHX0M62hCTSmpt4S0mQPkXCuBhZLBtiBWd3YPF16y10oqRw9+Z9kT2FM7na7+NdS5LckISYiNaQeUnB8P1hjBWcXKKncGfNgvKXwov3xV+WzS6fIiatUHrggQf46KOP+OMf/xjy/Oc//3luuOEGSkpKuOmmm3jjjTc4cuQIf/nLX6K+nqZp+qK8MDzxxBM4HI7gIy9v8oqDSJP/zovHVpPqTpaiNiuYbX16Cvclt8GhjXDkTVRNwa1ouNVC8hMGq0kFq2WxrGCYaFZwuJ5uekNmhlvoDG69Bt0KHr312rp0NYvrjvJeXiEPLimRz6QwLrE2ZB5K4V40/Wb6mnbiCqzF0nlEj06J1kJHcpM+VUxKofTggw/y2muv8d577zF9+vSo1+bm5jJjxgyqqnQBkZOTQ39/P+3toV/ep06dwuVyhXsJHn30UTweT/DR0BB+gn3SRJv8y4uygn8eSuEu8lvwpHaRrRSHTeH2BfIwm1qZqgGKCd/JAZn8gmFitYLDNmQesfU6rBW88mHaN77ObzJcXK0NsLW+6ay8J+HcxmgKd+WBX5OtLiHgryNRaRwnhXudVJM+ZUwqoaRpGg888ACvvvoq7777LoWFheP+ndbWVhoaGsjNzQVgyZIlJCYm8s477wSvaW5upry8nEsvvTTsa1itVux2e8hjMhJrKbmipQL7/9/evcc3Wd///39cSZv0QJse0qYtLbSlUIrlDFPkIMiEqVOZ3+ncZwdwu/n5qMBuePhuOt3m3Of2YXrbdP7cZLr5Q/dxTn9T2DxMOSgtMhTkTKGWU0s5tNKWNoUkbXO4fn+kDU2bpLlCWqK87rdbN9NcTZPrdl3k1dcr1/OttnEkPpESJYuUMZMHTuGeJK1koV24o2CP6sHtcXG2bg9p8akBF2TuNwruzk2SUbDQIpIUblPTWNRhtd5RcFHoFO4Oyy18WjSK6efaaJU/KC8LMVUoLV26lFdeeYVXX32VlJQUGhsbaWxsxOFwAHD+/HkefPBBPv74Y+rq6qioqOCmm27CbDbzjW98AwCTycQPf/hDHnjgAT744AN2797Nd7/7XcaPH++7Cu6LSEsr+WjrYVRVJfdIBwnJV2GsrR5gQUdpJYvIBFtCp+8ouKppP2fPvIfnZI53TbcACzL3GwX3pHBL8S40CHcU3DuF228JnTBGwQXVB/isfCK3DTfLMXkZiKlCadWqVVitVubOnUtubq7v6/XXXwdAr9ezf/9+brnlFsaMGcPixYsZM2YMH3/8MSkpKb7Hefrpp1m0aBG33347M2fOJCkpibfffhv9F/iADvaGBIFPfvVoC3FGHfrP3cQpJ6SVLKIu1BI6fUfBdWcq0LUn0ZFRQ2rH7Auj4F4p3H6jYEnhFhHaeDDwRTtaU7hDjYI3jx7HdOtZWk0ZAX+X+HKJqRwlVQ0d1pWYmMi6desGfJyEhASeffZZnn322Wg9tUsq1BtSoFZyetNpPFYnmZYxuF37vSf/R78BenWTFIVF+u3ebpLlFj41ZDK9qop9ObkskTckMYBQKdyBRsEpcal0OM9QFDcB4xVp3quKWg77pXAnYcfoHoYl8SjqyJ96u0k6IzlSvIswPV95lH/saQh4X7AU7hSTDrvVSNlI/xRu3yjYk9tvFKw7eoS94yfyX6nJQ/GyxCUWUx0l0V+D1aG5m+Q66fSP4K/2rukG/VvJ6uQlqIlmiqyt1JRPklayCEuoD8s+FGAJnbizYDilIzNtGoa2GhRVlRRuEVWhivf/nF2sOYU71Cg4LiODIqMeXZArqcWXixRKMa622RY0FL9vBL+vldydwp3Vk8K991UgcCvZkXUznWdb2Ug8M9OSpZUsBhTJEjpd9fWYUy18fvQwmfG2fincvZfQ6Z3CnVhWKt0kEZZQF7vcOavQd9u3IHO7h8RsA+jyME+/EQ780y+F2+IeRpy+mTwV1KuWY63cJcX7ZUoKpRj378OBL71eMmNkvwj+UCncHlXhL85FlOt34uq+qkid/zj2Biur2mzMjNOzo8PFRGkliwFoTeH25iap6J1gtrT7ltAJlsLdkTSVd1usfH24pHCL8IR7sQtcGAW7EuMx2rMZ87XZYaVwe1JTpXi/TEmhFMMarA7+UHE04H0Ly3P9bgdtJXencO91F5Oq2tmsTuVG41qUK/8Th+lCBP+GOAM/LC2SVrIIKZIUbtdJp3/x3t1N2u8ppqTXyK0nhdtaMgqzTuEzo6Rwi/CEm5vUexRsbNAxcuS1nKt8LqwUbllC5/IlhVIMC3by6xQoNCf5bvdrJSs5mPPzoXGfL4V7t2sSThIoogm9zoNaeqNcei00q222Bb2v7xI6fqPgniV0skp9CzKbnXFUKxlcrZ7yu/T6eN1JTgwvoGR0iRyTYkCRFO89o2Br1TpMI8rCSuGWNd0uX1IoxahQJ/8d0/tH8JdljsOd1N1KnmRCcbTCrv8Fel3ppiZTpjRICreIWLBR8LJ5o0IuyGx02L1rulW/3X2/wnrGM0Wpo0Xv8bv0eltqOukuNy0tgX+XEL1p7Sb5RsFdHtIy7L7cpGDRKR0NVto6HBjkD8rLlhRKMUprBH/toRqyz2Z6W8k1W8DWDDXvBj75JYVbRCDUKHhmSZbvv3uW0DG2NNHZPQpOKbKg6HRgawK6R8HY2EcOs+O3+C3InNpwilq9nvlFI4bkdYkvLi0p3O8cfYfylJT+S+h0p3Dv9xT1HwVbbsFaMgqLTkdyerr8QXmZkkIpBkUSwZ/WlInRmOBtJY8MHcEvKdwiEuGOgqua9pPSeZDjJ1zkjczxjoILRoDqhr2vBh4Fy4LMIgLhpnBXt1QzPWcatTWb/ZfQ6ZXCLaNgEYwUSjFIa26Spz4eNfkQCY4R0koWg0LLKLiuaTNqQhnZOZ24m0tkFCwGTbgp3GPSR7PryHMU2672LqHT001q8v5bK6NgEYoUSjFGawq3rul0/wh+aSWLKNNSvKckjUM5vBdjazk5xSUyChaDQksK97rq5yluG0OtayOpjpkXRsGt9YCMgkVoUijFEC0p3NUt1YxPNXnn7b1TuKWVLKJMa/GuP70NpSkHk9HF2dr3vKPgHf8v0H8UDCpW+yQJ8hOaaE3hTmlr5+DnOyhJuQZ7hsM7Cj6yHqrXyihYDEgKpRiiJYV7TPpojn1WQVp8yoUU7mQzVL0BSCtZREeoNyQIPAp2nujCZG7DZo33W0InUDfJkf0NSeEWmmlK4W7ajM1tpiA1j/MkMq4kDaX5CGz/ky+Fu9hjx9o9ClbRYd1+TIp34SOFUgzRksK9rvp5zO0WbLqzqEqu9y8kR2t34rH35J/MMaq6W8nq/MexVu7i4/xCUhsbpJUswhLq6suHA6zp5r30uv8SOoHWdFMUFSZ/l393dPH1/DwJ8hNh0ZzCnTSORFsDCUyipHgqSvMhqPo7cCGF228JnVH3SvEu/EihFCO0pnCntLVzzF6DWS0lrWy4d9Xr7oyanpO/SrFwvW4v+onfxGGSCH6hjZY13fxGwb1TuJsPAd4UbosrhZP6C29I6vzHcSeaUROTaMzOliA/ERatuUn609tQmnNIS3BzvrESVEIuoWNPmiop3MKPFEoxQmsKt93pJN+UiyfVQq59D6D4fVjWiJ1k9zAs8UdRR38N++EjcvILTUKlcPde0w36jIJ7UriLr4FTOwHIcump13uY5HFQlrAZZcJtOEzz+OBUI2ecTlAUKZLEgCJJ4e4ZBZ9viyPT4L8gc7/olOHflhRu0Y8USjEg3Euv4cKCjkZ7MvFKFqNNRpSkDNjwMyBQbhI4zqfJyS8005LC3XsUbOxwkHbVbXDwbTj+ER5VYasuhxFuHa74k97Py137c++HZZ1u71/4QT+dJ8QFkaVw919Cp6eb1Pvzcky9E5KzQAcGs1m67sJHCqUYEMmCjjorFBhm4WjZCfZQuUmL5dJroZnWFO7CzjiO2Q9hVktJmDIbpW4LNFUDPaPgAo7rVHI8Cky9E8eJVslNEppo6Sb1HQX7ltDZ+zcg8ILM6qwHcHs86JKSGV44Uo5J4SOF0iUWSQR/1wnvgo7nGyokhVsMCq0p3Aetdsqzx3pHwY59YB4Du/8SeBQ8crZcei00C3dBZo/qwe1xcbZuj38Kt6LAuc8B7yj4RJyHmd2fl+sp3mUULAKRQukS07qm27GaStLiU8Ja0FFaySISkaRwF6Pi6hqtaRQsxbvQItxRcFXTfs6eeQ/PyRxvCneHg7QZt0PLUah5J/AoeNYDMgoWQUmhdAlpaSWrqgfOb8PUXOYfwX9qBxA4hVtaySISkaRwGzrKsSSMkFGwGBRaRsF1ZypQrEm0x+8k1TFTRsHiokmhdAmt3lIb9L6+rWSn/TCpn6dB8hFS7TMutJLP1gHSShbREXEKd4ILa/uHIVO4ZRQsIhWseA80Ch7mOY+t5Qylw6/DnuGQUbC4aFIoXSINVgcvfBS4UOqbwl3VtB/byUNYP2/sXtOt2ttK3vsaHPtAWskiKgY7hVtGwSISoYr3QKNgg62M1Lg4dJ153hTupAx47ydAoCV0wHqgXVK4RUhSKF0iwT6b9I0+QX49rWSn1Y0+qRN7eyLFN9yJcvBtOLjGl8Kd5RpGvd5DjkdBvWo51spdcvILTXYebw16X9/iXVU96JsaAqZwg4yCRXRoLd5TksbReXIbFve1KCreFO6DoZbQWSQp3GJAUihdAqE+mzS/zOJ3u6eV3OHuxJw0zpvCXfUmnN4FXEjhrldUJrs7sMQfw5EqKdxCu61HAn9Ytm8Kd88oOL7J4J/Cfb6h+36FFtdw4uIa/FK4rZW72OyBJpdLRsEiLFqX0NGf3obeXoTbVY9Bd8TbSA+yhA6o2NNmSxCvGJAUSpdAqAUdpxam+273biWb4uJITZpAbpINPB6o+nvgCP4p38feYJWTX2gSqnjvm8LdMwrucJz3dpNy7Cij5sHJTwFv8W5Vk+nwmLwp3Ff+p28Jnd2Hj6HPykJGwWIgWpbQ8RsFZ7XhIctbvPdK4e67plvHmOXsKJvGAqeDDw0JEsQrgpJCaYhFsqBjv1ZyqAj+7g/LSgq30CJY8f6dK0f0S+H2jYKTO73dpPx8aNwHh973jTc6SQBU78it9EZZQkdoFmoU3Ld49xsF90nhBmh1Dff7g1KZcBvGbz3GlLpjbCooYvnUcvl3UgQlhdIQi2RBR729CLezjqTzH3iv3ggSwa9OXiKXXgvNQhXvM4oz/W73HQVnWc6jOFph1/8CvT4sqyZTpjSAosPxuUuKd6FZsFFw3+iUvqNgXwp39yLhHlUBwKR0XPi83LU/p/Xtd3gp3cIC1cXm+lOD/4LEF5YUSkMokhRu50lvK9ngOO89+Tf+AgjcTeqw3MKOolF8zdlBmyld/moXYYl4FJxY7h1v2Jr9FmT2K94nfV+Kd6FZqH8r+/5B+c6RtzC2NNHZPQpOKbKg6HRgawK6R8EkYcThvfpy9oM4TrTyUVwCKQ2nWKfEMa+wYEhel/hikkJpCIVqJfc++atbqpmeM43ams3+EfzdKdzgbSX3vfTaOG2OtJKFJuGOgnuK98n5N9N5yjsKNrQfQkk2yxI6IurCHQX3LKFTV+8iLS3ROwouGAGqu/tD3AFGwYVzJDdJaCKF0hAKt5U8Jn00u448R7Htav8U7ibvZbJujw6rJ4tUOvwuvZZWstBKSwp3anwK1Xv+TJZnKm5nHfHKyQFSuGUULLQLdxTc83k5j24YpuQWTIY5mkbBUryLcEmhNES0tJLXVT9PcdsYal0bSXXM7NdK3uychVHfQBfJ0koWEdOawq2e+xhT01jUYbXeUXBR6BRuGQWLSAQr3vuOgg80HyAlLhVdXSc5pvEYE5NlFCwGRUwVSitXrmT69OmkpKSQnZ3NokWLqKmp8d3vdDr5yU9+wvjx40lOTiYvL4/vf//7nD7t/4/93LlzURTF7+uOO+4Y6pfjJ9jJH7CV3NbOsfoqRqXMwZ7h6NdKblJUmjxFjIjbK61kEZEGqyPsblJ1SzXjU02oJ+L9l9DpTuEGGQWL6AhVvPcdBR9tPUzcWVDaIM1ejkF/1DsKliV0RJTFVKFUWVnJ0qVL+eSTT9iwYQMul4sFCxZgs9kAsNvt7Nq1i5/97Gfs2rWLNWvWcOjQIW6++eZ+j3XXXXfR0NDg+3r++eeH+uX4hDr5A7WSXe0qmXlpdJxL9kbwO1ph+58A78nvcBeg17WQp4KKDuv2Y5LCLTSpbbYFTTLqm8I9Jn00xz6rwOTQdy+hc4A0S7YvhVtGwSIaIllCp6u+HnOqhea2ejINtpAp3DIKFpGKu9RPoLf333/f7/bq1avJzs5m586dzJkzB5PJxIYNG/y2efbZZ/nKV75CfX09I0aM8H0/KSmJnJycIXneoYQ6+YO1krsSOzCey2TM12ajHHwD6rZ0RwJ4T/4k7Bjdw7AkHsWRdSGCP7+slKLkJDn5xYD+fTjw5+WWzBjZL4V7XfXzDG+3cE7XQKL1CspGpqCcb+y+X+EvzkXM0u+k2jPVL4X74/xCUo4cZV1hEffLKFgMQGsKd3rTafCo6J1gtrT7ltDpncJdo2Rws367t5tkuYVPDZlMr6piX04uS+QPShGmmOoo9WW1WgHIyMgIuY2iKKSlpfl9/69//Stms5krrriCBx98kHPnzg3mUw0q1Mn/UICTP+4sGBt0jCz8Kq17/iUR/CLqGqwO/lBxNOB9C8tz/W73jIJPt9VjVscETOFOVe1sVqdyo3GtXwq3LKEjwhVJCrfrpNN/CZ3uIN79nmIsrhRO6lW/JXTURDNF1lZqyidx23CzHJMibDHVUepNVVXuv/9+Zs2aRXl5ecBtOjo6eOihh/iP//gPUlNTfd//zne+Q1FRETk5OVRVVfHwww+zd+/eft2oHp2dnXR2dvput7e3R+U1RHLyd9XXY0kt4vOjhxk70gYH1gAXIvgdurPMVr0nv6NkGVtSh5N+7hwb43O4X4L8RBiCFe86BQrNSb7bPaPg5O5RsGIbjnn6HNj+Z78U7iTcFNGEXufxpnDvOcILugRuyMvlw04X3x0vxbsIrbbZFvS+YCncdKdw5yQdQMma7UvhNjvj+IQMrnafoizRm8JtN82js6WVjcQzMy2ZVlMGhYP5gsSXSswWSsuWLWPfvn1s2bIl4P1Op5M77rgDj8fDc88953ffXXfd5fvv8vJyRo8ezbRp09i1axdTpkzp91grV67kl7/8ZXRfAKG7Sb1P/n6t5C4POUn7fSd/Twp3EnaMnmGUJa5DmXAb6qjbsR6pxSDzdhGmUMX7HdMDLKHTdxTcZ0FmncdIq6Jwje6Afwq3FO9Cg2Cj4GXzRgVN4U5J02FstZM2zj+Fez3jmaLU0aLT+1K47R9+ygu6BK43Z7C9w8VdqclD8rrEl0NMjt6WL1/OW2+9xaZNm8jPz+93v9Pp5Pbbb6e2tpYNGzb4dZMCmTJlCvHx8Rw+HLhwefjhh7Farb6vEycCv5FoEUkKt+uU0z+CvzuFe7+nmJJeI7eek/90axt5ubkkp8ul1yI8WpfQ8Y2CR17LucrnILPEb0FmufRaXKxQo+CZJVl+t/suyBwohTsVG/vIYXb8Fl90Ss8SOhviDPywtAidogz66xJfHjFVKKmqyrJly1izZg0ffvghRUVF/bbpKZIOHz7Mxo0byczMDPBI/g4cOIDT6SQ3Nzfg/UajkdTUVL+vixWqlaw1hdvsjKNayeBq9ZTv0mvHiVYa0HG4rY2S0SXyhiQGFEnx3nXCe1WRtWodphFlIZfQkUuvRSS0joKd7R4Ssw2g5ARM4XaScGEULNEpIgpiqlBaunQpr7zyCq+++iopKSk0NjbS2NiIw+EAwOVy8c1vfpMdO3bw17/+Fbfb7dumq6sLgKNHj/L444+zY8cO6urq+Ne//sVtt93G5MmTmTlz5pC9lnBbyQOlcPu1kvUe36XX9sNH+KjtHFkpabS0BP5dQvQWbjepJ4X7WE0lafEp6Ls8pGXYfcV7sEuvOxqstHU4ZBQswhbuKLineC/LHIc7KR6jPZsxk0ySwi2GREwVSqtWrcJqtTJ37lxyc3N9X6+//joAJ0+e5K233uLkyZNMmjTJb5utW7cCYDAY+OCDD1i4cCGlpaX86Ec/YsGCBWzcuBH9EP3DHW4rOZwU7lCt5AyHjdr4eOYXjQj4u4TooaWb5Evhbi7zL96713Tb7ynqNwrusNyCtWQUFp1ORsEibFqX0Kk9VEP22UzvKLhmi6RwiyERUx/mVtVgEXhehYWFA25TUFBAZWVlNJ+WZsFO/r6t5Kqm/aRa2znU0cDElGuwKQ4KC0aAvdmvlex3VVHhHOx7jlClM5IjJ78Ik5ZR8PhUE8d3d6dw2+aRlvFpv1HwJ31GwcZpczj+7jpODC9gioyCRRi0LqFj6vqMtKYijIlurFXrKJx6BXz0G8D/woJF3blJ9qyb2dLiJPPcOc5KbpK4CDHVUfoyCHXy920l1zVtxmkuI7srgbi8UQFTuKWVLKJhXVVjwO8HGgX3S+EOYxTc+vY7bEtNJ93lllGwGFAkKdye+njU5EMkOEZ4R8HVoVO4ZRQsokUKpSjSevKnJI2D/dvINM1D1+JGaT4EB9b6pXBLK1lcrOcrj/Lyx8cD3hdoFGxut2DTtWBvT6R48jTvKLi1Hug/ClZnPuBL4U5tbKBWr5dRsBiQ1hRuXdNpdFZbwCV0ZBQsBpsUSlGk9eTXn96G3laE5+xx4pXDA6ZwW+2TZE03oUmo4j3YKLg+/hRZSilpZcNRFAWOrIfqtQGvKnK4CyWFW2iiJYi3ZxTsOuUkzZSA3WqkOD8FpfkI4F1nsLZrMnp9Q78U7tNdKifzR8hVweKiSaEUJZGkcDtPdGHKasNDll8Ef08K9wndhQh+R8kysBTS9NlBEseNlTckEZaBQk8DjoKdiaSUTiU3yQZNh2H7n/CoyoXivXsUrKLD3uKUJXSEJlpSuHtGwWnxKSR05pFlOY+SbIZTOwDY7JyFQddAk2cUZQneFG6HaR6dZ1vZ3NxMdk62jILFRZNCKUq0pnDrmk6j647gz008gJJV6ovgb3UNx4idYZ5hvpOfCd/ic7uN/KJRJHQ55Q1JDEhr8R5wFFz1d8A7cutXvI+617uEjsPGxngjKySFW4RBSwr3hVHwWVQl15ub5GiF41vwqApNikqTp4gRcReCeO2Hj7CqzcbC5GQONzbJKFhcNCmUoiDcS6+hTyu5dwr33r8B3lay1ZNFKh1+Kdxuj4cNyelk5GZTOkZayWJgWot33yi4pZbEcxvBPMZvCZ3exTvl38SeNFU+Lyc00ZrCHXAU3L1cyV53MQ53AXpdC3kqviDenhRuKd5FtEihFAXhXnoNfVrJPSncigLnPge8rWSjvoEukv1SuD841YjB2cn2DhcTZZ0iMYBIUridJ72jYIPjvN8SOgFTuId/W66+FJppSuHuPQoeM5lc+x5A8ctNMmIn2T0MS/xR1JGzJYVbDAoplKIg0layscNB2ozboeUo1LwTuJXcncJd5XSjU6HIoJd1isSAIkvhDryETqtruN/Vl0y9E5KzQAcGs1nekERYtKZwT86/Gaq8o2BjbTVKUgZs+BnQKzrFV7yD43yaFO9iUEihdJG0pHC/c+QtCjvjOGY/hFktJWHKbJS6LdBUDYRuJcvJL8KlZRSsqh44v61/Cnf3h2UDjoJnPYDb40GXlMzwwpFyTIqwaC3eq/f8mSz3VDwttcQpJ8AeagmdxRKdIgaNFEoXSUsKd0rnQQ5a7ZRnj8WTaiHXsc/7OZDdf5FWsoiacEfBHtWD036Y1M/TvCnc9hmaRsFnnE5QFDkmxYAiWkKnaSzqsFrvKLjXEjr9u0myILMYXFIoXQStKdxqQhnFqLi6RjPaZPS2kt/7CSCtZBE94aZwVzXtx3byENbPG7uD/Ko1jYJRoft/hAhJSzepJ4Xbr3gPsSCzjILFYJNCKUKRpHArh/di6CjHkjACR8tOOBgqgl9ayUI7LSncdWcqcFrd6JM6vSncN9zpHQWf2gnIKFhEh9ZRsL6pwT+Fu9coOFAKt4yCxWCTQilCkaRwK005mBJcWNs/xJSVLSncIqq0pnAP85ynw92JOWmc99Lrqjeh+RAceENGwSJqVm+pDXpfoFFwfJPBP4VbUeBsHQBZLj0n4jzM7EnhnrwEa+UuNnugyeWSUbAYFFIoRSDiFG5zGzZrvPfkP7AWCJzC3TFmOUnzrqer9hhJksItwqQ1hdtgK8MUF0dq0gRvCrfHA1ueClK8g/VAuxTvQpMGq4MXPgpcKPX+gxIujII7HOe9Kdw5dpRR82Dva3DMu/7lVl0OI9w6XPEnfZ9N8qSmsvvwMfRZWcgoWAwGKZQisPN4a9D7+kbw+1rJHi5E8KOETOE2fusxzn38CYkTJ2BJSpI3JDGgSFK4O09uw+K+FkWle0HmUEvoLMVjKZQ13YQmwYr3b/Q5Jv1Gwcmd3hTu6TfCgX/CwTW+JXSyXMOo13vI8SioVy3H3mCVJXTEoJNCKQJbjwTOTeo7b/drJacloGLxrul2vqH7fm8ekknxT+FuffsdXkzLJq/lLHqdtJLFwCJK4bYX4XbWkXT+g7BSuOUNSWgRqnifX2bxux10FHx6F3BhCZ16RWWyuwNL/DEcqfMkhVsMCSmUNAp18vdN4Q7aSj75KeA9+a0kYcThvXpj9oM4TrTyUVwCKQ2nWKfEMa+wYNBfk/hi0/Jh2b4LMoeTwt1R8B/sKBrFAqeDDw0J8oYkwhKseFeAqYXpvtv9RsGJ5d4U7swSqPp74OJ9yvflYhcxZKRQ0ijYyf+dK/t3k/xayVgw5+dD4z449L7vw7KdJACqt5tUOEc+LCs0CzUK7lu8+42Cw0zhNk6bw5S6Y2wqKGL51HI5JsWAQhXv3w6whM7k/JvpPOUdBRvaD3mjU0ItoSO5SWIISaGkQaiTf0Zxpu+/e1K4i5OS6exuJWdZzqM4WmHX/wK9cpPUZMqUBlB0OD53yckvNIt0FOxL4W76rPv+AKPgWQ/Q+vY7vJRuYYHqYnP9qcF/QeILL6IUbs9U3M464pWTA6RwL5FukhhSUihpEG4r+UDzAVLVNk6fMDAy2UxqYrn3s0m2Zr8FHf1O/knSShbahTsK7inejS1NdHaPglOKLCg6HdiaABkFi+gY7BTuDsst7CgaxdecHbSZ0uUPSjHopFAKk5ZW8tHWw6iqiqnFTqJjureVnGyWCH4RdcGW0Ok7Cu5ZQqeu3kVaWqJ3FFwwAlR3d56XjIJFdIQ7Cq5uqWZ8qgn1ROAUbpBRsIgNUiiFKdgbEgSO4FePthCXoEPXoUorWQyKUEvo9B0F152pwKMbhim5BZNhzoVR8PY/ATIKFtGz8WDgJXT6joLHpI/m2GcVmBx6/xRuGQWLGCOFUhhCvSEFaiXrmk6jWM+TmZCD27BfWski6kKlcAcaBafEpaKr6yTHNB5jYrJ3FHxgbXckgIyCRXQ8X3mUf+xpCHhf31HwuurnMbdbsOlavEvoTJ7mHQW31gMyChaxQwqlATRYHWF3k3paya5TTv8I/hCtZHXyEtREM1ehUjGiWFrJIiyhPiz7UIAldOLOgtIGafZyDPqj3tBTWUJHRFGo4v0/Zxf3HwW3tXPMXoNZLfXmJikKHFkP1WtlFCxiihRKA6httgUNxe8bwd/TSk6LT7mQwp1shqo3AHB7dFg9WaTS4ffZpM6zrfzx82ZuKs6XVrIYUCRL6HTV12NOtdDcVk+mwTZACvcySeEWmoW62OXOWYW+2z2jYLvTSb4pF48p17uETtNh2P4nXwp3sceOtXsUrKLDuv2YFO/ikpBCaQD/Phz40uslM0b2i+C/0Eo+643gLxgBjlbfeOMvzkWU63fiItnbTZr/OPYGK6vabCxITubt2lPSShYD0prCrWs6jc6joneC2dLuW0InUJCfMuE2mPAt/t3Rxdfz8ySFW4Ql3Itd4MIo2GhPJl7JoqR4qncJnaq/AxdSuP2K91H3SvEuLhkplEJotDr4Q8XRgPctLM/1u93TSj7dVo9ZHXOhlVz9NuA9+VNVO5vVqdxoXIsy4TYcJongF9poSeH2GwX3XkKn+RAA+z3FlPQaufUsoeP2eFATk2jMzpZjUoQl3Nyk3qNgnRUKDLPoOPSyLKEjYpoUSiE8Xxm4SNIpUGhO8t3uaSW72lUy89JQlFxvBD+KX26SkwSKaEKv86CO/prM24Vmtc22oPf1TeH2GwV35JCbeACl+Bo4tRMAszOOaiWDq9VTvkuvHSda+eBUI2ecTlBknUExsEiW0OkZBZ9vqMA0oix0Cvfwb8sflOKSkkIphL/vDPx5oTum94/gL8schzspHqM9mzGTTN4I/g0/AwJceo2C43yaXHotNAs2Cl42b1S/FO7eo2Cjw+5d0+3gP+H4R3hUhfWMZ4pSR4ve47v02n74CFVON94P5gX7dJ4QF2jtJvlGwV0e0jLsvotdAl19ydQ7UZPMWDs7MMgflOISkUIpAoEi+GsP1ZB9NpORI6/lXM2WAXKTFsul10KzhhCj4JklWb7/7knhLuyI842CfSncx7cC3aNgbOwjh9nxW3zdJCnehRZaUrjfOfoO5SkpvlGwbwmd7uiU/Z6i/qPgWQ9wurWNvNxcktMlOkVcGlIoaRQsgj+tKROjMQFr1TpMI0PnJkkKt4hEsL/c+46Ce1K4j590MXpUMUrPhQWqO/goeORsGQULzcIdBVe3VDM9Zxq1NZtJi08NuCBzsFFwAzoOt7VRMrpEjklxScRUobRy5UqmT59OSkoK2dnZLFq0iJqaGr9tVFXlscceIy8vj8TERObOncuBAwf8tuns7GT58uWYzWaSk5O5+eabOXnyZFSeY6AUbk99PGryIRIcI6SVLAZFqL/c+46C65o2oyaUkZ3Tibu5xDsKDrUgs4yCRYTWVQVO4e47Ch6TPppdR56j2HY1cQnOgAsyBxsFf9R2jqyUNFpaAo+dhRhsMVUoVVZWsnTpUj755BM2bNiAy+ViwYIF2GwX/mp58skneeqpp/j973/Pp59+Sk5ODtdddx3nzp3zbbNixQrWrl3La6+9xpYtWzh//jxf//rXcbvdF/X8gqVw66w2/wh+aSWLKNOyhE5K0jiUw3sxtpaTU1ziHQWHWpBZRsEiAs9XHuXlj48HvK/vKHhd9fMUt42h1rWRVMfMC6PgXincfqPg7hTuLYYkMhw2auPjmV80YkhelxB9xVSh9P7777NkyRKuuOIKJk6cyOrVq6mvr2fnTu9VOqqq8rvf/Y5HHnmEW2+9lfLycl5++WXsdjuvvvoqAFarlRdffJHf/va3fPWrX2Xy5Mm88sor7N+/n40bN17U89Oawi2tZBENWpfQ0Z/ehtKUg8no4mzteyFHwZLCLSIRKoU70Cg41drOoY7PKEm5BnuGwzsK7pPC7TcKlhRuEaFGqyPqjxlThVJfVqsVgIyMDABqa2tpbGxkwYIFvm2MRiPXXHMNW7d6P6S6c+dOnE6n3zZ5eXmUl5f7tomE1hRuaSWLaNCyhE7PKNh5oguTuQ2bNd6veA/UTeqw3Eri3K/R9NlnJI4bK29IIiw7j7cGve8n14/tNwp2msvI7kogLm8U40rSUJqPSAq3iLrXP61nwdObo/64MVsoqarK/fffz6xZsygvLwegsdE7D7dYLH7bWiwW332NjY0YDAbS09ODbtNXZ2cn7e3tfl+9faPPshAAB079izzPdJwmJ+jy/FK4wTt2m8pRqnpaydf9io6TVnYUjWKh08Fxg0FayWJAWpbQATC06ojPTibBmU9Wjh1l1DxfwGSVWsg0jmJVLoyCjd96jGObKiieO4eELqe8IYmwqGrgo7LvEjrVLdVMG/ENuo5spXT8EvRtijeI97x34dwqtZBS9zlOxXl8Kdwdo5eSNO96umqPkSTFuwhTg9XBw2v24xmEVJOYLZSWLVvGvn37+Nvf/tbvPkVR/G6rqtrve32F2mblypWYTCbfV0GB/zIi88ss/X5mfP7X6Sp2kZ94A6U3zkMZPhWcdt/9FrcOu97D9bq96Kcvhpk/IuGKcczSK7ROmcKK6RPk5BcDKjInowtw2C6dN6pf8X6F+QpMxZMpGz4T07hpmL9yE5z/HKb/EBQd5Uodanw7t+i2eUfB1/2KztPnOH/1LBKOHqF0jIyCRXimFWYQ6F/T3kvoAJRllnGmdQdzrrmPttO7sUwrhbwpkH0FoFCu1OGJP8d8jnqX0JnzAAnffhx3UzM333ozecOSpXgXYalttg1KkQQxWigtX76ct956i02bNpGfn+/7fk5ODkC/ztCZM2d8XaacnBy6urpobW0Nuk1fDz/8MFar1fd14sSFq4sUYGpher+f0evimFx4K/lXT0AXpwedDsZ8DRTvLrXEH6UYG5b4Wpjzf72PpdMxbOIErispkjckEZZcUyIrbx2PvrvI1wEPXz+W/7twbL9tdYqO8uwJZJVeTd7osSj6OBg+BdIK4KZn0Ol0TNQfI8dwDGXBL33F+7j2NgyTpzAxNXmIX534oso1JfLr/zPe9waiA574P+P7dTh1io6JBTfj9rRQdPVNF/6tLF0IN/8//Y/J+T9D0elIHF9OXFwc140qlH8rRViC/VEZFWoM8Xg86tKlS9W8vDz10KFDAe/PyclRn3jiCd/3Ojs7VZPJpP7xj39UVVVV29ra1Pj4ePX111/3bXP69GlVp9Op77//fljPw2q1qoA6csX/p762/bi2F7HzZVV9LF1Vf5Hq/f+dL2v7eSECON1mV7ceaVZPt9kjf5C2k6p6bLP3/4WIgos+LuWYFFH02vbjauF9f1cB1Wq1Ru1xFVUNMmy+BO69915effVV/vnPf1JaWur7vslkIjHR+5fKE088wcqVK1m9ejWjR4/mf/7nf6ioqKCmpoaUlBQA7rnnHt555x1eeuklMjIyePDBB2lpaWHnzp3ow/jrpL29HZPJRE19I2MKAnehQrKegrPHIKMYTMO1/7wQQgghNDt04nNKR+RgtVpJTU2NymPGReVRomTVqlUAzJ071+/7q1evZsmSJQD8+Mc/xuFwcO+999La2sqVV17J+vXrfUUSwNNPP01cXBy33347DoeD+fPn89JLL4VVJPWW06eNHDbTcCmQhBBCiCEW8ft2CDHVUYoVPR2laFakQgghhBhcg/H+HZMf5hZCCCGEiAVSKAkhhBBCBCGFkhBCCCFEEFIoCSGEEEIEIYWSEEIIIUQQUigJIYQQQgQhhZIQQgghRBBSKAkhhBBCBCGFkhBCCCFEEDG1hEms6Akrb29vv8TPRAghhBDh6nnfjuaiI1IoBdDS0gJAQUHBJX4mQgghhNCqpaUFk8kUlceSQimAjIwMAOrr66O2oy9X7e3tFBQUcOLECVk37yLIfowe2ZfRI/syOmQ/Ro/VamXEiBG+9/FokEIpAJ3O+9Etk8kkB22UpKamyr6MAtmP0SP7MnpkX0aH7Mfo6Xkfj8pjRe2RhBBCCCG+ZKRQEkIIIYQIQgqlAIxGI7/4xS8wGo2X+ql84cm+jA7Zj9Ej+zJ6ZF9Gh+zH6BmMfamo0byGTgghhBDiS0Q6SkIIIYQQQUihJIQQQggRhBRKQgghhBBBSKEkhBBCCBHEZVsoPffccxQVFZGQkMDUqVP56KOPQm5fWVnJ1KlTSUhIoLi4mD/+8Y9D9Exjm5b9WFFRgaIo/b4+++yzIXzGsWnz5s3cdNNN5OXloSgK//jHPwb8GTkm+9O6H+WYDG7lypVMnz6dlJQUsrOzWbRoETU1NQP+nByX/iLZj3JcBrZq1SomTJjgC+acMWMG7733XsificbxeFkWSq+//jorVqzgkUceYffu3cyePZvrr7+e+vr6gNvX1tZyww03MHv2bHbv3s1Pf/pTfvSjH/Hmm28O8TOPLVr3Y4+amhoaGhp8X6NHjx6iZxy7bDYbEydO5Pe//31Y28sxGZjW/dhDjsn+KisrWbp0KZ988gkbNmzA5XKxYMECbDZb0J+R47K/SPZjDzku/eXn5/PrX/+aHTt2sGPHDq699lpuueUWDhw4EHD7qB2P6mXoK1/5inr33Xf7fW/s2LHqQw89FHD7H//4x+rYsWP9vvdf//Vf6lVXXTVoz/GLQOt+3LRpkwqora2tQ/DsvrgAde3atSG3kWNyYOHsRzkmw3fmzBkVUCsrK4NuI8flwMLZj3Jchi89PV3985//HPC+aB2Pl11Hqauri507d7JgwQK/7y9YsICtW7cG/JmPP/643/YLFy5kx44dOJ3OQXuusSyS/dhj8uTJ5ObmMn/+fDZt2jSYT/NLS47J6JJjcmBWqxUg5GKjclwOLJz92EOOy+DcbjevvfYaNpuNGTNmBNwmWsfjZVcoNTc343a7sVgsft+3WCw0NjYG/JnGxsaA27tcLpqbmwftucaySPZjbm4uL7zwAm+++SZr1qyhtLSU+fPns3nz5qF4yl8qckxGhxyT4VFVlfvvv59Zs2ZRXl4edDs5LkMLdz/KcRnc/v37GTZsGEajkbvvvpu1a9cybty4gNtG63iMu6hn/AWmKIrfbVVV+31voO0Dff9yo2U/lpaWUlpa6rs9Y8YMTpw4wW9+8xvmzJkzqM/zy0iOyYsnx2R4li1bxr59+9iyZcuA28pxGVy4+1GOy+BKS0vZs2cPbW1tvPnmmyxevJjKysqgxVI0jsfLrqNkNpvR6/X9uh5nzpzpV3n2yMnJCbh9XFwcmZmZg/ZcY1kk+zGQq666isOHD0f76X3pyTE5eOSY9Ld8+XLeeustNm3aRH5+fsht5bgMTst+DESOSy+DwUBJSQnTpk1j5cqVTJw4kWeeeSbgttE6Hi+7QslgMDB16lQ2bNjg9/0NGzZw9dVXB/yZGTNm9Nt+/fr1TJs2jfj4+EF7rrEskv0YyO7du8nNzY320/vSk2Ny8Mgx6aWqKsuWLWPNmjV8+OGHFBUVDfgzclz2F8l+DESOy8BUVaWzszPgfVE7HrV9vvzL4bXXXlPj4+PVF198UT148KC6YsUKNTk5Wa2rq1NVVVUfeugh9Xvf+55v+2PHjqlJSUnqfffdpx48eFB98cUX1fj4ePWNN964VC8hJmjdj08//bS6du1a9dChQ2pVVZX60EMPqYD65ptvXqqXEDPOnTun7t69W929e7cKqE899ZS6e/du9fjx46qqyjEZLq37UY7J4O655x7VZDKpFRUVakNDg+/Lbrf7tpHjcmCR7Ec5LgN7+OGH1c2bN6u1tbXqvn371J/+9KeqTqdT169fr6rq4B2Pl2WhpKqq+oc//EEdOXKkajAY1ClTpvhdqrl48WL1mmuu8du+oqJCnTx5smowGNTCwkJ11apVQ/yMY5OW/fjEE0+oo0aNUhMSEtT09HR11qxZ6rvvvnsJnnXs6bkcuO/X4sWLVVWVYzJcWvejHJPBBdqPgLp69WrfNnJcDiyS/SjHZWA/+MEPfO83WVlZ6vz5831FkqoO3vGoqGr3J5uEEEIIIYSfy+4zSkIIIYQQ4ZJCSQghhBAiCCmUhBBCCCGCkEJJCCGEECIIKZSEEEIIIYKQQkkIIYQQIggplIQQQgghgpBCSQghhBAiCCmUhBBCCCGCkEJJCHHJzZ07lxUrVlzqp6HJ3LlzURQFRVHYs2fPgNsvWbLEt/0//vGPQX9+QojokEJJCDGkAhVFa9as4Ve/+tWleUIBrFixgkWLFg243V133UVDQwPl5eUDbvvMM8/Q0NAQhWcnhBhKcZf6CQghREZGxqV+Cn4+/fRTbrzxxgG3S0pKIicnJ6zHNJlMmEymi31qQoghJh0lIcSQWbJkCZWVlTzzzDO+MVRdXV2/LtPcuXNZvnw5K1asID09HYvFwgsvvIDNZuPOO+8kJSWFUaNG8d577/l+RlVVnnzySYqLi0lMTGTixIm88cYbmp6f0+nEYDCwdetWHnnkERRF4corrwz759944w3Gjx9PYmIimZmZfPWrX8Vms2l6DkKI2CKFkhBiyDzzzDPMmDHDN7JqaGigoKAg4LYvv/wyZrOZ7du3s3z5cu655x5uu+02rr76anbt2sXChQv53ve+h91uB+DRRx9l9erVrFq1igMHDnDffffx3e9+l8rKyrCfn16vZ8uWLQDs2bOHhoYG1q1bF9bPNjQ08O1vf5sf/OAHVFdXU1FRwa233oqqqmH/fiFE7JHRmxBiyJhMJgwGQ1gjq4kTJ/Loo48C8PDDD/PrX/8as9nMXXfdBcDPf/5zVq1axb59+xg/fjxPPfUUH374ITNmzACguLiYLVu28Pzzz3PNNdeE9fx0Oh2nT58mMzOTiRMnanptDQ0NuFwubr31VkaOHAnA+PHjNT2GECL2SKEkhIhJEyZM8P23Xq8nMzPTr/CwWCwAnDlzhoMHD9LR0cF1113n9xhdXV1MnjxZ0+/dvXu35iIJvIXd/PnzGT9+PAsXLmTBggV885vfJD09XfNjCSFihxRKQoiYFB8f73dbURS/7ymKAoDH48Hj8QDw7rvvMnz4cL+fMxqNmn7vnj17IiqU9Ho9GzZsYOvWraxfv55nn32WRx55hG3btlFUVKT58YQQsUE+oySEGFIGgwG32x3Vxxw3bhxGo5H6+npKSkr8voJ9BiqY/fv3+3WztFAUhZkzZ/LLX/6S3bt3YzAYWLt2bUSPJYSIDdJREkIMqcLCQrZt20ZdXR3Dhg2LSjRASkoKDz74IPfddx8ej4dZs2bR3t7O1q1bGTZsGIsXLw77sTweD/v27eP06dMkJyeHfUn/tm3b+OCDD1iwYAHZ2dls27aNpqYmysrKIn1ZQogYIB0lIcSQevDBB9Hr9YwbN46srCzq6+uj8ri/+tWv+PnPf87KlSspKytj4cKFvP32235jr5deesk3sgvmv//7v3n99dcZPnw4jz/+eNi/PzU1lc2bN3PDDTcwZswYHn30UX77299y/fXXR/yahBCXnqLKtatCiMvEY489RkVFBRUVFRf9WHPnzmXSpEn87ne/0/RziqKwdu3asJK/hRCXnnSUhBCXjXXr1vHkk09G7fGee+45hg0bxv79+wfc9u6772bYsGFR+91CiKEhHSUhhIjAqVOncDgcAIwYMQKDwRBy+zNnztDe3g5Abm4uycnJg/4chRAXTwolIYQQQoggZPQmhBBCCBGEFEpCCCGEEEFIoSSEEEIIEYQUSkIIIYQQQUihJIQQQggRhBRKQgghhBBBSKEkhBBCCBGEFEpCCCGEEEFIoSSEEEIIEYQUSkIIIYQQQfz/X2eVe0Xj0+4AAAAASUVORK5CYII=\n", - "text/plain": [ - "
    " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# plot the same transmitted and received signals we plotted above\n", - "fig, ax = plt.subplots()\n", - "#t = np.linspace(0,3,900)\n", - "ax.plot(t_sawtooth,tx/1e6,'.', label ='transmitted signal')\n", - "ax.plot(t_sawtooth,rx/1e6,'.', label ='received signal')\n", - "\n", - "# produce some randomly delayed signals\n", - "rng = default_rng(seed = 4321)\n", - "delays = np.absolute(rng.uniform(0.05, 0.15, 10))\n", - "\n", - "\n", - "print(f\"The time delays associated with these signals are {delays} s\")\n", - "for delay in delays:\n", - " rx_rnd = sawtooth_with_delay(delay)\n", - " ax.plot(t_sawtooth,rx_rnd/1e6,'.', label ='received signal', markersize = 0.3)\n", - "\n", - "# finish off the plots\n", - "ax.set_xlabel('time, $t$ [s]')\n", - "ax.set_ylabel('frequency, $f$ [MHz]')\n", - "#ax.legend()\n", - "ax.set_xlim(0, 3); " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's construct what signal we would get if we mixed and filtered the three different signals plotted above. \n", - "\n", - "In the case when there was only one received signal, delayed by 0.1s, we use the geometry of the figure to see that\n", - "\n", - "$$ \n", - "\\Delta f = K \\Delta t\n", - "$$\n", - "\n", - "where $K = 200 \\times10^6$ Hz/s is the rate of increase in the transmitted frequency.\n", - "\n", - "So the signal recorded in the chirps will have this frequency." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "period of 1.0000000000000001e-07 s\n", - "frequency of 10000.0 kHz\n" - ] - }, - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAGzCAYAAADtxFmzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOx9ebwdRZX/t+99SxIggbAkIWwBWUTWARXwFxRBHFFU1AEVggvoMKiDxA1ERFAHVzYVFEQjLogjIC44EkbZwx5QFBARSAiJQICEbG+53b8/7u3uqjrfqjp9373oc+75fOC9nHfq1Kk6VadOfau6O8myLEOPetSjHvWoRz3qUY/GTLW/twE96lGPetSjHvWoR/8s1EusetSjHvWoRz3qUY86RL3Eqkc96lGPetSjHvWoQ9RLrHrUox71qEc96lGPOkS9xKpHPepRj3rUox71qEPUS6x61KMe9ahHPepRjzpEvcSqRz3qUY961KMe9ahD1EusetSjHvWoRz3qUY86RH1/bwP+GShNUzzxxBPYYIMNkCTJ39ucHvWoRz3qUY96pKAsy/D8889j8803R63WGaypl1h1gJ544glsueWWf28zetSjHvWoRz3qURu0ePFibLHFFh3R1UusOkAbbLABgKZjJk+e/He2pkc96lGPetSjHmlo5cqV2HLLLYt1vBPUS6w6QPnx3+TJk3uJVY961KMe9ahH44w6eY2nd3m9Rz3qUY961KMe9ahD1EusetSjHvWoRz3qUY86RL3Eqkc96lGPetSjHvWoQ9RLrHrUox71qEc96lGPOkS9xKpHPepRj3rUox71qEPUS6x61KMe9ahHPepRjzpEvcSqRz3qUY961KMe9ahD1EusetSjHvWoRz3qUY86RL3Eqkc96lGPetSjHvWoQzSuEqsbbrgBhx56KDbffHMkSYKf/exn0TLXX3899tprL0yYMAHbbrstvvnNbwqZyy+/HDvvvDMGBwex884748orr+yC9T3qUY961KMe9eifncZVYrV69Wrsvvvu+PrXv66Sf+SRR3DIIYdg9uzZWLhwIT75yU/iP//zP3H55ZcXMgsWLMARRxyBOXPm4N5778WcOXNw+OGH47bbbutWM3rUox71qEc96tE/KSVZlmV/byPaoSRJcOWVV+LNb36zV+YTn/gEfv7zn+P+++8veMcddxzuvfdeLFiwAABwxBFHYOXKlfj1r39dyPzrv/4rNtpoI1x66aUqW1auXIkpU6ZgxYoVvW8F9qhHPepRj3o0Tqgb6/e4Qqyq0oIFC3DwwQdbvNe+9rW48847MTIyEpS55ZZbKtd3xyPPWP9++KlVuPNRm/fnvz2PhYuetXh/emIl/vD4Cov3h8dX4E9PrLR49yx+Dn/+2/MW767HnsHDT62yeLf9dTkefXq1xbvl4aex+Jk1Fu/Gh57CE8+tLf6dZRmu//NT+NvKdQUvTTP87sEn8dTzQwWvkWb47QN/wzOrhwveaCPF/97/N6xYM1LwhkdTXPunv2HlupK3bqSB+X/6G1YNjRa8tcNN3trhRsFbPTSK+X/6G9aNlLzn141g/p/+huHRtOCtWDOCa//0N4w0St6zq4fxv/f/DY203DM8vWoIv3vgSaQG78mV63Ddg0/C3FssXbEWNz70lNVPjz+7Brf85WmL99jy1bjtr8st3l+Jvx8i/r5/qfT3fUva9/ftjzyj8vdNDz2t8vd1xN+/e+BJ6u/n1pQ8n7+vJf6+Vunva11/rx3B/94v/f3bB7rr70XL13Td3/dSfz+LvzwZ9/eCh5er/H3DGPz92wfk/P7f+6W/r/njMqx2/H3NH5cJf1/zx2WWv1e25vfQaMlj8/sZMr+fel76+2/E3088txY3/Nn29+Jn1uBmx9+PPr0atzr+fvipVbiDxPO7ib9///hzFu++JSvwxyfsMXDP4ufw4DI5v11/3/bX5XhEGc+XOP6+7sEnLX9nWTN2m/5O0wzX/knG8/l/kv6e74nnrr818byKv935zfwdmt8mb/Ezcn53mv6pE6tly5Zh2rRpFm/atGkYHR3F008/HZRZtmyZV+/Q0BBWrlxp/QcA75l3Bx5YVgbLA796Pd72zQVYtLycAAeffQMOO/8WPPl8c7CPNlIcct6NOPTrNxUDdvXQKA79+k045Lwbi0XlmdXDePM3bsbBZ99QDJIlz63FWy9YgAO/en2h/y9PPo8jLrwVr/rKdQXv948/h3dedBtmf+l3Be+Wh5/GnItvx35f+G3Bu/b+J/Gu79yOV325LPvze5/Ae757B1537o0F70e3L8J7592Jt5x/c8G7+KZHcMz37sSRF99a8L7224dw7CV34v2X3Fnwvvg/D+B9l9yJD/94YcE77ef34X2X3ImTr/h9wfv4T3+P911yJz77yz8VvA/+aCHed8md+Or8Bwvee793B4695E5887qHC947LroVx3zvTnzvlkcL3pu/cTPeM+8O/PSuxwvea8+5Ae/+7h349X2lr/f/0u8w5+LbreD7/774O7zz27fhrsfKoPrKL1+HIy68FfcvLf396pa/H1teBsHXOP5upBled6709xu+1q6/V+Hwby1Q+fuoi29T+fvd370Drzv3hoJ36e2L8J55d+Aww9/fzv397fLIPPf3sd+z/X3sJXfihEttfx97yZ34xOWlvz/203vxvkvuxOm/KP39gR8txLGX3ImvXGP4e94dOOZ7d+L839n+fu+8OzEv4u+DW/6++g/S39c9+GTBY/7e/8u/q+bvldLfK9Y2/b1muPR3vqg8u3oYb6L+vgUHnRX39zsuutXy94KHl1N/H/2d2/HKL5dyv/i939/m/P7OzY/gvfPuxDu/bc/vY75n+/vMq+/H+79/F0696r6C96mf3Yf3f/8unPnr8uTgo/99L97//btw7v8+VPA+8MO78b5L7sRFN/y14L1n3u049pI78f0FjxW8d1zYnN8/vWtxwcv9ffV9Swvev7b8fd2D5Vx+1Zevw9Hfud1Kkmd/6Xc48tu34b4lZeLzqq9ch7dfeKuV5Bz41evxb99cUCSraZrh4LNvwFvOv6VISoZHU7zu3Bvxxq/fXCQbK9eN4A1fuwmvP++mImF4cuU6vPkbN+O155T+fmz5arz1ggWWvx9YthJHXHgrDjD8fddjz+KdF91myd340FOYc/HteOPXbip4v/njMrz7u3fg3765oOBdcfcSvHfenZhzcTlvv3/rYzj2kjvxPiNOf+uGv+J9l9yJD156d8E759o/432X3ImTjHn7hV834/lpP/9jwTv1qmY8/4Lj7/ddcif197dvfKTg5f7+wa2lv9/Zmt+XG3P5sPOlv19L/P3KL12HORffjjseLZPf2V9qzm/T352mf+rECmgeGZqUD2KTz2RcnklnnnkmpkyZUvy35ZZbFn9buOg5IZ/vVEaNLPyvTzWD8Vojg//bimYwfn5dmf0/t7Y5YfOFGQBWt3YCZkDPdT9g7IDytt67WNp0xyPPCt5NrZ27adP/PtBccJ5eVe5w/qc1mB81Esaf3fMEAOC+JeXC85M7m4Hv1r+WC9QPb10EoBnkS7nHLR0A8Ks/NOv44W2LCt71rWRn3s2PFry7Hmu240e3l3J5H1x+dzkRH3+2GQx/8fuyjmdbu7Fr/lgutCONZp/9zlhoc7rlL8sFz92tAigWX9Pfj1T0t7mjzNEeM0HPdT/I/P24DBjM3/ku3bTpt4W/y93rb1r985hR/89bvvqjgbrkScztBnKb+y8fR0Dp75/fW/oiT3YuNfyYJ7dmwpT7+1Lm77ukv806nmv5+zfE32Ywzulm4u87H5P9mI95c/f8cMvf5g59Wcvfqwx/58mWOb/y+W0iErm/H/qb9Pfvib9dJK3ZnqdbNpXjMuRvc35fpfT391oJ0BV3Lyl4+Ty8xEiO8s3MBcaG6MaHmvZdZCy0d7fi6feNhfbBVh9cdkeZWOVIzc8Wyvn9a2PxHW714++Iv295WKIYOfpo+jbfPK8zkJZFLV89b6A5uU+fW13y8jG4zECR1rT8baJSub/NRD73d27TkIHkLni4OVaXG6hTHi8XGePomj8ta7WhHEe/bMXEu4yxnfss9wlQzjlzY5LPTXMDk//+PaW/v3l9ycv9bc753NZL7yjnfD6/rzTGWe7vq/8g/f2/9/8NLrkoZSfpnzqxmj59ukCennzySfT19WHjjTcOyrgolkknn3wyVqxYUfy3eHE5wWutfMxcVPMpuc6YCDkyaS5qjRbTPPpYN1z+ntOa4WZgrhvJX67H5OXQaa0mk0TConJ1JkeSzjoZSXUiV+vAiGOXAtlNQS0vHYNczjP9nfNMf+c8Ex4fTaW/879nRitznumewt9Gf+b+Zv3O/MP82E8EKa9PJzfAKq5IDdLxDeIgJjeayvmjlRtl9bb8bB4t5GWHjTGQ12EufjlvJJW+NTdya1qJdL8x+dYU/pbzu4/NWzJx+wmvj0zIOtHH6uhT1lGVzGOgnMw5UspJ/7Cyo0o5pm+08Fkq5EZGM4OXCh15wmSOrTx2m3MvR7bMuZL7e6BeF7YM9pe8nAb7JI/NvQEix8pSfWTOd2J+U19Qf5NxQf3Yvlyn6J86sdp3330xf/58i3fNNddg7733Rn9/f1Bmv/328+odHBzE5MmTrf9yygefuajmQclcVPPgZSZOeQAwk618QJi7zHzymgtEXtZcDPLfTbl8QaCLBl1wlHKBoBQrW5X6lUGe8eiiQRccv5yZROVyan+biXSrL8ydb+5by98p8W0e3BvS32Ygz/3NFw0ZWFJlwpIqfdsJf9MEXbsxYJsKuoFQ8lplzUCd84YMn+X5yrCVXMtEOveLxSvmbVlv7m+zO3N/m7zc3/oNBPGtdlNB1qVOPArFEn62IaNjgOV1Srm8WnN+53Kmf/KiQ41y3ubtNuVyn5ljpUjKGtLfZtfReEp44/TZM4sS4iB2YqSWG0PZTtG4SqxWrVqFe+65B/fccw+A5usU7rnnHixa1IQITz75ZBx99NGF/HHHHYfHHnsMc+fOxf3334/vfOc7uPjii/HRj360kDnhhBNwzTXX4Itf/CIeeOABfPGLX8S1116LD3/4w2Oy1VxA80Bh8vLJay6qZRJlohqE15IbsiZs83dzIcv1jZLFd0xJVIfLViXtjlq98w7s+M02sCSqTpKokL9Z0myWHWG8Vn32gjx2f7NkiyVWWh5fpMfubxb/tKgpXaTpouqXsxbaPIkyx0CS80qf5avkEJnfJi+f3xav8GMqeGYf5/rMPs79rE58x+BHOgYEpzrx3CiQCVmsaouq2dZczkyECp6ZWCWSl/tn2Ei2cpTLkmO8Au2SPJMK1CyT8zsbQ8+zsv8MCdvfk8ZVYnXnnXdizz33xJ577gkAmDt3Lvbcc098+tOfBgAsXbq0SLIAYNasWbj66qtx3XXXYY899sBnP/tZnHfeeXjrW99ayOy333748Y9/jO9+97vYbbfdMG/ePFx22WV4+ctf3paN+dhnRz7mQpvvUiw5gljlcLPFyxOwYamPoRomMlEgHQTVoJOZ7px0xysMau3EfGUJ01iSrXprO5ySJMpc8BjqVGdJFEmGadJM/D3akGMl17eWjB/m7xiSmfu7oTwm44uqYHl4Y3c4T466wzPbz5KoXM5Ep3Iy5cokSs49s2w+v4dI0sz0mYlQrs9cBEcIslWiWFo/ti/XkQVZl0N5EjBJNJFu/bSSqBbTPOLLBc04mM8bk5fPx+FR6R8LnRqVCPIIQZ9HSMJUFcVinhiLf+jVio6k0jrSjoFQ2U4g6Brqe0Fq6RC96lWvCg6MefPmCd4rX/lK3H333VLYoLe97W1429veNlbzAJSOMxcydv6eoxCjqQyoo9YEI7wiOZL6UlKvuWMbbqSYiLrFG00z9NcTz85OtpHvCnVy/5gkfZYTTywlQmD7WwZKdnTHUKfC30TfaMTfecJrdvtI2vK3wcv9zRIMeoREj3x0CVhHjgLpcZ6U4yiWP4ky21AnR3e5Ojuxynly42SjTiSJIgnTSEp4Db8+a5H2jJ+JqNsJWMvfDJ3SIltcTrA6sszqk2FZlser5k+zXXlsMudj4duGRB6jx7c5qkz8w/xtIVs52kX0NUg8NymP5ybl/h4v1OllIlfHYlQ371WZNK4Qq/FA+cRhl1ut3UchZ5RtSLl8gtm7Ul0duZy5uOSLr4nmFHLGZMx161EfHWLUiUnUrfthtn9avxviDbKLZP6mfiwmNPNjWYfW36yOYeLvXB/zt3nXqESxSJ9p710pkY6qxMaM+t5Vi2f2XXFvxrpLQxBKwmMPHNAFlBz7UV6rzBBBpKk+kqiZuT9Dsdj9rPzvnUanOgJYadEpGkz8R3zmopoXjV2KZ4kQPc4jvFDCxO9iyTrYRszsYn7KwE4KXjhkqROkHwN+HVYi3frZS6zGKRVIgrVY5sGu5A2TYMdgfM6TC3IOQbOy5pTKefbiK5MoJpdTp5OtqqS9L1T1Qr3Zn42i32WyZfuW+Jv5p8HkZB1qfwf0ZYQX8ze7r5OT/s6NYHWEGFrB70T55Uy/l0mUvDdj8vIiZjJTIFHsiI9cQKdIlKkvJKfkxVCsYZqYBxIrZXLdiWPebpHp74Qk0jmZfZf/OsKSHvMJwNE8ETKPapkvMuunaddwQ/rHPIIcHvXrY3co7Tbp4t4/E7EYRe8Ck77pBvUSqw5T6Uw5+K2FmyAdjFceFZpyOcfkKevI5EKb88yFqXh0X/ukVcVjmLGQNqCz8/+8rNknJc+Uy3UY+kjZcp4S/1j6mH9k4lsuYGF/k3usQX3WaziIv3N9fKeovSTcHeLICOHRss2f1pOxLcmU8Ey5fP64x2quXJFws7JKfbEL6A1SL6sj18fmcsJ4htcyMi5yeiGP+lliV/UBCvtJaKm34JH4a/pnhGw4ynguyzJ9KdGXMX8Tnp34pYI3QjZYo8xmsukqUEt61C952nuVVUmNRAXGpbXZJol0cX/OfA1SFzcGvcSqw1RO2JKXD3BzoOeD2Zazdfj0lYE3UgfRF7pTYY7bXI85lFnZnDoB3WqJXqKseCxh9XHrp9l3xeKr7E/LP8QXjcLfMqGzxwXRR/zN6qBJI0u2iL8bhb/NZKtV6gX0LSOaMDEedbh/XFjiJJGmCXIAzaFllfq0CTLTZ1JwfhN95l21oig9Um3/jlNV0vvbL2fPbzmnGK+c3zIBs/yTybKNYDyPJXT+GGKiT/nf7eQg1yGR1gZZH1jCSY/6lYlsJ+5Q6l9/0vxp342Ud+XysibymNdhJlvdBPF6iVWHqQiAJLHigVJOsBgSFdZn8CrqMxfVYqElSAd/d4hgqR99rkpj2U2xvuPolKyLooLM32RhDC2g9B5XzN+BhClmc0b8nddhLrRlsiWJL6DduVPHVtXwohpeyPLfKM8YNCF00ypb7PzDcpX1actG6i2/NgEhx8bAWPzdCUR6bP6WMS+cMIVjI4vTDLlm/qk6H22b88QqFWXtJxSbv482ZFkL8cwTq0zyKEIYSNA7Tep3zZEkKh9v7L1y1lFg61fWd92gXmLVYWKBjUG9bKEtJ0RYXwjp4BCzTp8VeNkul/By0iZMnYm7ckJo38VCF9rAYsSCdtQXY1hUtbxQcI+VbQT9TRZa9fEgkxs7sfDH/W3/NMvaC5nUGzp+Mv/CEmmW5KYkaQ4myGwxN8tqka0A2hVDIxmSmdM/or9B+ink7zTSn+VcKXkUTWJxVatPycv12Ue/hNcqO0rk7KsDuvGTE+Wx7LYD5H8EweU1uWYsy8egOX+LF71G+q6bdwR7iVWHiU8wKHkkQAeCMSL62EIT0mcd++UCBjPXk1i8QDDuVuD1x1h12Wgwdn4CHBUMBiy2WJpl2QKq9DdFtsjxk9bfRR1WstX8aaIQIX/zp/I6gVD6kyiL1/oZTZrJMS8/vpW8lPDoHRmtvoBc7B6OOpFmR79kDORFtP7u3lH/WPxNeJCJRvhkQY4fikQxfQR1iqNdspE5L3YvLLTZszdJzZ8Ji+cweXJc5NStO3U0iXPsafLIXCZ9kpON5Ep9vcRqHBG9S8MCJQ2Asmx5L0MXPOPBnegjdzWK7wzGLj0XE1Z3LNCRhVbLo8FY9gnIpGMTNuQfNtlZ8GzH38wWqk/pb9Yv7DoVRbYC/taiGlVJ7VuSRGbOTx+Tb0ICPGaLtqxSn8ljciF9rG0mMT9W9rcS2apKen9L+cr+tq5JyLrYXTmtv7X6QvcgLR7dJMk6QvFcO7+1L2ntBNH8hvRncFNsFA29Cob1XTeol1h1mOgFvxDSwXjWhCW8EDJhTeLAAGN1ELnYUWDlexkv6I62mpw9YQkv0HcmaZGtIEJJ/BiT0/JC+hIrac592/49nG7dqQvJ0STXCKL5X/nxTslUo0mFXKmPIVshtIuiU5G7U1pkK9Q2E2VkTwqGjv/56y2IYEVS+5siGK0+Ufu75IWOzfX+ZryIvor+HssVA45akruWXdoUMwo94Wsjj4RH5jzfxPr7pBvUS6w6TEF4PjJxtJMk9EQYhYnJWbNWX+zYL3wvQ8erSnw6kMmZL6ptTE7GYwtZMABG+p0hmVp/a/VVPaaykubQEZL2mLcDDqcwPw3GefulXOyIhia5yo0OvdMSSJpZOyx9yoSbIXTaO1v8KFD6lsWBnLp1FKj2d2b/tP4W8TdLcJi/Q5spWkdk4Q7rIzxiC70SYJQNjR/2eg16z05Y3pnYzYjFc4o+E14JbZUcPUDBV5JOUC+x6jDxuy/+AGhNEmWgDD5hxsoaPO0CEtq9IoJglAGa7WhfyKcCZbuCEHOkrNY/LABQKDq0SCuDu0naJwpD+lgSZVI44WbHg2MnHnj9vNj4KJNm8+9yYQzdw0mJfxgiEjv+H5M+kjSztjF9ofFjUnV//x2OAiO+1fZJaD7G0KnQKxP4hsjQNwZ/0w16ALVk87sWSaSr3qusTMy3jj0mz0IjiW+1wAN7pUSnqJdYdZi0d2m0E4LpK8/zdQOnLX3sJaR0R4sWj9y7gqTundPLScInJ1mMCI+9gDML9J3W3/zeFQhP6ovD/WPQx96JFPSt5DHq2usWIPuzTJAJjwVosvDwDVG470L+iW+IpM1afTQRyPw2mx1J7+GQhIkfF8myOb2g/nb+FpUj/gYbKxYSxcpKXjm/WFlIntbfZVFPou+vw0ZxIIg+LRqc313aKBMenT9sfkPyCGYRnN/doF5i1WEKHgEoJwQP7iXxOzyyLNvRBZ8wY+0g+mL3rtgTZjm9kHAyQYnppGOBKPieMctnfv/YfQxZlh0hKf0dfLs7sVl7fMB20tTfyuPBzjysIL1LUQgwHmkX9aMsy3lSX2jBi+oLIB32WCFtI/pC707iL5iV+mpk40TvYnXtdQt+f9vxyN+GdvytRZNCi37Mt5QX8DeN5yUr+DoIFs8Zuhmby133N9sUE3+D+js0v424SvR1Ma/qJVadpvA9HCkXuzcTugvAXgAXg5O172IK6WMwsf2koOTl1LVHdskkKRda2f4YnKx/o3qojw19wTEg66D6UuazsL7gnT+KiMi2xd5vVvUeTlUK+Za+HDKCYgXRJO09HJB6WRJOE3NpC1g7mC2ROoIvr6T3jkoK3bMDmd/alwJXpaC/iZy6rXTxLXmhi+XRO1uBhJYdByNic9XXdYDYx9cRaV/smLeM5xDUmTt1dt2mnRSdoglT+/O7G9RLrDpM6sutgV1FTF/wnhQNxsQWpi82EMmxAH3/UT45jXpD70fpBGkvipZhyArRgscSjeDFU62/I8lMWJ9RbyDgW0G7qr+JHE+iwol06B5OVWLhjyXDIR7rT7qRMF/Oq0STGCKkRSZCG5jozjxkC5HjGwe2SMuy/Elg4m+hoTqF/W0utKyf7J9AxN/KDZHe35EFXunvIHKtnLc8nst6Y0+Bhv3dOUTaitPadU8bL9la0Eusxg/xgAovL3pvJgD1cn0lj6FT2kDO9bV+kuQtdlxUbnzZY7yCVZ3IHMlZrA2xBbnBeCyIBZEtQ46OAZ2+8PiR+tqzpaXPSgYhiN2z48EYgtcu8QCYB0+50CLWxzRAOzpgzhs5H1lyRPWxhTaScHP0IzeFLdxyPkbRlIz0VVV/swcduvRUIN0kSffQOZ/KptL5w+5dBV/4zPSRdsQ3WH6bKdoeSRA5sgVRNhjPI/4mQGbbxJNmwiNy4eTVbJcsyx7W6BT1EqsOUxiaJAGQBE8+icmEoPrMgSP1sclUji8WjMM257/TScd2Qt06PijsCS9kQTmS0Np9knPC/R7yT1SfEu0K+pskR/TeFeHF7uHkf7ePi1o8dum5E4GX8chipA3QbNEKXSznSWk44IfmdyzJDelLI/rYJoHGJPZyWq2/W39nLwruzJv2Ca+oJ+xbkL4Lb1jZuADhhfXRY+OgPoMXQNTMwR96WWks8dO+hiMcz6W+Ts5v2i7CY5sB/sCBKZfH1ZJ6LwgdRxS+61TyQkcFMTQpBAlHywagY/6NQp0+K8jSHU6LB0mdRDX4QgvBbAf94UcFso7K/rb6nehT+lt/0dbvb+27mPiLRMNy7RJLVLVIFAGx1MfhbExVf+VG2ObQgwRWM6rqi/SLHskj/qYIZecWWkb8grO0t/x8TUmh+08madHIqq/Aacff6k8nBeKA+n17hMfjOZvzncus2DFv9EWvwXWKzRWjDpbBd4h6iVWHKXT3JcqjMLFc9YMXKiPBvfoFTamPIR0msce2WeANvR+lKknL+IJcylVfoLSXmYP+ZsHYsJnek6qqbyw2U33S39butdjmynYwf7dL1th26vHxyiQyHGS193Cqvz0dwbJBW1JmX1hf8M3eEd5Y/M3kxu7vsG8pL1+kI/4OoU5xZEunr3JZanPBiiT6bDyWcqF4Hks4aeLXwfnN71jZf7PsZTzax6W+4HF4F6iXWHWYgvdmIscsnXghYew4ovoTayzwmPrsn2YZ/lqG8Dty2qUioNIgoLM3CvdrEcCgv8OBvPoLCcOLqvYOmBoZJQGaIRhs5zvWOw32oiB5BTpF7DUpiOAYvNACZd3rYWWVvPCGKGxLENliPov4Ue1vMr85kinMq0R0obUGgeRV9rdVNqCPzMd434mi6g1WaD6ytSAWz7TzOxQfa0a2EHzNTkVidea/MpWxuBVE6UnZblAvseow0Q9vBhajGJLAX0ioDJR0BwpRB3tnCgsowXtXRJ/9mL7ksZ1vuxSaTIhMOv4UCYRc+XsWlFN/GzL/Bw3u1f3NA3nOU/o7cj+L2ZfzYi+JLeXQFkVfrVD8NMdnXjdbZGQbGPrB5k8sQWaJPvetzj5mC7OZfwSe2cLij99mps8+HmzxUNJYF66U+JshVnY8kmXHhtgRfcQWPXqos4+h1PxuJEQdofkdO6kIxnMQf7eZSEfvwtLxztafokTJo4i81Edy8I5RL7HqMPHdArw8tsOJoknKoJ0Rfdp3J4UWGu2OIXbHqoN5VfhYQLng6YMxjLK6RZomJIGAatdRUV/sCCnob9I2E3kLjB/rxZL5jlZ5z05D1k6d8VhyTRFFCJ72PgxPzP36KNLBfGHUkc9v/eYsbHPlF8zG+oX4kX+VQfKqUEZ+p74webSP4ecZZbX+1urTf3g9oM8a37leqY/O70gdLJ6zOa+N5wwt9JFlh2OjyWVx0G5DKF6WvNBpQzeol1h1mLRn2XRHEloYiD6Twi+o09qi1MdsiQzY4OcyyIJcmUgxdpGVBujQkY9BwW/7RfQF72yByJn6qvqblFXXG9nRhhYzy75CD/O3vBirIbaj5WifycusnzEeYvMxML9ZEj62D/8Sm9NwO5gtPJHW9Qu1JZA0m/7mmym9v61xn/uWvtg30q4QItRGn2jv2Y3FFvV8DCXSsfHIbGb6cn+TOqLfFvXMb3v+5D/NPsnlwnMl/CABi1tyPnaDeolVhymEdPBAWZatfBk1EmRD93qiyInWlmAgl21jR4HWPZxKux5jAYC0gwXeYuFJlX2sDIptBdmqi2BK2tGGvnBZqHjaJ/S6tstlSQAZA0EEJ9LWUMLEeLatuv4Mvs3f0Bda8FjbokhZRX2WLdr5nZL5XSWRZuPOTK4h7dD6W/tkKNXHEghWVssLbYhi7QjEc55skLK0DjK/iX3sASUQOZfoU57k73yOmrbJekL2shjSDeolVh2mwsGxAawMbOoXEiqRLS3szKBtftQi5UL6rKdI6Dty2l1oCS8gZxKF8QMTm/EochLTpw2ApI/1x1QyGNH3KVE/krGsRcqC77syyrbrb+en+Xdtv5vUCQSQb0JkvWzeWrYEk/WILaG4Qm2W+trxNz8Obv7spL/txNex2+BR9IMu0hByWn2xjQmzL9XqI/M2dOzFYm0sAaH6gldUMiHH7tGa5PM3y6/ZqxXU654ll5cNz59uHgX2dU3z/1EaE9JBdgv6i5KQPHqR1R+040gZ0RdYBJg+66lAtuup8NK2do4x1I9U00urtl7A42/aJ0QfezCB7sqq+Vv/6HEb/taOgWKh9fk7s/SZ5NtJxv2d29jGQqblkT4uF1/TVr8+akvaGX2hxbydBb6qvoQeBZb+9uVVHMFgfRLup3BCG/ajNinlc0raHDoai+pjbaMPHsm26VE7iEoYMlj1np1JvnhOP7QdaRf1GbE3eK/SOgrktnWCeolVh4lN9gyElzl/9JXNhJhHTgoGURdLn+RVRWyoLaa+AHwe42VZRl80yeZFjFe5XY4dUl/+t7C+YB8TffYuMhO8MFRulpX6xvJIPpfLFUubTdL7W7CEHUyW6tculoEFT40+M30Rua7ds4v5UYtEKfsleM+uzXs4sWPUsfhbjdgRuU68EqUtfTQ5asnFLrQH/B21JZCssjuzJvlefsrmuBWjCC/UT9F2BfqkG9Q7Cuww6WFYySvlDbkAL7ZTpWUDclZCpLSZ7iRJveXfZFn774TnGf9UP9khpe20q/ibrv3t9FNhH0MrIG2Bst/pJ3wivKr90tZY1vpboavU2Ya9AV5b/mb6Qv7u1JgKtCM+RzPrZztto3W0M78R922+frdlL22Dsv2B+cj6kzXaCj+BfqLfvSQ77+ic1/qb8khZpi9Qh0lZlok5kIF2E0ctqX5mLwiP+Dtib6eol1h1nDLj/y1OILhmjJcpeZGyIZSk48hWG+3I9cXuWDGeq6vg0cndGXtDbYju8AJybSFRgbJqW9gnbZS2mBTsU4MXSzJMHvN4bKGu6rN2xrH2qdrKc4r1cYfaEXyzdaRtoSO6aB2ehZbxmL/pPRyiX9sG216dPoTqIHbRuWxpC/QT8U9K7h3F5nzI3ynpBKsO1n/w18H0wWG5Ls+yzDPvSflIG+hDLLRP/Pq6Qb2jwA7T2O49sEEi9YVRMcMWcpdGbwvRp7Ul8KLBjAx2k9hg9yG2WtkoOkf08Uns18d+4ztBqY8HfDIGtPqIwqi+QNvGgtqx3bVJNFnK9IvymNCVdtpF6qB9rLWl+FukrFIfs0WNohNbqs5vNl9M4vOT+5slGnYCGrJDF0MtfcoXpIb1tV+WxkujE/gDSqQdrGzIZkMf5VV8UbBJWSrnfdPfRJaibsQ22lZDT6j9Fo9Z0RnqJVYdplDGH99t6fQhVEcUJmWTk9mSWT99NiPUNlpHeGD7dsixy62sPJ+c0l6e0EqeFokqytJ7D0yfDJ5aJCqqL1hW8uwgqxsrVRE/k7QolquL8cZyV7AqEsXsbatP6GJZ0RZt27Q2a22hvq0+v73+ZvPbWnx17aJxKzR/IraF6ogjR7KOUDzn945YTCb9EokhrCwg+4XaErDZahokOsV4fnu1trE+kcptdE6Y0DEad0eB559/PmbNmoUJEyZgr732wo033uiVffe7340kScR/L3nJSwqZefPmUZl169a1ZR9HjiSvXPTNiZ3/ZLxwHTyJ0OnLAnWMRR8vK3km+eBgrWwM/mW+CO7cWLvozk3WQea1B52K2BywxaQQKkhtoXVkQi6K2BCb6CLg8S0j3j7/ImeWiSXXpW0RewsdkT4hYxuBvtMjWxC8sd2rZPokry1/B+rwlYnxo/Nb6e8g+m7aUOio7m82v9UIf8UYilg7AnXEYlww7iljJhye69uM8Krop7E20oZQP3WDxlViddlll+HDH/4wTjnlFCxcuBCzZ8/G6173OixatIjKn3vuuVi6dGnx3+LFizF16lT827/9myU3efJkS27p0qWYMGFCWzaWY98MTs3f6a6ClI4t5vziaaCOWDDiy6+/DlMqGNx0+kzyHdGJC5CZB8Ui7Y8vyFKO+izfHZE7CdFdVMA/0ePgwPjRomwxfWzsaREWhpQF7/c5PNePaZaJ3a97D4cHezbe5bgLIXt2Hco+CdThtqFdfR2520X9w/rFKFvV36RPTark78j87oi/I/Gyqr87pi+VvOptg0FywtB4kRJe8bsu/li1ZgSxyjzxnKxxsfjG6mb9FEK2ukHjKrE666yzcMwxx+DYY4/Fi1/8YpxzzjnYcsstccEFF1D5KVOmYPr06cV/d955J5599lm85z3vseSSJLHkpk+f3raN/Ngm/5vkWe/coWhKRX1WkPHrs4Mnk7P/VklfwGbtLg8WLxP8LOOyTFds4aGLdOjFp44d3jbEfKZEtqojahFbAm2L7cy1Y4+NbxKfkUH6kfm2ycuscho7MkgemL30HWCkLNHH6ih54f6kPOdvtpw0JqqPjZWK7eC2RMqO2d8RO5RtYP6mfTIWfyv1qf3NeMWc0tWhXR9IV6n9zeRM8sVzV9b1dyjOuLpMe3z2hpCtbtC4SayGh4dx11134eCDD7b4Bx98MG655RaVjosvvhgHHXQQtt56a4u/atUqbL311thiiy3whje8AQsXLmzbTu3ukMScIBJljgheB2TZIOoU1kd3zXTXw+olvEDg4eiZIWfYY/Kil5nprorIOfImry1kK1BHe8hWqyxJUmL6QG1mbbP/5m1bAD3jj5ALU8TYowgG8TdbATo3tm0bq+jjc1TqCyJRUZsD+pgtTJ8aYanef9qYpPW3i2JR9IegOpXtHUM/0Zgc0TcWRC2sD0E5bdtC6L6mT/nJgtTn1uKWDY5jOgfC9tLfSFs7RePm8vrTTz+NRqOBadOmWfxp06Zh2bJl0fJLly7Fr3/9a/zoRz+y+DvttBPmzZuHXXfdFStXrsS5556LV7ziFbj33nux/fbbU11DQ0MYGhoq/r1y5cri91AC0Q4SlTl/M5lj0hd9jJfUEXjZJLWFPs4vJ0rsXkZTLhE8Jsv6nU06qd9NAtiEJfrITigY7GL66PgJBU9ZFtE6/MEotsvjY5nxdHVkmdw5alDL0Nixx53fXtbH0XYFP/kRtk9ry1jmdxC1i6HPSn+H4kU7/s6ccoxX2iGXyCiC4/zNJG0cHEufRG1hcto6CnnSL5G5wdqGUD/H7Mu4H9mmmG+Uw/qpbQF7tfO7GzRuEKuc3DdwZxl/K7dL8+bNw4Ybbog3v/nNFn+fffbBUUcdhd133x2zZ8/GT37yE+ywww742te+5tV15plnYsqUKcV/W265ZfG38M7Attv8acsRnlofiJxRluzygvdhmD7LFltHrG10AjhIh9j1pHIiNhdaOTNiSBQ78ioTQaW9Fk/KsbKhoBDTVwa2iC20DqUtrhL4/ePyckme1MZtFvvXzDSIy4UWFGYvrLJjsDcvS9EU2cfUFqYvMue1vgjd5eMIhjC5Qh1l2aC+iL+z1CkIuXEKHfmweATW1og+Fsuqo31SH5i+mL8DMdmqI5W84NrC9Fk8YXJQn7s+OG6kvCy19RdyzD9qnzG58BjoJmI1bhKrTTbZBPV6XaBTTz75pECxXMqyDN/5zncwZ84cDAwMBGVrtRpe+tKX4qGHHvLKnHzyyVixYkXx3+LFi426mj/5TogELBKJtHcm9Asts0Xqix6t5TyrbYFFCmEe34WT83fwM3kexKV+J4y3bS8PdrLekC12G/zB2KojGDxlHdQ+SDlmSxwlafEIKhRDI7X+ZkmzBrEKBU+OvIbtDfmnHcROjYrROe/3txahi835sfibxaSx+DvL4psLbR/TeEl57fs7pK8tfxd/kzbHryxIfa5N3rJsY8diHGuv8+9cTqJT7MhQv5m09eU+I+2nSKbU1w0aN4nVwMAA9tprL8yfP9/iz58/H/vtt1+w7PXXX4+//OUvOOaYY6L1ZFmGe+65BzNmzPDKDA4OYvLkydZ/ZfnWT0M+tLhFn8ohgzp4iY8FY2ZLtA42wSSPI0CSVw52qc/d9chFNT5h2eRnbQjaRoM2WyhkBGR1aBG7WIBW62OLivM38++0vTH0A5LYmC95xN+mHGyfFTxaj/QZIHnEPaIOYS/7jbQBoTosW4nNxU/dosV5rA9ZHbKs3QwWL/w2W/WF/O3oY3flNP7OMqnfva+j9TePyYH2t+Fvulkpflb3N0OEKsdzYh9dH6JlJY+PAc99KsHT+VvaprM36G/C6waNmztWADB37lzMmTMHe++9N/bdd19ceOGFWLRoEY477jgATSRpyZIluOSSS6xyF198MV7+8pdjl112ETpPP/107LPPPth+++2xcuVKnHfeebjnnnvwjW98oy0bQwueHk2SIT96XFToi/Gq6aMB2uLJAcsmbHmEIvW59cpJlyFz7lhlkIJNuVgQ89tL4qk6ANL2W7xQWekfughG9NGFMeSL2CIVDNCZ4LGdb2yhTVPbZ64ekycW5MyHYoVtC/OIvsiLXsNH36wsRFl9Um/oS/36Yv5hqF0QFWujT+lCm3I00qU0y8RHct3xMzbbShuFXBv+LmIZvU4AUTbm76rxnOlDG/q089vXp2wDLOZ85kOk3bJZ1Ges/ZQHVhZdo3GVWB1xxBFYvnw5zjjjDCxduhS77LILrr766uIpv6VLl4p3Wq1YsQKXX345zj33XKrzueeew/vf/34sW7YMU6ZMwZ577okbbrgBL3vZy9qyMRO/+BbVAM/QF3wkP1aWDsT8b5mQ4zypLz45/WVjNrPJmWYQH1duolhhXsg2juCwstJedVBMdX0SSw7G1scsKLavD4G+0oxvjrba/2YBL80k3+UVdhBdTE49R019smj1+U38w0htS6Qd1GZWlshRxKZCHax1Lo91ga9cO76g/g6VbaOOIHLCbCHUzvgJ2UznMgiPFFb7m9RhUkbmLeW5dhB9rK2V+ylib6doXCVWAHD88cfj+OOPp3+bN2+e4E2ZMgVr1qzx6jv77LNx9tlnd8o8dXafDw/1zpfuhIyyTB9BDYIICwv4Wn3WIJbhiCYgHpvlROSohrgEm2VUP7PNDhKZ9dOWkzyrzuJvTJ+U5OiUySP6tDbTOmw7TSavg/Uf8SNpBx3Ljn1s9yrvW5B+9vmbtT+S+AZRiMgYYPNiLPM7/zWKBhB9Vds2NiRPp8+1RYtMuKQpWx3ta583lj5uD/1p3z42ljvRtuirFaD7fI2LRJX1heWKORBZC8vfdTGqGzRu7liNF2ILGVssfdm9K5f/GkNTQnUwSDRWliETIcSqHZt9j6674z2D7K8skzwXEQntXNq6UEoXQX+7XghbqL/bet1AQJ+Sh5hcGvdZznOnhxehjLSVzcfQLjfWx8G5x+qAUi6ij6wVtA6tbxkkpEaViQ46fujTXx6eY0vG4kDmsS3WdwjIkX6ItUtdh1QXtoXJcbNU+sy5wRTSOgK2uGNe+NHnb2Iz8y2NA5GxCKW9obHSDRp3iNU/OlXeHSqzb7b7MIdT+eRYyQshUTEUIoRM2IE8oC+y6+FPh3jQKSZHdkeg9ipti+16CAIGZR0hxC6GOlX2dwTFCcpF+i+EnjHExm0vQ53cyMtQS2Sg/uaX4yUviiZ57DV/mn/X7vLRRh1a1ADKMcVQai1KUrW9bp8ytIL60R0DmR6xaufOzQuJHGljvMUr5nfZ/mA8R3VeeH2QPDi2uFM09fEyyXOJ3sdz9FVG7EgbOLLVeeolVh2mIrRnkmfJtZgxVKfIyIm+dl7ySeI9l2N1hGzR6nPk5GSSO5fMw5PBOI6uhOyN9YkaTXJ0ePUFP85NbO6QvysjdNFXK9g2hfRxf2eC576Zrrmo2jxXnxado/aqX/wpeeo+DvhbjQAqETreB8RnynZQORg8aTJFBHyIlevvLAvHTcs2EF7MXo9tlfRF6qj6ySqKJlkJQy4f5jF/l/Eioq+CHEtMZCJt25HzmFxMXxbsJwg5erJi1ilq6xz1EqsOU3DnwjLtCEpU9QzdnrByJGpRnOCuR2uLqY9ELXcHmpeh93AoioUoz9VXGZ2zJixpP8l8w30CUTZaR0V/U31afxOeTbJeukNMffeppD6X5dsNu6HQ72+pPYZ0MGtC6FxGyrCFjKOHtr0uD9TmgD6zJFlBtCij7PVSUWyccYSFJTDc30jYlxV0/rZe4ULapY3JPtTNx4uieOqxF7DZkArO7wgvhETFxg+1Ja0QfxGXqxTPHZkmP2xvqF3doF5i1WEKftCY+DGGdFTf+crgTm2Jflw5/5sM7lp0KiM8d7EQQRayn1iAziAnRpb5eNJealsbL3XVohCFvBU8c3nJ0yJRzN9Un/NUpU+fuzD6bNbsaGVQlP5hiBWLd75xERsDWhSiWBgjLxUMfayZLW48DkTGAP1Itl8fHz9h/4RQu3b83USiXN/q30kny8px0LyvQ8o6Mm67QvGIjXc2v107XDlXh0+O8gLIVgxNCsdpHa/d8aNCp8Dl2h0XvvndDmLXTciqd3m9w8QWt9AOAlRODgjtzpfuNNhkiux8EbDZRj9EM8p2GOp8OzA5wTIx4FliVe08nwUTQybV29vkZZKXMV5YX7ifwvrUO8uQPq0tkcWHjR+vfxwe8y1bsLw72phc5vyEL+nRjYFyfiv1MZ+xOkh/pqQsHVOxcUbiRXB+t+Hv5n0qu22ZI5Pr0fib6ss8dUT8HZrfdEPI1Cn9zTcrZqy15Zu8iv427ZNhIIhkqv3N9JExYJIedSLjwqcvVgezV9l3PcRqHJF2p5plEHKMp92psgmLMeijNud/i31cmb58kOtjk44lWyp0Cj6etFe9o6d9DEEsQMd2h0W9abgObYAGaUdonMUDvuSx/mMoDpT+aQZKyRNf/6zg7/hF61w2Pj7ddvFjfb++KJIAyQuNPbePfW3r1K5e6+9mwhSft1p/NxdfV47XofV3HC2WsUzr7xJ1kmVNi3kyzGyRNrMxRf2jHD9V/K26JwXCI3JsDHj1peE6QuCBZv3pFvUQqw5TGbQNHpHTIhNFRs4WRqYvIzxmC9Nn8UhZNwsy/s7qoDY7dbgqKaoB2YfNQO7wKGzv3rlp315tH4eOAKP+CQVerT7iRzB9Jo/ekfEvDBQpc+oQ/lH6m+98ub9j+qhvCY9fGGd9IsQ8+vx9F59nHdBHbDaJbQC1/vbNF4YwtevvLIM8hiN1uPo4AsjtdXlj8TdHdaQcR1hYHSTWjqVtBLWjY4/pc9sAT/zV+larL5Vxf6zzm/m7G9RLrDpMwV2PERXo3amCZ8oF9GVMn+TFy+r0ZZSn1cd3KezOBEWsUsmT5/lxZMtnm9kWX7t4++EvS/1tyIHw1D6TZbV1aP3Nxo+rI1QH80XbO1/mW8R3viF/2/p0/uaICBs/LXmKRurmVBRRC/hbjWpEUDZXh1+ffMBkLP5m+poyYX3a8a7tY62/QwjYWPTFY3Jm/c38u9lTQX0ps8XW544INr/996RYWclz6/DFc97HEDw5yvgc7Qb1EqsOkxaZoEgU0ZcF5CxeZv/NW5bIuX+z/m61I6AvZgvYBGO7XL6bEbZCtoGjJNw2itg5+t26mZx2l8t2qqFd1Fj8bRIPMkRfqI7IWA7tfG1b4v7J9THfUn0Oz+dv5jOmPzZ/9MgjqzdgS7QOZotfn9bf/FUaYX1V5ne7/mb6MsTjhXZeFO3XjvdIn+T/oFcsYPJ0/tbGVfWm0NER1QdbH0uG2dxzmVlm6/LyIOdl6tNH25AJHt9IyLLdoN4dqw5TOWFjjtZNiLHtepT6Ur++TtpCd6UKHpvY7GOuPADE9Y2lXczfY9IXGCvt+JvqC/i7HX2+BYn5W4VEZc2/WGWJv9OMI5lsXLTTx7T9hs6q+rT+ZmMq59pyyvET8LdJ/PUAxL6iHWXZ5rx19I3R364+WgfVF793xZOZsfub6WvH31Uvm5vE5qP6mJeWZUlzRr7fypEo+hCCW9bjb7U+0k8seWUva+0G9RCrDhPxKd0JZpByfIEK6IuUdf/msyV4J8jUQ2zmd1NkHXRXmpEdqKM/1xdrVyHHypJy1BcswDi6NHI0OIlfInUwfZE63L95bZZFeB1E3jd+xEJNfJb5/MP8qPA306cZP77Fw8djNmj7OFZHcH6bcuT+oNaW8B29LCLH9bHNCr1s7thcxd8sAWOoRtTfRnk4vzNUw63TLRvyd3zDYct79RH7yr9Jm1k7uC0Gj9js00eTVyUSJTfPRI6OqQr6YslrIIZ2g3qJVYeJ381hQawlRzLo6E41pC/C4y8zZHWA8EjZQB2uPjY53aioRTU0yIRPzuWF0Lm2EMCx+KfT+oi/K9sSuYPBHo33+Yf7zC47Fn0pGQPujpY93q7t49Cl7xdCn378yPbyhZvUS2JSzN/N+e3yfP5x5Dz+dtc9OlY0/g75x7HD/JuvbEif2y75t4rjB2Fe6FUIGdNH6rX0BeqAJScTE+Yf6kfwMaDxt29cuLrcNrD29xCrcUSVUY0IjyFCGatDilWuwx50gXZE2ubblcnJxHelYjLRp0O4PjnZib7M08dOOfNnrl/wqvaJ0o8xf2tRy+AY0LaNlTW4HMGQPstcZXlZF+lIJU+rz+9v296mrOwAuQT6+r1ksj6p3u+yrFla7R+ij1+s1tkMIsf8TceAUJb7Me5vbx1UDkE51v4s1Cdj8Ld9BBvQp/Z3uA5aL6sDUi6kz7WZIYVyA+yL58TfxGexVyt49WW8/VZZ1lZ0j3qJVYdJjwhJHtvlahGhcvcKwYvpQ6AOluHH0SlZtsrugyFW9OiB6NPsml19IZSR7ywjPmM71YB/YsgE7WOy86W7ssr35yL6PP1CEQfFHQww9APkDkbmQyOdsowHjmDQdhF0LoZ2cUSo/T4O+TaqL5X62NhTjx+lv31jQC2XxuUo0qGo1xePfDztHI3p8/WdKFvRF7RewGQKXhABc2zRxFp2tYOikYxH8CmvPofn1af0haurW9RLrDpM4V1KmJeF5CJ1FDtLa/GtaIupjuljtnjaoT1XZ7seOTn5Dkd/Th/WV3Wn6urylo3pY78p/c38E6pD62+TG9r5uuOC369R8qjPmBwkTzsGtP3klHPligSA6YvMvbIO5m9ZB0XUiD6wepkfWb2RMVXF3xp0KnPbRewtbY6PAeZv117W/iCKxeZ8pE/CYypii+eFq015WdZOwIR5FLEp9KWsD+yy/JhX+kJz2pDBp8/m+fVJXkxfVcSuG9RLrDpM2l2PFtkKoxqSxzL3tpCJNFBvKgenu+vRIBNsh8OeDmGTyaeP16GZnPp7OO3cwQiiGuRN9lGUhPgMQZt1tlCeUYNv5yuDlG732nzaz+F59LWLkvh20mObU7qyeqTMkFMiGFVjjf0dRBl/1O0gvm36x118iS/G7G9FHQp/d62P2/B3cKzYrbD+ZtvMeGF9Jc8uy5Bh1z1ZlolEuinnlE0ZOsWSYY8+RR08Act43CK+6Ab1XrfQYcqKn5lg0l2KUZbtIAoVJPuGNSF0dZSJkNRCeTE0hU1O8gkELzLB5MROlUxYnz66Q7ZYqsmZZsYfDF0Oa0woBJMr/0ZsGcPOV3vnpp07GM2+s+337UAZQimWDxljK40fro+VdcvF+yk4v019qVvCo4/5kc4zIkc/o+Jvh0msjtJiW5/2jgxZKqXPSK1+fyMq59en9LfQNTZ/u/PC1VeqYHVI+1JlHak0L7q20LIZ23QSX4DLUSRK9VoG4lufPsHjm3FtP3WDeolVh0l/j8L+W/PvyrJ0x9SSj+x8tXcBqiIdblkNkiDTmyaPllVMTr7At4dq0HaFUDwW2Ki/w2W5v2XZsfjbF1BNvaY+t1/4Xaf4YsmQDt+u1CWqr0IdfPyEF8vq6JRcLBlKpEc6iD5WliJRYfu0d7b4nRZl0uzxLZt7LnF9kued3+6dLbeewt9G+5XzO+TvthDAgL/tjV1m/bTKQtYb22DRU5OMbWJ9KJbjH5DTARLlm/YpYwjTp7DF1VfGN+nvblDvKLDDVPgyMul4AMzlwwOCTRKKHIVsYTswWgexL9Y2V3+uxw2AKQ+ebJdL9dEAACFH9UXqoIGITU7SxzywkaAoi3r8LfWF/G22jPk7FIxjdzAy2ItCznNDFAuUDOlANgZ9JOBnSn0uj/UnmwOUB0m8j6V8GOkg9mURfYTHk0ZWhy2f85gvKI/Mbz4f3bKeOoQcEST6fOOH+pv4cUz+ZvosOV0d/Mjd/mn+3UokA/rsJI/ro/1J/CiPecnc8/in3U2xWh88/Un6vRvUQ6w6TBTCpbsUKccmtvZMHkyf0hZ6zyOw64mhOP6dqrMIQjdhtTvfzGhLUJ/n471tIVFV+5gENrrLVd7B4GgX0af1N6Scu8tj9xnoER9d8GwmO/rNsgzi+7tktfSNH6GPJPBuUkZ9W/w0+5PxMuunqYcv3Ga9mfNXri80v/X3NE37/Da7cgyJUiW5bhuQz0d3RdPdjeTJNalDsWHLf4u1PzhHlWWZL2L6QMoyfzO0L4iokY2DVTb13U/T+dudpDQRqrA+UH1kfsf08bnXPeolVh0mulOlTwrKgMqRiVyKTRKijyy+WiTGakegDtcWfvfFr9PUxyasbnLyycTqEPrgu2MlbaXtJwtUW0gHTWZKG0O2kOFT/G6PM7su9++iDmKzmwyqdpGZ/jhYPmov7fMe+SjrEElZ5vZTvhiFeUW4j/g2fORjykHKOXpNffYY8Ouj9olW2EwfSqKZe265XB/lCZ/Jo5NMuowm0t45z+SibQ30sSkXiOesrIsAynoD+iLxIhTP42OFJ0c0NkIS9QX1D4u18Tq8+lgMIfrccs2fktcN6iVWHabcVez4lu4i20CiQosly9LjH1oN2EcGn2sLC5QsYeK7SLtsBtl3dFeq5fn0kcU8tjtkiQbzN/MFT8qknNbfzD9a5ES7k/bd/dA8SMADKkMhuL6aZqdK9fE6YmOlXIxkn8Dqp7Jut6wWIeAXoWUdzD60UUdo4Wbzu11/6+ejxrdMzod66+qIo3NlPaYuAPQ+jnbuRZGooD5RNJqYF7yUtc1tg/y3Jv7SBIeUzZR1+JItrT7XO/54DsHrBvXuWHWY2E6DBq/iJwuKYX2hC6q0rFlvSI5MTotHtlvNy4420V0kvW+hv8wsJg44ZC12qh5om+pzeY4tId8y/9j6IeSq6mNBwfItqYPucgOoS/S4WukzGhRp0Nb7W6OvGaDj+rjNmaJPyIKnnlOtsm08aq9F1DJSB7+knP/N0Kc81udzTz+/XdLPb7mAej/WrNJXYX6TNrC5RxFA7fy2bLP/Zpc1/ZiXJXLUZkPOc6zPkmYZV1kyzC+Ray+b8zjtyHlsdgt7/c02Tl2gXmLVYWITogzQjFeWpTvVQj6sj6MQurKlfPU6moubO6g5TwM7g+kjPLZrZvW69uZlNfpcuazgkwVK0U8qXvG39v3dTr387hDpY7aAQt+fIkIzfRkEQqDV11wD4uNHY3Pm6RPzbzZPNy5ii6C+LJOT458mUZ4xoPE3QwgoKihqhdffrA7NmGqq1MWLqL8Lvm7+6GN8+zGEjbPY5sf9m6+sDznSoESMx08CxnYBPdYuXzs0bSOqO0a9xKrDFNwtWBPCz6O7noi+IoxF6tDuypgtGQmVmp1/IQfJ0yAYVfRp5CiypSgbvuBNeFo/RngMYQr5222DT47VYQce5SVTTx/L4Kn/uHK7+vidLR1y4i4CrE/YkU+oj6Nol/M3n75cMvZqBb7AS5spaqn0N3w+o2Xj+ugRHxsDPvsU/qYJmSNXFXlUlyU8tw2uvjItlX6kiTm1j/nb5jHkSOTCmQ6JYvqaIrqxojvW114x8LVN9mc3qJdYdZrywGaeb7d+toMmaXmV710RudjuzYeoMYRJDNpMj2qo0C6mjz79Rcp6bI7xWB9r/c18Uf4t4tuU8Mbg71BZO6kXMbaFMrr2u4sC56U+OVIH9aMbKMfyokrveLT/nctayoh+wNPHTp2uPlZHcH4zfU4bqtThyrnN8/La9LdWH40N5HH+sdjsohqsT0L+Zn3MEZbIHA34m6JT1jGvvw42VlzEioRpTzx3G+XxRaSPg3U4VXg/1kz1OTyFLcxXnaJeYtVhCqE/9nwN8KzJJHljqUO7Ays+5mqURaCsSV70Rwx+/tkKqg9STgYFnZxWn2vzWHxR9FOk38dyf07t24C/XaRDJh+6R6+1yIRPn1zQ2EsfK7wKwNXmGT8M6WFoEpezdQk5ghqA6AuOKaKP1cH02cl6ZsnntshNjd7fDElQoVOQ+kDQKY6IKPVlbMPG79xo/R3z7Vjmd8jfJoXigGuz7JMqJwtkjiqQqGrxN+yfTuvrIVbjiLR3nUIoRBQlYvpYWVKHuqyHp9n5Ux64nAqxyiDu3IxZn4LX5HfGP5myrA8V1OgL8aJ3SZyfeVkSizkPDg+Ex8pCp48iUR45l0nHT+bZ5bq6HHWZIQvnd2s3nDoFPPoomuT8zScXfLkosRmKOsbiby1qQHmQPM39H+ZvXgdbfD197OqHmwgROfoKBp2+LFQH8bf+9MLWx/pdGxvZvOX+sZnqOsDHmfxigi7u+8btC4VY9V630GHSok7l34gc0Retg+nLuZE68n+xel197e5IKGLla51GX8oDpexjHXqmRd7cux+sn4I7VRAe81lELohEsbIRHkU1Mt9dGjd46pEorb7E9U+qffO6DrFiCItXX2r3ifnT/J3thmPIEUWdyEqb/6YtmxEetdnRNxZ/M4RAziufz2wp9vQXqwMem/XIaNjfoT6mG7HIGNAimZnz05az7XV5oHIsGW4PuffxqsRzkQynnkvuTJ/D8dmnSfS7hVr1EKsOE0WnsvxnJMiyskpkq5zE0pYoSpLXkTJbbH3t7kjojslzJ0qvjwVPCLl2kS3/rln2pxYRoncmzD5W7krd+s06XJ959UX8zUJOJVSD8Kg+SDkZtJV1ELvHpM+xr+gnR5f5Nx+v2OcQf7M67LGSCbnK96kidbAdPPO3qz//t0yOPPqILuYfNQKm1Kex2fV3CHWy0cjmP+yHC+yf5t9jdfBj6FwuHH/Yx7lZUspjqExdMsJjcuo7rp5YyzY67eprxgGpj5XtBo27xOr888/HrFmzMGHCBOy111648cYbvbLXXXcdkiQR/z3wwAOW3OWXX46dd94Zg4OD2HnnnXHllVe2b2BwkpS80Nl4LECHEAe2U40vAkSuKOtMTtjEdhUZeLQTExZyYGv1UfTMsderz1MH280wm1mHWr7I768wf5Nki/2mHyvE36SOmD4tMsGDWPtIR5aBHPO2f49La3O7+srF0lzI2CKYWT9jPHo3B+Gy2jtgvrKdRh7dWTVWfzN9bH6Pxd9sfltlib+DCCCZy2yDpdXHkuvYZqpExeyyctOpfRWClEPGP3StjeeaOkSs9dlH6qBtk+ro5rETNK4Sq8suuwwf/vCHccopp2DhwoWYPXs2Xve612HRokXBcg8++CCWLl1a/Lf99tsXf1uwYAGOOOIIzJkzB/feey/mzJmDww8/HLfddltbNoaQKIZWRJEOOulC+iQvNmFDO19rcPoCFj0H1/CUC6jn456aQOFdQBV3bjQ2a/3N+zgUPMP+Dt3pSCN1aO9ggPBYck1RLPAgptKXkoBHA7QnyJI6hLo2baabn6yUDfKEFVLelGN1IFYvqYvGBsj2M3/ThdHTd3QhG4O/mT5550Z3rE/bRmx29VX1N5t7Vp1EXxhllHGF2me1wa4r/7voeTLgeX/augoeSXxpMuzqI/7OaB2643pWR0YGn69sN2hcJVZnnXUWjjnmGBx77LF48YtfjHPOOQdbbrklLrjggmC5zTbbDNOnTy/+q9frxd/OOeccvOY1r8HJJ5+MnXbaCSeffDIOPPBAnHPOOW3ZyCYi34EiIBfWV/xKFni2y7XGTiZ+8SR5meDRAQw5wTIy6ehTGp6gqK6D6lNMOngmNg08rF5bBPDwWB/H+t2zCLrMEmU0y0peFX+rkAlwhEAGT+0TYUSfY1vTFlbvWD8GbNtc5WPNDIXgyaucj3EUi+nTlS0S81Tqc2ONOwd8SJTsE+5vubiN5alSluT57tdo6uD+5vFH6zNbf9NG015b3stzdFh1kLf0W+0N1uG2CxZVmd9yY+vzd/t16PU5cmqbOa8bNG4Sq+HhYdx11104+OCDLf7BBx+MW265JVh2zz33xIwZM3DggQfid7/7nfW3BQsWCJ2vfe1rozp9xCYJW3xzrh7ZMnlyYtOypF4txOxDxdod/L77Smxga5EoFYxN6vUjW9Xr5UE2D4CmHf5AqS4b8U/BU34yxS0rFy2WgEom31myRauCPhXPlyAr9bnJOoHFXH3BjZNVCfMj/DyrTqmPyjl/i+pzNnbsvonoT1dZS0/0CM2jTxiHPJGWdfDFUmcz08f8HesD2scFj/nb7OPAWLHq9Pvbttf+6auDXcj2xUY2H9n8cSV54hu229Snmo9KmxnqxPUp0c0O0Lh5KvDpp59Go9HAtGnTLP60adOwbNkyWmbGjBm48MILsddee2FoaAjf//73ceCBB+K6667D/vvvDwBYtmxZJZ0AMDQ0hKGhoeLfK1euLH4v/cQmmB3YbHkz8JKyTF8EhQjtmmN1cPQHYrBShICW9UxOlT6yCBj/D+nLfDyij/Ii+pi/mS/KoBheLIO+JUgUv7Nl26u1RRMofYuldhfJL57KOsakT3HMmxGbOSrW3uanTHxZWTn32jvWl7aEEG63DtZ+eayv+0ajN5EmcYChH2mWyLK2WLMcs0X4W7ex8yXmGvTH/Jv5d1Of1t+h40bub6bP5ukfziH+If0p4gAq6FPGczZ+2p7z0M/vbtC4SaxyShJ7AmZZJng57bjjjthxxx2Lf++7775YvHgxvvKVrxSJVVWdAHDmmWfi9NNP9/49yzL6dEgMNWDn776gCNjIRHl0F6uD6PPUISdT+x/CdfVX06dDk9x+99fBzv21sLMHAlciUdzfRiAv5ElZeiwg9WkDuWuL7oiGyKXtH/OOZWfp12dTRupISSagRcpcfeHNj2wDW0BNZlAf8XcsqWebKdYnFNXJQPuO+psiQnDkpD62WGrHnqzVb7NrTMaSCM/8jh/ry7kXiufIIvoC8ZyNH9PkDDKGyh7x+0eU9MVkrT5FWV8819VB9HmOpl2SJTtD4+YocJNNNkG9XhdI0pNPPikQpxDts88+eOihh4p/T58+vbLOk08+GStWrCj+W7x4sfV3Fzlhg78cRJngqZEoos+aYEQfR7GEKZ4FigVAEsRkDPMsWhX0qRZfMYdbu1yNvs7ZTP2dyqCoRS19wVPwiD7mb7Iee3duvP2SxxJkoQvSP6zf6cLA5Ii/ibspL7fb1adBtlyb81/jmyn7p1WWyLHNDxsrsSNiny2sPzVIj6ZPfGW1PK2/vUiUwt++eBHTV/RnasuYf/PxtD7TI57532yeiFHk/qAvnjMkip0sUDmlPmmL755du/r4OsLKdoPGTWI1MDCAvfbaC/Pnz7f48+fPx3777afWs3DhQsyYMaP497777it0XnPNNUGdg4ODmDx5svWfSS4UnTtYjSSQD63GkA4fJOyWzUMJ2wm5k5gNfhWCA939CPh2KUyf+NAqsY/W6/lQr8JmkIlN9Sn8nRmyQbnAuGjnIjTzt6+sCsZnfUxSJn4EIBECX71qfQqbfegHTdZJvcwWF/0B7ECuPXIPo1PVeT5bOCIEwtMseL4+sfX5yqr1KTZTrI5mTGpfn2uLW0eBJhGfpRE55p9QPLdncgbB9MRzLdLusPzxnMRfVw5Mnyeek6VAKae3WauvGzSujgLnzp2LOXPmYO+998a+++6LCy+8EIsWLcJxxx0HoIkkLVmyBJdccgmA5hN/22yzDV7ykpdgeHgYP/jBD3D55Zfj8ssvL3SecMIJ2H///fHFL34Rb3rTm3DVVVfh2muvxU033dS2ne4OhyFCxRxhiy9DmMyimf2zCi+MbPnbUJRVTAjfTpDqUyFHHn0Oj8RE7+6t3To0CB3zt6+Pzb9ZPEMu6EeLJ4NxlZ0vXWhtViVkggZPps/h+RAwGSh5HS75Pt7LkBhNwHfHRdmfjjJHX/4rRZPIyzTZXNYiWy6P9R3f/Eg51iccxYrro0gUuL/Ze5I4SmLLaV/P4tPHP6Ni/9v8WShzKIhERV4kSue8+uWivhhF2kp9Rsp2Wp+iDl9ZeRXBo09pi//ST/s0rhKrI444AsuXL8cZZ5yBpUuXYpdddsHVV1+NrbfeGgCwdOlS651Ww8PD+OhHP4olS5Zg4sSJeMlLXoJf/epXOOSQQwqZ/fbbDz/+8Y/xqU99Cqeeeiq22247XHbZZXj5y1/etp3urkyLJo0FrQjdr2kH6dCiAUwOTI4gHexcXVuHbzcs7+Lo0CnfztdFWEADNEcwYv5hCU55t0LyLJsD+jiCYdvLeJqgyHagIDy/v2Ufc5TEvczc/idtvDtfMva0+vgcJbw2kAmKVhB9ofltJ/X8TgvnuYtWhb7T6CM8n781NvtQRu5byXPJq4+Uo/4m8VyLRFF/txH32XjX9gkbK775TX2hlJNV6J7yhg+J0uqT6rpC4yqxAoDjjz8exx9/PP3bvHnzrH9//OMfx8c//vGozre97W1429ve1gnzCrInif3T/DuTo0hHrKyrI1IHWaNpWZMywteiU2Qu+VEIhZwWEfEiWwqbeds8MLZTzq2H37cgi2oHPuYau6vh+3gv6zuKAJLdK0vK1PpIf/JdM7NlDPq0ddCAn1kyTb65uJWycH7n81HqS2P6nJ92Hba/5eaH+AykreByuiTco091rO/Tx+QgiLdNZ3NMH/NZFpBjKKPa304bTB1mWYtHEHmwOAjJ88ZBOgeInEKfPv6y5FqW1a4PvmPoOjpP4+aO1XgiDerSCSQqpq9KWQ3640WxyL0ZefzW/ucytEgCLZt62pbG9fnqaKevGOrEfOb+zfy7FtmKLvA+lEgcRymf2vQiQqxPlPpcUzw2ax61z0jAl+lhaAwQfay9xr+rotRZhKctS+WUCEYlJEpbVqvP4WXEaVQfQdT8yJbSPsJzC/v8zXyROeW8ctSP8XiuiUfeGKWJ3Z642nbshu9kQbmOiDlPNg5efa5Ud2jcIVbjgXjg9e1UDZ7z0+JRJtEXqcNVkf9O7VXymG45zD2yTJ9iYaQ2a3k+fcQ2tb5IHXSnZciWcmwBJXLFx5plHfHFV9pDkaiU8Gjg9SFCdh0Zq4MGT6CWaPUp2uGzmQRouah69EGWtRe8ku/ywOQMffmfGcpotpgiZYSnviND/J0xOaU+t125PhUSxeSg5Pn0KRbk5vzW2czRKYNX/E3yLH2sLBk/LMa7MkUbXBkmx2KSNjZ6ymtit/rj3MxmYsvYkC3WiLFTL7HqAmkydx48M8nLtDyiL1DWRba6jhy9APq0967GYl+7ZeluM+Bvei+D8VBdji484MiRRGs4guNSc+FR6KP18kVAp4/vSjVJma8Opi/6AVq6MOb+tvVLHinb+hm7k0n1kQWFL1p6f2v6M6VlfShR/AWhvrIucdSJ+1u3SMeRLZb0BD/GTtpgy9l/s+Vsni4OsgR5bCj9WPS5lJJBNda1JZYM+2zpBPUSqy6Q5qyZTaZicpIJ5uoC7Dp8yIQryOqgiwx0gYgFaCgDr1ZflYVRdJe2DtLgSvoIj6FO9ktdW7yYf4gcCM/nWynHHxrQBGO5LFQJxkQf6Xi2IDOUiD0NxJLGKsFYto3rYygWXQQJEmUnw/nfwgsov8xM9NE+4YkBRxklj/mb6hPHSlp9iPZn3jYNOuVDGTVjFGTxzRDnhY7h20K2SKZWyhk8TxykCS2R08RaUH2e+KuJ3ZDEbfbEX6aPlRVy7GI+MaYD1Ltj1Q2iC5J756ZJ8QnG5DLJYwsoqcOHYtFdD33suL1Fy7eLksFzLLso0ODeWWSL6KOP+9p1hBdaW78rF0an7HZJfWxBZkdZvmRL8jRyan2pHtXQ1Tu2RYVfrNbxXF1NGwlP+6g90c/nt8nzIGyEqesTH8roxjelPuLHDOQ9SWh/QQZF3nSLPj1yTmXdLC7k9Zh1ujy22WUoFov7PhSLbhDomFXEX58+1WZKH891CBi3WXvKwY6rfX7rNPUQqy6QL+DTBS/Co0gUfXJMzli+0LpSPJjw+xY6iJ3qozw9ZM+IBW1Rli006kXFs+vRLAxOwKeLIEl6csko2lUEbcPfRR2ZkHNt4X1CFl/NAkUCVjMUu+OH8Dy2UIheUYc/2dIEco5EybESR4B8CW1ut6nL5fk2P64+hmrw+ciPt/iC58qx2MD7RLu46ea8fvOjjTUuefURudg8CPrMaZeQSyF5yrHii1tyPvK4pYqDTizL61DpgyRfPNdssMZkMwn8BMPqCPUQqy6QH/0o/80WxtDktBfLPMiCyDFevCxfKOLt8u8+4vq0SFSDyDUI0sFtljscjmLxiajVx5MI+9/NX+xy1t8snukzCAom5s4440dyUl8sWcjL0l0ksU8GO5mAVtGn8w+3mR4VwOXp9fEjSPvfRd2Grrwel8eSYTa/Y4u5GkkgHeCb3+3q4/6ucEfRLqpKaAF4vmXI5rx2zMeTvMJnjkxej+A5dpg6TDmeXLu22W1okMS3QZAj3xPTQp+nDo0+Jtcg84zZrI3dKY3dPIF/oRCrXmLVBcrg2+mHJzYLqGQ9LnnmxGY8po/Y0Szv2AZiL3ztIjyNPrK4ufZWqkPRx14e+GVHDjtLfex4IwZZ8yNdGTzZLjf/jaNTdh2s/bytbhuYfzy7SLXPpC2CR/sunsz4bKbt9fpb2swSBmYzXbhdXbDryEB4hb+JHNMXbYPyyBSs71gfa49gPfOb1MESX/4Un8JmytPbTIBbJUri2zzburw8ROR8c4D0snp+K+MqR6RJWeLwTsZu3waQI9fh+QjIMdYp6h0FdoG8AYBObLZY2jLmT/N3qw7C801s7Z0R1T0FIids8+kDDxT8ToeOp7GP7XB8bdAkB/qjT7tsELGKyDHfeo95HXt9bVAhE2P8mKu2LOs77kcWjHX6OC++qPjvftj63LaV8zuzZASP/AYm5ynLjr3oJkmzgCp9RvURW3xlqZzbBlIHfD6jSVncZnhsYWWZHNrxdzGXpb/NGiolR0TOJdrHpKxpo/VvZotCH7XZwxNxmcSBKnV0C6FyqYdYdYEyMuq8WbUoZ0+wMJxcXY4tPAwhaHEdDgue/CI0rYPuUlitcuaw3YdbuBkoZL38voHUp0U12tbn8miQzSQPhMfkyBjQtostMT5kzyUv6sR4zN8kGlNbohb7x5QaZWzTZs3uOnSfypQLHeszOcYL2ZHbwo49WRtcojv/Cvpo370A+ihPq4/JRWyu6m/Os+O55qjWh/iqkkMa83g818ZGMYZo7PYgyJr1Rh1/QfulG9RLrLpAzQHr8DJ4Pipqy5g/CyFXDn4eGyh2gCY7f89HalkwoahB5KOluV1qfQpbMipH9JEnepoTNl4HK8vvkij1OTy+aNk/83KAG6AhmL6ytF3Uj/FA5EWiCHyoDWy6gO8pq0AmQAN0+f+gLR59GvTDbUf+K0uu+RF+5orRRa+dNlBfMH2sTnB/q45vaRv0/u70+Glbn6//rE1s82fU35ByxfSW3WwRvY9IY572WE1Xhy+ej0mfkCP6UujjL9NHeN2gXmLVBWKTjgb3DNboLCYTIrzM/mnxXP2Qk5hl/HKwMiTBE5yYPtFWtvPXBjslmoT2F2RQfco6SDDmi28mfAHwgBo7KqAoFuXpETaXKIJDAiqT4wkokyMBOh0baqCpo9r9DanPpYxuTmx9hR8IL7PKyXq43Bj7SeWfF0ifsh1t3wvz8LT6BPn0kffUWZsfyQrGbjcO0PgmNuw81qpiFIu/TB+NydrNlHznmc/mdhNzGs9p27pDvcSqC+SDsWO80BGA/ah9Zv20yzKeXVYGLA8KIXjadw5x1InD2K5chV1PhxdLGlC1+hR1uLkGOwJgl9fzUrac+Rc/j60KPDlSLkaegKVFIbTJqwZJANWnTSTHgJx4kvBYHflvMV7pb3tRZbx2E3+fv7WLr+7YZgzoGdGX801ix2PN+chiDZFz9LOyvjpi+sIx2fRjHuOlnKuPxjy4dvDYzdtK9CnXBxnf+PzUxnO2Pmhs9tWhjd3doN7l9S4Q8Wnz38SHHImSPKHLUVeWdeygQUwqZPbKiePWWmFBphNR6gPGsFh4AnT7O6uxJAxxffmvduDN/yZ58bKZ9be8rKYN/kSaLXhw5ECCGF8ENeNCe3zgWxioLUyfaox6FgZFHUw/IBdLV1b/sEI8eS/KEFv4HHDkZFEayzKAvsstFL9idfAHYKTNzBZaB7FF3QeKOprl5RzNrL/bP82/a+TYmGIXvOm4ULaVXuNQ6uObH1mHb27E9LH2am1u2kLGTxeol1h1gXzvB6ELlwhG/PhAvetx5NjipltA2Scq9O+20u7w5J0o3S6K7mYJnMwkqT5PHbwWWVZI+fSxeon2zJHx8kTgdXzB6vT1ieCxAMj7WHURnAZoyczYvPAgZbpk2DdGic0d1hcrm/8au/TMH2rwIBO07yDlIHl69KdNfSQ2Mn/rUWBlrEm5zXTs0bK6WMjmC4/dELzMGQNsDZHolGetIbGb96fW30p9LJ67m3EWL6E7HmSRpalPM0dZItWdzKqXWHWJ5ATzZP0RXmbwXd3uomr+zP+hqtNjr0s+OVYH27nwy7KyDs0CShEWzyX8tvVlXJ9m8dXqcyc7Q6cKXip57rjgDybEbavSBtF39C39yrI+/9jNUKNEXiSKlo0HXhmy/XIuk8o5vCzwG7uPJ+Y3nY+sP+V85Chr2N5QHUyfS2OJIWzeMn20X6C3mdrN4qNiDqn8Xcxl+68MieIonhCjpEV6GI8pVenz1MF0ibmsfKgqyyRa6kPMmb5uUO+OVReoCooTRbaykm/qkjz7b3lR3TEY2aV4EALdMZicJRwl0i2qFDli+vK6HX3CFoam+NCkNhZLbx20n53FovCjXc74U6Hf/BnUT+ygfSI72WVwfQQR0SN2On0sGmtRRmofscWP8BKbVUE7vtMv57IhkxJePgYcnt4OyePjvT19/rIsvun0udTp9lbRx/pKg9o157fDgO1bNgb8SSSb3/G1pjnPWCxT6KNrAUOOiD7RAfkclZOKJ7kam4ktzGbj/5Z9XaAeYtUF4gtte7wioDr6XaY28HrvjDhtYI/k65NDH3JEbHHr9ekT0DarQ7m4eV5yqdkd6Y9Sq+iz/53LmrrMn+bfU4dH+zjymo9ctw6JI5C9chEA0ac+4oMcAxl0yFvzn9IW7RNHmkAOtnDJWkW/lL7NLJm8nrAdsk5XF6uzrFex+HrKsjp4H7u2KeuA3t90M9VJf3t9G9fnxrMyTpMxAFuOxkaH571TSOKMOjlU6fPEGlVMhiCtzVQfQbZIt3jXh25QL7HqAlWZsLGFoQiyhMfkXBRLvWhpFjyQDF8dPBVojacONknYjokVpvq8dcjG8WMVnT5WceyYJvRbfEH22esGe8bzJbkOkwYsT1BU6PMF7ZoInh4EUFmH7l1rXJ9L3oXGTWDJO3fcfgltnGJJsx6t4f7RIkcd1QdfUu+UVfrbN79j7wws6hV1ePSRsuyyvghJjt/KOB3n0dgd+dh7qKwGwfHFc7Y+6NAuvu65xNB2XzLM65A2qzYExJZOUC+x6gJV2W3EFgYfEgW4wVjy+KKgR7G0cLo2GMudhn4X1W5w1+rzHVPxj8hKnowJvsvMhEdepRE7Ksg9LY8P4nWC9hMPvLqEmyd0muAOElD5cZ5SH1jw5EcFfFHVtMPXB67N8eP0YlE1HFLY4Phbu1CwYxa+8Lj26vR5E3jV4iYFVUdo3joYwi3t88ZfbVmNzWRcuPoYYlWUceY8i2+8XWy8k7LKeK7TB0HeB4+ILUki9WlsrtQvyrUAcIzpAPXuWHWBaEBBewtD/quLRPl4mTU5lYslXfCK/9ntogFV1qE6evDY0vbxBjz2EZ5rS0rawZAdaguR46hQfMeUT3w78LZ4sHma+1/edmnLwuF53nysuzzKgqfkNcejTp9bmG9quD65COoWc2876PgJ62M5VHnMa89vqsvlucrgmRfwzb2wvXlhjgixOSr1+Y6CpJwurvCyWn3EFiUqxOMA0cf8TXjC35p2gbeVhXOVPm9bmRwbU3F9OT9ah1Kfr738ztYLQyrEauXKlZUVT548uXKZfxaiWTXJ5lMyEzXIlv8+lTvRx4DWEKTDV1Zz1g4qxyaE8iI0s4UGBY8t5DUXGrSLLjQem2Ov0ihtDvst976LYvE+iY8Bv79lWYYmaY7QwPQx1AXszlaGLEsIj9nCFlqZCbC+kgkit5np049RZf8Rf7tznvpHiahq78NQZKaNGFXKMX0OL81QcyAMLervRVg0sZYcN6oRG088p4hVZL6wEwh/uxT96VkLNL6gc5TIsTlFbfboc4nHLrYhYOmRz2a3Dp4Md4NUidWGG26IxMXuApQkCf785z9j2223bduw8UwsWwZ8u434wpBlzlGBwbd1Sf303NqdYJ5vx7FBp0F1KI/WwQIRhCDTxxIcugikOptJ3PWgJCxA8QlL9QlePAAUfs1g8TT6WXDS+pv3Mfe38KOz4If1SV7Cgq9Cn7cOsYDodrS+OlwmnbdSrPVvNpYzR8ZBMJguSF+w+e1bUDhaHq+DxRVfHVyfoh2eOvi3IYk+pb95/I3rg0efdjGnx8EOT4NOwTcHXDHSLhB9aqTZc2FcjTQT+zSxMU1lbGGItFpflqEbR4HqO1Y//elPMXXq1KhclmU45JBDxmTUeCffwFad00MRjFjgZYHdGyQkT3WPxDeAmT7FCx6NpkTr4EiZIuBjLPrYjk55VMACqsfmaICm/tahK1X8LeW0qCCrQ4meefrOJR9io0Nn2DjzIQ6SxxaGsQTymM15GbOsHyHR8NiCJzvZh2xp9ckFvsqrEAhiRfRp+1jrbzY3RK7KYpzS3yJ2g8wX4m9vokqTXKlfe4yqujpB9TEUSxrjq0MUqxDPNZtijpTxtnWDVInV1ltvjf333x8bb7yxSum2226L/v7+MRk2nkkboJGRnb6irBc6ZsFTGQBlkGA7DRkm/JcJiT7B08HOvsWNBk9Wh0BY+E6IBlStPianCNCaIw92NEQDqk+/wt/egEUGrcZndDFiddDklR2javWV/7f0EftEcsEWM5/Nijq8+iJ1+BJ6FRLF9LN5C74R0yFRLA74EEBFn3h42k0Is0WzqPrjb3s81jZNWd9xni7J9x3hM7m4PnaFwRt/FXX4kmuX2H3JKok5Q8y1besGqRKrRx55pJLS++67ry1j/lkoI6uebxFgi2MsaOW/WYNCG4iYXKWyiMpRW7wBlemL1+ENxqRw20cF3r6C4I1FX2xR8V1mZseoqgXKU1aLfrAx64YnrT42BtIMqJGnhoQ+guLw4MnrYDZTfaJeiVqyhYEiW/Rt0u67zHgft48c8bIaOV+M6qg+eOTg8EgdyKQvqD6PLS6xseyLUyRP05V16mB9wpT5fMHqZHOeJ6DxNnjjuTrRl3WIKpR1oIIvNIl+l/Iq/VOB55xzDpYvX94dK/7JSA/R6+FzU65ArAjP1SUXDy26IvVpYXcvSqLpE3KhlI3+5q5+DLaIKvhRmKxaRjImx1EhjlrG6s2IvykMz+yQocljhxI6z3RojQ+KFxsOog+Z8pUO4Ikks5nv6hV10MWCjx+dzb5+qW4vs4QvltzfDEnhaCxrg6yD6XMFfd+O47GB2KKwucqRoaafNahyVX1mYW9bFePY30+2bX70R6fPJTWalFboY/WaqZzfjs0+RK0bpE6sTj/9dMycOROHH344rrnmmq4Z9M9CqgCd6dAEQKIVY0Jc3AugUNpWoQ79ZeG4LSmzWdl32rbRC9hKXhV9mqMCVx8vp6wzlX3n12ex6CLd9IXDo7C7p6yS10l9zjrmrYO1LYOvX0ifQspp+rRZ3vG3q8trB6tTOS9IHVQfvVPoCipt9rSDIiwKP6r1wZOEK+yDpyyPe8TmiL+rtIuNMdYGNU+jz9ufCn2Q5O8ThS1Km31xgCFb3SB1YrVs2TJcfPHFeOaZZ/C6170OW2+9NU477bTKx4T/FyjNdI/aexEg5cLQji5GY0NXQAarEhFSLjxefdI8VWDzIVGsDiGlDG5spfHfbYrXIRcoHUrGyOdvt1aOTLDg6dsxEknV4sZ3pZSnRFMY2qOxmb8BnPtbgxxUQT/Ev1WxQo/W8D5u397270vqEEAtOsP6yo9gxP09JgR+DP7mfUdTFWmbO46V/smYPm+sYXNZwSMRnc9lZUJL5h6NNfAk8F0gdWI1ODiII488Etdeey0efvhhvOc978Ell1yC7bffHgcddBB+/OMfY2hoqDtWjjPyZfjanaR2kml0tYOQAKDf09PCsHqkR65QPHjq9akuj9K26SaxHj7XIlvyPU4af+sRtir+hs3z9DGr16WM8Jv1unVwfSyZYfWo7rvJYaZHCcAXBj1a0WYcoH2n0KXleeyNoeVlWRZrmD5dOzQ+y/lRW5Rzj9rssUXbpzIpGYu/mW02jx9v6X0h5XT3KjkipE02eaxhtjB9gpfKucxtjie0naK23ry+zTbb4PTTT8cjjzyC//mf/8G0adNwzDHHYPPNN++0feOSmKtYIGeyWSaZbEI12HGeok46mYh+qs9Xh2bCesr6FmVNHXJXqrRZWwfdqfG2uaTue5/NEX8TQKyVqOrsVfFIINIuyNrAxqiSPoXN/iRUltWgQvqL70xOt1iI+c10qdEVCPJefFfZq1tofUiUtIXXobnD453fbS7cVWKXr19V+lTxnIwBpX6aDDNESFkHSyxdQVYHEdNvQrw2Q/Lo3CMxM5LQdorG/EmbWq2GJEmamS57K2CH6fzzz8esWbMwYcIE7LXXXrjxxhu9sldccQVe85rXYNNNN8XkyZOx77774je/+Y0lM2/ePCRJIv5bt25d2zbqUQ0tAhS/UJhlmectzDpdbaM/nrLtQtt/T1s0yJbWFopqQP8G7Ki/If3dDKguT9cn/PK1p14RjXiCo0I6MonY+Y7ztMgJ95nUp0EmwBYVj781yBbTxzYXDdV4Ar17qL7cq+o7lgzpjlG9/iHZEe1Pos9dVrXx0jt+2tSnjWc+fS4Jf1eIC9Q2R78voeffQmW+ZXJani6Gauqotrbo9HWD2kqsHnvsMZx++umYNWsWDj74YDzxxBO46KKLsHTp0k7bZ9Fll12GD3/4wzjllFOwcOFCzJ49G6973euwaNEiKn/DDTfgNa95Da6++mrcddddOOCAA3DooYdi4cKFltzkyZOxdOlS678JEya0bWczoLTJg2d35PD4jlYqU+tv115iGx2qHlvavrAIjxzRxwqPqQ5Xjujzvd1cLAzw7dRscv2d0kVB8iqhK8xe1i6tPoWc79iPlXWJ6ks5CqE93tDazPql7TpI4/gDB44Q6RM2Pn3+UV3urTB+NEdXvnihikmA6v1m8Iwpl6rYrOkXrz5HTuNvdbs89vruhwo5IsPrkA3THger/A2OiqnjuUafR64bpH7z+rp163D55ZfjO9/5Dq6//nrMmDED73rXu/De9773Bft0zVlnnYVjjjkGxx57LIDmKyB+85vf4IILLsCZZ54p5M855xzr3//1X/+Fq666Cr/4xS+w5557FvwkSTB9+vSO2enPqiF4evTIKav+RhjTpbUt3i6+89ehNf6dVVwflDsmvy2sDlmWLyByevJ+YbYwfUJd1N8+e1V3jjyIkEzM2YVSJTpFGkFRCKUvoPUjOPrhhlCOsOjq8PpbqS92fw5gGyc9uqtFT9tFa7T+ViMsaQb3i2l+VENXhxbhbrdPx4JiiWN9whs7Ig/BGwuar1kftH3C4io8dbR9OqDUR6ZeR0idWE2fPh3r1q3DG97wBvziF7/Aa1/7WtRqYz5JVNPw8DDuuusunHTSSRb/4IMPxi233KLSkaYpnn/+efFpnlWrVmHrrbdGo9HAHnvsgc9+9rNW4lWVWFINeDJ8IUMWVaJMHhVU2EEwngZJIfZ6d+UkMVCdeROb/Tt/NknciaizmSUgrA4eZHx+JPoUi4XrW8bjukh/MnuJL7z3Zuh3uRR9PMZvidUUcpmv311bvP52ePDskJk+Ui9DKyjS4fA0/qaxwmOvup807ffxiD66QdDYXPzP5mnGD20bqQOE56tDlJPmefVp/NFpfzO72u0nXx0afayTmD4f+qyy2RMv2p3fbFPTCVInVp/+9Kdx9NFHY5NNNumKITF6+umn0Wg0MG3aNIs/bdo0LFu2TKXjq1/9KlavXo3DDz+84O20006YN28edt11V6xcuRLnnnsuXvGKV+Dee+/F9ttvT/UMDQ1ZT0CuXLnS+rsvuFGEgexUxERU7HD4osWQCf/AFrbRwSoVsgWF3/WRctpJzPTRRa/ttzAzfdxm1fElW2iU+jT+BrODIlF6f8uyElH0L5buwqDbqfqCpxZhoYGS+kLq06K57EiB30Vy69UiNhCkeXeUHtWQ/hkbquHTp7HFJydt0fp7LPcv3bHnQ9S4Prss05eB+E3rb7o2uOOYJwftInagcwVk4+2xha5LZDwSfSwzUyHS6njB9XWD1InV3Llzu2RCNUoczDjLMsFjdOmll+Izn/kMrrrqKmy22WYFf5999sE+++xT/PsVr3gF/uVf/gVf+9rXcN5551FdZ555Jk4//XRvXV44lTiaLSoMJWF1uMTv6sTt8EGkOrTGFwBlMHYL+4OdxmYSPFKtLXIS+1Ec3QKiO7bgNruDQOtvzeKu9Y82YGmh/WZZh0frYLZkcD/KS/WR/sxtFPocGZ4I+ZJGV44noW5p//y2SYNgAGNAIai9vgVP1uFSFX+r+tjjC62/x1KHCuX31MH8zZKydv3tEmuX9piOmKvWxzbZHGlm84wnry5RdJzel1Tqo4i5ZyPWBVKd5U2dOhVPP/20WulWW22Fxx57rG2jGG2yySao1+sCnXryyScFiuXSZZddhmOOOQY/+clPcNBBBwVla7UaXvrSl+Khhx7yypx88slYsWJF8d/ixYutv/sXFcljfm0XwWBwMkVr6G44bpu6XVUCJeJyOb9jtjA56PoF2rYpbQHk5OboVJzHAjvztxZ2pxA7dO33HcG6pB0r/uNgl8ePatX6VIGcl9XUQZNf5m8FjyUGbDGq5m9HX+ZD7EhZRx9NXMgYzctLW3R1cFRDqY/MbxUaSepgcwOEp/U3fQWDMobSaxcs8WdtYPZrY43S35qNfLOP42OeyrE6iFy3ICsVYvXcc8/h17/+NaZMmaJSunz5cjQajTEZ5tLAwAD22msvzJ8/H4cddljBnz9/Pt70pjd5y1166aV473vfi0svvRSvf/3ro/VkWYZ77rkHu+66q1dmcHAQg4ODgp9/ONaLuoiJ3bnLjoxX5QKoO8LGYq8exfI8iqyog0G9WkQNTB+zmSAd3rbR9jrVevXZ1La/KTLD2+X6m15I9vSTBnYHPGWJzbRe9zIz00fLsuCp97f6mEHTV0wfieRtI5TgSJTq2Mbrb6KPjuO4v/0xRPLE5XWlv30IS7v+9qIuyrin2SS1vVH2xEseQyHlxvA6Hh5XpD7mW2aLSxwV09XhQ6KYPpe6hVipjwLf9a53dcWAKjR37lzMmTMHe++9N/bdd19ceOGFWLRoEY477jgATSRpyZIluOSSSwA0k6qjjz4a5557LvbZZ58C7Zo4cWKRJJ5++unYZ599sP3222PlypU477zzcM899+Ab3/hGZfvqtQQNwIt+8N2blGt3QLSNuMBnB6tXypF1rG3Ezm+LjsfP/WUbdP2u9JmnDokm6Hd5LmnuZaQeXTLo8LaS/FOH1ihfNeDVR3iJYpzpUSzdGPXp0/aLBhUa00LLECtXaAz+LvhOHaKs58EE1Vz21CHGvG/8tKlPLVcpPpKyTjO0x3706JcilI5QhX4n7vagU5LHvy8br4PyiCFUH7PFo4/2i0KuS3mVLrF6IV78qaEjjjgCy5cvxxlnnIGlS5dil112wdVXX42tt94aALB06VLrnVbf+ta3MDo6ig984AP4wAc+UPDf9a53Yd68eQCaaNz73/9+LFu2DFOmTMGee+6JG264AS972csq25ff9fJl5DIY+9Ajm9rd4TAkyjeA5STxnWUTfXSH7NZRYSeo1aeddBRhcsvKmejfwcuAJ4nXwfXZvHaDsRpx8PibISKqy6MkuvuQLT0i5Nrse+UGK8v8rZNjKI7ueEOParjULk+LONA5QGa4/j6e9DevV1dHmmXkKVD96wHciTtWxHwsCDy9Q+mQ+iiwTXt9/a4qC898dGzTItxNpEy7Puj8rZqjLCbRtnWH1IjVPwodf/zxOP744+nf8mQpp+uuuy6q7+yzz8bZZ5/dAcuAeg0YhW+x8KEVtg4NSuTnsTqljCpgedEVODwGMbNFgCckZH2iu2udPt3TO/wuiQ5N8sHdzD6tPpfaRTD0d2S4v2W7WFLGEm7dDpn5O2uu+kKf+zgKEVPXkWY61JIRq4OPAV0C2yB71HZ5GViCzBYL2XkZ6RPqH6Kvii/Ggpi3W4evbVp/q9Ap6Pytj92Sx+5YMXu1faKxVzu/mb2+eM70uUTnD/R9rIpJtG2KQdEGjbvE6h+Z6i3ESjsgyGaLBlT9UaBcyKkdTjlmb/GHiBzTxyaTr6w2YIkqlIGClde2g++s9G3TlKW7V62/CU+9CNLg5o4f3aP7IDyeDCt3yBmQJW3qYzYDZDfMEybdbliZCBCbO30UqENcdPbqERE5bvkxqmR6ERYnk67ib909Uq2/yViBMl502N+aV24wXzTtjc9b39yTyLCnrGI8+upwe4/ax2xh+uBpL6lDc+2iE/TCveHz/wDlFzDVED05GunkUSDTVwX+bvfoQbvg+Y4F9EiUgpeOQZ/nW4FjgafFgwlj8bcKxdJfShcLhdAeQuycskSOL0ZSDmCPi8vCZN321sH0aRBUzssgFwbfpX6bxpI000Raaa/mmIX5m+pTHw2NYRNSwd8aBEjvb37JW4UEd9jfmldupGTesjla5bK5hue/2qIsq4ghVB9xtlcf8aMcU93JrHqJVQcpR6woYiNjMQ08nVxUGc8b2Ii9Ysxp26WtA/qdPxv/NGhreDSQcx6rU9Mv7HIw29X/Pfztv+AtFx7VcTB8fewuRizRJ4sFOZZktmj1sTHKERauT7OY+/S94P722KaxF0p/e/tYqtONHw+Pj1FZhyYmaf3N5rwv7mkSxE74tpZIXr1Wno7kbSifSkeR4tXKJamQqxtMl2fOW7Os0JeRekkdpj6T55bNy4t6lXUwW4Q+j1w3qJdYdZByR48VdXFJfxQobdKgFWNBoqqgNUzOjUTNnYaubNv2EX0Yo8/YBV+VzWM5+tXwjMAWssM89kzM14a0eOEgm5EAKPUBSn0g+rJy95qQOlhZUy51eMgkz1+H375QHWYf5zwThagRnitnvoZAw6O2Zdxel2eiCxYPOn35vGXjJ6QvNTIhs6zwj6ePaTsg/U3bAWIf0cfGissL+dGkkJyVaLiJkMnLr500syhLzkRr7DUJVlkTEaI8Ux+pI3N4li2xOpjNTnt9cm47TKSwbmRRbv/52tYNaiuxevjhh/GpT30K73jHO/Dkk08CAP7nf/4Hf/zjHztq3HijWjHYIQKKmUHnlCG8wykmXYDHgqxPX2GbowtjsBdEju4OvSgEqYPpIzxmIKtD2OLRJ9Qp9VF/K+t4IY4CNe0yUYgyAEIEVPNYrQxOkAEw1enjwZPoI/ZlVB9E4DX73eKJAE14rA7StozVYfiC8mqSV3Pk6sYE1/AyTz9p+iSDLAvC8/WT0MdsYWVRbjBCcvDUQfUp63ATAW3/meGnk/6uGf3eCPBYnKmRfqpZ7XLKokzUzHXEtcVsv82TcqyOAiWqmTypDw7PRNRYHbk+MzYU/clsBtfXDaqcWF1//fXYddddcdttt+GKK67AqlWrAAC///3vcdppp3XcwPFENQLP1smAsDL8FrEM2szwfbw6mXTmDkfUCRKMPfayjD8EwzJ4uuTJHUTW4ls2036Stpi713C9Wnia6eN1sHZo/A3IJKLBAm9gXIR8y3iWv2N9kiNHxGeJFQAdHsyAau4iHX2ZwTMXAVIH1ZdJfRD6WL1mMJb+tuxzeDb6IcdAjYypGvEt4+X6zCOf3JPFQmH4NrTQMnvNeKTpk9TTfgie1JeS/qS2RPo4qo/5jJQVdaTlBiM0Bny28H6Bw0NBzN91x9+J4W/Xj0C56aoHeL6YJ2N3aVsYdTISxkCcNlGiWhLSZ6LKMtawWGvpc23x6INTlsVzc+Nttq0bVDmxOumkk/C5z30O8+fPx8DAQME/4IADsGDBgo4aN96IDQg66IoJVpZlvHJylrwSsbL153WYukw5Bs2G7M2IvZk5MAPtshLGAEJgQcwRfbIs3zHqbPHoU9RhHh/QPg1A1szfLGkOjYuQbxmPQfGsDYD0hc/fUo7VEUEr2DFDRB8bjwJRg0QmfP7OKWSzKRsaj+axZOEz5tsAL0mSYv41nM2PKVczonax0AbRpEz0CYi90T42klc1qqPSp0MAfXUIJMo79jKpz6kD0CN0brxlSZSdbNn6a4a/6bgj8zs0ts147iI4Xn8Le1niwurgSQr1meCVzKC+WAxhMclK/v1tY+tDJ6lyYvWHP/zB+qRMTptuuimWL1/eEaPGKxVQZ2bAqQb8WQzOFs/e0Uoe3eG4u1wzyCp4ZkAweZnLg7lrDpQFKUvkzOBp18t4zBZWB4hc3GYwfZ6yzD5qi3PRlPnbTKK0YyDf0mraQNtF7E2NPk4SyWMoVhCxMxcZgweHZ9YR3r1KfSmRY/pMxIHeTalch+eoEpIn9JkJsoJXSyD8baGRoYXWQs7as5f5wkRrQke15rxl/rHvuSj7mOjT2Azw9rI6OJpN2uboy2gdRuxWnEAkxf+4v8tE2s+z5neZ9xbWmTyJ0BIeuD73niE89bI6BMroq8O1GaSsKWf52182CfGMUNtJqpxYbbjhhli6dKngL1y4EDNnzuyIUeOV4qhGJnhu2dDkrCWJcVRg6wLA72AQOZbxU55jbwytqarPCtoV9WWesqB1kLKI67OOL9vR59oSu4ORuP4uA0W7d26atji2QS5k7KKxeZ+qFuIZ+kyetiyTg8MDMjsB8ZYF1Zf3ssVjtrh1sEXFOrbw1xG7qO7yEiTyaKh0o1i0LB6Ts/pJ2uvawf1D+pPpA+9jlX/A+5j5x63DRCuKTUKaCX3WsV9g3JoxKQmUTQnP2iQxnnM8aMZz6m92tYPwZMKov2zOyuYU1UfkmD7Kc8ryu5vcFqEv1beN2dwNqpxYvfOd78QnPvEJLFu2DEmSIE1T3HzzzfjoRz+Ko48+uhs2jhuy7jRkNs9GbOwJ5uU5kzNBuTOn9y3YDoec3fNditMGYq8VAM12OXX4yrJ7I0WgZLuZkL5M9rG/XltfqtTnk+P9EpezFlWjDsnLA3u51JZPDUX8HVp8SbvsY087aHuRCdi85oMJpKyLRBF9WiQhTT36XFsyFMwYMsEQKxB9rA7aLyTgC30BXpIY8zvg29CdG8ZTozWQcvD4m/UTQ11EPzGepw7uM6nP9TdtB2QdzGfMFm+/ODzrmFfDi/mbxfgAL9jHsDfopZyjzzNXQvoYMmwn5k69zI8eX8hkmLeD6oNfn4Wsd4EqJ1af//znsdVWW2HmzJlYtWoVdt55Z+y///7Yb7/98KlPfaobNo4bokhMzc+rOhFrSUIfxy54ZDdDA68rl8mFMfO2wbbNWMccntQHok9crPbW4QYPeaSgttmIPCF9yEgdxv9DxyAW2kWS5qC/jd2rSK5j/tbwDHtrrN+TQB+DtZUFRXJXA/JCqdl3VsAHK8vqkP2uWxjk7hUZK6t7YCN6DKTgmb4tki1IHkMoa4QXn9/SDnfRYnErI3Vo9fnmqEzyfChEoGzi10frGKO+nNSJtINS1yL+LmN3oSLIYxe3zacOy/GOog2U58xb37gAkRPz1hoXzZ9mDDHnt7wmwG1xbeYxxDf2pL5uUOVP2vT39+OHP/whzjjjDCxcuBBpmmLPPffE9ttv3w37xhU1J1NmZ+SBC5WxoyFzQACwdjjmk1S1JEGDBARTX+h40IJ6zbsvmjZkJtzvX6QZSmLMzWgdWeubF5Y+8vi0WxakHay9PhSHXRYN9UHpR96OnDRHgQkS8WHvpHV8kEH6EUoeg/bNfqeIHTkKtQO5K0f0mQ9msGBnLVqJxTPHo73jtnkmwpKQ9iaGfZnDY/oYjy0gDTJvQ7zmP91EWl5ez3mNLONPjoV4VoIs2yXnrZHQkqTZ8plSX9H+in60xqPS38E6MohEgNps1kHQD+Zb996rlpeA+7uY36Gk2eDxu5GweYac1ceOPiuGRtA+zYbDF88ZqsxsFqiYd30g+twYR9pmDNGOUtvfCtxuu+2w3XbbddKWcU9WgIYd8MxFVX0UWPBa/07Mx3MDvGjgteUy4//BR7QZL+MTll1YZGXZsaRrC0dYPLY4fddWO0yUzdFHbSH6uL9BeCzw5v/m/q4lCdIs8/jb1sV4NMgavLq1GBHfQsEz+oTeWWNopLVY2rxmN9l1mPf22O46+kSYm3CmfJfLj8xsXgydcnfICeSLRBNA3KE0x0DlRNpKkMniS+TYnULtMao8StahP1mWIZ8a9rGs1Kepg/mMHy9z1JvZHPR3aONk+tHxd434NjHntzMWAd+RISw5Or+NRMN6Eq+lg8ZVFs9jGw7GY/Gc1MGODFkSDqcPrPgb0efGkG5lVpUTq7lz51J+kiSYMGECXvSiF+FNb3oTpk6dOmbjxhuVJwocEclJyxPHQChnYrnzTcSEDT06bJaNojDiMebI6xEMOFmiU7pXK7B6m/oSpT62WBJblI/k69A9nb/pE5/WggxLzgzGzN/0kfziiAYGL7V41mV7k1f4MdfHL5QynihLeObulT0abuqrtQa6fcRH9CmeiuPHy0Qf+M5cIB1kAWkQNK5B7iKZSW45v8tyicMrX8FQJtJ1sqgyXshexgO4z4rF10qQnbK0Do4aCH0Zio8ws6NfG2HR1ZFTO6idi6YUfOh8y3g14u/EyJpNnpjfhh0MTZJ36vgxqiyrm8tafeb8Dl0T8OnTyFnxPGCLrx1MrhtUObFauHAh7r77bjQaDey4447IsgwPPfQQ6vU6dtppJ5x//vn4yEc+gptuugk777xzN2z+h6V6YHK2c9/C3eXWPLykFXjpUyRZnMcXI98iQ8oKZMKjrwhOMOQym2fos3mOPlYHqtRhl81l29XXtr/NJAqub+VRoOVvxw5Tzk62YPF4wmj0O3ktQ/AVFJBy3rJQ6MuALGFypA5mM4g+Vi9tL5T6bJ79YEKcVzP8bV5mLlDLPA4U/wu/x4q+2yqE1pjzlsix13UwZCvob+j0Md9q/c3Gnq8O1xbmb63NVf2dQPrbjPGWXGt+u/ENQPB4MBhDIf1t9TFFp2TZWB3Q1kHKUmTY1WfyGPpsJcMhW0ybO0+VL6+/6U1vwkEHHYQnnngCd911F+6++24sWbIEr3nNa/COd7wDS5Yswf77748TTzyxG/b+QxN/a3Dzb7H3Fbk89igu282U09UTZFMdTwYd2QbrPpWBdMi7ObwsvTANVtbmWRcRLYRF8tyjRZ++cNmwvkzRXrW/jYAqEUrJs/ytvXOTSR7v4yYvhMTl7XXlcuvMYz+hj/KMAEgQkbAtvA61PoLIsrLyaJEcFxE00jxKdnnN+zVweOQyc2IcFynv3LgLbbMOWDwbESrtYP3kLvBqfxM5835NXi9Di7X+Tj11iPZ625bp9MGxWelv02fCt5D+jr2CIcizEjBYPNYn9lE1jD6RZVmMd+XMOWXW4Y4znz5mCy2raVtKfBapt5NUObH68pe/jM9+9rOYPHlywZs8eTI+85nP4Etf+hImTZqET3/607jrrrs6auh4oNCl7NB9C8Yrdy56FIs9iuueM5u84GJZ/M/YaYDsPgAReEHab/UJ2UUy2N26byECqoEahI4FSL3WTjXx83w2B3kV/W0l0sK3PsQKFi+GUGp2c/bunfQxC4AUDcgXFI8+EoxlHUQfsyVFOUYZMhrRx9rBbBH6aNtkv4TuUDaPeZ0xUPNfXjd57Oi36itWqC+InD3nUfSTxt9NX8RtYfUyf2dGHIjd0xQ80l6A16Epq78f2+KxOE38zVAsdseKHgUyOYpEyX6iF7yLY14jrjKUiCJRso/paQOJ3cG7XVbcL/WLtQBSX7O8tLkbVDmxWrFiRfHhZZOeeuoprFy5EkDzJaLDw8Njt26cEUcw5KQL3rkhOxwTwciHCLuHYydltlzlYGwEmPB9JZ6UsQve7u7ad8eKDf5Q8KQXY0MoBLOZtoMhGLy97frbTJoFGpkQFIsEaK2/68TfZvBU910q2y8CJeunCr5g+lRoEh0DnkRfoQ9En3Wkq5jLAPEZ8bc1v8lcLuot3ajaJDV5tm2++e22wUYDqvnbO7+dOiiaBOkf//yO15ESf2v1qT9NxMaAk5SaPOZvimwlHNnKSfMiUWsO1Ep/02SGHb+RBEzoM/vO4snkCKQOeeSciToyjz527KfV1w1q6yjwve99L6688ko8/vjjWLJkCa688kocc8wxePOb3wwAuP3227HDDjt02tZ/eAotNO3scNzAW6slcpebmNAxCM9e8N2yPp4Ff5PJFNqp02Ds0SeOpDJZB7toy6FoUhZalIRB4J6yQo4EY7W/m/9mx7zNtob8HeCFkigiR4MOwAMlJC915KxjkZg+Upbpk3KR3XCgLLeZlAVfQNy2xXjmcUTz3/KhExOhLI4Hk8Qa87kc05cTRTLdhRbc3wLByEB9ofW3Th+vQ+tvtyyoHyv4W9O2iL/LvDxPohLrigHA/d2UbZKVbDk8dqGdPj1obhpSlyf7zj66I2sB2cDEHgYIze/QE4XmuAidkHj1CZsh60B3qPLl9W9961s48cQT8fa3vx2jo6NNJX19eNe73oWzzz4bALDTTjvh29/+dmctHQeknXShnS874mNIlMkr5BzYme3IzLKxo0C5e2e7fIJgZEpEKMs1xBEwZksIKauqT12W8swF1GwbLDnqbwutcPydRPxtyGn8HToONtsffGSZ6GsuePGyKdPnqSMJ6EsC+iy0ONQ2SJtTVkcqd8jWMWKRSPt5tcS4uJwn0iC8xNxMGTxAlk0SIAu/ciO00JoITmjhSYlvGc/nb6mP9WeGegKVPjkGuD7ms5C/Q2M59sQn87dqDBB/12oknsOY3wx9ViTS5tEqffDISCzh6MsyDwLmJDgp0ddMcGQd4nqCGVcjtgQvtMdQNqKvG1Q5sVp//fVx0UUX4eyzz8Zf//pXZFmG7bbbDuuvv34hs8cee3TSxvFDziQB5LuJAIlWNOXssvZ3w1rlCDplPbJr7YScsizwBngcweEXFvOxydAP9WXHWL3OCyOjSFmIZ0SZUDvMXX2obdS3xD7qb8NnNddnhBd/RNuuU8uLXlKOoD+iLMhTTUSfDwHLG8n1wVuHldAGEBYQXoZyXNhvibbl1G/QN5KAoL8NOZdXC5RtwFxUy3ZrHmKxkVeDBzhluW/hloXUx/zNFuQMJnLt10fHANOXMRQr5u9y7LlyVb+QYb1DLjAGkkQiUeYrdYp9soVutvrE3CQprnawh4zYSYDvYSQWB1050BgP8YoMf4yP10ERtVSuI1Uu4XeD2n5B6Prrr4/ddtutk7aMe6o7T3ppeTniYPJqhMfkLJ5AP7Jg4DV5qcNrBiyH55FT8cD1lTuNcB2iLKkDnnpVPF870rgtzLejqeQFfZbIR+2tXa6xWLrBuJTT+9u9+2Hv3gnPWhjjPLU+ePTB0Wd+Oy5R1kt20uFjXlkH11f61krWPbya4VsTVXZ55byFc7+G8Fr+Vn+cO9Cu8L040sfEFzF99nUCv79LJDdsi4W0uvoIz0bPUOhzxyhvb3V/u6hTwniQPBvtcsdP+fZ9fl8SJa9lXs6z4i/jUV/IfjLLwpXz1QHSx3Dsy2RZMFuMOmqWLVKfsDnjtnSD2kqs7rjjDvz3f/83Fi1aJC6pX3HFFR0xbDxS8BJogMcvLBo7F4PnyvnvathyVQNvk+fYa+5ArWMWiLJweL5Hr906+KPcsg5r9xqyL5P9bk9svz6fzaLesfg74DMYj+SXwTgRgbz56RtbLupvEqDFjtbqE7R4MiiaZcsgxhFAOHLIQOsod6Uoygp9ln9ySzK+gDqPgTfb5gZZXR2hD6XnvL4EqGejmLlBHf21GjablGDlBnX0tXjrD9ax4Xo1DA+VvE3WryMBUM9K3rT16phYa2D9vpK36aQahjaoY7iRWLyZG9QBQM0bQMPiDfTVMJjYvMkTEkyspZi5QR2bTUyaPyfVMKnFy+U2mZhg/b7M4k2dAEzOea2yGw0Ck/th8aYMZKjXErvegQxIYfE26EsxdYItt349xSYTEqw29E2sN7DJhBpShzdtUoLBpCw7mIxi+vp1rBtBwevHKGas3+yfvGzedwCKPgjx+ms1bDrJ5q03WMdGk2oY3iDs783Wq2NCy9/9yH2WYM36TX8XvFadAAw507cV/d3SN3lCggmObzebmGC9us3beGKC9erS3+4YsPzd4k0ZaM4Vy9/9GdJBx7d9Kaa6vHqKTSbWsM7gTaqn2HRiAjRK3sR6A9PWq2FCrY6JfeVcZmtaN6hyYvXjH/8YRx99NA4++GDMnz8fBx98MB566CEsW7YMhx12WDdsHDcUO6ZyeaGnuoy8qrxXABtOzeVUTxyRJKrqI9rWDs86BpI8TdnM3EUGEREG4fLdsIS7uc0M1WB1uPaxfqn6YEKN+kc+8WkiHRYPpKyjL+Zb9gCDfGpK7mite1yho8CM6DNRiIC+LMuKBoWf6pL6OOpEklyWXJOyOd+sI/R0JwBsOJDgvw7cBNtMWoPPHLAZkgToryUYbkzClIlr8ZkDNkM9afpjpLF+wetr6R9Ns4LXX0+QphkaGQreQD3BaDoJqcEb7KthaKcJANrnJQkwecKQxasnwKTBEbzI4PXVEkzoT7GLweuvJxjoy7D3xiVvoJ6gr17DK6aXvMG+GmoJcOAWJW9CfxNKPWSbkjexv4Y068PQ9oMFb9JAHaNbTMLwzhML3nqDwH7TNsBIY/2Ct/5ghr02moLRdHLB22DCKF6870ZoZCh4kycOY9bsjZEavCkT1+EzB2wGwOStrcRj/q4lzfHTlr/7Eow2iL93GJR+rMBLEmCDCcMWr+nvUexk8Jr+zrC7wWv6G3j5piUv9/crNy95ub8P3qrkTeivARlw6LYlr/D3joMFr+nv9TDcmFTwhL93GMT6gyn23GhDNNKs4G0wYRQ77TcVadZM2qcPrteMHySed4MqJ1b/9V//hbPPPhsf+MAHsMEGG+Dcc8/FrFmz8O///u+YMWNGN2wcN6R99FpeVJdP/phJVOwpPrnQsieJmmtVloWfEgvxzEQo/ii7w4Pk8cWSIUfKOoxKQnKApyxkWX553W1HeKF1eezjq83kWibNOZmXdmVyzcePW5YilKEEzOi7hPRnQvqJftDYOqJp8YhcQnwRTMLNOghqWX2TIOtgr0yIbZJeuWU/ttx4EmZusTkGV48gSRIM1GsYGm1g0w0GMfj8EOq1GupJguFGyetvXSYaSdOCN1Cvtz7AXPIG++oYbqTIsqzgTeyvY+1IAwBK3kAda4f1vCRJMHW9AQyuKnm1WoINJ/bjmdXDBa+vVsMGE/rw7JqSN1CvY+JADSvWjpS8vjoG+2p4fl3Jm9BfR18twaqh0YI3aaCJqKwZbhS89Qf70EgzrB0peRsM9mO4kWJotORNmdCPtSMphhslb8NJA1i1bhSjaVrwNlpvACvXjqCRZgVv4/UH8czqYWRZycv7BEDbvCRJMNBXw9CI6e8E9aRWyd+btHgT+usYGm36exPix5w3aaCONRV4ub8nrCp5tVqCKRP78ezq4YLXV6th/Ql9eG5NyRuo1zGhv4aV60ZKXl8dA/Wmb3Oe6e+cZ/o7560/2IfRNMO6kZK3wWA/hhophkdL3pQJ/Vgz0sBIIy14G00awPMtfxe89QawYu0I0kaKAYziDUmCZ0aGg5uuTlLlxOrhhx/G61//egDA4OAgVq9ejSRJcOKJJ+LVr341Tj/99I4bOV6ovEsiA28oGBv3FZ1XK9j6TGTCXEBzXlaqIx/3NL6aThArDc86PmHoDzniC10c9L+CgdWRyLKKOjg65blIT8qyOnJqF7FiaGStlohjpVpSPqIdem9ZjelLmvrSLIxGWom0m0TC8w1JRWLJ3ycV+fagoa/4VmBhn04fS6R5sk545DiYXlI2vwnnyG0wWMM2G/Zh4uSN0D9hIpKhZtLb11/DMBroGxhE0pehVquhXk+QjBi8evMCXTKalry+OrI0Q5qWvHp/HbUkRZplJW+gD7VsFBlQ8Pr6+5CkrSe3FbwkSdDv8Gq1BH0DA0iGUPLqNfQN9CMZNnh9tebvI0nBq/fX0ddXRzJq8vpQryVIGjWLBwBJOmrw+pGlGZKs5PUN9GN0NEWCRik3MIAaGkiShiE3iFqjhqSRFrz+gUEkIwmSNLN5Q81BY5ZN+pq+1PLqDq/wdzY2f/f35/7uQw0NpFlW8Pr6+1BLm/425XLfanhJkhhjqvR3f8vfddPf/f1I+kpe0ldD30AfktGk4DX9XUPSqBm80t914u868Xed+Ltu+XsUSZIavEEkLX/XDd/WhhNktQyDg+tho9EUgyufwWBfgtHhrOtPBVZ+j9XUqVPx/PPPAwBmzpyJ++67DwDw3HPPYc2aNZ21bpyR+zgtYCJWJa9YQC00yQ7QNmKVl0sELyFlzUd2Q48A2+hUnEfRH2uXX7DEZVQLhSBIjH15FITnLvqkDoNnXmwsUZKwvuDlW8dnPp6Jxvl4ls/Y4/dm0gynLEhZ4ls2Lphvrc8aOfeuzEvf1juCHJ7VdwT9YceDNTIuwi/3M1DLgD52fMn0eW12bHEfeQecRNIJ0BsMNOdoUu8rDQZQpL4skGe2iMlLzF2SOX7csto6QjxluYywGc+vtD3ya8qC/6ykr2Lfme7ptL/Nos4QsLiFOhOR1/AMp4V4mfF/U19hRYSntc+tw2q/Kaew2a0j6RtAPUkwZbD5d3Mj3w2qjFjNnj0b8+fPx6677orDDz8cJ5xwAn77299i/vz5OPDAA7th4/ghB0kA7J15Tu67jszLx+7RhltWoljkKNB6ZLfkuWXti8txnoUuBHjeFzKmkicXX/5YdNZCrGIvKVTVAZ3NMBA1ttD2tbIS66K642+OMOkur5uP31tykDzh76R8JF/7cW72CgYNisfQQ7OP2WX44L04ZABBKHX6PHKQNov7FqQO/pqUzMur1RKxCJL102LG1nK5qLb8nTl1uLzKi1smeHRx8yxkQs5TR94is47EkfMuqm22o1oSUYVH7DDk28lxZWtR+DbKC9QRkjK9I8pmnKcjw9+Bor7EPIQoyZ4PlEtsG/IHUf5hjgK//vWvY926dQCAk08+Gf39/bjpppvwlre8BaeeemrHDRxP5N6bAXQXl82jnPC3xNi9K2MnHdOXP5Jf8YKzHYf8PPtFg7a+5jom5dxjxMz4P325n4WIsDpglQWpg1189/FcRCT2PjLVgwkwju6IvzmyJRO14KeOUPrbTRZMOZbAl0EHRYQKPlKdkbJp6TNTn3yUOxP60gxISFnXFlZHRuqw7/KVPNZeV85GI+2+YzzzCIAlUQGWs/y88JQV/2N/iDCV5bwLqN+iysTa4dc0xoWVJcjM3x63JgF/lxtvyYvJIVDWTnD87fePUasKitiFkiiffZQXsIVUqy7rghudpraOAjfffPNm4VoNH//4x/Hzn/8cZ511FjbaaKOOGzieyF3cABl4zYvGcZ5TFhydStxFIEnkAk8WZOu9JyGedaQCwZOIkHnBu9TH0K68p0IIGDKUSJSxwLt1mE8oRp9Yg6PPiPhlHWXZ/AkeutAGFt8a8a3Fy/z+tl/06teXEH+zsiHf5n0leSj05f3koqrmYmk/ZQhLH0MUzTFlJsPuuLD8HUEeWR3BMRDRB0cuhEibaDFdaII82XcmxXiuvtCi6uNJS4BFix7D7ltuhPv/8PuyrCN35WU/xC6zNrftYPqIvZTn1PHTH87DvrvtiJ1mTMEPvn2BXYeyHSIRMJGtnFPZZ7KCb3z1TLzx1ftFyyYRf7tpye5bboRf//KqZtnEKk1K6tLXov3BfD7DHbcuwFsP2g/bz9gQHz7mSNx2y43YeuP1sHLFCkuXaEdmzyGPGWryJ+ZxpaZEjczvTlLlxKper9OPMC9fvhz1er0jRo1Xco93ABl42f0idlyUEH01JpeEEavY8ZNrC11orcXS5lnJjMkTqBO7LCz1mWhXSJ+JdDAELPzSQ1mWv0aA3M0hvg0tvgnxN0w/EmTLGhduWUgek/MdQbq2sKdAmVzsAQH2igzdZ2T4G5eLb6yZPgsho6FjG8O3zN8mkpkTRZ8VPHuB0i1uIV4CeeTBeGOpI85zJaTMv77xLfjd7fdEywaU2v80Mt/nn1+JM0/9OP79Qyfi+oUP4q1Hvqv9eqoaEuElhPee4z6ES376izHrM/Ntlqy6ciw5Mnm6JEqWzQCc8amTsONLdsWNd/8RZ5x1vrcOLc+1ZcFNN2CH6ZOxcsUKcS2mU3WYZN/97TxVTqx8Gd7Q0BAGBgbGbFCMzj//fMyaNQsTJkzAXnvthRtvvDEof/3112OvvfbChAkTsO222+Kb3/ymkLn88sux8847Y3BwEDvvvDOuvPLKtmxzj20AEngRftQ+hkzIoyFjYTSSMhbwmb6iLFlUNUeGzcQFNi/jPHfxbe5mFGU9dbgLsrljir8rq8kzE8lCXyLrYL7V8BgaWTP9aCa+CMhFeLQOKPxdk+OnRsZU8KEBsz+NJCXvlShyxOpw9GUZyP05qc8+4pN+tPwtypJ5S5LmRkiOBfYu3MPJNbjj0+YRWyryrDoDC9mEiROxyaabSX0tBaOjI4W+MmmWdbBFcOmSxRgdGcGrX/Ov2GzadEycOKmUa/l2ZGTE4bFE19+2sfFsX6y33vrYaOONhVxOMV5CBQPZUJs5c5ZlGB0ZFSKs6GOPPoKX7bc/Zmw+E5OnTPHb0qZp/vKu0WGFWZYV3zAOkRkvukHqxOq8887DeeedhyRJ8O1vf7v493nnnVe812qnnXbqjpUtuuyyy/DhD38Yp5xyChYuXIjZs2fjda97HRYtWkTlH3nkERxyyCGYPXs2Fi5ciE9+8pP4z//8T1x++eWFzIIFC3DEEUdgzpw5uPfeezFnzhwcfvjhuO222yrblw/9UOA1kYTyKT7yzahE6mM8+85WWaeoI5F11JgtgUWV8dhj6wydso79GEoUkWMoFn/8nugLla35eaxt7AnAEK+ZNNt9Z/nRerIPoqzgEZ/56mBlXV70beziONjzYILbdyCXyL1ol06fm0iD8PwPTtjj27qEn/PYQwjsqUDrDqXdTwnLrJp/ELzE4SWEZ8FTbWRlgeXYkkvTFN85/xzst+cu2Hu7adhv951w0XlfscQXP/YIjjn8UOy93QwcPPvluPeu24u/XXnZD7Fr6ygQAC446wt480GvwE9+eAkOecUe2GHzqciyDHMOOwSfOekj+K9PfQy7bjsT+++6Lc468wx6iTgDcNVPfoTXzn45AGD/vXfBTjMmY8niRTj7i5/H4a+djct++D0cvM9ueOl205BlGZYuWYz3Hnk4Xrr9TOz34q3wgWPmYPlTTxYJwwVnfQGve9W+uPLHP8DeL9kB++y4BT538lw0Gg1894JzsfsO2+BVe2xvt5308S033oB3vuFAvGz7zbH7djPxrsNei8cfa65D3/jqF3DoAfsVZU898Xh86D3vxMUXnIcD99oJL5m1Bf7rlI9ayeDfli7FB991OHbdZjMc9PJdcfWV/42X7baTdexpUgLgb0ufwMf+47148TabY/9dt8WxRx2BJxYvskw2x+PNN92A3bfcCDf89lq845ADsPd203DrgpuRZRm+dd7ZOOQVe+Cl203Ha/7fyzH/V1chQYIlixdhl5kb4tlnluO0j34Q22yyPq76yY8cW5p13H3HrTj80IPxshfNwL677YgvfPoTWLN6dSE3PDSMsz//aczecyfsvOXGOHT2XrjsB5dgyeJFOPKwQwAAs3fZBttssj5OPfH4VpkhfOHTn8BeO22Dl75oOt76+oPw+3vuKuq9Y8FN2HLj9XDz7/4X7zjkAOyw+VTcffuCZvsz2z5ziFkPynSB1JfXzz777KYhWYZvfvOb1rHfwMAAttlmG4oGdZLOOussHHPMMTj22GMBAOeccw5+85vf4IILLsCZZ54p5L/5zW9iq622wjnnnAMAePGLX4w777wTX/nKV/DWt7610PGa17wGJ598MoDmhfzrr78e55xzDi699NJK9onvgUEGaBM5Cn8zKhH6mJylz1p84wtDXrZhLDyhRZXxmgiTI5cZKISFOkkeRY5EguNDOggPDg9hXgjZoke6kcXX5Vkvf2U8M6El/nG/HefTJ78nJ3m1fFx4/K37WLMOeWQX/1Mj2ll3sWDryzIUGUGhL+X62HEw/3YcaYcjp30wobwTVvrHfK2JmQdlWfOlhymaP9cMN5r/zjLU05rFy20cMnhJ0kQXh0fTglerJRgeSTGalry+WvOFlI0sK3iTJ/S1OrJMIjl6luDcL5yOK350CU4/80vYfte9sW7FcvzhT38qECEA+PLnz8CHTzkds7Z9Ec7/yudx0gePxY133mfpMutY9Mhf8aurrsBXv3UJNpw0WPz9ist+hDe//Shc9ZvrcOsdt+OznzgRM7fYEoceMUdc5n7toYdhu1lb48i3vAE/u+Z6bDxtBtabMhUJEix69BH88qorcM5F30fWQmg/fOxR2GD99THv8l9heGQEX/zUx/Dx49+Ln109v9C56JFHcPN11+KHP70Kv7//QXz0uHfjyScWY/Ott8VPf3kNrrvhJpz20Q/iwAMPwrYv2UPks6Ojo3jvkUfgsHfMwZe/cTH6kwZuve12Co/lZW+75UZsNn06vn3Zz/HcssU47r1HY5fddsfhR70bAPCf//E+PPnUU/jBFb9CUu/DF077JJ5++imzUy1au2YNjjn8UOz5sn1x+a+uwfPDKeZ94yz8x5y34afX3ASg2d8MsTvz9E/hhE+egS222gZbb74pzv3S53Ddb36FUz7/VWwz60V44J5bcdIJ/44tN5+O7XfbG9fd/SAOfeVL8R8fORn/dvjhSPsm4k+/v9uy7aH7/4hj3/EWzD3pVJz6pfMwsnoFTvnYifjsJz+KL32tmRfM/cD7cOftt+LUz38JO+28Cx7+6yMYXr0C0zefifO/8wMc/96jcNX1d2DzTadiKGvmF1/57Kdx7dW/wFe/cSEmbzIDP7zo63j/O9+CX95wNzaaNK0w4auf/zTmfuqz2HnH7ZENTIKTWQnK75uuWDuCi2/6qxQYI6kTq0ceeQQAcMABB+CKK654wS+qDw8P46677sJJJ51k8Q8++GDccssttMyCBQtw8MEHW7zXvva1uPjiizEyMoL+/n4sWLAAJ554opDJk7Eq5CJHibHbtNAkEJ4jx/QxOXZJOfHUobKl6kJrtL/qkZz2hZ5mUhZ6rN73KgBRNjMSxKTUJ9Ap9ROAJY+NAbePE0vOTHzdstLfFmKV1xutI+eVr2BgvnWfkmM8+4WezZ9N/zg8M/Et5EjZjD+YwMoKHrWF16GxxX7RqZ9nHa06cu6rAYZGUxz+rVvx96D/OWG2ZJJFZtWq5/Gj73wLJ3/2Szj8HUfh6VVD2HDSjth+971hZlb//sETsP+Br0U9STD3E6fgoFfsjUcfeRibbDHLSsDyOkZGhnHW+Rehf/0NseGkATy3pvld2RkzZ+Jjp/0Xpq43iI232AaP/vkBfPfCb+DQI+YUZXNdEyZOxEZTpwIApm68CTbZbBqGR1Mgaeo/+/yLMGHyVIw2Utx0/W/x0P1/xM0L/4T1p05DI8twzgXfxkGv2Bv33H0nttpxNwBAmqU4/Stfw9bTN8HULbbFS/edjYf/8hDO+e5l2GzyRGw4Y2t894JzcevNN2Dbl+whOm/1889j5coV2P/Af8VW28zCeoN92Gyr7bDJ+oN4etUQ9cXkKRvitDO/iqFGhk322BX7H3gwFtx4HQ4/6t145C9/xo3X/RY/+uVvscdeL8VomuK0L52HQ/ffS7gt75dfXPlT1Go1fObL52GTDSZg+aohfOVr38Ku226OOxbchEMPeZ2wIS/7kZNOxUv3PwAAMJiM4vsXnY8fX3U1tn3JnkgA7Lrz9rjxppvxo+9djDPOeTk23mwakiTB+htMxrRp0/HsmmGBis771tfwhsPehvce9wE8v24EG00awCdO/wKO+bc34LNfPgePPvIofvmzy/GtH12JVx94IDIAm2y+FTaaNIBn1wxj8ka5jzfFtGmb4tk1w1i9ejV+fMnFOOOr38CrD3otnl0zjC+c/XXceN1vceVl38eJcz9a2PCBj34S++5/QKHPxKLkVqKMe8+uHsbFt/2F+mwsVPl1C7/73e86boSGnn76aTQaDUybNs3iT5s2DcuWLaNlli1bRuVHR0fx9NNPY8aMGV4Zn06geZ9saKicQCtXrgRQLozmBXT2qZFEBGPJq9XKAUGRKFIHe8Q/dsG5WTZTLaqMZx/J+XkZ5QH5YA8uglmGrNWgPoKI9FkJnVJfqz3s5ZCuH922+Xg14h/20ICdMPn9zfSZSXPooQb6AEMtRxO4v7V36uSrLzLBywjPQp0iZXMLasw/IV7Kknr2xQBuS04aXi0hc8/oT3PT8fegJP+fkfSYeVXetIf//CCGh4bwsle80kC2WjLG/1+88y7FvzabPh0A8MzTTzUTK7deADO22BJTN9kUz68bserdY6+XWgnoHnu/DN/55tfQaDS8x16MNp+5JTbeZFOsHmp+suUvf34Q0zafic1nboEVa5t3unbY6cXYYMoUPPTnB7DVjrsCALbYcmust/4GRVs33nRTTBjoQ61WK3mbbIrlLcQoMzovQYIpG22Ew99xFP5jzlux7+xX4ZWvejX2/9c3YuP1txY25mVftONOzVOexiiyDNhks2l4+MH7AQCPPvwX9PX14cW77t6qJsFWs7bFlA03ko1u6fvDvQux6NG/Yt+dtkQLhEaSAEND6/D4Y4/wI66WMbvt8S8F688P3I+hoXU48q2Hlr5PmkDGLi17NPSnP9yLxY/+Fb+84r+RtXSkafMN8osfexQP/vEPqNfr2GufV1hgUogee/QRjIyMYI+Xvrzg9ff3Y9c9/gV/fejP1rh4yW572k0l+kxeeWVD2cCKpEqs5s6dq1Z41llntW2MhtwdYZZlgheTd/lVdZ555pn00z3lW7KNRbX1N3uhdYMxu9DOj4tkcsTroI/4iyfW5I479pkbsdBmbCEjRy/gcirEypTL/WLWaxwNcX0BWxK/LdU/VcNekQHib5Zw+8aA1Kd6IIKNM+j8Tb8pSPrJ/kajw4OJRJn6iBzRVyS+hr9pWffrAJB36nx1uDztNz7p60+MBKygrPlR2CuP3w8DfTWsHhrF1EkDeGbNMAb76qjXEqwZNnj9dSQA1o00ip33xIE+pGmGodFGIbfeYB+GR1OMNNKCt8FgP9aMjKKRZkXZCf11DA+NFrYI81q9PGHiBMGz5ZrU118uF+Uxcyrkc5o0cT2vrihl1GRLwcRJk5w/NeO2KJbZ/P6iHaUf+/r6Cx1As31521iffPUb38Jbjn4fFlz/v/jlVVfgK2d+Fpde8Qtss/MewiYA6G/pt+xM02beSxuKogPYgwlZlmLn3fbAf517IaZM6seKNSOYPLEfz68bxYYthK9ZVqqdtP4kNFq/522c9+PLMXHKpgBQ6Ntsw/VFWaYvAZClKY446j14z/v/o/lNv5aOgb4attxyKzz40ENmp0h9lGfGMrNbMmvtAsqxQO0jPHZfspOkSqwWLlyoUhZKRsZKm2yyCer1ukCSnnzySYE45TR9+nQq39fXh41bT234ZHw6geY9LDPZXLlyJbbcckuw77q5C6N1bGOgTnB49qV0czGXdcijQF5HwUv9vNiHmelj+kZCl8vwS+nuIs0XQfdILs0y1IpECEJfcdWH1pFr5RfarbKOLVUvqtdYvxOekcvwF8cSJNMq6/JqvI7g5fWQb1myFbgD5734D8aDKFskZQYvN8t++77UB0eflZQRVKzd91Mxntmf5j22op/QjIkT+moY7KuhkWaYMFDHhJE6BvuaH6dNs5I3sb+8tzpxoI61I3VM6q9jNG32hylXSxLUa0nJG6gjQ4bRNCvKJrXy+6B5K1iEnrXdizBhwkTcfvP12O3F2xdtc4mhcSUvE3LNuZw5csDCu+6wePfcdQe2nrUd6vV6sF7TZ/ba2+TvsONOWLbkcTyx5HGsP7UZvx968H48v3IlXrSDfLDKWlI9CYP4t8F88S67YZfddseHP/JxvOm1B+Bnl/8EH3YSq0gVAIBZL9oeo6OjeOC+3+Ole+8NoHk/bcWK56Rwy+hddtsDv/jZ5Zi6ySbYatomeGbNMDaa1PrwsDkJSFmTtt9hJwwMDuKJxxfjgD2ayFCerE9dbwDPrB6mNlvJZtLsi4f+fD+22XY7rBoaLcrmG4jtd3oJ0jTFXbfejANeLb/QMjDQTDzTtFHwttpmFvoHBrDw9lvxkh22AwAMD4/gj/fegyOPOS7ctEi+xDbKnSRVYvX3Ov4zaWBgAHvttRfmz5+Pww47rODPnz8fb3rTm2iZfffdF7/4xS8s3jXXXIO9994b/f39hcz8+fOte1bXXHMN9ttvP68tg4ODGBwcJH9xA69xgZigSaELyb6yFBWjx09SH0PA6CXqFmkXWnlfyUiOrHtNDg8GakAuQgdfTMrKQlcH1Ud5ZFENPZiAst9NZLTm8ggamZi+TSUvps+tF+BjgI2fnKq+kT90OZyjh/L4rYlEOfqMWGeXhZCT79ni+qqikaFXaaTWfTfHj8b/805JjLLaBS/Gc/OZpFj1I4tqInkTJkzAe44/AWd//jRsuN5EbL/b3nh0zQrc/fs/4C1vnyP0jXUpWrZkCb58+ik49n3vw62334kfXPwtnPSZz6vqCDVt9qteje1f/BKc8P734iOnfR4jI6P44qc/hr33eQV23+Nf8MyaYV6wAi8B8Piix3DhT76Plx9wMGbM2BxLF/0Vj/31LzjiHUcWMlXqmPWiHTD7lQfgjJM+jM996Rwk9T6c+ZlPYsLEicW4cZOyN7/tCHzza+fghGOOxCdO+TQmbbQZHly+DFf97Eq867gPYaPtZolyRmQoeOttsAHe9f4P4vRTTsLza0ew50v3wZLRtbjxppux2dQN8eo3/ptlLntTfALgPcefgDlvPBinfWIuDj1iDmZsvCEW/v4PuP3m6/GZM7+KmVtuhX97+5E47aMfxOjnv4wdd94Fjz72GEaefw77HfwGzNhiKyRJghuu/Q02fMPrsSatYbOpG+LtRx+Dsz5/GraYvhnW23gafnjh17F23Roc9nb5oINpX+bY5zLr+dO8PrRwjFT5jpVJjz/+OJIkwcyZMztlT5Dmzp2LOXPmYO+998a+++6LCy+8EIsWLcJxxzWz15NPPhlLlizBJZdcAgA47rjj8PWvfx1z587F+973PixYsAAXX3yx9bTfCSecgP333x9f/OIX8aY3vQlXXXUVrr32Wtx0002V7RPIEQhKZKAQoTtWFtIRQqeMOlJywZnVEUW7kuZiNNqQiyrjyeNBdqeF3LkxEIyYXI3JkTrgyDFbmolAvGz1o0DZnwx5ZDxfWRdhslCxNsqKo0XD3+1/nNu8CG72u8OD/jUceYC09CGuD5463KNKc6PKHlaoF8gwin5yEUDfwyTuBWyTrPzGlUuknIlwF2UNX1TMobxy7z/hY6jX6/jqFz6HZcuWYtq06Xjrke925JiBkuRyZ5d98+HvwNC6tTj0oFciqdVw1DH/jsPnvAdDo2lwsYxRLanhnG//AF/9zMl491tfj1qthgMOfA3mnnZmNL9x+9gnBwATJ07EXx76M35y6Q/x3HPPYLNp0/H2d78PR777GKxYJ98L5VZi+bbFO+v8i3DiB4/DO978r9h002n40CdOxSMPPYCBwUHa+omTJuF7V/waX/38p/Hv73onVq16HtNnbI6X7rc/1lt/A9Iyg+OwPvCxU7DlzBm4+Btn4/FFj2LKlCnY8SW7Y+7HPiHbQZ2bYIcX74LvXfErfO2Ln8N73noIgAxbbLUNDnnTWwqxM886D6ed+il85qS5eO7ZZzBj8y1wwkc/DgCYPmNzfPCjn8S5Xzgdn/7IB3DoW9+Os8+/ECd+8jMYbTRwwn8ci1Wrnsduu/8LvvWDKzB5ww3tdrBB7zTY9IUVG7pAlROrNE3xuc99Dl/96lexatUqAMAGG2yAj3zkIzjllFNQq1V+56iajjjiCCxfvhxnnHEGli5dil122QVXX301tt56awDA0qVLrXdazZo1C1dffTVOPPFEfOMb38Dmm2+O8847r3jVAgDst99++PGPf4xPfepTOPXUU7Hddtvhsssuw8tf/nJRf4xqJMgmTtD2PtkHm9fc5er0sc+jyLK5Vk9Z40m04hUMmVkWVh0mr0R6mj/Z/RUQXmYgGKH7MAC5S2MgGPa9mYzwbLmUJALRhdbpY7MP7GM/3p9RHvhRIIScUp/pb/M4mJRNkPc7822rPwNHgZYfCa88vpX6zHrDx43SvjSVZX11uEeB0WM/gkQVmxVrU+OUTUhs55mGh+X9Q5ynEMttto9yEtRqNbzvPz+Kj5/0STy7Zth6wm3LrbbGvYufLXkZMGXKFNy7+FlsvP4glq8awpsPPxJHznkXVq4bAZIE/zH3JPznxz5pVlFQX18/Pn7Gl3DO176Bp1cNYYJxBGrnbk0bX7Lb7rh38bNYf7APQ6PNgfuRkz+Fd3/oY3bbEmDGzC1x0Q8uw8p1o8iyTDyp9x9zT8Kpnz7N4n327POF3Hf++5eYut4AlhtHYblpG2+6GS76/o/x7Jph9NVqWG+wjhVrR4q174MfOxkfPflTzb5o6bfaCODjnzkTkwbqhdZp02fgG5f8N9Yb7EMjzfDYokV4+qmnsNU22xaV37v4WWw4cQDPrR1GAmDTadPwubMvKHgbTRrAyrUjaBibGiSlv/d5xf64d/GzmGK0NcuaMeCYfz8ebzryGAAo9Jn+/sNfl2DF2vIhhJftOxt/fWqV9WDCrnvshXn/fRVWD40WZQf6ashTmgkTJuBjp30ep37uCwCadwnNfj9+7sdx7H9+1OINDk7ASWd8EV856xw8vWoIkyf0Y9XQaDHfXrrv/8OjT6/CyrUjzaP3fOyYwxuS/iGOAk065ZRTcPHFF+MLX/gCXvGKVyDLMtx88834zGc+g3Xr1uHzn/98XMkY6Pjjj8fxxx9P/zZv3jzBe+UrX4m7775bChv0tre9DW9729vGbJsbZClyBHl8AMjLzOyYzkSxrEBOAj6/HE1scfSxOuhLJE0eSY4KdIFcGA+/OZvdpQGyhOgDKxvXZxaufL+GXUC3jnTtPjHvRIX62H9ETMqSOiTPKGvoY0hmLWne9Qke+5mIlXOMaPq2RsYAfdCBJMhFDm6v+bIO895VXoeBbMHRZyb1LrLn47FvL7obGN+rTnJiwT3Mk2XNRSHEM9vBNuFGa9X6gjyhzbAjUC5GQX2k3sw0hhkYsCXMKyduUC4hPE8dIX/fdP11eOrZ57D7brth6bJl+OIZn8IWW22Nf3m5fSXFfIlA4vASIsd4TF9YjpWT5PM3HStCNpM+C+hy9UmLw4OPbag7SZUTq+9973v49re/jTe+8Y0Fb/fdd8fMmTNx/PHHdz2x+kcmefRCnuqy0Kl8IZPBnR3v8A/1GiiEudCq6mAf+c0XKc9C6yxudh1lQuLe4bEvjJchwZUzESazbCIWZF/Z+KLP7NN+E854BsFIjgyeWKTJh7NZwm3xZB3scX79kXNhihwX5jgjiXTBM4Do8gPOZRtKRKjkSfTQvORulHXkrMvrRrbA0MjM0ZdBJvqsjspv0Cd9h4SglmU3VV7cqvA0i2rxB3MSJCWv6kLr1mmXCy+ECeEm5j+djCojC62lMMwi3Ip9bEwqk8f6vbzX076/R0ZHcN4XP4slix/Deuutj932ehm+fuF3i7vAIuH0ZaC5v10+ScBj+sxNDSvLHkxgmxqWDResSB3FWKloM+OZiR/bPHeSKidWzzzzDP10zU477YRnnnmmI0aNV3ITHHPS2U9muXL823FSjtXBFu7w6xvsp86kvlxh6LMnfVayJRe8EhFCwcuHcLmomoiVX85cFyw5bR2uPsKzvwkX51nHsiYPLk/6m71yg5VNPHUwffQ4WNgi9ZVjL/z2ffZQg5XQmneM4PrHSHJbOtirOaqimxYCZsq5+jL5YELVN+hHHyYh/VSS5DEpH3FZlxuugyc4LZ5y0aq6kLGyl1z+K9TrCdYON4zEBcXGyVqQXX2R5MBa9B2ef+EO8CRLSdVLvvLVB+GK/12A9VtHgWtHGpgysb95/JaMzZpOUCfyD+JGowIViEX16cnYmJDNcyep8oWo3XffHV//+tcF/+tf/zp23333jhg1bqnlaeu4yPmWmHVsQy4ks/dqhORMJEp9/FTRFvZUYI0sviE5/n4qzmOX0lX6QC6qK8va33+L8xLSdyD+ZnKGe6wdk5BLzPtEAX2mv63j4DiPo5tG0qzkMV+EfMtQrNCDCdS3CKNiHX0wAQayR+a3KZdT1eMnc1xULUuPpBIE86PKdURIvo9JroxZ8T/CV/BcLnsHlN5e/9+8i3agQ2O+Zbx2feEbZ0yfy7M+a6TklbpCPHlQaW6mePJfjWc+xIKCx+TC+twrFp2myojVl770Jbz+9a/Htddei3333RdJkuCWW27B4sWLcfXVV3fDxnFD5cXlcpcLlwf+Mkf6Qk+FnKlvtFEOa+0LI1W2xO7cBOTYKxjoPZyAHDKUd6wYIkJ4pn20Xqds7OWQtD8hfeb62/uyVoZYhVCsiuPCqy9QNnh53fI3BE8ev5U6TB5FsRxfmOtxUTYlvIyMHzIufLZInulvu122L8w6HX0UrvGhJN7l25HJHJ5H1svNKicRsQXPXXwzIsd4Vepg+tyFW102stBqEhzefj0K2K6/vbL03/ryQWURXjQRjuojGWKoDq19PmolZGlmnyIE3m87JqqMWL3yla/Egw8+iMMOOwzPPfccnnnmGbzlLW/Bgw8+iNmzybep/g8RQ44oDzYvIXKM50WiCh68dVBbvJ/NcXikbbGXhoonvTKy+Kb8fg27DE+f9HJ4rKzvrk9OY3lKjF0s1zwgAKOP2eP8oX4H4bE6fGMqdBneTsAcXgS1FHKZlGP34swnNEOv4TDHgKXPqdd8BUPVT9WwN+Ozl/2G/LN2pNnGrFE+dk/jv2+hUC4gfFFtlxQVtMnLVDwr63E5bdWhKZtFBXXqhB1aivg7k6xIQpMIXqL0hWmGlleoqzx85Hf87KRZVhziWf3E+i4BstFhjDYyPLsute4W/8MgVgAwc+bM/9OX1H1kPlYO5GiA5OUjInTMYL6CoTxp8lyGdxd9sliyOhiK5UVT0ByslY+LGBpA0IrYx5rrrd4wL68LtAKQC3ImedqL6jZPtkuTkMT62EZElHVo5Ygt+eAzUUs5zsp9b3E3KZG+DX2qxnpCMyG+sBAmmUizI0OGROX6bGTLLhtDI93vhpnrXfGwhqc/3XGxtpFh2eoUfX3PYr2Jg8hGG2igjtEsQTY6itGRFNnoKNKkjkbN5jVqzbdOZ6ONkjeSNjcgBm90OEWj4fIypKMNZI20LJvz0tSQA7LREWRZVvBGhhNgdAQZMkMuQTbafNWAjpegkdSaNrV4aS1BI3N4aQ2oJRavkdWa462RljzUm+1ODV7SQNpIkaVZyas1kI2mzfa0eLltAIK8RouXABgZseWyJMHocGbx0loNo8MNZKMjJS+rYTRp8nJ9qc/faUV/DzdaPw1/FzzD3zlvBEhHR1t91uSNmP4uyhr+NniFb4uyIV6C0Za/R4i/RyL+RsvfI8TfI4a/Gy3fjlj+biAzfduyDUAhV/CyDKtXrsOzzzyN+54ewbrRDH01I4b+oyRWs2bNwlFHHYWjjjoKO+64YzdsGrckF9ASPqa7YStoO8Hds2suLyTnZUEXWlaHy7OSrcCiktuSZlnBs58cC/AI4hB671RKeFkGpPliWSNljYvL7usg+BNhhZlF2RCvmagG/GP0neAlvI9Fck30gdXRYVssWLxIzJPC36HjwRDP8rf1xB4EL3N5li9KnqosMiFno5F+nvnUqniDPlg/lfOx1Jfg98/UkI2uwsjIYgyNpuivJ+iv17BmuIEJ/TWsG0kx0FdDPQHWjqQFb7CvacjQaMmb2F9DIwOGDd6qgTpGGilGGlnBWz1Qx9BoitG05K0ZrGPtSIqGwVs7oQ+rh0aRZih46yb04fl1o8hQ8oYm9mHF2mYiouElAAb6ahgaLXm1BOir1zBs8Oq1ZjI60sgKXv4gzGha8vrrCdKsOT9y3kBfDaONFGmGgjfY19SfoeTltkHJSwCsndCHletKXi0BVg82+yXn1WsJnu+vYdVQ6ce+WoLBvhpWG77tmL/7alg36vi7xVs9WMfQSMvfLd6awT6sHWk0/d3iWf5u8dZN7MPza1v+bvEs3yp4fn8nGB7N2vN32lxfKvu7ZRsoL8OawT788oEVWDo8Qczvv+u3Ak360Ic+hEsvvRSf//znseeee2LOnDk44ogjMGPGjG7YN65Iwoue9xC1/mpdSBY8tkMml6PB74OA6XN49F1HNQMmJbaUF9XLdod5BMEwFrICcSjK8kUwnwhmW8u7U3lRqc+6c+P0naUvwKuR9tcMp8X6OMjL/H3MHy7w2OLUwW2RbTNArOCrPqp/nFseyWWGMyw5lDab+k1eZuCR5XEje1gBgteJN+izfjL70+QNpQk++b9P4+AXb4x7Fz+HWZush603noTrHnwKe265IRYufg47z5iMKRP7seCvywvenlttCABYuOi5grfvthtjxdoR/GnpyoL3qh03xWPL1+CRp1cXvNe+ZDruW7ISS55bW/DevMfmuPEvz2L5quGCd/hLt8Svfv8kVg+NFryj990al962DCNpWvCOmT0LF9/4BADoeAmw28wp+P3jKwrexP46tpo6CQ/+7fmCt+Gkfmw4sR+PLl9T8KZNnoAkAZatWFfwtp46CSvWjeC5NSMFb4dpG2DxM2uwdqRR8HbbYgr+sGQFsgx47/+bhe/c9ERhG4BCbs+tNsTCRU2eK9dXS/DOl2+FSxaUvPUG+/D63WbgJ3eUvI3XH8DsF22Cn93zZMGbueFE7DJzCn7zx5LH/P3iGZOxodLfz60dwf1LV2K3LZr9ecCOm+HR5avxyNOrC94hu87AvYub/t59iym49/EVOGzPmbjhoaa/c97bX7YVfnFv09952Xfvtw1+cOtSjKZZwXv/7G1x4Y1/BYCi7Ptmb4uLfLwE2GXzKbhvScmb2F/HFlMn4qG/rSp4G07qxwYT+rH4mTVFHdMmT0CWAU8+v66Q23rqJDy3dgQr1o4UvB2nbYBHlq/G8Gha8HJ7ART6ctsACLk0A94z+0W4/P7H8fJZrc/QWRvMf5DEau7cuZg7dy7+/Oc/44c//CEuuOACfOxjH8MBBxyAo446CkcffXQ37BwXJC8aMxRLeVEdvCy7zCweHTURjMi9EYGokXpLXuQlkoGjQBNhin1PTt6lITzIsiaCEbqbo71zY99hIn0S8Ld9r8nPs58mc3nG4/wB5ASeOtjDCq6+8EX60t914tsQjx7TEZ6d+Ja8nOpkrNjoptTn8tRHgdYRn4IH/jBAggSjGbB8bYYlzzcwZX1g6kgNS55vYIsWb/pUAH2JxZs11NRl8p4bTvDskM1bOVLD8nU2b/VoDU+1fi94jTqeXJ1h2fMNbLmuyVvbqONvq1OsWFvKrUv78MTqBoZH04I3nPVhyfPN45WcN2Lwcn0mb+bGsHgT+4GJE219a9M6hjKnbD0t2l2UnZjh2dUplq8ueVMnZ3hiVQNrhkvezLXA4ytbx0Dos9oPoJDb0uQ5cgP1GoYymzdltIa1jbrFayQZVju8gcEMq0dt304m/p62UQbUq/l78xZv1WiCZ9a5vBqebv0+c23zb2sMf+e8dWmt8HdediirY+nqFMOjacEbSQw/tsrm/eTjzdgos3gT+4HBCTZvbVrH2jS166g3j/eeMMtOzPD0qgaeW1Pypk5uygyNpgVvc9OPSZ/VftO3plyS1FrxwtwQtWLIP8rl9Zx22GEHnH766XjwwQdx44034qmnnsJ73vOeTto27ijvzODOFzxbdnnWER+7O2UiHU691n0Q84hG8KRcQsvKM2n2Eska5ZX9IxZBlKtq8Btz9H5NiWCEjv3YN+aqLrQmsme/j0zyBNJDkUffi1mdvvO91BXxOky0y36nli1n7t5Cl+FDnxfyyYk36JuvRwg8cOB7LQPT536qxnwYm97vU/BY+7UPhFioMhkXVR9isVDGAI+VtXjGp600tgQfRLH0SX+Xdx4N/4T8SHxBXwAMzsuJPd1Zvo8MXrnE4wvW78E+DshZpwPKcRGKFxaCGopJvnu5Th00dtfCPLnZlQ+iWMi15VtbzjqBCDyIQu/C0k1xwTL6GEWfuP7uNI3pI8y33347fvSjH+Gyyy7DihUrOvJZmPFMbDIxhMA937UuMweO31hZioiYtlhoRZN8gczVl7EAQCaiuwhavJqfZ6EL7C4WQaLspwwR15fJstEnAF0eab/XPwRhEigWGMJEjmANRCSIgDF9ZvCwbJbjkb1eI/jKDRZ4FahlaviiPOIjDxygJPYQQjkHpL6qx36MF0uGU6NOhmS6yCN74KDpW1kHXLnEhyoT+0gd7uJjjp8Qmq3+rFHwONhIwBiqbI4Bd5HO5Lgw/a32bWDxta9YKMeABuH39LHW3+Z88fJA6vDYormTaW6Ay4dTIrw8rhrzolwLCM8cA3D0sbKplKN3Ya1NsW0vPzWSvug0VU6s8iPAH/3oR3j00UdxwAEH4Atf+ALe8pa3YIMNNogr+CemfNKNkgA4asyIwqlkxxR6Y7cVPBkSlfrL1mokeJKJzXZM3Jbmf1lWIRiT48F84piJZRFQA3JWMDYXbkfO/mhyIPAGeNbkDPkHEhFiAdV8zUWsj9kdHuZvVofPZ5Z9MMde0QXGGEUp5/g7FGQtHkuGi+BpopEtnpnklkWNBxNKniwLUbYR4eUmmwtZYoypXIaNFdFP5oIcWMhAeLWkbI/50AkSyWMPJmgWSxt9DtgMw9+uH6EbA2ZyZPk75xkbmNyqqv6O+dZdfO1Yi6JP3DZY/rb6WJZ1+87Xx+wBE7de6+6muUlyeOyeJkOTzDUjI/oyUy7hDwWZ+thXGcz57W5ifeiUuwG27+CWMV5ulI04rdgUJ6Sf2Aaz01Q5sdppp52w99574wMf+ADe/va3Y/r06d2wa1xSCfU2f7LXLfguMxeTiexo7eDu8hIx2dnFZcAT8GsOz7w3EtCX8zLIgGqWtYKxmDhZeawUQKeagz8RPDbpxIRN5aSLPRUo+tP0BUEI6AMHpO9Mfe5iSf3tKUsXRocHOn48i4BoG8gYReFvVZB1ygLOUa3lb4dH/GO+28r0t3sUyI+B/Dx+1CYXMhagm8mrbKvLS8j8to6LyEYs9PZ9+PzDyrrHkrk9og7ZL4W/ycZJMwbMt+UzRNpGp6QfVf4O+Nasw0Z3nX6CbD+f3zr/0D6GLGsmvkxfaLPr2ySxLwHwp9WJPtj+4YiaHAPmAybugygZzM1us5x5isCQa/OJ3Mypw94AQ/IE8hje7HYJsKqeWD3wwAPYYYcdumHL+CcSsNgEE2hSInmsbI3xaiiPnyj8K+uwgyerA0Kfz+Y0i3xjLsBrIkyweM1J5wReGJMzJGfMzmKCsR0OC7yhPva03+1j3wKl4SVeX0h/07Ja3wbGCjseFLu8TP8AA3vgwD3KMVGsqu83y0jZ6k8AkgvokOiUNaeszQ/hwek7Q5+NQsg+dvvT1Berlz6E4JY1k3+GYhly+fwu0amwv11e6vFZeRSIQi5X3XF/s7aS8S6SlASFUaws62N2rB/zhdt39LiRjD12hM/K+trmezij6e+mfFsPrGR2WdOP9D11lm8Zz9ZX9X4snyscfe4kVU6sekmVn/gkDvFaBa3AVrA8wc7hISG7FFmHMYeD+uCpA64+Q2coyIZeLOn/dhwkrzgqKIOYnLDkzevk0mpwItJAZO5e85Im0tP8aR3bUF+UfVzoixzTMV9IOR48eUD1t826JyTGbfO/Brhv2aVn6m/2wAG54JyT6Vv5IlHyjjLi25ToYxfB6XER2XAwHrv0HDxe9xwH5xS6DM/qZWXhaZuL0JlzOVSH+ToVzRgwL6CHeICcy/RBFOLvkG9NXmheWAggGRehfgL4PAvN75DPuC8kgmpSif4QmwmPHzfKDbX66xoRf8sEWT5Q5IvnIHI5WRvqnOfK0T6RMa/TNKbL6z2ySe5cOE+Havi+4RavQ6vP3AnZT6Uo9NXynQALlDwYuwGluXOB5BHoOCfr/VQBnjuZfDz3hZE10ie+oFjZ3wyhjOykmb9D+uhDEgFeAl5WBqh8Nyw/cmy1I4BYpRlHp8QFZ9OPBaIoyzJ9LPAGESuUzjUDL0OYKIpHESEiJxYyds9D9p1Zhz3OiByxuTxWQclj+tzE1PB36Bgo5m/hx0wiUWlWtieETmn9HeLFHuCw+k7EQc7TzB8295i/ORLF40UQRScodfgeaRnPKz+cEvW3m2zx0wZ3/MTQyLrTfiZXS0CQx7L97CPenaBeYtVBkjtajn7kFNql0J0VRSbYfRASeIl91n0dJfph6XPKqi+vByZT82gRtlwu7OhLHV6ayUU/flQgF1rZJww65wglQ4Tc9vv8HUIXwoia9EXTZptn5BDRowIpJ3lVESsmp0UcAFC0y5WLBV6Xx/3oab/TLqssQSFYIA+Pn3JhCtviW3wDNmdhfXTj4PBivlWhWAx5JAhGLmvy1P4OHg1xPzJ/s/nD5qjbfhprPf4RZa1+z/9qItyQciR2l/sh/lk1tw5rzcj9aGyKCzTJ2ihLnitnfwnBjNOOnDkGis1uqZd/lSGx7G32gdMuo++yQPs7Tb3EqoNUTCYWtFlgI1Bv6N1RvCzbpUh9/P1UXJ/cCUlbfO+7giNnX15XBF5z4hgBNdcde4qk4CkWVbMsfRyd7dwCPrMCaqw/mc+cOvw+k/rkHT3dmDLbawZewYMMRjUaZBPBq9HAW/pb3K0gcmYwroWCLOGZcm7Z5oIi2++2wezPEv2B5LH+JH1nX4Y3bXF4hj10UQ3WQRZfYh+gs5n5kY2BmL/LBbT0NxyevfiS2BDwd0r8XdhGxraNJrXaTxbfmoen1gc4vNJOVjaUmPO4IhPphK4PWn087hW80ObZaH95ob0p05zfthzj0Q2wMQhorCUnEKyf3HZ1msaUWLk39v+vk9xBGEGbBbZUDv6UDKbQBecEJBgTfdp6rckesYUdabplo0+OaRbaDKpvBcZ2M/SpIdontr0Jk0OVPoafxxa3WL1535k+Cy2gAX1012zUETpSYAE1IfqCqCXspASwjwqsxMVYfExdpj6TVwReMn/C9yA5wsQSWu1lYd3ilpSvW2AJd6FPu/gmwmaGoLI6/PrQegVDxYU2hFITP1r+1qLP7jGv149Of8KHYiVCTqOPIcNmvAj5247nZH6zjZMR+NlDDXD1sTo8pyE5FWgkOZUIvpYhkzHeesVKYKNsX+OQ/pav0vAdzTv9ZB7rdwmyauvN6xdffDF22WUXTJgwARMmTMAuu+yCb3/72522bdyRzKDlG7u9yASkHJi+GuGRCcH0MZ5rX+Kpg7VNo4/uegLn9Oxtu+akM4/98ikRXGgzP88KipF2uXIMEdL2O7s86fM3ta/NeqPtMJMokhyURwpmwLPl1E8SJfkCyt/GntcQemt79BjIDbzgC5448okchwePaok+w7WWHJg+50EUevwEos9TBz1edh92YUkE0WeY3L6/yUV1I4eyxph7J9NGMCSPHfu5dvjiJfWZmBeeJFfU4dmYqHxhoGKk3tgrUWqirIHiGLHWrUOrj502WNcznOQ65m/r3pXDi22KXTnr+JrFLeaLfxTE6tRTT8XZZ5+ND33oQ9h3330BAAsWLMCJJ56IRx99FJ/73Oc6buR4oRJNav3biOSp8TSdeSG34LlyCee5dYAFRaYPJsJi8IjNlMfawexrbWnd91OZcqF7GWkmjweREcQK8pFdFmTppywifcL7HYRny9Xa8DdDU2L+Zr5lPGGLpw4zWQXy4B7guYhIFnmAgfHYQwiGv0WQpTwz8ELyHLkaaZeJOoUfEJC73Jqx+la9HM14zb6EkNPqoz4D8RlYWYiyPpub9yCr+du85+MmUVlWzq/Q4hu7j+cm/maflC/HBPW3dlwIf8PeAKKln84poU/62xx79ouHXR5BI2EgNmbbXB4gyybkOgHK+R3cFJvx3Em20kxeVIcR40PfdKUvdw5tlGmfkPZbMfQfJLG64IILcNFFF+Ed73hHwXvjG9+I3XbbDR/60If+TydW8nKi/jtN7m5GvzuS36Ci+mqS533fisIWC2GJ7N7g8NiTguFLjBlqLc1lMDZRLFuXWdZGMNpvF/vkhUQS2PfAzLsV/oWM6fPJqfTVPGPPtY+gM2zHbawp4g6h+QqG6p+5yUTgZU91ZSQY0zsY0aMh2w4k4O0XvjX6JIDYJaysj+f0SVL8T4GAKdphyWVhfQwVY4iaq6/yu8yIv805X/UpsfATgEa7srKfWB8zf2uQMopOkW981pR9bOtrmWzF5JwHYy5LXvlaHDMOGPrcOgxbTH3l/M7bL31rI5SweOpXKxBew9wU1wjPkbPHccvemuw7O16iK1Q5sWo0Gth7770Ff6+99sLo6GhHjBqv5AYdgGfLcreg3aWQssb/YwHVXZDZTs2slz6haAQooa8oKz+WasqF7mVk4Bcb3bJW4GWLKtvhkHa5PBAeW1RpHyeGvyPHLAKxgqePqZxSn2szKVujfeBBRHJ9ZoCC7W89YmX6G5Yc5ZHAayfShCf87UNrXH+Hk1fZ/gjSQfSxJLeWJMUiZI9tZjOxj9psLz5RZCumr+XvBkGf+dODtpzP3zmp/c0WX7HQmnduyvZr0D5/H5O+I+NHzCno/G2iLmEEVaIuNRbPPTyhj7x4uFbEM/MYvuxvzUbZOoEg6FT4IQRzfoPwSFvF3ONrnHi9SIep8h2ro446ChdccIHgX3jhhTjyyCM7YtR4JQq755MpwsuJfR4ldNbuRz8SoS+0WIZ4CdFXSxKxQzTRHrab0fCyTP8kkcujk46d00cWt9ACRd8LRu5qxAK0235vHyv1uTytPsNlivsgLEDZcto7NwyZsO9YSV5O7OiXvudGc8fK234n4JPFKGH9ZNRhIwm2vgSmPkPOscWsw1wDRFkPT85lUofH5lqN6AvMb+ZvNr+ZvxkvJ3rUH5rz1kZP0f7E7CcUjWX+qbn9BDIGyuaHNz+GvujdLjHOjI2ONeddfbpTCQu5JskgO/bL+yC0UQbMJ0jN+Q2rr6x7fI7PTH0mz11rGPrOTlHYKUKnqa2nAi+++GJcc8012GeffQAAt956KxYvXoyjjz4ac+fOLeTOOuuszlg5TkgubmRiowL6EQgKFO4m2XfsA7z8IquUEzabvECgqPqSObMOcyLmf6UX2kMLbUZ4kWOWYJ8Y7Rf2+vqY1UGCLKtD08dNvkKfJ2iLIwCwYKRb9KseBbKyZiLd7vvIcvss/VZiafACF4jpPRKaqMo62jlyz5eccjHnR8SuLdS3NX3b3P7zXkVQJBHx40FYPHNta/cJQNOWWB+7feJrv2iDt+/cPmH6uH05Om+XbfWTlfgmFs9ErOh8tFAnqU9uCsMbrPC3QCUv9M3QLEMxwasm0sEjWLLe1ox4zp/K/gdJrO677z78y7/8CwDg4YcfBgBsuumm2HTTTXHfffcVcv8XX8FA301EeHJC+CZifLKzR0x5oCD6arIsf5Sb8GpyYpfQcdjmqi8azIr/eZ4YIYsq4/HgyRYUjc98gS2uz/8knuxPNlaYfTQoCjnJM/uFHSkUyasxBlJiixm0c3KPcnw89yI087cZ/zQ80xf2q0SkvXkbzLJi4SH9xOqA0cfRb0OSOsDkXJuJPuYfgJSFUa/R3pxirw5h9RZlFb5lPObHVMuL2Mv6uDwuKvW5CURb/i5Zhb5iTBnbpMyQg9MHlr8DG2qTab0gVHMUZvo7gHBbscZAhXJi7yrUXAnICC/0tB/j+ex15zdYn5C42mmqnFj97ne/64Yd/xQkYOJE7pph8qzJ7vJMuLIoKtGFxMjIWb0BfdTmWDtMfW7bQN7y29KXZkbgJbvX0Puumru6xOJZQTbEsxKIQLtIULQCb+tnGdcSETztI7myIK3D1Wf4x6yD+Vvoo3VI++yjSsPmVr0hBLUpm5c1Fx9ZNvd3iTwWKsK8wl75YIKNPMZ5FpIQ4PHXZkD0SY3KSZ65a6bIIzlytt8xlUl9om3SP746ZB8QVJnUkfdDzOa8jjSzN11w5QI885tw4nUTMV7AP74+Fpua2tj8TTdJpK1s7DF/03aweoXNsg7rIRZtO4i+1OFZ/jaSKPpQg8NjDyuEnvZjPDoHWPt9/Ym8XegKVbpjNTo6ir6+PguZ6lFJxUAPogvlDsIOng6PIEJefYRXY3Ukrlw56qrqM3dvMZSNHVPlRHnOzqp5NGRPYu0xkB2IpG20j902eJ7yEf4G7zuKRBF/u3UkMV9EeEyf62+2e+MIarl02wE/7m8tQqk9CtR/uoTwSPt1qDLpJ1oHm1PyqVLQfuf6GOKp8Rn3N0chONLs77/Q5eiqiLS16XJ0xXhaf4cf2OF9p5nfzQ2MW4f0N7//w/WVSEzLAGOspNbTfg7P8HfwlTrg+hKiz+WB+dvaFDd/2seDsOSyTJZNyROAJk/Vfkh7WRvM9neLKiFWfX192HrrrdFoNLplz7gm+V4Ntns1smXy+Ks90J2yxliwoFkhRzJyugOTux66gyfolHUpkNQbqsMKshQ6hsXLIC+0m7uZ8BNhpb0aJIH2iRF0TJ584SirI9JPJKBadRB9IX+XTxSSxYLooxffAclLjN0rfeTbHvMNeAIv4bm+NS+3ai4pM55lbwkLenfgbhsg2i/7ie7oa0SfMabCDyGAPBXIbJH6mC9qtN5SLguUZf1nJv/0HW8ErQjxbEQallxaked7MMMds74+Yf6WdXj6hOj7/+29abhdRbUu/M61985OA2wIIR1EGqUnhO4SAnqNGgMqcMUjiHBy0YtRjg9ijuRyzQHp5MoRP0UE8ZzLh4AShUcO4cgHBkLfJhgghu5C6I0kQGh2QmMSsuf3Y2fONavGW1VjzjVXOmo8T7LWHqtqjFH11hhVNarWXAwf+wJ2CG9/prCJRdmMrDYD5qqb+Xe+QCbZSMYrtj+D0o55Ll6HlaFkcZpl51yZ67xym6j0twLPOOMMzJgxA2+++WY77NmoKXcmkjVoPvWWOQSEMxkBq484NslW+H5GhdrikMfupqjaRngJsS/4MzcWr98RTYc1v+2HvFyTZ+o0gmfRNvupxMTeBmk/6xPa766vMbOdtCXPjRnDm+nor8uCJ6sbusxLA/Raed6savFYgPGswFtcSNMMJcliyWdWNRvru3zsytaIdqE4WaLZVoU8ZktRnj+rwRfIdjlX25oLAWRGk6xdAG+jbWt5nmyP6+K34DWaePf58NbwijHUyD6H7eV9TPBx9rFtH+/j6nhLHy3GVSNTL2zW1aU8Jm+t3YDErFiO3q1tmPWKPCP7zPyb2CvaBRB8mvYWx0rTuvZQ6TtWv/jFL/Dss89i9OjR2H777TFkyBDj80ceeaQ24zY6slbarrS7vXMB4RlHUsVsxVri2amiw7r1+jIxILsjw9l98oqD3ZNh8Z2/M16aFp/WbNmLwOTrtddxLGIHY9Z+gk/D0U+2PDgCqui7RLaXZgWZzXQC8ctrLhjIIoL1c1LMHBTqWpO5LxtZlKf+sd0kzGMTQH+7wvai0E9mOTbxhOUV+645GRUX12t5DaCvj9mMYF2mgy+aHfIsnkuefFAu8so5tkZ2ysPLFtIhvBU8Y8NB+okdkXv7uEHwcY4LiHKcJ/FOUzfeGRUXuRklDp59xFVcXBvyLB1MXvFYP+c1pIEdtgIXz1YACNvcvET8Te21jHO1a4M6CgSAL37xi20wI0xvvfUWTjnlFPzxj38E0P+094svvhhbbrklLb969WqcccYZuPnmm/H888+jp6cHkyZNwr/+679i9OjRebmJEyfi7rvvNup+5StfwTXXXFPaxgyrlDhYShwnJYHNV5f9anz/ZNn/ngXKojxf3WK5/FJpsS5rm5CXcHkWL/QtMcbLqOzkG+x3hb2Jo5zAtmBnsI89wbiYraHjR4GFKzgxm1ngsYNncQFmyPPoMOSRcjZRvJV1efDU2aYtp+ElLnnCXlkXSNBopBZHyqOTLwGc2dJ/hE3kKfB28WwdWhy1k6+GJ6dUvb0JIPsEBFuS56DyEul/zM/6N1jV8GbrggbBkfGSQjw37CM6aF9V9G+7j7V16fh02MvaqsOiXiq9sDrrrLPaYUeQjjvuOCxevBizZ88GAHzzm9/ElClTcOONN9Ly7733Hh555BH84Ac/wLhx4/DWW29h2rRpOPLIIzF//nyj7NSpU3Huuefmfw8aNKiSjWK1DLniL57dN3lkMIENOuLYVAcfnJJHVvgkRLnkCb0gPKKDTqrKXY96kmZ9LHgcH7ufmSP2BzvZLtp+1ndMB+l3aQvZlWrxcWBRWR6YDlc7TKJBtiKvFXubn5h/afoEJfpE499J0sxg+Nrh2nHLXT0bo9pxy/TqdKjx1k6+qoWg9G9mL/MplulwtYv1CcOH9jHR0ZeG5bkzUboYwrI4dC5gi9WK/q2N3Zq4z8Z7g86jJMNG4vkGmbFaH/TUU09h9uzZmDt3LsaPHw8AuOyyyzBhwgQ8/fTT2HXXXUWdnp4ezJkzx+BdfPHFOPDAA/Hyyy/jIx/5SM4fPHgwRo4c2bKddkxgq+VQJsHgiXKsLtul6FLHrh1OK6lj1l66A0usBwMqF0zaHQ4rw/pTtov3J3VsUbk1vGU/6WzWZk76J327HOPpM1EavLO6LMtYpKo815hg/Slsa7jttesyLFj71f5I5KWER9ZzOh2kHItJmZ6wPNYO7t/9i4Ymr0682ZTI/BsOezU80PHDsx9CK5Xn6CdWV1bVxe5GiThg6dDOBc6MbBv9my6BHP2kwozhUzOpLq8PHToUy5YtAwBstdVWGDp0qPNfO+jBBx9ET09PvqgCgIMOOgg9PT144IEH1HJ6e3uRJIk4Ppw5cyaGDRuGPffcE9OnT8eKFSsq2Ukd1i4D3e4aCcuwuHTIgai1hZVjo04btMXun7SN2VK3I2rsRYnsj6zpCHaknBZvbR9rdrTOhSQN0LL/6G5YgTeUGdSqRz6MV8ZeXVZZ2yeu4yeGLekTMW5dCzDZEDqmmC3CFDkI6N0U8LEi/ZtnCWye9n6NBm+aZXXYq8nQ0owdlcc3HJrsT7njZV1MUo15SKZWHhjecIxl0l6bqvLceDMfCJeDg1cnqTJWF154ITbffHMAwM9//vN22kNp6dKlGD58uOAPHz4cS5cuVcn4+9//ju9///s47rjjsMUWW+T8448/HjvuuCNGjhyJxx9/HDNmzMBf/vIXke0q0sqVK7Fy5cr87+XLlwPgTqxxsDL3V9KUlGPyFIOz+OT1kC2awV6mbY0ksb7FB0FVedrg6cwuOOwtkit1Lo8jyvVJqK4rM0HmXmqzbnFA+qXhCsa2fco+ZUcFFXm8j2XwdGWYtJlCm1m84FwspxtTciHEjoYoFswWOrmRiYbo1eJNsy7SFKqjTryZvQxvNj6ZvSA8fiSntIXIS8AXQvx42bZFdqjrFEGTWdefaJS4f2jZUudGmfYJyc657NWcwNRNqoXVCSecQN+3SmeffTbOOeccb5k///nPAPgKM01T1cpz9erVOPbYY9HX14dLL73U+Gzq1Kn5+7322gs777wzDjjgADzyyCP5T/fYdP7551O7mbPTNKRdj9XN//OXc6WYtTrkpU0uzyaXjqrHT3UfBbJ+0kworE+ysqKubUeD62B9woIsWxzx4GnppQGVT8iaMcp38CSQOzMsTEeC4kFXnRkrmu1jdpBBwLM6enlyXlAewTpsaUBxmVmJBRJ2Ud0hrxW8neOxPXg77whZ9VwLErtPnBsnIq+6P3K87Z0yPcIGj3s802qXcc0FMv7os74u+4rf1BbmtpSR1i5eGVMz/9RNle5Y9fX14dlnn8Vrr72GvuLjUQH81//6X9VyTj75ZBx77LHeMjvssAMWLlyIV199VXz2+uuvY8SIEd76q1evxjHHHIMXXngBd9xxh5GtYrTffvuhq6sLixYtci6sZsyYYfzY9PLlyzFmzBiaJZJpWH32hzm7TSyNr053O+qqsl3OYKSTl9iBt86jwBJ9TO1V9ifN/qj7BIKnSaf3BzYSUO1yLPQQW3jmzbUIte2TtrCdPsuwtPLFBLaI5AvLsL2sP1m2hulISMR39YnMFjvksf5UyGsVH4Z31X5mE1y7j/ppn8CREWJjQCGvvyzzlbA81p8Mbyav/2TBtk8fQ6ouGtmJhmseYQtYmzQbVsZref5RxPO6qfTCau7cuTjuuOPw0ksvGU/MBfobVuap7MOGDcOwYcOC5SZMmIDe3l489NBDOPDAAwEA8+bNQ29vLw4++GBnvWxRtWjRItx5553Yeuutg7qeeOIJrF69GqNGjXKW6e7uRnd3t+BrLoWyoEAnRgfPpgQ866TWQQNAWJ5j3qbZLt3lyfomWiafthUEM0ef0OazchXxdmW7bGotE+WoK/TqMhOu7AfL4rCgbZP2W4Gyj3WZBPWF/hLZGs3FWDaRsT7pz2LZMZX4t1IHt9nhoySzxTIsTIfG57XHfvqJltimsNe9ILHqkr7THs27MlsavJm8/vrybxaTWD1VnGLxHMo5jdhSfVPc/rmLyaubSj95/aSTTsIBBxyAxx9/HG+++Sbeeuut/F+7nsa+++6747DDDsPUqVMxd+5czJ07F1OnTsXhhx9ufCNwt912w6xZswD0/67hl7/8ZcyfPx8zZ87EmjVrsHTpUixduhSrVq0CADz33HM499xzMX/+fLz44ou4+eabcfTRR2PffffFIYccUtpO7mCJ5LHVtzLrwuTZw6T/0f5KeQodpTJACh6Vpwy8NNOhuHPjapfGXm1ALZUBJCs6PsEnkqfoT9fF5aoXY113glQXvx3ybNJ9A5DhLXU6s1MqvPVt0O3ouc1aeXbPc3/UZu0cfqDJsqnx5vJs0jzbyjWeRMxT4p1AJ889wet0aO5ilRmjmmxcmVMJdQZIGR812XYN3i3NISXqbhCX14u0aNEiXHfddfjYxz7WDnucNHPmTJxyyimYPHkygP4HhF5yySVGmaeffhq9vb0AgMWLF+cPE91nn32McnfeeScmTpyIAQMG4Pbbb8dFF12Ed955B2PGjMEXvvAFnHXWWejo6ChtI5+gIHhySpVEHRu6VTqTSevCYZ+Gx3Q4xior52qb8ZVdbeCl8llAVdqhkAfHxKPCm/STayJj5XjA18lj90HsynTRCMc30RTj0SVPhTedKGydbJdfIltDANKOFV2GVrbL2XeiFfoYoo0NLDNB8VHarIs1Em+WjaT3axTyy+CtGT8J9R/9w19tch3fysctOMaeLa9Bxjwde8p5BMo4rdWRyHhON890waiz1yatf/PxUy+VXliNHz8ezz777DpfWA0dOhRXX321t0zxaHKHHXYQR5U2jRkzRjx1vU4qlekQ5bgzseNXpkNOlnIwOVPWinK8bTJYurNiXEexdZqHCjozZ1a9Mt960d1JkLYxh3UdM9BFirBZ6oBDnnohSUTywGP3KZPnGHsiy+Za5CXmTxMpspFMFp8EHeOdjm1um6zLeKY811jRyuuzL69r/ZtMtK6jML7wrY63LoMB6d9sAUIyGDqf1+Otzf7YRCdk52Ru6+BYCLzBNibSH6kfQLc4Yt9mZRtFVwwR/s3qEv9WZ6wU8t0nJra9Ov+um1QLq4ULF+bvv/Od7+DUU0/F0qVLMXbsWHR1dRll995773ot3IhIc7GRDmCXIxJ59shhOvhAJ+lPh8PK4ydSzqVDk1KHuw/6SjoidX6PfJvHgoRKHlkcuY6BNJOWa4KyiR8XseBZIn1uyyP3vVyBV5OlZQtdyLWB+hlGDB86oZBxzJaWenk6HapvazFLmDyHDj4JKm2hOqQtWrzZ5OuSF/RvhXw2dngMJQsI6Ox1xQtNH7vvQcpB0BC+7Dr+t+2TRquP+ByLPM0iVJ21YzrYUT9d4FksJt/lU3TMhuXVTaqF1T777IMkMbMl/+N//I/8ffZZ2cvrmxppLlS6Mj1yoLMAkMB+NjMf6A55gufI2NhZpwYPRjaxQezSIdabpL2a3xLjuxRXYAvb5swe2jxHn8gA0MJvidE+LiGPiGM2s99J0xxnaTOZCTGG+oHmnh0bxyRbQ8exa1Ko6LdlsqBsXLC6dgajlDzIcir/dvkokafVoYp7mgxliQmf6mRtUPYJxZvI4xlpUleBN/VlJ8/uK9diA4LJ4oVNNJ4xeUSAa3FpE/vilUaWq13SL6Q8ZxtqJNXC6oUXXmivFZsI8WyNxQPj6S6b96+rNDrI10npzqX5vyGP7JhaytgQHe4MXehoyGJQ+Tp7ORY6eXQnSNrfIF7M090sZc0eCMt2yA55pJyNtyv1rr3Qres/Xzah3CM3yh2LyIiqGZ+uowLV+CF4uyZBjc0uHZUzskQH7RdUtxnM5pxXDm/XeGITrYx5jsWHpk+IPFefMLwrywPDm8cGWwPzb/UXahotPKKH1G3GHz/e2limmR9dWX/W/g3iKHD77bdvqxGbCrHMkSqbpMx+NBLlb4kRnivrws/zdbZo9WouyLN+4T+DwSZBKUvW47sZUdfRJ2xLJ+QR3awqnRhYP4GXY6SSp9bBMyL8bpdGr273r/nZE6aTBUlmrzODQ3TIXXOJjJAwR59NERlp190pJk/TNmU5VxZQrMkcdTVZNg3e2myaK5uk7Sct3hocy9xT7bMfEMoWH+ALSa3P07oKHSA8dQwhOjTXBlzymV2q+EvkUeNqptKPWzj//PPx61//WvB//etf48c//nEtRm20pJp42GqZ7AxAHsHgkKfJVriyTtKZHLsUbXC3xbnk2aVcAQ9+XtKCvdrdXKtBW5fZ0h8/6XdqOnksO8UWsCzIchx18niGxZavq6f/qRFWjgV8XTmNDmeWTWEzmM1wyNPY57CF6VD5n0uesk+FLA0+aA1vdWaL9p3UUXmsOPDmvif9m8cVKUtbl8YVYpvuywrhRzC4skn0bii75K6Qp41HdVPphdW///u/Y7fddhP8PffcE//2b/9Wi1EbK8n0qs5hXXeibHJOKkyeQodr4mK2aAcnPQpTtMPVtiJL2y63LBawLPvRWvBkQZsHfKZXNxm1EvD50YhdVzJddflRhpTHdITaQWWRYC9HsSfwEnl0l0/lSR6foBTyHMcifKKx9TI/cGxWmDzbFmJgmayLTaWyOIn7b68splOJty6G6Bck2phEFwwVbSYuyn0ePIvD/Jv5o8q/iS007mn822GvHANl4qDNYzGkXiq9sFq6dCl9Kvk222yDJUuW1GLUxkp0giK8qoMELMiwCYrZQp1JXtp0Hvkwmy2e6+iBXY5WTb6WDlfWiWcAdfZqJlptwHdNMqrjDdeRT1V5JSZLzRF2a1k7MqnQn40xdXB8SizKLXtdgVe1YAJfNNvEdNB2EL2uSUWDBXP6BFD/FmjlyYzpoIsIhzy7CbRPpKxW8OaXzckCwpLnwrvq5XVXnNZdKVFmvZW/X6qW5/BJXZba7GenLLLZ12TEnItc1icEyzqp9MJqzJgxuP/++wX//vvvx+jRo2sxamMlzeVe7SDhPIgRQbNJjsuENMXMMlaqiYulbB3yFDpcE63piFIWWzBq+xhwyCM87UTLA3R4XNAJBLycpt+dtih4YP2cKQroddmimlQsW6j8/D9LJ5PfAt484JvEJyNus/boReXfyvFIj1rIM4y43+qPfPj4hiinmmiV/q2R74p5tkB+x7XE87M08c0Rk3gWXQ4+fhwsihH/dj1ugcUpKU+XpdZtCoUOKj9BotqIO+KHGD+yJOuTuqn0A0K/8Y1vYNq0aVi9ejU+/elPAwBuv/12nHbaaTj11FNrN3BjIpqtIYOf7SwFziSQ9w8I+fVcPqkQHpHHnJNd9tPo4DtzcpmXtk0aaOugO0HodtvOoxztV/Jtex3ytDxtRiglX7/nk0DYZsqjl/W1ma0S5YgtcsLsr5s9sMV1MZr2MZFPM3s14k3HnmuSUYzRJJE7XSYPrnFG5Gn8MQHLKvOJ2yYWL1x+Gox7TBbzFddEq+Fp5anjqs4ftVl/Vk59vxGSx2K3Ux4pJ8TR2Mp5oQ2Q88hUwaP2NmT2lGffST/VTKUXVqeddhrefPNNfPvb385/c2/gwIH4X//rf2HGjBm1G7gxER3AZCeoyf64dkd9qSzHVunq3RaxxR522owa3TERnj5Dl/VL6pbV4H1HgzjbWdOdoCwXChJeHa4ZKSQvAX+8hsZmqcK5o7Ubl4DvVGkgJ23TXqzmOgp4a2UxO1g/KfuuTBtU2UjqAyyDAaQKvN13LTX+nbXGKkfaoT5yZXpVcS+rmzrtdfI09tIsuAMfRR9TniMDaDufS57wPYeP6o/CSCysOD8A7FSC81gWy21fmpfRytfqlP6tk1c3lV5YJUmCH//4x/jBD36Ap556CoMGDcLOO++M7u7udti3UREPxnYZx+rb5oFPjOzslmbFmA4mT85HlEcnaWIHba9WXkAHs9eZmVAsXJwZJpPlCESuyVLWlf3Ed6V0oiW2MJttck0qGnycD9ykwU1XV8Oz29aO7KF2/NA+VtTVZg/dmQ75kzYs+2ETsxksc+SwWeMHcNiswYP7t1mXZ3W08qm1qowQz0ZKvOndNrUOR/sVP1FWezwndbOyGnlV4nn2PhTPtfaybJorvrE7a21eV5VfWGW02Wab4b/8l/9Spy0bPdEJVBvEFJNlcbUfqqueyBQ2u348kwVyTYDW8thESzMzNNz5ZfXziIOSBU7C5GkDdCLT0wnVocPbFXg09x7oJEAnbsdEpZks4QrQfAzZsu1grLmrwtuvs9eV2apTRz9mUp6qjx069JkjSB6daPz4ZOX4BkPKo/HLKpPZXVYWa7+7XZYNjro0E2Xb77KPHj/ZOjjWvL1hea7slCqe07Gi+4ai+9jdj1H23ubRbJLGHyEfwQBH/GVZaoZHnVR5YRVJkgCLTQyknCvwMp7t7tqBQycp8IlLOxC1KXrN0QgsHdlb5py2DcL5ndka6cR2fzqDu+XE7kdphPukzARC7VPIc9lCJyRyVMADtC4Y834m8qy/i6/F90mC/An02uyK2w4NFvpMpgofksVz9XGf4Gnxdm3i5ITEj0ilLTRjI0Ic12GTjUdC8OZHNK7JUtoh4y+buJWLVyKPHyu5Yp7Uodn8JGDx11FOo4P4PEOIDGW9PAm3GGXZ+2LVIq/p3xwLZq9sFZvjdMmNuqn0twIjuUkb8OVCoP7jDSpPY0vCH8GgnWg0Ry2atuWTarFe/llRlsMRVTyS/XE5IhTlWABwyJOZMqXNrD+huwyfsMkSDG+eFaOBTDaDZwkCX8lPrFcfj8pXTqDqi9CAYHK91eS52qHFW4WFQ4f4WSg6fthii/NEXXKJ2G5bnrGyyhQ/y3XSmBLGm9uri6H1y3Nljixeg9uiOsJuQPq3ox3qI3GT5ZZHsnZF/6bxnIwBfebR0Z+Wvewbn6xc3RQXVjUSy/RosjX9AV/HY7sjFsnlU9sdkw+zmejQpuNtW8rIMx0xe02MMv2vZjm+o9fZK7IwjdbkaXSwfnce25Byoo9ZO5wTA9Nr8xzHDCTwUluYPKrDkgVrsUXx5rLkhMLK6fB2HbOoxg/Fu7Wv7rM+Zk+i5sdZyrGnsI9lbKCMIfaYyj43/Du30RwDTD7DW3sSQGMoGQP642BFnyhjaNI0yLBFd7KgzbKVybwpdBBfEwsfGs/ZGNBdyufY6jK0YOO4ZooLqxrJ7swy2SSbWWYnpNHR2s5KJ8+ZOVG2zfTDbFY1ZfWXLa/TlcGh2R+yo9fJI2tchw7ad/ZiOJE7S7gwkxY7ArkoKCcpyfJMDFIvmWc4z2ZY5SjerI8d8lUXtwneTh2wedrL4bIy18EzmbpspE6eOgtKxzLXoRvzZhfkdQrMbPybGStlFhwSnzIZeXavSRXzHLFRG89ZTJLymC0OfLR1tfJIv9jk3sSReonkJRZPM7bZHTiaPU1c2TTZjjopLqzqJMXABJQ7l4TsFpwBP5E8hQ44nUknT+PYTnlWOXuwZ++Zcxbb684ISfky2JG+IzxXINIET6e8RKPDle6uJs+1yGXZFE0GzBnIibzQmGdHQxxvXSaBHYuUwVud3VTirc5ktoC3+niM1LU7yyWvetbOzlZkZQu8/NXk0YwQxUIR80DGANGhjaGUB86TlvDxo5kLQDdOjoWfsIVlbFyZKJ08VtfORAE8Y2XgTeWz/tRlp3g2jY+LOileXq+RNKlJ92QZ5iVJosuKOc6Vmb38iEKWY/J0gVf7OAT7cmvWFumIxY7h2RptAHQFIpunDJ5sQqE6dAtQMB0ueZRXLeAzea7Ay3lEntBhtiMPvARvMq9KWcJa17GIrEuzOgF785J0klHKIzz2gFBNNolN284jGqKDt01nM5XHyhG8DV4J/9a0weVPMpbp8C5zsiDieYPPBWr7yBiwifm3K4tD5yBFjHfKI7YVq7qyUzYvIfL5iYkr5rE2hOXVTTFjVSPRCUrD007wTCcbYCSw0UAJx+BU2Mw4zkUjCwqWM9kS8zs3lqzia25bxWBXyhG1wRh2OS5P+wUBm5zyFOOHtqNBjp/AdPAyWrxZQFVnrIp1HZsGfl/Jb4ezDY5vfGp0OCcoxSM39H3Mj67oJKh8EnUreFe5qO7jafxbhTf4WOTtl3hTeYSnOX7K+L6/XfJAeO5Ms9TB/IDHC6sP6JwR3thlb0P3qbKS9sJKd9qi+wKDewyQTq6R4sKqTqJBmwQAugtQBnIFz1WXOaJtdCvy+p2YOGcgFZvkfMmjjmikjnX2JkKWo66h3S0PCdRfEBDyQPpJOQaYzWDyHLZojjz6F412XeXFWGemSAZZW778jODt0ClEsolCi3epCSWMN1h/Ojc6FfFmkypZCrhsbgVvNpYZ3oxX1b8Z3tpjOt4nljjIO490MUPuBLBMIc3Sg8dk2V42fviCQXXExzATrXDIo31q2syPX83X/nKyfL6hTmDwbJGuqxPq/pQm1kpxYVUjsSMATSYBjqAoi+kvo1KeVEt2R9pJRZmydv0WnfV3Zo+fZ74WyzGexl5t9scmnp7W6XD2nUJemXZQeRbPefSpuPBJswSOBys2GI4Ns0zxM6NcgMeCpDazx/Hh8ngg1/B0fce/aq/MPFL7XJkJYnMLeIf6wHXkY/PK+De1TdVPJR6FALscW4CxuO9Y9Fjy2PPN4Oh30cek36mOBILJs766bJczS2vVK74GecW6kDxGzj5WtCEkuw6KC6saiTtnIspoM1Hq4w2xO3LIszMszuBp1dU+cBM88NjM/mDU5DUn1cQsBLMdCeNB8oQs8N0X6ztaztEu7sSyoDZzog0KzGbRx45JQGMzzViRhT6bBBjetrzsvckj7+gYSCiP3x2riDeT58JMgzfL9Lj8x5TmbgeTR2Z4OgY0/UIyHTxbAerfDO9glrqEf/MMjqKPlTi6yrE+0fi3K17SDAvBQvaxMltMfUOb3VM++sDSQfFmfgvC0/o3s4NGqbC97aC4sKqROIBWGQ49XTAxplwcaS/LsqCtvHwMWdmV/WCBInRniV1S5nes3OXCO1r97lV/n0HXVnU2iWFBjiNo24g8TZB17VTFeqFE4A3t4JsTaMGOBsfRLpdYr1kd2iciC6PF2yFPPVaIPMhyso9dx0/EFksev99X/cspLF5ofUj6t/kKNPHW+rddTuvf2n7S4k3rKngshrru0Upb6FRA9OrqsixWKXkBHsU749l2gNe1M54aO/pjlCyn8e+6KS6saiQ2+OWCBOrflqIDnfFUg05WLiUPkmgwVjgsCybF12KZ0KSa/WHskJlOu54t1ChnMrXtcsojPLqTVtjMggeTxyq7dPBgFO4D9XFR0lw8Z3/DsjmxPjN4lixR12UvCGnwBpfHeCq8SV27DS6b6dhjdWH2cc5TytNmVfU26/CmY8BWapdzYOG6AqBpg7ZdDG9xed+hg/YT4bEjPm3mSPq346hfK0+013WdIID32vc0i2XIb+rx2uvY1PGYFx4DdVN83EKNpE25aiZulzydk+jSzsyZ1JmOBq9Lj5UC8ppZJz+PpYnzzwsq3Dt1rb0QPG32R6WD3K1wyZO/HUeOCpQ2u7Jsjv010RHuA+fxAZGeWGUyewSvIXk23sxeNT4EC8qzdDjHjxIfJq+PllPKs3lKH20li+Py78QqA4DzErNe8bVYToN3a22Q8taFf6eV8ZZzBrsCwucHx6adyAvNLQQeB95m+eL7on+7spYSb7kodSYoFHjXTXFhVSPRgQ6bJ5n6oACkTJ6wQ5uy5gs6GRQcu1y7Hqmb6bFlMwcrCiSswk5IlrN1CDtYGxK+O1S11SFPU862N9dRUR5tRwmbNV/Jdx4pBHTkF5IbksfKMbxZgLbHAMWs5v7km5WK8ki/tyxP0QcA0evyA0geI+bfxhcTxBuObSv+3RLeUPojdPJse73ylPGHXc/QjpXK8kRrpbwcH4K3qbf/j9CijM4PQlY2ZqU/qvAh46JuigurGolnolgwVpRjAycBEnuLA4cOclGd71xMXn8ZydPv/gmvIK+O7BTlwayr+zKAw17WTyp5rN+5DtnHXJ5dziWP82Dx+BjV6KDZUrC+klhkZQXPqCt5zSBb4EHKA8WMtFXodOBNQrQ2I6THm/ten7VzKoU3zUQpbVH4t/OOHvHvkM/X79/VY1SijXkNfse1un8nYqOsx5v5comYrJFHv7SUBPHhOEJQmblAF9/K3CslBtVI8Y5VjcSBtstUT1nrL8vKQcPlldj5QpYTahzyiuWSAl/wrHqiXJK1JcCjOmSfJCAOr2iDUx7Blung/e5YuGjkQbejg2NXqru8TRbmrkdpJGa94mtmW2a3Xc6smxifGXWJDruuxh8Z3q6LsTa5sFBnIzVjzyGP2dKSf1e02eXfhg6CN/XRkv7NyoXa4PJvxqPyCK+qf7PMiSvWMmMoZqSuhueUF9DB/JHiTcqxMWB/5qzL6pRpA+vTGikurGok6jiKCa/fOU0ePS8nOlyOo8mKtXaPwmGzZYucaJO8LUVZxddMluTlrliomxivRt2iHfR33XR3ZLSX/JljO+WRvrPJLc/iNUAzURqbab+wJZ02kMMOnhLI5sRYxFEUg6zR7LeGQh73FeJTpO80Psr6hGeOmD/qd+EM75bkqWyudkct/9zwR4mZj6f2b6uuuk9U/li3PJ0Ovhln45Fn3uRDi1t4sK9iDPgyj1Xw9mUt7boUH1U8j49b2KhIn4aV9QTMLKA65Gm+ku/OfmgmAT75irmXDXZbBwmKfLL0TaBCnLWb4fJouzT3XJRBx3k0psACykCekACtP6ZTPoXZtWBQTwxFbDM9hTKNxPgsq1d8NXnFckReFowDtiVJonoEA/NH94Vx5j8KeZa9OY/JI5OlwFu6Yyn/phkbMaYcNhe5BJ98DCQBHjw8Q57Em/oZ9T2lP7Jyah26eJ7YjcjlsThglnNu9hhPYXODgMvk2XU5PuarUc4oWNCtqUtsMf4GieeOsc3wrpPiwqpGokDbZRjPMdC1wZPKs3j8eEcWdDoTk6fQYbfNd3HZlgWEHTa7NFksx3SUaYPoE5rtcmDGdJC6VZ90zS6W88lcHzzrPA4WgZcFz/yzRPJspeDyuA5rQrLtdbSBTW6qBYlDB4vamt8K1I5RFz5skVtlsszqajaK9lhmR7/aLAQbK7l/k3hhZ05YBp2fBMDkOe8SWeXq9m/yKwXUH8F8lG+S6EINkqeVJ9uWVPNvhrclo/i+qJb5t/u+HwRPkwComzaahdVbb72FKVOmoKenBz09PZgyZQrefvttb52vfe1r+a4/+3fQQQcZZVauXInvfOc7GDZsGIYMGYIjjzwSixcvrmSjKnXuuPDKBrVGXkKiIpVHeSB7K6V9LscW2Q9z/0YzUTTIunlMHr3gHHBEV1aH9YkGHz5Z8mMWeSSlkwdwvDVHOc6sHQ1QirFMJ1r+KA1+4dWsV/ys+D4kL39vTeYtXfoWk6ouY9Vo6I8jNPK0ePOv+Ov9mx+REnlsog36o/lq6ynKKspwy5N4U3tZ6x3+TRdHKv9pwb8JT+/fjgUdkdca3hI1drLA/FGLNz2paEheEG+KmWMDw4yrkTaahdVxxx2HBQsWYPbs2Zg9ezYWLFiAKVOmBOsddthhWLJkSf7v5ptvNj6fNm0aZs2ahWuuuQb33Xcf3nnnHRx++OFYs2ZNaRs1gSjji3oiyOrksR2ONvuRlKmr4NnyfNmpYlVXhskuyHfDkkfmWc9O1d8GW7YhT/BcAZrUVeDj2jW3gjedaJjNJMNCx7JVxvU5vZBMfivQDp5CB5Pn0KHNxGkvc2vk2XZk5arKc9nM5LG5QjtWNHjb48fn3yYWiSyX6WvBv+1yzL/r9cd65bUazzVHXB1kwd2RkN+GbISPxDvIYM94LENZ1JHXLZTrIAsw+kR+cirB2sXjL8tiiWbUThvF4xaeeuopzJ49G3PnzsX48eMBAJdddhkmTJiAp59+Grvuuquzbnd3N0aOHEk/6+3txeWXX47f/va3mDRpEgDg6quvxpgxY3Dbbbfh0EMPLWcoBdVk8p2/a1Vt8xIkSSp5ZHdU/a6GUp4z+2HKKr4W35t1Ja8ZPAs8sjsC1cHqkv4ke1p13zkmS13fMWyVi/ASeNOJUWFzf7+RsWfZZgcyf3ZKjoEiz3VPypbnuyxry9Nnp0g5m0fOUZ2XZTXyXH1s+bc72yXrqu5aOsYPsyWUYfH5t4l30x5TZ2v+bY8pVYxy+kp4XMDRJ3r/Zn1sq9DjzcaUNmMj8eY2s6M7epxH8A6OgaxcUAcbQ2kJMAAAWLZJREFUK9JeJLytdBy3eXW1UWSsHnzwQfT09OSLKgA46KCD0NPTgwceeMBb96677sLw4cOxyy67YOrUqXjttdfyzx5++GGsXr0akydPznmjR4/GXnvtFZTLiDuYXcY1WRKexXTdGaA7nIBtABx3C3Q7poTeD7CPgczXfjuyNxDl6CRttIGVkzqaE7Kfx7Dg7XctKliwU8gju0NtoHThU10e/20/njnRBl5LWPG1yCLjggdeWS40LpgOUN/T7fypLzOeUh61BWwSUNpH5gk+qegzZUxHyPd8Pkp5pA1a/w5lx1mfaP3bFRuYPFGuoY/nGh7Dgt0Rch4vC1uY3jIbJ1NW/xuzDXY53/F/cKyQe3a8LusTRx+LkvXSRpGxWrp0KYYPHy74w4cPx9KlS531Pve5z+Hoo4/G9ttvjxdeeAE/+MEP8OlPfxoPP/wwuru7sXTpUgwYMABbbbWVUW/EiBFeuStXrsTKlSvzv5cvXw6AD37dxO0KgDYvgf3sdeYkrqAtefS2AZcnWYJp68h3oHY9m8eCrPVZ/3vi2OydL2ij2YOuYzB6/0DTJ66gyPqJ6SDy7CcIOvGWLFWA5jbzAG1XdgZeux5cC9+E8Ew7bJ6vLr+P1+xClz9qssosg+OUR/qTL2glry+1Mlbq4yz9ZV7NGHVl2WiGqSirIFOUI/jwDJiUR/07kZobSYI1a/uQZt0c/q26T8V4BAsuj+vQYNuvV6EjsftkrTySyeTHy/64x+Kq/8fTJWZs480XR37/bhTkZXjzRRTPUrNFWJ20XjNWZ599dr6zdv2bP38+AAk6AKRpSvkZfeUrX8EXvvAF7LXXXjjiiCPwpz/9Cc888wxuuukmr10hueeff35+ib6npwdjxowBEN7RA5lTS6D5gLB5TEeZzITNczhiZXlJ2JkazEl0k2WDyfNM3Cxo2/LoMVgLEyPjafHWyCtz/BTCx8XTTz7W+CH4NIMx44mq1sTt5oUCPht7zsmNREE24dn+6PJvVeYaXF7l42qHzTZTr4PbzEDTHgUyvM1JtWlPk5eQcpkOVtfkMT9j/i3LSXyc8lqI53IMMP+WmLk3CbY8wgOPe3TMB+J5jiNZAofwpvJyHgQx/7Z10MWm8r5onbReM1Ynn3wyjj32WG+ZHXbYAQsXLsSrr74qPnv99dcxYsQItb5Ro0Zh++23x6JFiwAAI0eOxKpVq/DWW28ZWavXXnsNBx98sFPOjBkz8L3vfS//e/ny5RgzZoxy96oP2qq6cDhOCzpE4Ckjz5Zl1aUORnhCeFFeQAeT4dJb+ViE6GQ8OHSosVXyqtoMwmM7WueRglFGyssXuQ3CI0HW0EkfpcHqJkQvs4VMlo4jbebLfGNilmP9TuU1IC8Qu8YetUXq0B0RV5dnLyT5Md3aVyXefOKW5ehES+UVeOAxqrI/Eh6zrRV5zEf51QGmV59pDsnLFlXM90L+3dzEsrqJ5FltcOmgepMEWU6axyhd1rZuWq8Lq2HDhmHYsGHBchMmTEBvby8eeughHHjggQCAefPmobe317sAsumNN97AX//6V4waNQoAsP/++6Orqwtz5szBMcccAwBYsmQJHn/8cVxwwQVOOd3d3eju7hb8hiLlWCaTwLMVEOXYRVu9PGIL4amzKcRxiq6jzya5eaEdcrhuwREDbXCVo33SqPb7iS55SZKIlLILbztSOOWxsUKzFXZdNjFYGUqyV03EZ2Z9+z2Tx7JidIfM6qKJN72QzLI/ibSXH9vwYwa1PLL0pRMDwdE2hukA0dGSzVb8oXgTf7Q/M8tJeW4crbrOsdL0b22Gv7Xj4FbkQZRj2UgN3gnY4l//PDLmU5XibwOknCm3+Hn4VELKaxCBHB/Hhojt3GukjeLy+u67747DDjsMU6dOxdy5czF37lxMnToVhx9+uPGNwN122w2zZs0CALzzzjuYPn06HnzwQbz44ou46667cMQRR2DYsGE46qijAAA9PT048cQTceqpp+L222/Ho48+in/8x3/E2LFj828JtkL9g1XBA9/NsMyRauciqzZlVpHnGIPGfJc7hClf8BLz1eBZtolyHl4VHXD0Hb9/YPFcfWL/rdXB8HaMH408ZqNr7PHgzvSyAAgvj+5AG7q6vkvPwbr0witrq57H+6R6XZlJKCHPZNGFb6ttY/2uxYLhXVThkxeKK168jUYoY56DZ1Mr/uiK5yp5zgUY4SlsZo2z5bEsUWK9Fj83yyWinE8eAnVZDGlusExbJN6ODREDuEbaKC6vA8DMmTNxyimn5N/gO/LII3HJJZcYZZ5++mn09vYCADo6OvDYY4/hN7/5Dd5++22MGjUKn/rUp3Dttddi8803z+tceOGF6OzsxDHHHIP3338fn/nMZ3DllVeio6OjtI10oBOeNvvDyvWxr2NTR5R1def01eTxew/Emciux59hInWpjvK2qHebDVcmweS5g10YC1c2MlXizXTYpMUbCYQ8O0DRjAPFzPwsk1V8NXgkapvxVOLtz2DYbbD7nbSV4AOGGQva4H2n8e9+vdaXU+jEIPHlbWP2OXgUb9nHLNNsynNj0QjwKN50/DAe16HDGxRv/ngam6eUB4KZEh/XXVCaRbdtJmOFZ3F4PDfxlu3g2SRZTp2dItku/91as5zsE9bvPD7WSRvNwmro0KG4+uqrvWXSwjdqBg0ahFtuuSUod+DAgbj44otx8cUXt2yjDHYS6H6nsyoSXgK+m2GOzQYOC8a1y0vMerDrMgezXjNZNpM5sY/Xki0JkA0d2lZblovH+tOBN9/lKsaPQ2/oPoxTnnOikfLY5Mb6sza8mTwSD5kOindhrOR4OxdHCh7F27FQ1epQTQJ8sVVZnmP8MJ8ycFz7yn0UgsfwpjrIgsm0LRG2gMnT4p2wTY3sT3p5vaHLiLBsUiMB+kQ55o9KvKlvKDfPdv3EeOmvtxbUYjnfJtbAm9hYejMuzePyiniTTmFY1E0bxVHgxkIaZ9ICrU/1tihPFWTCPOZMriyRk2fZYfO08ujxk0+e3S5toKRBsWpdwiMXq514V9TBFmX9GVRS1/q7X4Apq/haLMcustIjQ0OHRx65LBvKWrInPdMnOJO7ch2Mx/yCyOsg/Unlkcwo21l3kMvMLp4mhjifzl3s9wbpYzLR0j72jIGiPPYU75xHLsMbdXMdAZ6jTzSnCK6TBS6vmg4uj/loeDGclZMxxLURM+v1f1AoUyhr8wx5ieR5713JIR5ccPOsmDBZvVGum+LCqkbSpBydl+kU5crI0/Bc8qgtDb+87G21NHG5usYREuFp9bqcXabddfjw4Mnl2eGO46N7RIZLhw5vGXk07aWYscmXYKHHTE6M/roQPJ6xsvrFzhDk/5k8tijVHg3ZApk8MHlaHeCLbmoLk8f0Fv3MaIv5nvojmRkNzHz3rtT+zeoWeESHy79tvJ33zkDKKf1bLY/4qOa42rV441dArJhn6eBHbdK//ZsaxoOoGz7iy3RA8hTyeMxDWykurGokESfJ7sN1Z0LjdDwlzHWIiYHq4BkwanOgXDMAmmVUPEuGIc+Iz24Ho7thSJ7ZEF5XdVG0xL0r+bV6109Z6PRq7KO2ODIiVeRpM4CJBx+ehZA82zanPFbXGFN6vAXPceRD62rx1ugtgQ+zuS55Xj9TljOyjMSXKY/Iyz5nGU/m37aOULYmk6eNjex3Fmk2SSOP4GO3oV+vVodjbjH6pJ8ahBeK3d4vohh4u8sVybdAZlkx1o7E0iFjnuyTuikurOokEbD4bkafEpZ1ZTCWOhKio1V5LOMQ3lU0ddt1Q5kJb7ZCyTPqQvLoDtmSlcljk7zq/hPC/ZnbTIInC6i+eyeGDrtMGXk0a9Akb9aAYFGszfqdBVQ+Vggvz0wobbb0cr9g/UnKKXgMb2fdCv6Yt60V/6YZISVmLeAd8m9fJpPhrcl6hzI4mTxdlprhyOTx+FtVHs80K78kYW2VWSbKF3/NuJrk72yeiY/UkX1u6iA8Is9ns51RE7Gb8WqmuLCqkXgaVpZhuxQbZndd5jikHJNHeNwR/bb4MwnMSWQ5Jq/I892xakleqC7Z5evxgSBXtoJnEnQBWp+FCAdeTZbEdwRgynPjY+6GZb+DyGsG8mIxgi3Rm/MaUp45LghuBG+aabbb4JBXKjNMJnhNZqJV/6bZH6tMptsuVyWzVYd/q+NAUYfDv1VZake/tCSPjRW7nOshthYvSVwLacILxHPmK/7NlLJu0Q7ySJS837TyAjq0fVI3xYVVjaQZ6GCBEjzTwbMfYR1JApmeBiknWuDb5Zp/Z3qKOm0edSbH4Gd2CHkeR2TyQnpd7dBn9iwePS5y1SU6bHmKoNiv16GD8GxKFHVrwZvWTbzlvFnQYht88gxbmDx9JkHwKN58wa2SR/DWHi8nRB7zb1e8YH1syCN9TOZAOi6anyWiHM9YyTYY4jy2hDMs0r/746oi/iYQd01Rwr+pPDoubBVavB0bsYatw1r4USwS47X4OT9ZgOCFNmL+zXignDLbpd1g1k1xYVUj8eyCBNUOeXQ3Q398tR1P/pW8UDvooC6U9ZZTOpNWHjw6woHc7bBmcHf9+KomGJP+JNmPBgmALnzo+KmIt2b8+IKdNvDSNL6lUyPPF/DtNrhs4fLMugwfW0up/mTyavbvuuSps7seLLR4g8kLHCH58OZjqslzZeO0eNs8Fs9pdjMh8Vyg6PJvsvAj8lwbMZuSxManyffxEuu1+If2GJ6t9kM6CGTOLyY45Vk8JrNOigurGokOdCVPymJOrHcm6thaeQEedZwGC2wQBdng92YrrDa4dKjlhdrhCwoGT5+t0PQ7SDlX8GQZTxYoNPJY3cTS4Qt2NAAazLV2N2S5SjpA6np0hPrFNQZ4n5AJT4G3po/LyHPbp5QXGFPNjJWOx3zK+GKC8kn7bFx4bSE6wndBuTwt3poME5fn+i3HsDxn1pLw9At4s0ym2+YlVj2bmdcN/jakTodvAV/lESuURzLNdVNcWNVI+jstJk+9s2xU+80+V12X3pC85kAng5o4E9u9hjIJPh4IL6TD64ghnqPvtHjTi6w049CCvIpjhWU/EmsF5sNbi5n+4qllh8X0Z0Qk3gjqtctzfPr7BCaP5Bz6uy6MN8tM0HLg9660Ouz5g9ts4t3M2hL/YdmkIs+S4ZQHt7xW8GYTMp+4Tf/W4O1euOj82xbIJnguj+ENYrNcqDV1Z+8LhbO3BbthfWzUbRBeBhnNgPnHBSvHdCREB2lGYdMlddjypGfUS3FhVSPZY1q6UgYq4bG6CnlUL9OR/9ckmjmxijUHdYCXy2TOSWQbE6iUl/2RkHLGrsfxm3A2j97NgbucvZOWAdDBM1nOTIL8Sr5Onm1bLo/wNHjb9nkzE8QG2u+Bcv5sBQuKhboevKtkWPjuWt/HLGugxVsjj9niyn6w8cN/4sT8OytbrFf8zMXjdRN3XcsOVzlmH59AJY/5N4s11F+sv7XxnGKmvOOq8+8WHrFiLa69maNEljP7PcntFjwCbis6jHYRHa5MlDSQ62DzXp0UF1Y1ko1Vg6xwtFkiV+ZIu4tSZ6KIzXziSQSP72hl3ZA8nk2CKEfT097dcKEcC+QNWS53RGvHLQKqXS+ryoKdNjOhkOcMqBp5Dh002NFMginNZtHgyfDJ37MxReRZbbDlaTNgDG9XVpXfk5K8qni7Mh3qLIlSnta/tRkhHgeIvKB/e+RZ9laW1/DEGgXeLWWfCU+b9ZZ4ywVHAhBbJM8+bmQZpoTwePyVvGZcleUM//Zku/hmvLottL0Wj2X26qS4sKqRpONIXpl7DzIoEnkN7kxaeWpHLE6WhOcawP2vzIlZ3SKPBW23PJ6t8AfevG7D317e79qjVY6F5r4FlefAWyWP1k0o3tpsUuj4gOHj5xXqgvDI+ElAeD55DckzxrclK/tchGLWx+B42zyXDhZDxARKdDhtVvq3MX48/m3L6n/V4W3I83zDV+vfPP4E9JLB4so08/40ea3Gc1GuwRZRrs2ULY9tnBKrT2Rc1WaOtJsf/waL6K2gw5tRU9hHhnOtFBdWNZJm8NNUpyNoa+WpeInDOUUAsAO7Z/AzHhvUWp7HDhRKaOUhoINltlzytH1Hgx0r14o8hQ6nPC3eFYJnK4GX4e2zRfvUdhqMFbaw/qQZDMtmdwa5BXmER+WRJ76zdhh/e3zKPGpLjM+KsrSTJZNn2qOc9KV75+XMhbSPZ8rT4E15dNFDFqIJ2Zy5xoBCnvt42ZZn9nFS4MN6H9qcNhfcxTEg6zIdCaubl2PyJI+NAZ6Nk7bYden0UiPFhVWNxAY15Yl7D9pUtKzLMx0kgLpsCZTLB39DDvSQQ/gdsbyDlc+SSO8JZtQctrCsActW8AyGHSmLmpq2qMYKkZeUkRcIvNrMo/ZYgPF8xxFavI1jC+8PvFZrhzYLHOrPpi06eVyvUp6WVwEfX0YItJwO76J1Xr0GLxE62ETJJlqXvDqz/v1/2/L4gomFBmFLQ8pzHv8LHYnVftZ3SV5f8BJW1y+vQeR5N88BHb6j3yKxUwnXcbCIyTVTXFi1kZyZBEU518CxuTQz0dBnK0LyfAOYOhgrp+VRZyovr3SKucjz3cMJ9Yvz2WNWOcJjju7KPPLsh+TJoB2W503ZM54hH4LnOxbgX58u8tzyzPZKHm8H3LyiNKKjTOZRg4/LR7V12ZiqIs/ne40Aj2GhxVtbl2a7fLbQTCabaMPyeH+aTK1/l4nnAjPLtsxWulCz/i6+ZvVcPJphgixHeaRu6BEr3mdRER00KxZ4xIpWXt0UF1Y1kiZzVCaToJXHdqWanXQms1gGcA3CRJYzdgEeeZQn6+ozIsT+QF0fr9jihNjnqsvT+Dp8NOOiDN6snE1Jog86PGtA6gYnRikvUergk779JmAzsc/EOzFezbqFcpD9nhAsGI9mNYg8216nDhB5Cv/mi8iMR/yC+p7ZJ24dfrypPObfpCH+8eMfAz7/1uBtQ7Zu/NtxaZ7EHzNGJcZrsY0sOwVWt3hSASkPVB4Ej2bKiDx2REzlNdztCOuAKFc3xYVVjSSDou7uC88kEHmOVK/c4ejuXdkOmzBnIpNbNjRZgA7dcQCRR+Y7b/aDBw9ZzphUG6Qd2rqJbK8zGykCrz5jxepq8HZnJvwBmgVPX4aA1g3wyvZxSF5ZvNmkUiVL4sSM3GtS40PvRLHJUimPjp8W8LZkuXjaPgbr90ryss+IzcS/DRbLZFpyMxu08ZzFX4lP9XjevyiT8hgPwX4iPOvVKMd4AR0Mb68OpbxQO3yJAaNfyKlE3RQXVjWSDZT7TF7yeIrZCrL0xzil4kYC+RyVBsuw8EEYcjC1M/nqGjxPIG8hKBSJlaOBxyPPDNoSCwIF3eX2s2y82cJch3di26aUx9oKX58QLNR4G4Et4yXeclq8vRnUkC3eMWrK49kFCJ4Gb5qZKOHfLIZwHZYsS5yvj9VZaqaD4NhS1tvQkcUGWVebpTbk0ewHj5eMp8liueK5Rh4o3nKrbGesWPbHtzFhGxj9Zsovr5XNWdlslzZrx45n66K4sKqRWIaAZg2I01HHITyNDnax0Z39qHfwt+ac7bOFOZO3Ls3ameW0eFN8KmLrlle+biv4lMXMmLRIxhNkEvBhxi/fFqXpAm8+IQcumLC7kf2ZCRsLvklivid4TB7hwTFxB/3bO9GyPoaS58ebbZz8dyh1Y7QoT7s5842fEN4NJ696PNfI4zzX4rpox9pXyiv2p/mZUY7wipTkr9KnTCzK6SCqFBt0pQ4msGaKC6saicQ/ORiJQ7gGLKnqHdwZuXdRhJeYf9v2aHf51Jk8z6oJDX6fDqMNJZ+8bgRPyfIHBYtHAxvBNtTvOU9RzrbDWzcgz9tPkDx1PxF5wYusHnmGLeR35xKigx4BUB2JU69tnw5vNlnyuuzIRzd+2CQdlqedLFn7QXi+SUv725BBecwWpsMqb+poMrW2UCwsWRlTd+xHyjF5pBzdFCN8vKxdNNMvKxBb/BvRgDzqU4lR3qwb0mG+GjwUecy/pX11U1xY1UjsgqE6C9GQPJW8hqzLyvWf5/vL8R29Z/AXszoFu73ylJmJpiMSBzPaQeT5MhNFeQ23LRp57AKxJpvkyjBp8dbU1cjTZggY3uosFlm+tpIpy/GmGRHGa5IWb5c8iiPNDOvwtpdMVF4JvKk8NpEp8dZnoiRPi7faFi3exL+L1DLelkit72nwyWwWei17++tmnxT/NtuQ84wx0NQty4X6RMprvmfl/PKaNkv7+Iaoyrg1y7vk1U1xYVUzsUFcJG12oX/iluXqklf+vokpS9qRiM+0dzr89yiq1GXlElHOJ49mU5g8wz7ZMa5MAsPSrs77me+QQ/JYWxPSVh/PkO3TQWzQZiYMHtFBg7v1malXGh+s65Vn2sJ8VIM3w6xOeb4JhZczZRVfq9QNymuYr6663iyo1haSyWylD4pUBh9tPGcZqxDPe+xpWiJ0a49+QeRRvK3PivLMLCOLoaYMp45E1w5vnCL9XxfFhVXNVMTKda7OshrazBbfMVk2KOTxRQAb6O4BzLMfsi51MOoQUh7NdgVs9mUmePZMyjN3YJ62WbZQfDSZicT1rc0wTyOPHzm48Q72cUm8eV3Sx1VsIbOv3pa8BinH5Jk8gQV0eLsyyFSeRoclj/k365Os3bSPi9kFyD4GxUwW88kL3b1j8pouSmwJ6pDvyhxJ0Zis9O+qMT5hP3OTWPZadmdlZBvM8sVyPNsl67LMdQhvEB188c/73VbSjNKB9irngropLqxqJvu4SCyi8v9glJOTpSjmlMfSxCF5bFA3Y6fOYXlA9Q906sTWZybTbzPjNXXIumxSDe3qfQHK5slFM8hX8smu1PENIQ3e7l2zsp+CwbNkXWVw5xmC8vISIk87VvgDI81Xl80MnwbBO3HibfFc8uwxQB5Ea2ep68Cb+ndAB58Y3fLC/s3kScy8Gfgij+DN1oyuBYiIq+B4a+M5k2eXTMDw5hsn0iyDycdAYnxW/Dykgx/xSXkNMoC88rS2BPDWtqNuigurmskeTNKZSnw7hJUTDlvi2ytswFUY6GWzFdSZWnHiQDtoipm4EXUwjw6EdLDgSTQnpKAzM6HAm8qz8aZ9Yr4a5Wz5Lh6RFwqetYw9ZV0QXku2WJkO6t9ML/X5RPK0/k3khZ5k72+XrKvNUofwzv5SZ71biReBRZm2X9i9SpZhKoWPxXTJY8d+Uh4cx6gFexvuPtYcc9t183hh9Kesq5aXDR+Pr4bkhU85fO0QamujuLCqmexBp8lCsF2pK/tRlzw24Hy7fG2KWZslaaXuhmAL7xfH7ztW5JXBO8TzBV6WwUClfmITWfZKAlsgje/Dm2c8AwHVM1lobbZTAlrM5NEdD+waeQmIvMTRJ6SPWX8yvNUXoQM6WDmWEWouFPy28ElVykuYjpLy7GyPDZkr1spFs8Q7ITwuL3zcyPFJ7CYUFsPasULkGX3ijiF8PLK6fh2+OYi4UHhzRp6jVzfFhVXNZA8c6Uxkl0szE0Q2qVsmsxXaWbaWhpXlfHVte53ylLZQeUVewy2vzn4RWDR0GUq6a2tUz3iWwbvKpdCy2Q9Wl/+uG6lblEcyb6wddeCt6ReN7/VnJkye8xthsHgV5dE+KckLyWtmdUw7nHUDX8kHk8cyrQlkOY+OJGizR57FY3FVYAHlk9cdOLK64aNq1ndrPyOzfCW8ST/xI1i3f9O6Drv8trh1IKiDjb16KS6saiZ7V181E5Uk7BEMUh6ra9vRdAjTtkyPrxzlFWwU5RqyXFAes4XUpWfoPlsC/UJ3uUp5rn4R+MDcuTXrk3GhwJtmP6xy2gwbv4OS2S3L2XbYdXnAJ/K8mQm/Dn+2go0pZotfHhuPrkyHBh9blreuVbUM3kFsfZgFMoD+fiI6CBYUb7XNxXKJU4c6s8Xk1YS3jU8mm9UFysvj9uaoGTpFG6h/S3ksE+UdK0G83fLU8w2zmeCtPW6MGauNiNjK3QxkJe5YMZ7FdJ1PUztIPds2TRt88mw7SsljthB57DiL7WZoZoLw2HGW1paqeNOMAywezWTyu1g0awDCM+rK9tMdPSmHXJ4/KKozHcwWJo/gDdbvtG1SHlscuLIVLpvtbtHg7eLxCdlf1591kpNbCB9fhkDrP61lxXT+zesSHSA8Jd51+XeZeB6S1xzHkmfay3isrW55th06eW4dVWOoXdnnt6G4x8ZF3RQXVjUTifdihywcR/uNsEQOBtcul6Vc6YQCWc6WZX/GHNGf/SDlCjyvLUFn0unw6g3o8O6kFXoZ3po7GA2CN5+4w/aWxbtan5DABlnOJy+0GPbiHcKn4Q7a1BZt9qOggx/xSbz7fdniWbLycomf1+yTIpPYBklan2I6aDnrM6eO/JXIo+UCOmwhhbcNUpDWDWU/IHll/FtzUsHkJZa9voyd9iQgtCDhWe/EKG/UDfitL1PYIPLCi3Umz21zqB11U1xY1Ux8928OHBlQExH1XN8So0eGhGeGC/fg19hb/MzgBYJOU68Mi+y3+Ko4hH/XrAsKdel1yZPBMyGPYGj1+WbV27Uh9XFQHhmj7bMFgscmpBDezL9d2Qot3qD+KO1tpZ/48ZPUEepjeiTVgjy2sKCLep8OrS1MnsVrJZ5bLCrPxpsuDolt3oxdcNPAxruh3uSRuSDUx6JCSEcFvHNbmA5mS0200Sys3nrrLUyZMgU9PT3o6enBlClT8Pbbb3vrZOfa9r+f/OQneZmJEyeKz4899tjqhhrOmdlh8mxA6S5F+qa6rs3zO4Tf3vx9sF1soHt0gPDUDlbg2Xa6eB5biuTVAT+T6WA4WmFSiDTqVhgrzF6XbTaPZjpYXaUOnomSdVl2k2FR+u5QAO9WxqPTv4kOefRbzZeZPG2flG0Xz3qTukq8DXme33zU4q1/ansieKG2scULz4hIbMvgTU8qAs9B0/YJ3/zJuqzvOE/K89oSkMcX+qYuV9vsz4o6jLr5OPOPgbqps32i66XjjjsOixcvxuzZswEA3/zmNzFlyhTceOONzjpLliwx/v7Tn/6EE088Ef/wD/9g8KdOnYpzzz03/3vQoEGV7TQAzI8eEgBp/rkqM9Fglx3LPAslMco07TB5+jRseXl1Z3982QrTmVqX13q/tAfvhOxz7YuxZfEJXWStY/yEMp4gWPjwAZNHeCF5LBhnsoNZWkNvmr/n96QIj+FIsh8hvBOvvZC8YjnrM6DQP1odIP0ZGFP+LJYf7zyuasct4C2ntoWswhsubJl/k0yUVayfp/VvmsGxBMIxBkJ4Ux1SnjaGeOUVbPVlhlvCu8Bj8uqmjWJh9dRTT2H27NmYO3cuxo8fDwC47LLLMGHCBDz99NPYddddab2RI0caf//nf/4nPvWpT2GnnXYy+IMHDxZlq5IxIKxXm1+sw8owp2P6zIEkdfh2FUaQUN6J0t5X8mYmDMeBoNK78Cq2kHIkjrdsi8RRz7MpSfjuVbujZRk2tTzLDpcOVk6b6QjxSssD4bGJQdkHoX628XHxXJkOewzYdUtjRhaRPGvg1+HrY608FhvN345z6/Vll502Mx3KMUWzLsQ+9jcdA45yvthXxg6KD8kKquVZcg2e1Qa7rjfbF8LCo0Pro6xPEWhv3bRRHAU++OCD6OnpyRdVAHDQQQehp6cHDzzwgErGq6++iptuugknnnii+GzmzJkYNmwY9txzT0yfPh0rVqyobKtmB88WTJpMFBLA/kq+vUP23XHQZnDMgb62XHGkUHkQxM+8SeBVZhKaO1VpC9MRugPm3x1Jnj77YdqiyVb071Qhy5Gxot4xkjYUef57LqQuKWfbppGnvudC8Pbemwlgq8Vbm7Vz2cIyjzxbQcZFK3gz22i7/LzSGYKQPJLt8meiiC1avANZHC3eNIY4dLSGNytHbNPiTfoEAT8rize7HxuyufmeyAvMS9oMWCv3L+umjSJjtXTpUgwfPlzwhw8fjqVLl6pkXHXVVdh8883xpS99yeAff/zx2HHHHTFy5Eg8/vjjmDFjBv7yl79gzpw5TlkrV67EypUr87+XL1+evzcddi3PmCwkoM4MBpS8xPzb1sknfJ+9xQGclUtIuWJdNoBbl8dsZjqo3mLbaDqlnLwi8ewM6YNChi5Nm3VtvBOrXlZHLrgd/cnaVQyAeX1WVzaQlQvy8s905UL3I7R4a+UxvP39IqpSHa66XrwTOa4aCry1WTyvXwTwodkAT/ajkjzC89fVyWMZWRYfeb+QtoHwSL+E8C4XzwNj0dN+EgaELf2fBdpP7zy640Q4nrN2ZHWJPCUWYbyJjnWQTlqvGauzzz47X7W7/s2fPx8ABzVNU/Wq89e//jWOP/54DBw40OBPnToVkyZNwl577YVjjz0W1113HW677TY88sgjTlnnn39+fom+p6cHY8aMyT8LgppPviZPBt7w7jXnWfVs8t81aF85/25TKa/Ay9umlad14kA7SrdNoaMq3okD77pxtO3QyPPf6ylvC8ObZVVLZ+i0tpB2wJhAlOMWBEe47tJA8qx6LtuSQD/5srFF8medzFZodKjHSlYr2A5RLGc2qI4m0ysvVDfXQeQVTSF4I2GLZsc3fI1mles7fbZGyuOnCMVypoy1zVLWdcsLb8RkXYY3z2x55LVx9bNeM1Ynn3xy8Bt4O+ywAxYuXIhXX31VfPb6669jxIgRQT333nsvnn76aVx77bXBsvvttx+6urqwaNEi7LfffrTMjBkz8L3vfS//e/ny5fniSrtbT5KkucVBIagU6srUsXROm9cc6NIOtvNtmN6pquvTUcmWbDfc8MurZxfur0szIi3ULfL61uLNcLR3qhmPlWtru7zfoqmpj4mODRFv7S5cg7c8GoK9SlHh7bMNhFelj/MYBaKX9SezJRRDfH0c5CWlbCn2KCtHj5U8eFN5hXjO8U4E3v0xnvGUfRwYnwmzl/xOHu8TTznSJ0Um01HWp3gmSmlzs2qgX6zOr5HW68Jq2LBhGDZsWLDchAkT0Nvbi4ceeggHHnggAGDevHno7e3FwQcfHKx/+eWXY//998e4ceOCZZ944gmsXr0ao0aNcpbp7u5Gd3c3/cwEVSJNd3SNatmpTJ45MLOg4+e1kknwtktZ12yH5Gl3qr5deEgea6+IfuBt8+kAkWfXDeGYyQuVU2cwqL2Q5Zg8lkmgOkQxfx9rx21RHrmHox3z/kyULGcehRGe1g8aJZ68btni8u/Q77C1csfKx2PtD/F8sSEoryHrsuxH6X5poW0uW9YUbFbjbft8Yj9lvXq7EtInvmzShoC3745Va3j75dVNG8Xl9d133x2HHXYYpk6dirlz52Lu3LmYOnUqDj/8cOMbgbvtthtmzZpl1F2+fDn+8Ic/4Bvf+IaQ+9xzz+Hcc8/F/Pnz8eKLL+Lmm2/G0UcfjX333ReHHHJIJVur7sJDO9VMXpkMiY+Xzwkt1K07MxG2RTpdK/LK4KPheW2xdmqa7JSNd+KQ5eKF8WYBUMrT9zHBJ3/125xYr6bNEMT6BUyeEWR9Ovx9xdohtboxYtlneo2B2usfA742GPLszyrJY+WIDi3eIXkeX0ZIh6eumlcxa8f8m46BChk775itIi+XocSbDCruywEdrJzHR6l/h/pF1OTl6qaNYmEF9H9zb+zYsZg8eTImT56MvffeG7/97W+NMk8//TR6e3sN3jXXXIM0TfHVr35VyBwwYABuv/12HHroodh1111xyimnYPLkybjtttvQ0dFRyU4zyCSSR0aOc6dq8ewdjj0RF3lMZxIoV3cmqvQdqyKPbCdakldDv9TWtkT3W4EuvBmvtWxFMThJeVq8Qzt6n83mM9/suom/rpdXXZ66HQ0pz44DDG+e1WCTEWuX0jbS1hDe2cet9XFAnjcTVewDIi/XD1EuhJnvPhFb0NHsUSA+UrwVPG2mR+1TrfhjyZjXSuaxSoyrO57XTRvFtwIBYOjQobj66qu9ZdLCnaWMvvnNb+Kb3/wmLT9mzBjcfffdtdiXkRHIlE99TWACj7V/iwwG+GAwijnk23aQNZQoXyxHAyV5Bk1C9DLZTB5phuUQbh3MZkM/McZ7/s7aEbLZxxN4W9gmcgw0knCfMPm+uwshe2ld8uwxX9/ZbShTt0o72mYLrSv9O9h/icS7H1vGK9rBJg9PG2hmQtuuIo9NRlKHvo897WA2h/Cmk3T2yvqgvA56hOS7nxTAO3H+PqjsRBbP1XhTeRIzrX+HFublfUonj2fHibxQXc+pCRu/ddFGk7HaGMm/0y8CnZDAy+9Y+bJU5ns2gGUdtttWy7Pa4Kobdk5Zzrd7rVKXH1O1Li9U1yevSAzbRIE3mwDYN4Sa9y0CfayUB58OGsR02FbBB552hORlb4O2sMWBx+YQ3vROXcIzVtpx14p/632A6NDap4xJLfljU1zz84DNPnlFKhPPWV0Wz6VH8fYXtWrvVXr7hMkj1pjj3a7p8inSJ56sIPMpo6s8fcxsAZNHeRKnuigurGomc2BLHhtM5NSL8pJELyskn8Sc0pkJWo60wShHRlxpeaQulH0Q0kH7Rds2X1+RulDwmO9r+4nVUbeB1a2CN1uQlO1jYkt9eLPJp6S8QNsYhgxbDd5UPtOjxJF0J7fBZ0uAl1H4OM9jCytH9IZ0aPslz37QrLxsHLPF+Jzwk8S1gCN2KMedefyW8ZpMemLia3+I5/klDW07uC3EZuOieg3yCE51UVxY1UxsV89W80WiPPAMhms3ZMuqknEpuwMP7vyJXhB53p1qccfdcNetwlNnopR66fFBAK8iL4Q36+O6M2ztys7VhTfbDfsyIq3gHdLBj4v0eMtHrLDvgTrs0PaJMfH4yunGMe8TyLqkHLT9bkyM5fDW9gu1JZDFoVmhhuyDMngTuINjzNuuUJaIzEnls4wt9PG6GLeBMcr8u26KC6uayRwQa3mQPAR4SeLY+VBH9Osk45zu+lrL4Egm09vSPSliMyuXiDeOcswWZV+pbVFiWKZsXW3w9Z26XVXGVEkdTJ52B0/HbaCuOiPg0ZESXpGSxMEnv6WmzRqwHX1op15WB+2Thl9H+ayLTp4WH22mQy2P8IpUBu8qWCSkXQlkOW27fDwj/rByrB2M14ot1mfBugEfYvLqpriwqpm0mZMiae/c2PV959utZHB4JkHaoNXBMx0Feb7MRIV2lG0b3x01qQ5bihNtGbyp7xvBJLO3ervAyml5RJ7JM18BvmNktrD7FjTIevwgYX0V0AEmT6sjkHEq8nimmlAi/whmV1i7WB+zCY/YTdvP8FHiDTJu1XjnOlhcJX4QyGD4Y4NOnsa/tacVav9uJYNDfVnXftB+Ksjz+LdWh7ZtarwDc0HdFBdWNVMRKjbosvfFLzA679cE5Nsyi7JCPBJjed38m0+Jt5xXHuUVB3q5dhSpjmyFuQCTPNoO5TfCmO+WwTu0uK6jXQbP880ndT8FF7lmeactTB5dhLvlhdrh5xXkqb85BUEJibKNxDUOWsG7oFPdVvfkps2mBPG2yrts1uOts8+3aAyNH1qXlYMkulZy4s14su+0eBfF+dqgzWTS+EZ4en+UvCLVnX3WtqNuiguruik02Nnu1bGTcTmoR6VXfsJ4SaAc2ChUyoNHBytH9IYCBXztCOmgfVlOXjjD0v9XcSFdFW9vPxkBRpbTZp20maiyma0ilbYlgIW2Hb5ssbYd2r4yN068D0KXoHMe+Vxtbyt4t6DDsL8FeaXxpvKazFrwJvJAytk8111ayZMUjEdr/1CfIhCNVB59aru//b67XQ3KMxQLuXQhzeQlZvmQze38rcC4sKqZ2Mqd7Q7MOpxXxmkFr6Gzg+5oSd1wZoKU8z5DxK/Xt7uuZAvh8WDUijx33SK1BW8zigk7GI7Zu9CF6+xdUB7hqeWxch6b1W0j/RLCTC3PY4vxuWTRci75wf5k4873jTClfxctZ5nmOn5ZgWauiV5qi1oevOW8vAC2WTnNCQQjtvhgOrkdzF6pk6xbHDFKh7dWnhqfgM16eYnVikLbmLw25qziwqpmMkF1B8S0cCofCtYhZaFgXnpnyeoq5bFdj1ZekfzfEFLaV+Cpd6oNXXupLYEFio9X5ryf4h1ql8eOKtiWxlvb762MH1ZX246ADipvA8Hbm2kmvFC7mosjfzkweTT74baZ6dBnJqQt5sVltw62oAkfLepw1J5K2HZkFFqYJYzH+pi2S9lWal91fHz92ZK8wAV+rY66KS6saia2eytSiXgalN+U6Q/mCeMl7nJVMhO0rteWov2yXPMzUreha1uVLATjUVs88oq/AJB9nEL+KoCGqmSi6siwtZR5JLxib/p3r0QeyWTSiVu7g2e2EHmg7ZC8It45D3IMaIhNjKGL6t4dfWCC4u1KhDwfPuE+Ju3w9TGTZ/A8fdBCv8Bor1tHkRivFN6eBbCLx/Dx9nGwn4i8huR1kPu2HeSuaQfrO9LxHQQfpoPjLXkdSpvzxVirk7GH4sKqZipilQ0wI/A2Ml6hXImlczjoEDuUWZjmwJRtMHQweYTXQaIsG/xeW4g8qpcFXtIOaktAHivXScplPOOr9m3H24MtsSOIt2+sFHgdjOfBmz+fSiePtaNhBE8ijwXZRNYtL0/a3Fc8BmpIXhm86eI1+LgAaa+vXbxPWF14y/GJjODN6nrkhfCh8jz4aPuFjkfCY/G8r8Arh3fzPcfb10+kXMNfzt/vgXKeuUDr3yHMtO1V463sl7opLqzaSDTI5s4peSqZxcCbpzSLwdg3WFkw8fPohMwGK5u0PBO83rGlLSDlijrooqzDUy4UUD0BoEg0yLaIt9F3pK3N3bbfXm+7iI6gPN+CtiiPYVG2j0N4l138KydQ2vdkPBazUzm2bcPbg09x967F2+dTAR1qvL0LeClP7d8MbxYvKvQL3QCSjVPu34SnIZ51guCF8O5kY8DXJ1r/NjJgRJ7SHyneSpu9/h3C2+cbaB/FhVUbqel0cjdj3LEqk8EovCc+Qo9F1Jkob2bCP1h9GZEGcRIjJayU18nkMQdjC0nP4pLuuEPyMhzJBMqyFX1kl6uhKke65Xf+/rrlMz0sKNZkiyeg1oa3R29KFs1tw5tg68ObTTzBPlb2k39D5Mfb71MBeaX9m8nz62DyGl68STyviDeL3a3gXSmeE542c8/iufeXCxJZl+koEl2AaRfcykVZ3RQXVjVTGjgWaCSSV4aCg8YzkIrEnsNUNjNh7np08rQ72k6PExd5pY+4AoGHZaJ8O1q2QGZfta8Itx5vSF6RSu/8IXmtZRJkOcO+VvD2BOiW+koZ8DcUvGmfFMrVcvQb6mNldte72SvaUta/WTtasKVI6zWeG3Xc9moXqsVy3lMJJq94VOlZvDJ8GqRtnFewOZF6tfK0x991U1xY1Uyh3Qzb0ZYhY5W99m1wl7v2tbjA0u4E2c6XZY461476Spkjssv1n90H5NGHXPqCTIDH+oUE1PWCNwgvK1cB72YQC/VxSXmh/mwJb6UtWrw98talf/uwDV0s97WBZyb8/tNcWBJ5ZEKmF5wJ3pynk8dtIX2gPWoy+qX/dZ3ineFotEuWYzwtPhRvT99ReYFsly+eU15oTHnbpsS7KY6Wq5viwqpmYmft5g5nbbmqW9oCsd0X39FC8DryhVCRJ3U0v7lRkKfcHTYDqp/nu4dj2OKTF7TFrSNsnzDFezTEfieu7XgnhFcsR3eRUofvHk5LeIdsaQVvb/CUOrTj0bQlw1vKaxfepEsCu/wCz4O32e+ZjGI5nY5MHtvUBOt6sKgkz5d1MTIdRB6NezJ2tzue58uHgm38cQEQPJ45kvIY3qyuD2+OWcAWL94V5Cnx9vlGOykurGom826F5NV5rptnJli2IphJkOX8901QKMfqEp5n52I6HSSPPuCQyMudibVDygs/RJH0FdmVskvp6wPvLMqGMh35ArkgT3snQbvA8R2fsOBu2iJ1lD72IvYVK/OfpZE62Le/2P2aduPNn+219pVlNYysQcZrUvm7OdK/WaYjZDPPGrB2KPH2LRpJ1imkI8u2F4/1cx7BO13veBN8SBzQ34WVOnx4h7OMmTy/juaVEn+M926Igni721H1ETgaiguruinwDcA6yXuHIDhZlpu0AP9AVz+CgQZt4rBKm/13c3TyENLBMhNZkGXl1gPe4cVRYnxWfB86RtVeXvcd3em/ku8fF3zxD8mrQV4fWTTTLytUvWAToMwidvRb/Eo+e+ChGm8fPsS/Oa8VvKXNIXx8R/OhrEa2YGoJ7zb5txrvJCtXsM2XdSLf3q7yyA1/Jqo63iHM/P7tr8vnuf7XduEIxIVV7cTO5KuevxeJbYx8jmhkO7P1g3LyDfHUX6FXLmbKfgOF2dKSvAKPHrexjJWSV5UY3qSplEfW1uXxLtatAe+gvBbwVj9yQ4k3zVitlWcspAmvKnG83fYyvNWbqeDE4+njKnj78KkQL7wbLCqvMCF7jv3UeLfNv7V4k5jn27AG7hypH7nh1SHlqfFhGTW2kdfKIwswFkPqwNFFcWFVMxWhygGu8fzd4PkmVbbrIQ6hvlSs3uX665bfNetsCR5patvGAirZqbLLzJn9dd63YFxzIU14ZAyU3/lvfHhX+SKGbwJd33hnZoaO+hmvJf/28Ko8NqOT1FXjrbXF2zaIuhsy3nxhUORlMlifNOVpn//UyiN1fEd3YJiFjiW9GwLSL3RRJuuuy8wjEBdWmwSxy3idAV42RjsacmAWedkgLNbNPu/skAO9g5RjvE6i1+AxeR4dwbqZLR26thV7z59hkf3MgmadxHa7HQTvDoJ38Ft3Hsw6SB/zu22Bulp5PhzJBMrKaeUVyXd5fX2QGm+22ArhrfTb3KcCi54sJqjxDtlC9JbGm036BdrQ8C6qzu4BFe3OFgmV/NuDY2v+XbCf+WgN/k0X3Ep59Ncw0D6KC6uaiR0t1DHTskHAdk7M6bJixUVFVq6TDEy20AguwMgCh8nzLd6ovA6/Dt8iii4GA8FYfYRCyuVUA95sN5Wlros7t2xHXWxXVrfYd319/a9dpN+7yALZWDR7sAjKK4l3VxW8fYt/7QKRYMt4FO42+3cRb+rfGS/g353KPtFuiKh/l90QEbxb2uyF/DvfEDXJf+xFaD3gXeynrG4nwTvkj3RTXIN/dxbOWDtIDKnDv1ldxgv6d0Py6qa4sKqZGFZ0sVWS2CKK3eVhE202IXcVBn9errDVyD5mA7O2BZgyKDIHK7ugoztuJo/shIpIao9QbF11Ew3Ga1+NHTaZVPOdr9F+WVc7gZbFOxQUy+IdnCw8C0QWZEGPVciETLCtA226SWLl1r6a/t3/Sv27UC7RTngl8dZOoFq8W1kgB/2bHV0RX263f7eCN/VvsuDemOO5dsHUSjxvT5Rea0sbZX84iaDVpnnW64jqXS4L0IXFVvbWXIBljlPg5UG7uHMpKc8ot9bB2E7IcMTsVS4QqbwOKY/tVNnky2CkvDbhzRbSLIvFFlHNDEbDy2sGMYkPDdDGhMzkZa9MntQbDvhEXlJOHr93lLO8Eyf7pF3PxWGXa1vBO4sOWry1/s2yFVq8Q/7N9FJblP7tf7wEoXUYz30bZZ6lZgvpkH+v5bUQz7Xyqm3Ysldii1Ie/w3bJo99y7BuigurmomB1S746CVKz07IzGAQHt31eByiQzqEdmepd7CiLWt1kCAbSjHTLBZ9OKTksaPAnFjgJcXqIN/Rb5Gyo0Azg9H/yo4PaKaHZp1IQGWLGaU8hndnYIFcFm+WkdXizdZLbTrpp6Q9/s+xJf7NjgfV/ljFv0tPoNIfO8iCSTuphvybYcsyVrmMjS2eh/y7hnheV7wo7d9k0cz8GwiMAd81jpooLqxqJoZVu1bGNINBymW73OLOOs2PAovOKY8PMgo5nfduTiAY0yBLMyJKeZ4gGzoWyH+aJ/CQOdvOEK8OagVvsKxGSby1qfhQMNaOH4Z3hg8bP+bYy+QW2pRHXiXe7IsJbKJtF97kol1p/y7wsvHTxXy+Bby7GLYt4M3u9VB5BO/gsV+enZJ4azdJbTvqryGea/1bG3+1/t3WeO5bhAeyz83TBqkj/gjzRkR0R6vklSb1vStSlaSJm1kNmU7mDsZ2luxYwD/R+rMQ7NiCOGww4GfOBMlrspoTcsEz8h89hSTKW4d464Nx/2txF8nxZnexsgnPf/SSX44mGYdgkCXl+DfMTF2GPDLOgsd+Hrz1E62OV5YYjuX9OxE8dh+vCt7qu4wevIP+XRJvrX8Xy3n9ex3Gc/09Wndd5t/0iJhsgKvgvU7iuUceXUQV/ZscD/rwroviwqpm4rsZyavlAiTjKS9FZg5rxFgajOXZfbb67whMjA3inE3H8d/z4Fkn4uyeNDGTF3oOD9vR5u1WB1RSlxUrSRxHLU+JNzKeH+9OZVD0B1R2v4YdCwTw9sgLTao+vPmCSeffteyGlUe/2i81ZLxif+a8mvybTsjKTZfavz3yTLzJYitfXOti8qYQz7vIxmmjiuc+/w7Fc5Kxsm1vB8WF1Tqgdt3L4NkKXTSml9x9l2DJ8UEXmVTZt4uCO5x8x8ScTicvdFFS/TVrT6pB65xMRB0TbSt4MzsY3tnxU+iIWH0s4DkiZnhXOub1ZC2DD0klk29G2sV1uzJW/OhXh7fv0jPDuyOEt+cuTfgY3o1PJXkeHaGfYsrrUB+VPEbUv3VVveS7vF4kX5ba/NISwZvE8/yIeAON537/RrMuWVw3H1YKQW1cV8WFVd3E7+Gwcq3ropmJPl0530Vo+kwkstgKBTu6wNEGaO2CSXss4FlEFaFISLnmZ5LHSDv5lqVWdrR0qeXNWEm8g3dkSPBUT6AsQJPgrj7mJTiyb3818dYtohhpF2VliWYmWvDvduFdacFE8FbLyxbIRIfWv1vJWHH/rgHvknG6SHQMrH0NYZuRNp7T596tg3jO8OabJDl+tDjWRXFh9SEld06DTzIsk2N+lVvyWFqXHSF1eoNsdXlFi7MdeSuXGPliizhsm07vWwm8vgVY6NEcGWnxLqbsW8G7eceKyZM8hrdpazlctHi3i7Q/ncKyWL7FNX0AZcN/XJSR1h87CT7B47yS/l0khrcv+6wl/WZGCdZ6IDZmKbYdkseO6ZjvhfDOeMadzA5ZrquD4J1hW+j4jFfEwuff7fxdQEYbzcLqf//v/42DDz4YgwcPxpZbbqmqk6Ypzj77bIwePRqDBg3CxIkT8cQTTxhlVq5cie985zsYNmwYhgwZgiOPPBKLFy+ubCf7Js8aJa8sscDBePQnG5S7rmwAd5G7L8WJkU2WAzobxmcA0N3Vzys6WMYrOmd3Vrcgr9sjr0jdnR0AzD7O6q4pOFhmA8OCpeBpOYatsm5Z0uKtHhd0Ad3/GsKb7UoHdEh8sjGgxbsoL8Oxk/CK5MO7iE8WwBk+Wr/l5QSL6ihLoaxCk8cWQMrNUTa5GRkC6XvMv6k/Zph1SB81yzG83fKKi4OM1xfAu8uD9xqS+vuA8BjezJXXdzxnePvieShLxBa0DJ+BXTq8BxC8ffHCwLtD+vcAEs87PfGcuWMdmLloo1lYrVq1CkcffTT+6Z/+SV3nggsuwM9+9jNccskl+POf/4yRI0fis5/9LFasWJGXmTZtGmbNmoVrrrkG9913H9555x0cfvjhWLNmTSU7tZNqHZjyrIKOpw3G7Dee6MVlktZlu48sKGp55iIqC7IQ5YoLoczpPig6Yu50LKBqJ1XBosG4XXizDVkdiyijHEu7N6RcdiTX3IH6sR3Q4ca7iyzMi6YPIBOoF2/qj4Kl3vzQybdNC2ntb9hpN0n0d/KIf/vwNiZfgjfbTGV4s0VZV4f07waZaBnea2rGm/k3XYQrv6lXllqJ53QRVXM89+FdezwvLpq7Mmyb5TK8W9nYMrzros72ia6XzjnnHADAlVdeqSqfpil+/vOf4/TTT8eXvvQlAMBVV12FESNG4He/+x2+9a1vobe3F5dffjl++9vfYtKkSQCAq6++GmPGjMFtt92GQw89tLSd2p1vHaTPTpWbVItEnZM4nfbZJTTwerJTRpBdq6ToN80gK3nsl+lZkG0lC9Gu3SsjdXZKGWT1mQ6JGQvGWblgFqJLh3fGK3Z7N5tU68C7hQ3ROvVv9eJaluMLNVKO3nORuvx4hzKUchHFsk7dbNFMxkDb/JstrlnlGmhdxHNfueAvZJAsdb5ALmBLs9SejJV2U9zH8NZipvT5umijyViVpRdeeAFLly7F5MmTc153dzc++clP4oEHHgAAPPzww1i9erVRZvTo0dhrr73yMmVpXZ7k+n7ywuCxOxi+28zBuv089u3B4lFNVjNL5QLNiSFzIKDpOAOIIxZDQxagi47YnHybvMwu7V0Ifj9C2bdKXh3E73soMVO30a3DwHtt3SKOWbki3kkLeGd1irY3eU0qe5dG7w9Kee3Cu+QzykI8Ld4ZMf9uCe9OOfkWMy1evJl/a+NVK/5NaraLtN8K5N8UlPJ4bHKXK7pR81ENRZ/vp6LfZvB1dRZPKmQ2kh3xFcdDziMrv4YPb/XYZ+Xiwqo0LV26FAAwYsQIgz9ixIj8s6VLl2LAgAHYaqutnGUYrVy5EsuXLzf+ZTR+x6Gi/Md3HgbAHEifWMsbtll3zhs3ZksAwE7DhuS8nbYZYnxWrLPXtj05L5O926gthP6PDd9M8HYs6Mhou60GC97ILQYK3jab9+svOslWgwcYdgDAFgP7E6KbD2wmRgetTf9m5YHmOX2RN7i7v06xf7K6I3uaNmW76jFDpe2sjbsM31zw9iB9tvd2Wwre/ttvJXgH7bS14OV4F4LExz+W4d1s47jt+vEr4p3ZbOLdX2esGm/Zxh2UeI/q0eG95aB+m4oL6c3bhPeILSTe2201SNi5w9ayjTuTsb87xbtH8Pb7iMT7wB10/l0W730KeG89pL+O4d9rxxKzfecR1f1bi3eGlRbvLQd35bwm3k3e4AH9vKytxbojt2hi6/dv2e66/Vsbz5t4F+K50r+zPhirxlu2ccdtJN6sz1rBO4vnWwxs4sj9uyF4DO+MV8Q7W4y15t+yf7T+XRul65HOOuusFP0LYee/P//5z0adK664Iu3p6QnKvv/++1MA6SuvvGLwv/GNb6SHHnpomqZpOnPmzHTAgAGi7qRJk9Jvfetbpe3u7e1N33hnZXrGrMfShX99Oy//au/76emzFqZPLenNeYvfei89fdbCdNGrK3LeS8veTf/l+oXpi8veyXnPvrYi/ZfrF6aL33ov5z21pDc9fdbC9NXe93PeY4vfTk+ftTB9452VOe/hl95Mz5j1WPr2e6ty3rzn30h/cMNj6bsrV+e8+xa9np71n4+n76/6IOfd8X9fTc+98Yl01Qdrct4tjy9Jf3TTk+kHa/py3o1/+Vt6weyn0r6+Ju/6R/6aXjjnaYP3+3kvpb+8c5HRj1c98EJ62T3PGbzL7nku/c0DLxi8X965KP39vJfyv/v6+tIL5zyd/sfDfzV4P5n9f9Mb//K3nLdmTV/6o5ueTGc/viTnrfpgTfrDG59I73jq1Zz3/qoP0rP/+Hh67zOv57x3/r46Pes/H0/nPrcs57393qr0zBseSx9+6c2cF/HmeF/z0EvpJXeYeP9Gifeldz4r8P75nGcE3v/PLQTvm3V4n/PHJwy8310p8e59vx/v+S+aeP/gBon3GbMeM/D+mwPv02dJvE+fZeL9f5csp3ifMeuxdNmKv+e8R156M/3BDSbeD73wRnqmhff9BO87lXj/f395ReA965HFAu9rH3pZ+PdvHnxR4P3/3vs8xfuah14yeBfd9kx6/SNhvM+/+SkD79UfrEnP+/9MvP++uhzetn8LvJf34/3kKybeZ8x6zMD75Tf0eJ8x67Eg3o++/FateN/6xFKB900LOd4/n/NMbXj/6i7Tv9O0H2+Nf7cD77sffzGfv+uiJE3X8fcQC7Rs2TIsW7bMW2aHHXbAwIHNVfaVV16JadOm4e233/bWe/755/HRj34UjzzyCPbdd9+c/9/+23/Dlltuiauuugp33HEHPvOZz+DNN980slbjxo3DF7/4xfxel00rV67EypUr87+XL1+OMWPGoLe3F1tsIXcYkSJFihQpUqQNj5YvX46enp5a5+/1enl92LBhGDZsWFtk77jjjhg5ciTmzJmTL6xWrVqFu+++Gz/+8Y8BAPvvvz+6urowZ84cHHPMMQCAJUuW4PHHH8cFF1zglN3d3Y3u7m7n55EiRYoUKVKkDydtNN8KfPnll/Hmm2/i5Zdfxpo1a7BgwQIAwMc+9jFstln/Oetuu+2G888/H0cddRSSJMG0adPwox/9CDvvvDN23nln/OhHP8LgwYNx3HHHAQB6enpw4okn4tRTT8XWW2+NoUOHYvr06Rg7dmz+LcFIkSJFihQpUiQtbTQLqzPPPBNXXXVV/neWhbrzzjsxceJEAMDTTz+N3t7evMxpp52G999/H9/+9rfx1ltvYfz48bj11lux+ebNy20XXnghOjs7ccwxx+D999/HZz7zGVx55ZXoKHzTJVKkSJEiRYoUSUPr9Y7VpkLtOKONFClSpEiRIrWX2jF/b7KPW4gUKVKkSJEiRVrXFBdWkSJFihQpUqRINVFcWEWKFClSpEiRItVEcWEVKVKkSJEiRYpUE8WFVaRIkSJFihQpUk0UF1aRIkWKFClSpEg1UVxYRYoUKVKkSJEi1URxYRUpUqRIkSJFilQTxYVVpEiRIkWKFClSTbTR/KTNhkzZw+uXL1++ni2JFClSpEiRImkpm7fr/BGauLCqgd544w0AwJgxY9azJZEiRYoUKVKksvTGG2+gp6enFllxYVUDDR06FADw8ssv1wZMpGq0fPlyjBkzBn/961/j7zauZ4pYbFgU8dhwKGKx4VBvby8+8pGP5PN4HRQXVjVQo9F/Va2npyc6yQZCW2yxRcRiA6GIxYZFEY8NhyIWGw5l83gtsmqTFClSpEiRIkWK9CGnuLCKFClSpEiRIkWqieLCqgbq7u7GWWedhe7u7vVtyoeeIhYbDkUsNiyKeGw4FLHYcKgdWCRpnd8xjBQpUqRIkSJF+hBTzFhFihQpUqRIkSLVRHFhFSlSpEiRIkWKVBPFhVWkSJEiRYoUKVJNFBdWkSJFihQpUqRINVFcWCnp0ksvxY477oiBAwdi//33x7333ustf/fdd2P//ffHwIEDsdNOO+Hf/u3f1pGlmz6VweL666/HZz/7WWyzzTbYYostMGHCBNxyyy3r0NpNm8r6RUb3338/Ojs7sc8++7TXwA8RlcVi5cqVOP3007H99tuju7sbH/3oR/HrX/96HVm76VNZPGbOnIlx48Zh8ODBGDVqFL7+9a/nP5cWqRrdc889OOKIIzB69GgkSYIbbrghWKeWuTuNFKRrrrkm7erqSi+77LL0ySefTL/73e+mQ4YMSV966SVa/vnnn08HDx6cfve7302ffPLJ9LLLLku7urrS6667bh1bvulRWSy++93vpj/+8Y/Thx56KH3mmWfSGTNmpF1dXekjjzyyji3f9KgsFhm9/fbb6U477ZROnjw5HTdu3LoxdhOnKlgceeSR6fjx49M5c+akL7zwQjpv3rz0/vvvX4dWb7pUFo977703bTQa6UUXXZQ+//zz6b333pvuueee6Re/+MV1bPmmRTfffHN6+umnp//xH/+RAkhnzZrlLV/X3B0XVgo68MAD05NOOsng7bbbbun3v/99Wv60005Ld9ttN4P3rW99Kz3ooIPaZuOHhcpiwWiPPfZIzznnnLpN+9BRVSy+8pWvpGeccUZ61llnxYVVTVQWiz/96U9pT09P+sYbb6wL8z50VBaPn/zkJ+lOO+1k8H7xi1+k2223Xdts/LCRZmFV19wdjwIDtGrVKjz88MOYPHmywZ88eTIeeOABWufBBx8U5Q899FDMnz8fq1evbputmzpVwcKmvr4+rFixotYf3PwwUlUsrrjiCjz33HM466yz2m3ih4aqYPHHP/4RBxxwAC644AJsu+222GWXXTB9+nS8//7768LkTZqq4HHwwQdj8eLFuPnmm5GmKV599VVcd911+MIXvrAuTI60luqau+OPMAdo2bJlWLNmDUaMGGHwR4wYgaVLl9I6S5cupeU/+OADLFu2DKNGjWqbvZsyVcHCpp/+9Kd49913ccwxx7TDxA8NVcFi0aJF+P73v497770XnZ0x9NRFVbB4/vnncd9992HgwIGYNWsWli1bhm9/+9t488034z2rFqkKHgcffDBmzpyJr3zlK/j73/+ODz74AEceeSQuvvjidWFypLVU19wdM1ZKSpLE+DtNU8ELlWf8SOWpLBYZ/f73v8fZZ5+Na6+9FsOHD2+XeR8q0mKxZs0aHHfccTjnnHOwyy67rCvzPlRUxi/6+vqQJAlmzpyJAw88EJ///Ofxs5/9DFdeeWXMWtVEZfB48sknccopp+DMM8/Eww8/jNmzZ+OFF17ASSedtC5MjVSgOubuuG0M0LBhw9DR0SF2Gq+99ppY2WY0cuRIWr6zsxNbb71122zd1KkKFhlde+21OPHEE/GHP/wBkyZNaqeZHwoqi8WKFSswf/58PProozj55JMB9E/uaZqis7MTt956Kz796U+vE9s3NariF6NGjcK2226Lnp6enLf77rsjTVMsXrwYO++8c1tt3pSpCh7nn38+DjnkEPzP//k/AQB77703hgwZgk984hM477zz4inHOqK65u6YsQrQgAEDsP/++2POnDkGf86cOTj44INpnQkTJojyt956Kw444AB0dXW1zdZNnapgAfRnqr72ta/hd7/7XbyzUBOVxWKLLbbAY489hgULFuT/TjrpJOy6665YsGABxo8fv65M3+Soil8ccsgheOWVV/DOO+/kvGeeeQaNRgPbbbddW+3d1KkKHu+99x4aDXM67ujoANDMmERqP9U2d5e66v4hpeyrs5dffnn65JNPptOmTUuHDBmSvvjii2mapun3v//9dMqUKXn57Cub//zP/5w++eST6eWXXx4ft1ATlcXid7/7XdrZ2Zn+8pe/TJcsWZL/e/vtt9dXEzYZKouFTfFbgfVRWSxWrFiRbrfddumXv/zl9IknnkjvvvvudOedd06/8Y1vrK8mbFJUFo8rrrgi7ezsTC+99NL0ueeeS++77770gAMOSA888MD11YRNglasWJE++uij6aOPPpoCSH/2s5+ljz76aP7Yi3bN3XFhpaRf/vKX6fbbb58OGDAg3W+//dK77747/+yEE05IP/nJTxrl77rrrnTfffdNBwwYkO6www7pr371q3Vs8aZLZbD45Cc/mQIQ/0444YR1b/gmSGX9okhxYVUvlcXiqaeeSidNmpQOGjQo3W677dLvfe976XvvvbeOrd50qSwev/jFL9I99tgjHTRoUDpq1Kj0+OOPTxcvXryOrd606M477/TG/3bN3UmaxjxjpEiRIkWKFClSHRTvWEWKFClSpEiRItVEcWEVKVKkSJEiRYpUE8WFVaRIkSJFihQpUk0UF1aRIkWKFClSpEg1UVxYRYoUKVKkSJEi1URxYRUpUqRIkSJFilQTxYVVpEiRIkWKFClSTRQXVpEiRYoUKVKkdUb33HMPjjjiCIwePRpJkuCGG25oq76zzz4bSZIY/0aOHNk2fXFhFSlSpEiRIkVaZ/Tuu+9i3LhxuOSSS9aZzj333BNLlizJ/z322GNt0xUXVpEiRdroaOLEiZg2bdr6NqMUTZw4Md8tL1iwIFj+a1/7Wl6+3Tv6SJHWJX3uc5/Deeedhy996Uv081WrVuG0007DtttuiyFDhmD8+PG46667WtLZ2dmJkSNH5v+22WabluT5KC6sIkWKtEETW0Rdf/31+OEPf7h+DCI0bdo0fPGLXwyWmzp1KpYsWYK99torWPaiiy7CkiVLarAuUqSNi77+9a/j/vvvxzXXXIOFCxfi6KOPxmGHHYZFixZVlrlo0SKMHj0aO+64I4499lg8//zzNVpsUlxYRYoUaaOjoUOHYvPNN1/fZuT05z//GQceeGCw3ODBgzFy5Eh0dnYGy/b09LT1HkikSBsiPffcc/j973+PP/zhD/jEJz6Bj370o5g+fTo+/vGP44orrqgkc/z48fjNb36DW265BZdddhmWLl2Kgw8+GG+88UbN1vdTXFhFihRpg6Wvfe1ruPvuu3HRRRflx2IvvviiyGJNnDgR3/nOdzBt2jRstdVWGDFiBP7P//k/ePfdd/H1r38dm2++OT760Y/iT3/6U14nTVNccMEF2GmnnTBo0CCMGzcO1113XSn7Vq9ejQEDBuCBBx7A6aefjiRJMH78eHX96667DmPHjsWgQYOw9dZbY9KkSXj33XdL2RAp0qZEjzzyCNI0xS677ILNNtss/3f33XfjueeeAwC8+OKL4jK6/e/kk0/OZX7uc5/DP/zDP2Ds2LGYNGkSbrrpJgDAVVdd1ZY2hLdNkSJFirSe6KKLLsIzzzyDvfbaC+eeey4AOO9GXHXVVTjttNPw0EMP4dprr8U//dM/4YYbbsBRRx2Ff/mXf8GFF16IKVOm4OWXX8bgwYNxxhln4Prrr8evfvUr7Lzzzrjnnnvwj//4j9hmm23wyU9+UmVfR0cH7rvvPowfPx4LFizAiBEjMHDgQFXdJUuW4Ktf/SouuOACHHXUUVixYgXuvfdepGmq65xIkTZB6uvrQ0dHBx5++GF0dHQYn2222WYAgG233RZPPfWUV85WW23l/GzIkCEYO3ZsS0eLPooLq0iRIm2w1NPTgwEDBuRHaD4aN24czjjjDADAjBkz8K//+q8YNmwYpk6dCgA488wz8atf/QoLFy7E2LFj8bOf/Qx33HEHJkyYAADYaaedcN999+Hf//3f1QurRqOBV155BVtvvTXGjRtXqm1LlizBBx98gC996UvYfvvtAQBjx44tJSNSpE2N9t13X6xZswavvfYaPvGJT9AyXV1d2G233SrrWLlyJZ566imn/FYpLqwiRYq0SdDee++dv+/o6MDWW29tLFRGjBgBAHjttdfw5JNP4u9//zs++9nPGjJWrVqFfffdt5TeRx99tPSiCuhfCH7mM5/B2LFjceihh2Ly5Mn48pe/7N1pR4q0KdA777yDZ599Nv/7hRdewIIFCzB06FDssssuOP744/Hf//t/x09/+lPsu+++WLZsGe644w6MHTsWn//850vrmz59Oo444gh85CMfwWuvvYbzzjsPy5cvxwknnFBns3KKC6tIkSJtEtTV1WX8nSSJwUuSBED/UUNfXx8A4KabbsK2225r1Ovu7i6ld8GCBZUWVh0dHZgzZw4eeOAB3Hrrrbj44otx+umnY968edhxxx1Ly4sUaWOh+fPn41Of+lT+9/e+9z0AwAknnIArr7wSV1xxBc477zyceuqp+Nvf/oatt94aEyZMqLSoAoDFixfjq1/9KpYtW4ZtttkGBx10EObOnZtniuumuLCKFCnSBk0DBgzAmjVrapW5xx57oLu7Gy+//LL62M9Fjz32GI466qhKdZMkwSGHHIJDDjkEZ555JrbffnvMmjUrn2giRdoUaeLEid67hF1dXTjnnHNwzjnn1KLvmmuuqUWOluLCKlKkSBs07bDDDpg3bx5efPFFbLbZZhg6dGjLMjfffHNMnz4d//zP/4y+vj58/OMfx/Lly/HAAw9gs802K3VE0NfXh4ULF+KVV17BkCFD0NPTo6o3b9483H777Zg8eTKGDx+OefPm4fXXX8fuu+9etVmRIkXaACg+biFSpEgbNE2fPh0dHR3YY489sM022+Dll1+uRe4Pf/hDnHnmmTj//POx++6749BDD8WNN95oHMNdeeWV+RGii8477zxce+212HbbbfNvLmpoiy22wD333IPPf/7z2GWXXXDGGWfgpz/9KT73uc9VblOkSJHWPyVp/G5vpEiRIlE6++yzcdddd7X8cxpA//HHPvvsg5///Oel6iVJglmzZqme7B4pUqT1TzFjFSlSpEgOuuWWW3DBBRfUJu/SSy/FZpttpvoB2JNOOil/bk+kSJE2HooZq0iRIkVaB/S3v/0N77//PgDgIx/5CAYMGOAt/9prr2H58uUAgFGjRmHIkCFttzFSpEitU1xYRYoUKVKkSJEi1UTxKDBSpEiRIkWKFKkmigurSJEiRYoUKVKkmigurCJFihQpUqRIkWqiuLCKFClSpEiRIkWqieLCKlKkSJEiRYoUqSaKC6tIkSJFihQpUqSaKC6sIkWKFClSpEiRaqK4sIoUKVKkSJEiRaqJ4sIqUqRIkSJFihSpJooLq0iRIkWKFClSpJro/wcZZ1pon1FD3AAAAABJRU5ErkJggg==", - "text/plain": [ - "
    " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "t = np.linspace(0.0, 1e-4, 100000)\n", - "def wave(A,omega):\n", - " print(f\"period of {2*np.pi/omega} s\")\n", - " print(f\"frequency of {omega/2/np.pi/1e3} kHz\")\n", - " return A*np.sin(omega*t)\n", - "K = 100e6\n", - "\n", - "chirp_1 = wave(1,2*np.pi*K*0.1)\n", - "\n", - "\n", - "fig, ax = plt.subplots()\n", - "ax.plot(t,chirp_1, label ='chirp from single reflector')\n", - "# finish off the plots\n", - "ax.set_xlabel('time, $t$ [s]')\n", - "ax.set_ylabel('chirp voltage [V]')\n", - "ax.set_xlim(0, 1e-5)\n", - "ax.legend()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Notice that in the plot above we have only plotted out a very short section of the chirp from the very beginning, because it is quite high frequency (a consequence of choosing $\\Delta t = 0.1$ for the first plot above) and the oscillations would not be visible if we plotted out the whole 1 s chirp. \n", - "\n", - "Next let's see what the chirp from the other scenario above would look like. \n", - "\n", - "We will sum together al the other signals we obtained above to make one signal. " - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "period of 1.987801608678434e-07 s\n", - "frequency of 5030.683120660306 kHz\n", - "period of 7.642809959916334e-08 s\n", - "frequency of 13084.19292439069 kHz\n", - "period of 9.680430850628307e-08 s\n", - "frequency of 10330.118725398417 kHz\n", - "period of 1.604351382373305e-07 s\n", - "frequency of 6233.048514102363 kHz\n", - "period of 1.689383327387361e-07 s\n", - "frequency of 5919.319693692636 kHz\n", - "period of 7.275655400007502e-08 s\n", - "frequency of 13744.466237350507 kHz\n", - "period of 1.8080531159565972e-07 s\n", - "frequency of 5530.810965533633 kHz\n", - "period of 7.267872511660287e-08 s\n", - "frequency of 13759.18466367757 kHz\n", - "period of 9.94573354295474e-08 s\n", - "frequency of 10054.562548665604 kHz\n", - "period of 1.3113559990751453e-07 s\n", - "frequency of 7625.69432484593 kHz\n" - ] - }, - { - "data": { - "text/plain": [ - "(100000,)" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "chirp_list = [wave(1,2*np.pi*K*delay) for delay in delays]\n", - "chirp_array = np.stack(chirp_list,axis=1)\n", - "chirp_2 = chirp_array.sum(axis=1)\n", - "chirp_2.shape\n" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGzCAYAAADHdKgcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOx9d7gkRdX+2zNz0+YEu7DsLgssLjmrSFAEBcVPMYP6E8X4EVQwIJ+gIkoSBSMi0SyKGD4/RUCC5JyWsLDLJpbNeffuDTPTvz96qvvUqapT3Xdmbtjb7/Pss3eme7qru6urTr3nPecEYRiGyJEjR44cOXLkGEYoDHQDcuTIkSNHjhw5+hu5AZQjR44cOXLkGHbIDaAcOXLkyJEjx7BDbgDlyJEjR44cOYYdcgMoR44cOXLkyDHskBtAOXLkyJEjR45hh9wAypEjR44cOXIMO+QGUI4cOXLkyJFj2KE00A3oT1SrVbz66qsYPXo0giAY6ObkyJEjR44cOVIgDENs2rQJO+64IwqFxnA3w8oAevXVVzFt2rSBbkaOHDly5MiRow9YsmQJdtppp4Yca1gZQKNHjwYQ3cAxY8YMcGty5MiRI0eOHGmwceNGTJs2LZ7HG4FhZQApt9eYMWNyAyhHjhw5cuQYYmikfCUXQefIkSNHjhw5hh1yAyhHjhw5cuTIMeyQG0A5cuTIkSNHjmGHYaUBypEjx9BDtVpFT0/PQDcjR44cTURLSwuKxWK/njM3gHLkyDFo0dPTgwULFqBarQ50U3LkyNFkjBs3DlOmTOm3PH25AZQjR45BiTAMsWzZMhSLRUybNq1hyc9y5MgxuBCGITo7O7Fy5UoAwA477NAv580NoBw5cgxKlMtldHZ2Yscdd8SIESMGujk5cuRoIjo6OgAAK1euxPbbb98v7rB8SZUjR45BiUqlAgBobW0d4JbkyJGjP6AWOr29vf1yvtwAypEjx6BGXrcvR47hgf5+13MDKEeOHDn6CQsXLkQQBHjyySed+9xwww0YN25c09rw85//PNZUXXHFFU07z0Aj7X0MggB/+ctfUh/3rrvuQhAEWL9+fZ/bVg/48/vmN7+J/ffff0DaMtSRG0A5cuTIMYjwwQ9+EC+++GJTjr1x40acfvrpOPvss7F06VJ8+tOfbsp5BiNchsKyZcvwtre9rf8b1Af0x/MbTgZVLoLOkSNHjkGEjo6OWBBqQ29vL1paWvp07MWLF6O3txfHH3+8M9KmnuMPRUyZMmWgm5D6nqd5foMFQ6EfDUsGaO7yjQPdhBw5cmyjqFaruOSSS7Dbbruhra0N06dPx3e+8x1tn5dffhlHHXUURowYgf322w8PPPBAvI27btSK/LrrrsMuu+yCtrY2hGGIN73pTTj99NNx+umnY9y4cZg4cSLOPfdchGFobdcNN9yAffbZBwCwyy67IAgCLFy40Hn8xYsX413vehdGjRqFMWPG4AMf+ABWrFhhbdf06dMxatQo/Pd//zcqlQouvfRSTJkyBdtvv71x7Rwf+9jHcMIJJ+DCCy/E5MmTMW7cOJx//vkol8v48pe/jAkTJmCnnXbCddddF//G5oZ68skn42uyXfv555+Pp556CkEQIAgC3HDDDQB0F5hyUf7+97/HG97wBrS3t2OvvfbCXXfdJV7D/fffjyOPPBIdHR2YNm0aPve5z2HLli3O/V33fMOGDfj0pz+N7bffHmPGjMGb3/xmPPXUU/E12J6fDddffz322GMPtLe3Y/bs2fjpT3+qbX/llVdw4oknYsKECRg5ciQOPvhgPPTQQ+J9ytIf6DXddNNN2GeffdDR0YGJEyfimGOOEe9Nf2JYMkDvvfIBLPje+1As5OLKHDmGCsIwxNbeyoCcu6OlmFqgec455+Dqq6/G5ZdfjsMPPxzLli3DCy+8oO3zta99DZdddhlmzZqFr33tazjppJMwb948lEr2IXnevHn4wx/+gD/96U9aePAvfvELfOITn8BDDz2ERx99FJ/+9KcxY8YMfOpTnzKO8cEPfhDTpk3DMcccg4cffhjTpk3Ddttt5zz+CSecgJEjR+Luu+9GuVzGqaeeig9+8IOaMTB//nz885//xC233IL58+fjfe97HxYsWIDdd98dd999N+6//36ccsopOProo/H617/eec/uuOMO7LTTTvjPf/6D++67D5/4xCfwwAMP4Mgjj8RDDz2EG2+8EZ/97Gfxlre8BdOmTUv1HPi1z5kzB7fccgtuv/12AMDYsWOd+3/5y1/GFVdcgT333BPf//738c53vhMLFizAxIkTjX2feeYZHHvssbjgggtw7bXXYtWqVbFhev311zvPYbvnxx9/PCZMmIB//OMfGDt2LK666iocffTRePHFF8XnR3H11VfjG9/4Bn784x/jgAMOwBNPPIFPfepTGDlyJE4++WRs3rwZb3zjGzF16lT87W9/w5QpU/D444+jWq0671MYhqn6A7+m5cuX46STTsKll16Kd7/73di0aRPuuecep5He3xiWBhAAbNjaiwkj8/DaHDmGCrb2VrDn1/81IOd+7lvHYkSrf7jctGkTfvCDH+DHP/4xTj75ZADArrvuisMPP1zb70tf+hKOP/54AMD555+PvfbaC/PmzcPs2bOtx+3p6cGvfvUrY8KbNm0aLr/8cgRBgNe85jV45plncPnll1sNILUCB4DttttOc/3w49922214+umnsWDBgtjg+NWvfoW99toLjzzyCA455BAAEdt13XXXYfTo0dhzzz1x1FFHYe7cufjHP/6BQqGA17zmNbjkkktw1113iQbQhAkT8MMf/jD+zaWXXorOzk78z//8D4DIqLz44otx33334cQTT3Qex4WOjg6MGjUKpVIplcvr9NNPx3vf+14AwJVXXolbbrkF1157Lb7yla8Y+373u9/Fhz70IXzhC18AAMyaNQs//OEP8cY3vhFXXnkl2tvbrefg9/yOO+7AM888g5UrV6KtrQ0AcNlll+Evf/kLbrrpJnz60592Pj+KCy64AN/73vfwnve8BwAwc+ZMPPfcc7jqqqtw8skn47e//S1WrVqFRx55BBMmTAAA7LbbbvHvbfcpbX/g1/T444+jXC7jPe95D2bMmAEAMYs1GDAsXWAA0NlTHugm5MiRYxvD888/j+7ubhx99NHifvvuu2/8t9JyqCy4NsyYMcO62n/961+vMVOHHnooXnrppTiHUlrw4z///POYNm2axrbsueeeGDduHJ5//vn4u5133hmjR4+OP0+ePBl77rmnlrV78uTJ4rUBwF577WX8hk6UxWIREydO9B6nUTj00EPjv0ulEg4++GDtuikee+wx3HDDDRg1alT879hjj0W1WsWCBQuc5+D3/LHHHsPmzZsxceJE7VgLFizA/PnzU7V71apVWLJkCT7xiU9ox/j2t78dH+PJJ5/EAQccEBs/aZC2P/Br2m+//XD00Udjn332wfvf/35cffXVWLduXerzNhvDlgEqVwYHBZcjR4506Ggp4rlvHTtg5061nyBepqDiUGXASPXORo4cmeq4fQU/fhiGVpcf/56LXIMgsH7nq+WW9TjKWKKulGYnz3O5QKvVKj7zmc/gc5/7nLFt+vTpzuPxe16tVrHDDjtY9UZp0yKo+3P11Vfjda97nbZNudnS9lGKtP2BX1OxWMRtt92G+++/H7feeit+9KMf4Wtf+xoeeughzJw5M3M7Go3hawBVcwMoR46hhCAIUrmhBhKzZs1CR0cH/v3vf+OTn/xk08/34IMPGp9nzZpVdxmBPffcE4sXL8aSJUviVf9zzz2HDRs2YI899qjr2I2AYhmWLVuG8ePHA4CYWwmIMoqnZcYefPBBHHnkkQCikiyPPfYYTj/9dOu+Bx54IJ599lnNjdQXHHjggVi+fDlKpRJ23nnnPh1j8uTJmDp1Kl5++WV8+MMftu6z77774pprrsHatWutLJDtPtXTH4IgwGGHHYbDDjsMX//61zFjxgz8+c9/xllnndWna2wkhq0LrJxXl86RI0eD0d7ejrPPPhtf+cpX8Mtf/hLz58/Hgw8+iGuvvbYp51uyZAnOOusszJ07F7/73e/wox/9CJ///OfrPu4xxxyDfffdFx/+8Ifx+OOP4+GHH8ZHP/pRvPGNb8TBBx/cgJbXh9122w3Tpk3DN7/5Tbz44ov4v//7P3zve98Tf7PzzjtjwYIFePLJJ7F69Wp0d3c79/3JT36CP//5z3jhhRdw2mmnYd26dTjllFOs+5599tl44IEHcNppp+HJJ5/ESy+9hL/97W8444wzMl3TMcccg0MPPRQnnHAC/vWvf2HhwoW4//77ce655+LRRx9NfZxvfvObuOiii/CDH/wAL774Ip555hlcf/31+P73vw8AOOmkkzBlyhSccMIJuO+++/Dyyy/jT3/6UxyJaLtPfe0PDz30EC688EI8+uijWLx4MW6++WasWrVqUBjRwHA2gHIXWI4cOZqA8847D1/84hfx9a9/HXvssQc++MEPNk278tGPfhRbt27Fa1/7Wpx22mk444wzGpIcT4WGjx8/HkceeSSOOeYY7LLLLrjxxhsb0Or60dLSgt/97nd44YUXsN9+++GSSy7Bt7/9bfE3733ve3HcccfhqKOOwnbbbYff/e53zn0vvvhiXHLJJdhvv/1wzz334K9//SsmTZpk3XfffffF3XffjZdeeglHHHEEDjjgAJx33nmZ8/QEQYB//OMfOPLII3HKKadg9913x4knnoiFCxdi8uTJqY/zyU9+Etdcc00cNv/GN74RN9xwQ+xyam1txa233ortt98eb3/727HPPvvg4osvjllD233qa38YM2YM/vOf/+Dtb387dt99d5x77rn43ve+N2gSTwbhYIlH6wds3LgRY8eOxbQv/AF/PfMYHDB9/EA3KUeOHA50dXVhwYIFmDlzpjOSZjjjTW96E/bff/9tupxFf2PhwoWYOXMmnnjiiWGTDXkwQXrn1fy9YcMGjBkzpiHnG74MUK4BypEjR44cOYYthowBVC6Xce6552LmzJno6OjALrvsgm9961ve6AIXeiu5BihHjhw5cuQYrhjcIRUEl1xyCX72s5/hF7/4Bfbaay88+uij+PjHP46xY8f2SfSXa4By5MgxlOErz5AjO3beeedBk6U4R/MxZAygBx54AO9617vi7Kk777wzfve732VSx1PkUWA5cuTIkSPH8MWQcYEdfvjh+Pe//40XX3wRAPDUU0/h3nvvxdvf/nbnb7q7u7Fx40btn0LOAOXIkSNHjhzDF0OGATr77LOxYcMGzJ49G8ViEZVKBd/5zndw0kknOX9z0UUX4fzzz7duyzXQOXIMDeQuiRw5hgf6+10fMgzQjTfeiF//+tf47W9/i8cffxy/+MUvcNlll+EXv/iF8zfnnHMONmzYEP9bsmRJvK2aD6o5cgxqqLwkPT09A9ySHDly9Ac6OzsBmKVRmoUhwwB9+ctfxle/+tW4EvA+++yDRYsW4aKLLoqrLnO0tbXFVXU5cgMoR47BjVKphBEjRmDVqlVoaWnRimXmyJFj20EYhujs7MTKlSsxbty4uku5pMWQMYA6OzuNAbBYLPY5DL6S+8By5BjUCIIAO+ywAxYsWIBFixYNdHNy5MjRZIwbNw5Tpkzpt/MNGQPov/7rv/Cd73wH06dPx1577YUnnngC3//+9531WXzICaAcOQY/WltbMWvWrNwNliPHNo6WlpZ+Y34UhowB9KMf/QjnnXceTj31VKxcuRI77rgjPvOZz+DrX/96n46XM0A5cgwNFAqFvBRGjhw5Go4hYwCNHj0aV1xxRcPq3uQaoBw5cuTIkWP4YtiqCnP7J0eOHDly5Bi+GLYGUCW3gHLkyJEjR45hi2FrAOUusBw5cuTIkWP4YvgaQLkIOkeOHDly5Bi2GL4GUG7/5MiRI0eOHMMWw9gAyi2gHDly5MiRY7hi2BpAeR6gHDly5MiRY/hi2BpAOQGUoy/465NL8fyyjQPdjBw5cuTIUSeGTCLERiMPg8+RFXfNXYnP//5JAMDCi48f2MbkyJEjR466MGwZoFwDlCMrHl+0bqCbkCNHjhw5GoThawDlGqAcGdFSHLavS44cOXJscxi2I3pu/+TIkSNHjhzDF8PYAMotoBw5cuTIkWO4YvgaQDkFlKMO5P0nR44cOYY2hq8BlM9fOTKCdply3oFy5MiRY0hj2BpAeRh8jnqQJ9LMkSNHjqGNYWsA5RqgHPWgXK0OdBNy5MiRI0cdGLYGUG7/5KgH5UregXLkyJFjKGPYGkC5CyNHVlDWMNcA5ciRI8fQxrAthZG7wHJkBTWacxdYjhw5cvQPrrp7PtrD7oYfd/gaQPkKPkdG9BK3V+4Cy5EjR47mY+HqLbjony+g2t3Z8GMPWxdYbv/kyIoKYX1yF1iOHDlyNB/rt/Y27djD1gDKw+BzZAVlgHIXao4cOXI0H5u6cgOo4chdYDmygmqAwtwAsuL5ZRvxnxdXDXQzcuTIsY2gs6fStGMPWwMon79yZAVlfXL72Y4PXPUAPnrdw3hs0dqBbkqOHDm2ATQzYnvYGkC5CyNHVtAek6dRsGNTVxkAMHf55gFuSY4cObYF9FaaF3E7jA2ggW5BjqGGMMw1QGmRpwnIkSNHI5AzQE1AruHIkRV0Ts+7jwmqqwsGsB05cuTYdtDMlCPD1gDKV/A5sqKaM0AieghVXSjkJlCOHDnqRzNTjgxjA2igW5BjqIF2mbz/mKAGUDHIDaAcOXLUj0oT3enD1gDK8wDlyIqcAZLR3ZsMVLn9kyNHjkagN3eBRVi6dCk+8pGPYOLEiRgxYgT2339/PPbYY306Vq4BypEVtMvk/ccEZYDyTNkmwjDEE4vXYd2WnoFuSo4cQwbNFEEPmVpg69atw2GHHYajjjoK//znP7H99ttj/vz5GDduXJ+Olwep5MgKyvo0MTJzyKKnTAygvFaagSeXrMe7f3o/po7rwH1fffNANydHjiGB3iZO1kPGALrkkkswbdo0XH/99fF3O++8c5+Pl7swcmQF7TJ5/zHRmzNAIv7+9DIAwNL1Wwe4JTlyDB1UchcY8Le//Q0HH3ww3v/+92P77bfHAQccgKuvvlr8TXd3NzZu3Kj9U8jH5xxZkWuAZNB7Us4pMgN58swcObIjjwID8PLLL+PKK6/ErFmz8K9//Quf/exn8bnPfQ6//OUvnb+56KKLMHbs2PjftGnT4m25hiNHVugaoIFrx2AFZapzBshEPubkyJEdzUyqOmQMoGq1igMPPBAXXnghDjjgAHzmM5/Bpz71KVx55ZXO35xzzjnYsGFD/G/JkiXJ8fLBKEdG5AyQjBCUAcrvD0duE+bIkR05AwRghx12wJ577ql9t8cee2Dx4sXO37S1tWHMmDHaP4V8MMqRFboGaODaMVhB709eCkNGNe9AOXKkQp4JGsBhhx2GuXPnat+9+OKLmDFjRp+Ol6/gc2RFzgDJ0KPk8vsjIc9DliNHOuS1wACceeaZePDBB3HhhRdi3rx5+O1vf4uf//znOO200/p0vHz8yZEV9D3MV/AmcoYsPXIXoR2/enARrv7Py7leKkeMZrLJQyYM/pBDDsGf//xnnHPOOfjWt76FmTNn4oorrsCHP/zhPh0vX8HnyAq9GvwANmSQgr5T+QQmIxrUiwPdjEGF7nIF5/1lDgDg2L2mYPrEEQPcohyDAXkixBre8Y534B3veEdDjpVT9DmyQq8FlvcfDvpK5e+XjPz+mOgipVS29JQHsCU5BhOaKSccMi6wRiOfv3JkRc5wyMgZMhlanqT8BhnoLlfiv2lW8RzDG81cbA5bAyhfwefIimqucRGRM2Qy9ESR+f3hoMV0cwMxh0Ize0JuAOXIkRJhHgUmggrD09yfOUs3YMnazmY2aVCBGj15mgAT3Votufz+5IiQM0BNgG+Bceuzy/HZXz2GtXnl5hw1hLnGRYTOkMn3Z8naTrzjR/fiiEvvbHKrBg9on8n7jwnqAssZoBwKzVxrDikRdCPh03B8+lePAQB2Gt+Bc9+xp7hvjsGB1Zu7MXFkK4IgaMrxdQ1QU04xpBFqeYDkfecu36T9rlnPbDCBTur5BG9CY4Dy+5OjhpwBagLSvl/PvrrRv1OOAcc/n1mGg799O358x7ymnSNPhCiD3hHfAqNYSAye7mEieM0ZIBmaBih3geWooZmvyjA2gNLd1cIwu0O3zFmGJxavG+hmZMbP7p4PAPjebS827Rx5oj8ZWQzEAjGAunorwp7bDqjupzef4A30VHIGKIeJZi42h60LLO37VRgG1LzCy6s247O/fhwAsPDi4we4NdnwyrqtTT9HmEHjMhyh5wHy7ZvsvLW3gnHNadKgAmV98u5jIo+Sy2FFzgA1HmnzuFCqflvHiys2x38PNYq+VGz+c8rzAMkIM9yfXuL2Gi45X8oZo+SGG6qaRmp49IkcfuQaoCYg7U0tDSMDiJJdNCJjKKDUD75K3cXT9NMNOWhRcj4DiKzwh5qx3VfkGiAZ9J7kDFAOhdwAagKk8YeuXocTA0SNva09Q8sA6o/nRLvMcJ3A/vjoErzuwtvxzCsbjG1ZDESqgRkubAid1Idp9xFRDXMDMYeJXATdBEjVvIfru0cp+q1DTJjaPy6w5O/h6gL78k1PY8XGbnz+908Y27LkARqOglddAzQ8rjkLaDfoHSIusOde3Yh5Kzf7d8zRZzTzXRm+BpBwU6n/eZiMzQD0VflQo6D7w1WZ17pKYCtWqd0fzw0ayn2tr6DjSs5wmKhUh9b7tbm7jPdceR+O+f7dQ04yMJSQM0BNgHRT6eJjOK3U9FT9Q+u6+18DNLTuT6PRVioa32VhgKgIerjcy6E2wfc3qhkM6MGAZeu3xhXsV27sHuDWbLvIGaAmQBp0K8PUFz2UdRn9ka8pzwOUwEa4ZckE3TuEje2+otxAF9imrl48PgTzdUkYagsMKhPoHGKayaGEnAFqAqT3q0IG5+GQol9Bm5SGmFsiQP9qgLKuUMuVKp5YvC5VArzN3WWsG+Q16Hot/SNLJmiqARouiwwtCqzOCf7if76A9/z0fvzqwUX1NmvQgL4aQ6FL0Hc5d4E1D3kUWBOQlgEaPubP0NYoZLFTN3eXsWpTdspay3OTMTvXj+6Yh3f/9H585/+eF/frrVRx7OX/wVHfu2tQR+LZDJwsK/jhqQFqnAvsNw8tjv4fhAbQyo1d+MMjSzKXs6CLiqHgAqMlXIZLOZeBQDPJwNwAskD31Q/+F7FR0N0SQ/eF9g2e7/3p/Tjs4juwclNXtuPWUQz1B/9+CQBww/0Lxf3WbenB0vVbsb6zF0vWdWY7ST/CdvlaJmjP/akOw3dsuIwrX7jxSXzlT0/j8tuzlaWpDDEXGB0vh0s5l4FAzgA1AdIcqVPV/dCYQYLeIeyWoASQpCmpVkPMXbEJPZUq5iw1c9lI6A8NENUVbOk2I60GM7JkgqaT3fDRABGNXYOueTC+p/fPXwMA+NtTr2b63VBLNEqF/LSQ61DEP55ZhqMuuyvzmNgfyA2gJkAaoLWVyFB4ExuE8lDOzUJ8YNKk0EV89VldL9U6XGBpQQ2goUara5mgPf1Hrxs2tK6zr6ikSISYVRxdr5aomahkfb+GGEPWU9l2XGCn/uZxLFi9xZrfa6CRu8CaADkMfmi9iI3CUC5PQBkgaVLY0p0YGFmzR9PDNqtbUN3PYB5UbdefRQOkZ/1tWLMGNXy1wO55aRUOuOA2/OOZZamPOZgXaFmNs0qdGqCHF6zFowvXZv5dX0EZ857KtuEC29g1+Fjn3ABqAuREiEPXEKgH4RB2S1ARtLTy7CQJ/LJeY38UQ6UM0EAWCe20JDqksDFgeh4g+fhV7R0bHhaQL8/Nydc9jPWdvTj1N49nOGZDmjYokKX/cGztqeADVz2A9/3sgX5zHdMFyrYi5E8TpdrfyF1gTYBk2AwXsSJHPWHegwmSgJsOWllfdj3MO2ur0qFLc4ENzKryVw8uwt7f+Bf+9ezyTL/Lkgmabh5qxnZf4UuE2JfbMJjHp6zJSevJA7R6cxLVuWFrb6bf9hVDWTPpQu8gZJ1zA6gJkO7pcC3KN5SFqdWUrB1dqWU1gPpDpLm1Z+CFlef9ZQ6qIXDmjU8697G9P7pIPIsLbGj1tb6iGQurwbxQyepiruf+0MWCLyLrtudW4O0/uKduwS9laIfaeOnCYMx7lydCbAJEF9gwrdqsT0qDbyUgIa3xRgdZWzI/CVqJlDpF0P95cRXOvPFJY7VK2SuXBujBl9fgzhdW1nX+NODviJ/VSR89mUUwva0gS6mQvhxzsCGrAVTP/dFD0qvY0NmLG+5bgBUbzVQX59z8NJ5bthH/8+dnMp3DPOe2xwANRjSzFEapaUce5JBesKGWkr1RoJc61FY0lMwR3ZshNYAyusDqyAPE8dHrHgYAjGkv4fx37R1/T41vm4i0XKnixJ8/CAB49NxjMGlUW30NEcA1SFopB8v+9LZ7w+DJzkOtr/UVzWCABnMUWNb6xPUwrPTebu2t4Kd3z8NVd7+M/7y0Gtd97BBt39Wboyzrz726MdtJGLbFci6Dj/+xjzWNwjBmgNzbKindKdsa0rqRBiOqKSdUymxl9XfrGqDG3J+Fa/Rkh1rfsxhoazuTEhl9yWadBfw20rZZXWBIP8H3h6B8sEFPr9GYY25L966eKDC6mOmtVHH9fQsBAHcITGm9RotmxA9C8XCfMAgtoFwD1ARIA8dwjQKjl2pzD3X2lLG+c3DWqKqkdN/VU/FezwPUGLSV9Few7DHk1mxO7n9/h8n72AY9t498rHoifoYqtAWG5V5mZUyAwT0+ZZ236mHIjDG7H24LbeO2wgANRjRTjTFsDSAxD1ADXR1DCT7X38nXPYwjL71Ti7gYLEjNAJHr6sksgqZ/N6ZjtLcUtc++emxalFg/p9/3JbbLkgk69PS1bREVz/3JqpkZ7Mj6XMM6XGBllsOstx80jLrBv2304cHYA3MGqAlIWwtsMPvYGw3fBPbIwnXY2FXGffNW92ezUkETQQsTdT00eyM1QPFx2GcfQ6WJPfuZAdLTC5hty5JA1BcSvq0hDENvKZVtwQCifSDrY62nFhhfOPTHsJ120TWUMBijwPJEiBZcdNFFCIIAX/jCF/r0+zB0r1LrzUg6VCG5JbLqg+6auxLf/Nuz/ZbLhq8Anftp12Hfx5UEsBm1wLi7zqc/o1qDfmeAPAN+6NjXhiyC6W0B/H7Y7k9xEE4+WVGpY5FA38es4249ru2+YihHzbowGLug0hZee/LBDT/2kDSAHnnkEfz85z/HvvvuW9dxXC/ocGWApNws1F2UZnz52PWP4Ib7F+KvT2QriNhX6CHYAgOkpTgw97t//mrs/Y1/4ad3zRPP0ahaYPw++/Rn9Dn0PwMkLwx0o0Y+VpakidsCeJ+0GX2DcfWdFfUEkNTlAqv2vzGSlnXOUR/Uoy004f0YcgbQ5s2b8eEPfxhXX301xo8fX9exXDRrGip2a08Ftz+3YsCy9TYD0qqcJuXLMmHNX7W57nalQdqB1/dsv/qnZ1ANgUtvmWts0w7bMAaIMwOyBqis5TsZOAbIdovDlEYo3z4M7B9DyNmoax5st46+U1nnq7pE0ANQyHkopw2hoO/tYDTBVV9oxvpgyBlAp512Go4//ngcc8wxdR/LNUhrLIFjMfGTO+fhk798FFfc/lLd7RgskFZg1NDLwn7017BAB0wpv089K9Rm5IfibfDlFhnI5Gu+e5ctE3T6fbcF8LFmWxHNctRzXfVogHpZ3+wPOdW2ki6FjjODkYVUXaEZz3RIJUL8/e9/j8cffxyPPPJIqv27u7vR3Z1ELG3cqCe+crrAUqTpv+belwEAV941H2cfNztVewY7pBeahlwPxpQXvhw1ChpVnnXizeDiSQvOnOvPwLzRdKDv71Wnr5q5XuxTPtZwi7Tk75Pt/g2+qSc76HPPOpdqBnTGMYa+K+VKiEIQNN2w1sPgB+GgmBL62Dn4XsacAQKwZMkSfP7zn8evf/1rtLe3p/rNRRddhLFjx8b/pk2bpm13vSC+fB1AlG59W4O0KtcqH3te9oFICpZ2NaZFKln2k16yRtUCk/QvvjxAvVoF6n7OA+Q1gJK/8zB4Hfw5Wy95G7CA6tFM1uMC62VBEIV+oIA0F9gQ1gANdiYrMYCGsQbosccew8qVK3HQQQehVCqhVCrh7rvvxg9/+EOUSiVUKqYe4pxzzsGGDRvif0uWLNG2u561T+y5rUIK89YK/3le9qz5dRqBtIOnzmJkO4c2wdfh3JPO69UAebY3E/TctlNnMRC3pTD4vzyxFPudfyvun+9OD2G4wLZRo4/2kcxRYA3KA1Suhv1iS24r5VwG+wIkcYE1/qkOGRfY0UcfjWee0YvXffzjH8fs2bNx9tlno1gsGr9pa2tDW5u7VpKTARpmq1MF6bp7MmhPBqKKeVr9gM/AkOBz27y6fivueWkV3n3ATmgtudcWacP0bYNqzwDWH6LEnz/MffhogL5w45PR/79/Eg9/za5N5AupoX7NLmgFg7MuMOpggPT3un/GHylqdihhsDc91wABGD16NPbee2/tu5EjR2LixInG92kROt6TwU4JNgv0UiXRpi/LKnWXZS042lfok7N7Py3XSEYdBt3b5uI58ecPYvHaTqzY2I3PHT1LaAMxpBiTVNYE+BYGaABF0Nz1GYahRktXM7A622IY/Pqtvc5tZhi8uU/a8b0Z96u7XEFrsVC3myGNftKFehae3AXWH1rebaUUhsb8D2A7XFD3OQ+DbzBcL1k9bpKhDInh0FY7PhcYMYB4RfFmoVEMkHRlvoFi8dqosOktc5YLR5ENSB8DRA2k/jIuFXzJ/LJogLYlF5iC1NfTJEJMa3w0mj16+pX12Ocbt+Jbf39O3G/eys340b9fwpZue6JQoF4Whxwns3u6/40RfdE1MJrQ517diPvrzMyv9cU+3LpVm7qxbMPWutogoZls6ZBhgGy466676vp9KhH0tjI6p4AehcEmtwz+bj1pYv/cv7TZu32RTJK+Ka3bpr1FXlfQc/DD+Ay0LK7IRoM/d376bNXg6d/bxjsmCujZ/JgmUaTLIGq0fugPjy5BT62C+jf+ay/nfl+56Sk8vng9Vm/uxvnvsrPu9QiZ9SjCvv+2v94LPfXGwPThd/3kXvRWQtx65pHYffLoPh2jnnexXKni9Rf9G4UAePobx6Kj1ZSi1AvVvpwBajBc70k9+SjqwYatvXhh+Ub/jnVg3ZYe/O9Tr1oHCSmbchZqW1uN9cPAwAdLMRN0g/IASd3Cd8kSc5OFAepv2t0Xyq0PpPKx9Hu5jRhAwjbeJ7PUSuNo9O3asDVhdKRn8fji9QCAB15e49xnoFxg9FT99V7Uc62NQLUaxobXgtVb+nwcXwLTSjXEHx5ZgsVrOo1tqzZ3R8VnKyGWrDO3NwKqfYUmWCvD2gBKVQusHwfnL/3xKRx3xT34z4urmnaO8/46B2f87glcftuLxjYpioeuYH0aoP7WUPmYCQqf64UuMqTQZekcvR63X/pEjeZ+9Yi464XPjZNF15P2Xg4lSC4s415Zf0/2T2nENwJFct7OHn92cSkFSBYdGEej2KP+ei9oE5t5zu5yxZrygrLB9bjDfQuXXz+4CF/509N4z5X3GdtoX9iaou/0Bc2MAhvWBpCTAaIiVcc+zRDZ3fbcCgDA/z7VvPpZf396GQDgdw8vNrZJGg5tteOhOPo7PNRgItK6wDxtq4gshfu3vsFIcoHpGh8bS2fftz/gZ4DST2ADtcgYKPBrtNYCI3+nLefSiFtH+5kk5FaQxr56UojoRkymn6bOQt5ItrE/FnqvrOvEfuffinNufsbY1qhgk4pn4XLX3JUAgNWbe4xtVPfWrNI8eSLEJsFZCyzF4NwMazQ5Z9MOHcP2wkgCxiwiw/5ejaURmNq2eetVCatZ6ae++6Pl8mEH0vOoWOho7TkMXDFUQNa1ZHGB2fa9f95qHPzt2/GPZ5ZlbeaAQQrTNdky+ViiC6zBj31jV2L0rO80JzkO0dVXD4vjidCUfyu9q80Zj/ojE/SvH1yMrt4q/vjYK8Y2anzYbtfWngqefmW91+jzJf4tCr4nWiKpWcWZVfOGdSLEZsD1MqSJUCk20QBqVKVxCbbOJK3AdBH04HKBZdFX+NqmuSFSGoQc3LjkA1BP2b3i8vW9ZkS7bNjai4v++bzVx6+3Tb8uWQMkt41utg3Q37vtRaze3I1Tf/O4eJzBhEAwDdKUwtC2S6kcyG8bMQzRlfuGFAyQBElH6IPMuPrOS/4W3qlGMtJZSr9cd+8CXHrLC5mvSyq2TV1gNjb4v3/zGN754/vwlyeXiufQ30Xz3kuGPWWhupvNADXh2MPaAHL1RTNnh7kjNYqHoojT1qlFF1gGo6a/Q1KzJJnzrVDpJEbbznfN8sj5vlpBU4MBku+ztlprkAvsm397Flfd/TLef9X94n78WUrvie/++Nxljy9eJx9gEEKa8I3+Y9mHLkqkYzW6jhpNrplGx5FW65T11ad9O+tlSf2JtqOhDBAxeqRFYU+5im/9/Tn89K75eG5ZtiCX1qLAvhCDw6bLvGtupCW99t4FAIBfPrAQf3hkibEfv1/8HklGtuYCaxID1EwN0JAOg68XacLggegB8HtPGaByNURLsb6Ho52zH+wpW2eSBxFi1Hg1QPTv5rtpTBeYe19do5D+uNKgysG7Ff+tVlKCHUhLhGiNyKDHaUxH+dezUd6iFRu7xf0aqgHyuMAKQTDkykWk1e0A9vuT1qXiq2eXFVS07xJBU+NWGunqCWWvpxSGFMkkjV1SugEf0rr6dRdjNoaN1jSrVEMUyWdNBC0YH22lIhau3oKv//VZAMAJB0zVMtWb94u1Qbg/mgusyQxQLoJuMNIkQnTtRztmI8SotDNnPVpvpYpXMoYg2l56PapB36atojJoZxo1SS/f0IVDvnM7zvvLHPN8gmCbw0fRuyYhcwWf/rr4LaAuMEkD5JskG2VcllLmmDcMIFED5GMJ5X37oZZlv8KYIC23p5LSOM/yLqYBZSQ7e+xJDrX6fqLWKfm7nlD2elxg/Kf6eFR1bsuKtO6+jcStKLm0bKCH5a51rT6jcB0BZJ0Xv9f8uVHDg98vWvaoWXIH1ZzcBdZguJ6X6VIx96Gdghf//ObfnsUHfvZAps6uGUAZX/4f3TEPh19yZybBqN0F5l7Bp4mMs/22US/FHx5dglWbuvGrBxcZ26RwbA5fqQlXEkwzisfdVp9eSGeA9N/6JkEt+VqD7m2LQLNT+BYGvnBaCp+7TNLTDEWk0ZBpCxDJjZuBaQOAe19ajS/98SltEqSgE+uWbvuYJYW+a21jLrAsY1kWF6rxW+jvLe0/Ur6eegzItBGZm7oSozJNmgEKel38/evRosDc5++thtoz7mZsEX9XjTGbvIo823m3ViS7WSLoGgPUhFVRKhfYxo3Zk/ONGTMm82/6G848QHyysyzX6LOgD75aDXHD/QsBAPfNW403z56cqi2aoj/VLxL88N8vAQAu/ucLePs+O6T6jc8FJq0KfEZNMxggOnD0lKs6hZspCsytv+HfaeHqbD9pYPfphSQ3l6YB8jFADdIApV2p+0thmIaoM5txBjH6YEbaCV4qG2LbR3IfVT1GMsdHrn0IALDd6DacfdxsYzudPF0MULniZkMpbNFuaZ+lNv5kHAU5o6hlJScb+aKhngVa2og3uuDJagDR28ANjLTGR6Va1cXKhgEkG4VmAEyS7TktC1UPmskApTKAxo0bl8lPGgQBXnzxReyyyy59blh/wPW8eF+y9W36FR1AXKssH2in7OtLWW/0mLSC76u+o1EMECUpNneXMaHUmrRHYFGyts01qBmTu7fFCfhvNRG0MCBbw+CboAGSzkmNmMyRTKGeZI9vk44zVAygtP1bSqoZH0tzvwoGUErXC8ecpRus31P2eYtjgpbcSNp+lsm0kHLq0sLgM5IJkjBcM7Yr7vctK9IGe/RmFJlT0ONylidtIsRyJdTmF87imK5t9z3i+/ZHaZ5maoBSi6BvuukmTJgwwbtfGIZ4+9vfXlej+gtOEXQKulqrjq51RNpZ0rdFs6T7uLJPS1MD9oFTEhJm8e03o5YaXTlxsV2aStu29lgnIQd7xXOviCJoyP1H6yPSNstJ9JwmjaGcde2XOfiVii4DCOyz+duig7bWskZb7qU02N0yZzku/dcLuOz9++HA6eOd+/UHbJFwtsViKhF0yvemr7l2XJMk/d41QadNhJolItP4bR0MEO/DLp1U0zRAKZ9X1oSFdH/edonZoihXQ+Yu42k69P0llxg3wqRtjUJiADX+2KkMoBkzZuDII4/ExIkTUx10l112QUtLS10N6w+kSYQY7WfuQ3/qKrCZSQPUACoxy8tl1b+QrwwXWAajphl5gDq7BQMog1+/7DEwXG3nA7J0f0zDQP/cy1ym+vmpCNpoXlPci1L0TdXRz3lbon3TT3711AI7769zsGpTN86+6WncdtYbM/220TDcm1V7RGia9yAty6q/p+kjmVy6KhpB5Kr0rmUoTznZA9mYHHrJWbs2T+Kql2Vxt68uA0g4LoVrgZwG0sJYGwtEBkh3gXHNqi8MXmJ59PFy6CVCTGUALViwINNB58wxI3UGI1xjTBpRrcuqp993Z2Bk9GP0rSNlmUdsfUlK7JUlRLUZeYA2E20CZ7p8L7C+L9nPqrFJ/ta1Ovp+Bs0uUPC8/6TNA2RlHpvgXkyb8JH3S1MnBra9b+f0/XbVpihcf/6qze6d+gn8GZQrIVosBbF9xmEYMtYipQss+ux2NVKUHDvpGiD7oi012+HRk0jQ9s1qAGnGU6hPzOS4EoORFX1hgLIKhSU3Fz2lZFiFYDmDPCJoyWVvsFDCvW0E6BjTDAYodRTYFVdcgTVr3FWAhyLSu8DMffSXym4AdWVggBqxss8WcWF+J6VEz5Lfoxl5gOjKdCtjgGy5PVzwXYeLATI1QNJAKvcfKRdRFsOgGaJDm4jVdT6f61FiMXyr/TSuk2asCLOCt5OvrhV8ukLJ7eA7p7QvfRds7sgwDJkGyMEApXTjNMoFlj2EXn9vNYNIYKTreYXSLvS0e5fxhNL7V3XMQbZj0Gfczfb1BjekZNCaoQGi1z+gpTDOP/98TJ06FR/4wAdw6623DsnsxwpqHHA9MNvqjIN+53KrZGGAGhE67vuVtyYMW0Vp2ywT823PrcCStWb+IbpKaNQkTQ0gnnLdnBDcx9HdWvJ2KSePwQDR43oMgbJAKZc9GrJmDDgFIQOxVCjRzAOUfvLzTXZphpf+zBW0eE2nNUKK3wPXCt/nLswWyZj+PtNVua18D38/XcnsUuuThHHDB821l/pXtf0FY0RKMFkJQzz36kZ86Y9P4dX1WzOd02VkcegFjrMtCOm95uLltAZjCKYBKstMriQpkBZBtmzU9YJe14AWQ12+fDmuvfZarF27Fm9729swY8YMfOMb38jsHhsMUCshV5+VkgAm+9g7Ne0QrtWgDQ1xG3l+lsV1JU3wlRD465NL8alfPoqP3/CIeJxGTdKbqQao3HcNkG/QcLqYPEaN5gITzgnIImhfFFgz7i01JKQVvD8PUPrVta+ieRrXSX/lCnr6lfV402V34nO/e9LYJonYKXxRhL5QZO23nr5I4avbxydkVyAFffZSkEY9DEvoeTclSO4giV2vVkO86yf34qbHXsHX/mxWXJeQlrXXFoQZDSDp/Uu7GApDeV+f61oac6ggvlFpOVxtG1AGqK2tDR/+8Idx++23Y/78+fj4xz+OX/7yl5g1axaOOeYY/P73v0d3t5xKf7BAJVRyMSJmyKr52fXC9TUCSgtv7mNCKd/ZfO2RGCDat8MwxMML1gIA5q00dRj6tTTmpaCrbyOMMwVjp6AbQOZ2twtM388YJATDhe8rlsLwuMCaYwDZ658BevSbP+8P2GfhOXiiCtOIpPvLA3bLnOWohsDtz68wtkl6CQqfrlBiXH3HkrqBrz/1lvXveI4Y2znFMPgMTBaHtADL8ls+furbzD6rxu/HF6/PdM60VeZ1BiirYee+LnqPpCkjDNm44el7EovH+3fa1A19BW3bgGqAKHbeeWecf/75WLBgAW655RZMnjwZn/jEJ7Djjjs2un1NgdICOhkgz0pWmtBcifR8aIRrQ72Q97y0Cm+46N+4a+5KbbseZur+va0NaV92oO9GoATqAuODiJS3gkNiWLIYI5Jmg2/LxgDJeTX0AozyvX188Tqc/tvHvdQ+NSQkmt0fBQbxM4UvDJ6Oda7n6QqxbzSkkHzeZ1Zu6safHnvFcJeZBo5+nEwusCyuRqFfAiZL7arozfu3y0BLE0DiAr0n9ZTCMBkgd/uyMk3acVOOifWEwdN7IjFbPq2leA88fU+6TjNJYvMwKGuBFQoFBEEQsSL9UPiyESjELjB7p/UxQEbkjkMDlKVDNMIFpn51yg2P4NUNXfjY9bp7yp+4zr0C4waadCzthaljgKHYTAwgXy4PsYyAwDxIE7x5ve5z+kqpSKH4kpbIdx6O9//sAfz96WX48k1PifvRFPOcARAHPw/zljaU27afxEop9JcEiJYK8T3bb/xtDr74x6fws7vma98bhgEXygtRlxw+w52iXHU/P8C89y4GiD8D1zPJ4sqTfpt11NA1QO7xgetU6iqFkTYMXnOBZTXspEUYHWfdx4g8FtJ77D5ntH/yt6QBaoYIWmeABokBtGjRIpx//vmYOXMm3vrWt+LVV1/F1VdfjWXL0teiGkgoMaAzD1CG1T6gr6KyrNBdx+xrR1LX46JZ63OB6RNzs8I+bShXqpo2wciH4XHF6NvcBobvmvV99c8+nQGF5AJzhe/a9vcZ2OpYL62Qw8XpwMJFsPUMnGmNZNtqn451rr42ENXiOWPC2zBnaVQ26Id3zNP3y3rvRCE//620b7LRpknk7XKKoI3FQrpoN3X41Zu7sWGrnCWfnqKeKDA+Pmh9OEPEaKZzpnQLZhUKy+9fusVQCHl+8QnyJUa/IjBUjQA9XTNc3qkzQXd1deFPf/oTrrvuOtx9993YYYcdcPLJJ+OUU04Z9CUvOEqFAKhmyANkJMHT96cvXNnjwnChIQyQ52f0sD6BraTvqIRmmCllERqtU+Hp+X2umLTuA59hq+t69H2lyAkplBzQBwre0mZogLKsnGwaCdf5zPdER1pD1HYdkcA5+t71PvSX/UM9bd29VbSTRD9po5y8UYSZ2LP0+/rC1/m9dzJArF+4nolNP9LVW8HR37sb7S0F3Hv2m53Fd20M9LyVm/HAy2vwoddOF12e9LSGkSotTuroQ1xP6EpIqc0PmRmg5G9pYS65HvmC1cfSiVFghhuub/NdWjQ7Ciy1ATRlyhR0dXXhHe94B/73f/8Xxx57LAqFoVlMvuhzgfkYIGE1lDY3g3TOZomgfYO1Ptnp2/gLVCKDUU+livZC0bpvI14Krqfg96evIcQ+16Y0aPAzaL56IVkYwIrnSue0hcELA6ILPoOa3gcpS6yUBC36rB9Xeg4622jZIQUD1F+gp4+yu7eQbenaZuYBchvbgPxss+TakQSsUTv0zy4GSErX4Gvb8g1d2LC1Fxu2AsvWd2H6xBH231oWJ//1o3uxtbeCAMBHXj/D+ju6f9Q2JhYWrqOeCdbW323JJul7U08YfBa2WFvsIoS0wPYFbYhpBDQGqO9s/8LVW7BiYxdet4tebYIGYQyoC+zrX/86XnnlFdx0001429veNmSNHyC5ka5xNatIzFX/q89RYH0d8D0/k0K1Ab4CkyZmvcaToRvxuHGygqfnN0TQHi2Kvs39O+k5ZzGKw1A/lqQ1ko5jz49D7m3K1aRfIOmeJEXq3HB3pJ+YfeH+WhXsAdYW9lQSo0Dq6xIMN61nO++LW7rL+Ppf5+DhBWu9QRkUugbI365yNbQuwKRFn+t80TlDTb+3qdvtBqOnUH1CJT19fNE6bd/1nT1435X34+r/vKztb2uDPIH3fXySgiZc39cTBSaxPJJRbDBAnvdYrgYv3FvLtfWUq6lY0k/84hF88OcP4skl653HH1AD6KyzzsKkSZMa3oCBgE8E7cvaKpY2EDqLhIZEgXksoKrwEgDpBXfVUO+MUuRQI1bvNAcQIK9CANnokqK1JIEfP2KW5GH8PLS/8EFMcjnx79L2L99+umbLvRqUtBXRvvJK0vVbW/N8AyuQXSjbV9BJixtAabu3j7XxsWd/evwV/PKBRfjAVQ94XRb6tqr1b96O1lIyFdjcYPy3rnPaROKbuhIDaEu3Ozu+GITBvvj1g4vw6KJ1+M4/njd+y40MV9Jafp6sa7W0Bn89iRClBZu00MwUyZXlt1IkGjvOui09eN2Ft+Pk6x+GhK7eCuav2gIAeOhlvdoEPeKAhcFPmDABq1evTn3Q6dOnY9GiRX1uVLNR8uQBMgZyseyB26WRxZXV3xog66RD2Su2nRs10gvVVxbMBR8DJJ2fQ2JYJAYoC03s+62rxlgafYJkpLrgGzdcZV34OXx1nnz3xLWvbb9mR5dkATXweYHj9C4wz73yTEr3zVudel8KLYGhbdFT+66D6JrsBhA7rivQwmIUUAbIVWoj2jf5m4+5vF+u3KTnnJNcYHSbNPlnnWClOn6u77OKu9Pql6T+FSI9i2P9LHgnpCjD++evwbrOXtzz0mrR8Fu2ocu5TXdRDlAx1PXr1+Of//wnxo4dm+qga9asQaWSvg5Wf0MxQK5nYvOnPrZoLa69dwHOPX5Pw8+ru8D8hswjC9di9aZuvG2fHay/a9aA75tUZBeYvl/qumGhWxyYFnQFGbVFfmHlBHxsZKDH9VyHdg72Y6lSs8EAOTRjaVaUfYky9N17ekxTA5T87cvx4mM1XPuaLh2dCaPXaXu2i9d04rr7FuCTR8zETuPt+pJ6oFXSFthOCb5n6zPii44gA0Be+EiuDyDp8y3FAK3FAnoqVasOiDNAThG05d2kGj5XtXmjrUaf0D9zd4ikvdR0UIaOzX1MAFi0Zgv+37UP44OHTMNpR+3Gjgv22WEA0WKiDsPx/vmrMa6jFXvuOIa1zz1mS2OHGbVr/130WW+LpKmU8wDp26ixu7mrjPEjW2HDZjK+r+vUXaSqrc1KeppaBH3yySc3pwUDgCgM3p3LxtbR3nvlAwCAtVt68IMTD9C2uxIh2oyM7nIF7/9ZdKxbvnAEZk8ZE59DIQtNqlfL9U10bqOFt0F2gYW65e9lZOziwLTY3C2LoH1RYRTioGEwe+59fWyHtOqjxw2JgehbmQFuOjoMQ/zg3y8hQIDPHzNL+41vZSsxQJJB7wvH7qsGyByQ5UiTT//qUbywfBMeW7QO/3vG4c5z9hX0nhhZyFMaoT4GyBcFJrlG095nOwMU/V8IArSVIgMoHQNkH6Ns+hLaPH7/KKRSGHxo42Md3d3UCCZ/S5O7bfi89t4FWLy2E9/911zDADKY3RRGoW3cXbK2Ex+6+iGM7WjB4+e9xWnsSmOyHAgii6C9DJD2W3caCP7sqSG9STKAaKFrxhCqwzdD/wOkNICGSoLDtIg6WOguhSEwCs8v2ySLoCvujgYAqwh1u3hNp9UAyiaeJvt6+ogvb4TmIhNWN5WqzAAZhkQ1RKmIPmNzl74q4BWVs0TQ0LHRt/KRNAn+FbxgALGbG4bR4OszJPmx6HUu29CFK25/CQDwoddNx6RRyWAjMUBhGIoiaEl07ZvU+yxGFyYW7dnW/nxh+SYAwDNLNzjPVw/opO0TgrtgiqDdYwwgG0C+fkuRNhFiIQjQ1lLEpu6ylQHifTZ1GDzrX64w+2hf8iHU7wmv+8br10kLSFkD5H7HAViLPSuk1WK5PAT8HBu29mLtlh5sN7ot3qYbb/rv0rKzEQPkHvuNhYsQ3GDoADUDW/8hvW5J/E4Zws4eu4u5WUnfh24oVx0IMkaB0X7eWipYDCA7A2RbJVFrd/XmHnLOZJ8sGiC6r+ojrvnOtxIJHZMr/xyGnOmS3QL1uvSMPECeMHjJJSBFZ0luCB8DJEXJ8H1dUWw2w4jDRTlvJEbi2i092jZp8DDcc8Lq2bdy9DE5rt/6ykJoTBzZ1yf696FcqeLzv38CP77jJXE/+n6nYels8EbeeO4BvdYsrkafa119VyxEDBDg0gC5n4nWFsu7SN8NV6kNwGQ7aF/kY5pWvqVS9biKkGqbDW1k5eZnKh1GoYfBpG4fnixSWrRKz1ZjWMHHa/38vgWkziK6GSBpXuSGDYXGABmJWKP/m6H/AYapAVTylsJgn6kBVCyIiRB9dbCov5N2dm1i87jAqtUQ9760Gms2dzORWO1/1++YESO90FKekgpb1XkTE6acJFzgGiBDBJ3B4MrE6gj7Gr/NwgA5dDZpkuHpLF3ygRa13LC1V2MtpMGD3ytJ45LVDSgZB1mOKw3A9eD++Wvw1ydfxWW3vii6nSUGyNW3udFpRJZ6AiuyTOIS0yaVXYmOG30XBEB7SzQd2DVAbgNf/97sA1KeKX3f5O8Q+gTK+7AWhVqpar+VhPxcA+TrT20tyRRpTM6eZ5acQ34GVCtjGEDColVfsOrH5IaJPi958nmJhpZ+Hklk3yto5yioccT7nrrGYc8AXXTRRTjkkEMwevRobL/99jjhhBMwd+7cPh3LmwdIGMgLBXN7r0MDZGNy9JDQ5G8eNi0Narc/vwIfufYhfP73T1rP4fKXZnH5GPuyCUv0P3NDwpP7YvXmbtFo2czoUyMhXxYXGF0ZGYYT21dIWGiIoEUDCOK+6ti+SZB/V64mk4ueq6YiDji2cytk0gB5VsSuuSWqTUQ/69ul6JpGeuNpJNH6TjdF3yMwQK73tMTypFGxMeDXS0lGoTnBOxrOjqPasHpzd9w/1PaIAYrYjlQMUCYXWPK5u9f9ALkGSDPiEbGcV9z+Ihas3qKt8nrLVe23Rhg8bR/PaC1kZVfnVdjqcM/Ex3IZQB4jlH7H9Y6S4asx1AILXq3qC9aspZ70NrjHXt4GKlWQxqMtAgOkmtosDdCQMYDuvvtunHbaaXjwwQdx2223oVwu461vfSu2bNmS+VhFTxi8ZBhUKqGxna6+tQnDMvFvIg+bdvY0k5/CP+csBwDcO2+11umUn9zVWXyGisRe6cyD/FJnMUieeWUDDvnO7fifm59x7qNYszHtJev5pJURh2TkmfQuPSY/DvucgQEyNQq18ws5SlzHUqfpIX2wu7fqjZyytVNqW7SvW1sBmBOIiwHKyhz5XLd9BV1trt3S49xPZ4DkHFQKPE+s6h/J2MO2e4xxeq+7et1GKgcPVnhh+Ua87sJ/4/TfPl47b7StGARoqbnA0iRCdDFmthB9em0yA0T7rL5vJQzxnb8/jytufwlf/dPT2nk4AyRlLDfDuKmr2ryPWXJA9ZUBots5AyKNI2lF0OUqT1uinz/T++c5DwXtI5L2i+aGchmZzSp8PGQMoFtuuQUf+9jHsNdee2G//fbD9ddfj8WLF+Oxxx7LfCxfMVRp9UVX3cl3dqbANkh0OgwgX1kGilZSS0fTAAX6/xwuAac6Nz2l6AKrehggj56hs6eMGx9ZjJWbuvCzu+cjDIEbH11ibzSSRIjjRkTCXkOnksF4FAcUwTfu07tIrIWUB4geW3LBudqhrodOFlwTIWWfNSc292AohfoDfiGv63tfFmRXfT2J+UgDOtls7OobA+Tqa04GqPZ9lkSagO4CshWsDcPQasRRg61cDfG/T72KSjXErc+t0M4bBEBLzThLUzPMxcTZhLr0eacVQYchX0xWcd/8KBfSQwvWav20XAllBkgzgNxCXRvovTYMoNQuMLuHIP6O3LRsxYhTGkehxwUmHJd/ljRwpk5MH5Nc2CKKoKP/BxUDNH/+fJx77rk46aSTsHLlSgCRgfLss882tHESNmyIIj4mTJjg3Ke7uxsbN27U/gGkFpjzJXYbQBVmTQPuUhi2CYDSglv6yADRkHLbJE37ihRaWglDnHLDIzjqsruwtaciu8DYeaRVgU9c/NuHFuPsPz2DL//xaYPytUFNThNrkU3+MHj3sTRqmF+jMDHzffnTkaPA9H2NKLbaeVKFwTvOw5P18cnDBe4SyKIB8rtxHOfMSMG72MaKZTGSBXS1KYk06T2RoogoeOHOmAEq2hdfPgObi371fYFfP7QYB15wG2567BVtm3bvwhBbe+yTX7EQxEVKbUaBwRQ6Bk+bnkSLAkspgg4Zc1SucN2hbhRLxrCYyM9jAHVnSIKZRhdldYGRr0wNDNkvg/GhJbWthnoNQUHjat/uPo/MACWf07rATJbNnNMaicwG0N1334199tkHDz30EG6++WZs3rwZAPD000/jG9/4RsMbaEMYhjjrrLNw+OGHY++993bud9FFF2Hs2LHxv2nTpgFwD0IK0sDeW6mKli5fcXFQa19zgbFdpUgwWojUpo+g1rI0EVcqIe54YSUWrunEo4vWilmS+Tba3qzV2X//SMT23P3iqlgTIWFjTRg4sZZHghsQPgNM25cNsmnb7YsAkYw+g9FwiaAthrcvA7UadHmuGnqsLAxQFvdBVlG0az91jXOXb6oZ4u42+oynLKB6A55/hEKKAnMxtXzAVr9T7K1pQPPPboOo1zJJnPeXOQCAL/3xKWMbPaY5iUf/F4IgXlilYYBcuj6b65x+JTEBfHESst9pgltm2KUV3BsaIOoCs/xWY4C469HDICdtlaPA6JzBXUDimFy178c/ZxVBS0Elsj5P39bDxiQXqAHE94tF0E1SQWc2gL761a/i29/+Nm677Ta0tia5Ro466ig88MADDW2cC6effjqefvpp/O53vxP3O+ecc7Bhw4b435Il0cSr7qXrnfEVluO/02uBuY8D6B2GPngzTNb9QhcL9ro9NKeH7Xz85aPUI594JBasGuovUZYwSkAfVFqoO88xOKrIiPE1F1gWyhYA5q3chBN+ch/ueGFFap86b7fxNITBiP+WP0oXi6C+py5OH0ulHoPOADEXmKAcNoSLKZLIJQyqzyByLTDM3905dyWOveI/+OrNT5vPwRFlCdQXFUa1NFKNKkkD5GS5HEav6u9ZDGj+2VgACJM/f/85y1IhY0ZrzACZ91QqgSC1JWTuF0kErbWNJ++rhLF0IWqj3ickIpA2VWIp1DHmLt+E11/4b/zqwUWMAbI/e/U+uPqixJbzNm3trTpLK0m6MN+7KLnhJLkDD1jgBqSor9IMIPf7RdOc2NhNYBC5wJ555hm8+93vNr7fbrvtsGbNGssvGoszzjgDf/vb33DnnXdip512Evdta2vDmDFjtH8AGcAdb423crNBB9stZNsgwTu765wiA0RYE1skGe0rUkZiGpFWLASyu4y9xBL16auSTBks6irgEQAKigGaUGOAXJqjYlziRN/+ud89iSeXrMcpNzyq65zYecRyFpaVrb6v2y1nFM91TKLqnlNWzMduqYFNM4B6dQYoDN0uVd7vDBeYZdXd6pzE5c/O/aqRWxQA/vrkq5ZrdE8g9USF0f7WKbhmNBdYyoWKK2pKFR2VJh3AtipP/pYS/fnaQeWk3aRSd1YXmGuyt70nmgYopQi6yvpsb6WKlhJd2OnPRGKAJA0QnaTVfpfe8gKWb+zCeX+ZwzRA9jB49b72VQRNjYqf/2c+9vz6v3DvS6u1cwCeMdnTn6RkjFnc9xLbbwZUkOeekgFyRTgOGhH0uHHjsGzZMuP7J554AlOnTm1Io2wIwxCnn346br75Ztxxxx2YOXNmn48VT5SuFapAP4eW32kWu6+zk+/oy5VFA6RHhFTI99E2jQFytA3Qw8t7K+lDk6thyAqnpn+hAN3ooVtsA29vpRqvEFQqdRdz0+Jwba7enIQ7y0ZN+oHAzOMC9pmu4vRtLhE0nyRtbXIlDZRE0IA7aoe3RQqxVueKB/wMK0n9mOb1S0afTMHXwwClc4H1SBGPjjHEpTVR1ym9X9F59O16zqd0LBQ9rwJ9RpQpLBQyusBSGn7VUNdMygwQbafM3HBdmOwCc7ePLl7VIWhxzm62sNCPq55pwXpsW1utsgjS9nWdveipJei0tZ0yanSbMS4I77/NTen6rY+Z1PVVXGCe0gVGGSCnBmiQMEAf+tCHcPbZZ2P58uUIggDVahX33XcfvvSlL+GjH/1oM9oIADjttNPw61//Gr/97W8xevRoLF++HMuXL8fWrVszH6uYOQ9Q8ndUqFF+GePvqyHKlSq++68XcM9Lq4x9qb83bV2Z6BzJ377QTGcZASTRVYAlm6owuVWrLKwyY2JCagDRwdw28G4kicHGj2gB4F6FqAgbaU6UkhtKkTg+LY40gRmMhiNRmzKaWoqCAeTw13OhLr+VzrBlj6GkU9zRttZavhjfPXF14dCg8pm70ejDwuBdBwNEV/SyCyzZ5ouES9plf59bYg2QZ2IRnrtU7JNDymlGxfKFAKILTBKm+87HQ9ZdCNn7JjI3LPJWMgKlSEatUKm6F2RWpEZyl0M/1eozgBxRwgq23yl2njMs3/jbszj4O7dj+YYu67sZn4fd5h5NKqFvk1zXvuhE/d3Uj9vLFmUuyAxQ0j+bgcwG0He+8x1Mnz4dU6dOxebNm7HnnnviyCOPxBve8Aace+65zWgjAODKK6/Ehg0b8KY3vQk77LBD/O/GG2/MfKxEA5RyFUMHZ5gPmj5cjcathvjnnOX4yZ3z8f+ufRiA3mG2agyQfkxpUKOdxJY3wvXCSy9FT7nKwuD1ffkqXMoA6gsPpceWKm0DwMbaQDCqreRcacWTS405MUOI7W3LEo7Nn4bpxnEPDIaRYdJJ0flrP2mRNECOiUgP1bYJ9dP1dRc7RfdtVUybZ9LOogHSBJ3CcdO6YtJAW4wILjAt5NojIE32s0/gsQbIYgRSSIxLj2fBIR2HMxqq/UVNBO2fpNO6wDiTI0WBcc2dxgBVQq0eWLemy5KjASWdiq2MES1/4WKA6HXG45KrL2gh+359FWDPVVcNQ/zygUVYu6UHf31yqagPkhY2UtJEfiyvNi2k2zgDRPqslAlaM4B0g1mdfkCLoVK0tLTgN7/5Db71rW/hiSeeQLVaxQEHHIBZs2b5f1wH6gl35YhrgaVcvdFPfLUKyAzQYlZMz5X0KosGSEowxVdc0kTMQ6f5cSj0l0I2JCRKle+/VRDAAYkAemxHi1O7VY0n5oL2WYHuLob6Sxogz+QuR5Dp53FFgSUMS2IA+ZgBtb2X6VTSusCMPiG4wExDkx9L/uw6Z5Wt9k3GzG0A2YzWtBEj9FhbhHQMUh4gmXkAlGfPjAKT+08WBkgaGnl76SROw8cLAdUA1SOC1j/zlBlp8wBFrI7bcKFpC3wMUGjpw7bPatygGkU6RrsWukqb5MwErY0j5nYbA5SUa7Lvx7Pn+wwVTQPkWfhJ9b3kYqjuMUd67jwVSm+1irZCZIQ2mwHKbAAp7Lrrrth1110b2ZZ+Qz2lMACbu8o+QFaqoWF5l1mnUAO2yZq4O0yPwABxn/uKjd249Ja5eN9BO4n0Jc8uKw3APLeHLzTYyCBM/qYJ6GwDrzKAxnS0xM/NNQmWPOkN+G+NSUgwQg3Sxlg1Sb/1DCKxC6xmYBA9jLcAo3KBMR+/1B693fpnyQWWMEB2IW/6RIj65zBMrzuwbSsEyTHp4OmDFpDgyAPE76VkJJvHr6JYa0scBVayjz0+ESsXBGv7Sv2d7UvdOGVybYVCwmTY2ELfBCu1m/7WxQTY3KkS80efV7niEUGDHoeLoM1xjLIN3Q4XPX1eMQPkYFn1+cHvXgSSVC2uFBClYgHV0K0hlRZAXmNbMwp5W6vss/sZ0XO6FmBhGBrFrnvK1ZiFU01rlgYoswF01llnWb8PggDt7e3Ybbfd8K53vUtMUDjQUPfSGQUm0NMh5ESIXAStVcTtrRgTUVe5ghGtJa8I0nU+03DRO+33bp2L++evwXPLNuKct83W9qWDkWFICZQqX51JonHbtdD9Nws5IICEHh3VVnQmsOQMkG0VmvwN69+26+DXTOEznrTQbXYeMwos2oHrRGy/dTFNGktRMfuoywXmy4xrW+G5XJH8DC6XgM1Q0le6vI2CsV2NRP/xPayEaEs5qlUc/ZCCD9xZqsHbJocWh/HoTSVBPmapBcYfu8kARTtEUWBuEbQplneNnabBznVHNpjsYciYG71NWxl7LjJx5KeSBijaNzTKmCjQ8Ym2rTWDC8y2rrUZQB0tps6uk+jUWtii2eeOdrFX0Tnc7fGxRXIYvNtoV+gum+56bT6tHb9ZiRAzG0BPPPEEHn/8cVQqFbzmNa9BGIZ46aWXUCwWMXv2bPz0pz/FF7/4Rdx7773Yc889m9HmuqEsfNfYRQeFyL+cbLO5wFwrgzL7bVdvxbqSGdFaypTfpFcwXCpVffJ7blmU/Xreys1iR/OtKrnhIGuA9PaaNbaS/Wkovu0lUSvW9paiM3qPTy5SGD7Pg+JqFz1utLPeLq9hktKlE7UDWrtLxfQusFgDxHLVmIUJXZoN/XOqKLBSulw2bg2Q+Znmw5QKspr5stT7nBhAaUH7pSsTNKfu00aB8X3Vu5YYQPq+Zn9i28kOtO4b32a2QT8QNUCoAURdYDZXtMkA2fuTLXiCHm7Zhi78+sFFeNf+O2J0e4vz+GCGU6QBSkAZoGpVlkhIk7RNT+UaernuSMEXBaaz5Tb3ovmdMoDob2kfDcEYsjDEojVb8OsHF+GUw2eaiy6JAcqw8BOZbmFedDF/1PWsmFybYHvQ5AF617vehWOOOQavvvoqHnvsMTz++ONYunQp3vKWt+Ckk07C0qVLceSRR+LMM89sRnsbAh8DpL4vWTQnIWyaDnsnqFSr2oDQW6kaKye1kklLMavjKNjq09Bj6b5y93Ek8Stgcfux7NdhGMbuKl+GVPpZZ4DMa1ap+9tbinH0nsvl5nKB6StJ+nLr55ImN9/9kJ6fL8KPM0ClQuAs2OsarHiuGpvv/qw/PInTfvO4uMITo8Bq29riPEDpn7PrmOqzlA9KyqNSCUMtSYgUbcKhaYAcYfB84M5SdsXGALU67p3P7d5XF5jBODMGSB0qygTtdoGZUViOsdPCAIVsPDr3L3Nw+W0vAYhc3L9/eLGhweLaoXI11IyVzh49/5noAnO8/4DJAHHWnkKfmJPjKM1eWg2QTz8IJOstuolr0bhW57TfPo6r71mAq+5+2TimvkDSzyUt/Mws9u7xiAv/9QW2/d6o+amjpYj2mtFH73+cCXqwRIF997vfxQUXXBAnFQSAMWPG4Jvf/CYuvfRSjBgxAl//+tf7VKS0v+DVAJGJKNpP7rB0dc0ZII0GLIfGykkxOFImYQ5JA1Rh1LHrpQVkH60/qiDU9r3qPy9jv/NvxZ1zV4oaqWh/+4Rmm7zU9VEGyJU127USoy+PdD8kwR9/HGHtvJfc8gJufXa5RwNkXJbe/lA/fzEI4jb7Sj+o83Bjlv9u+cYu3Pz4UvzfM8uwYPWW+HuJFQTsIbGxjoX9ll9mNQzxnxdXYen6rcb3+jkAasXwPDcVx/ul2uQS/ftAn1GnIwzecIH10fhQx4nzALF9fZGTYhi80L/4cbs1DRCJAisEcXSfPQxe/5wlDN42ll133wIAwKd/+Si+evMzuOH+hdr2EPp1lStVXU6gMUC+TNC0D/sM2tBpROtupOT7kmNcSs4hs4i2+6PGKV0/pefLoddcDUPMWRqx/Tfcv1BMhJglaCWLYJofK00YvFoAj2wrxuN392BmgDZs2BAXQKVYtWpVXGx03Lhx6OkxKxMPFhR8DFA1GRQAxviEyUNXz6TMjAF6HL0irkUD1Gt29Og47jdaCoOXXADSZGemIOdGhrsNlTDExf98AQBwwd+fy+Qe0o5poUljF1ipEEf3uIyN1pJ9de0S0Em+b95O26R9z7zVuPKu+fj0rx6zDGpuQ4uDM0DFQuA00lWbktwj0Xk4A8Sf1wqS3G3FxuRvX7QY/cgjmQyjkB3ruWUb8dHrHsabvnsn20//XTUMxWKftnp39LeaoWFhEV1IowHyMUCy+8liPDrunW9SzMIA6efVz8PdOKr9hQCeTNDpGCCb4SaF6T+0YC0A4IrbXzJ+p6cRMANI6DbRCNQmZc/iLAyd7hpt8UQO6mWAPGkLbL9Tz1grI8JShkgCZIPtd7jvAJllztIvAf1+phFBJwZQKb6PutZKn2sbjT65wE455RT8+c9/xiuvvIKlS5fiz3/+Mz7xiU/ghBNOAAA8/PDD2H333Rvd1obB5V5QUB3UxiiESF7M1pgytk925ao+OPeUQ+Nl2BozQP6XQkFKMe7qaLxtfF+/Bsj9W/rCrN7UnfmlcbUBALoURdpaJAks7W1LMkHrx5DoUyn82paPgv5uJTEk+MDK0wZIUG1INEDEAHKyXcoYjL7Xo8CqVgZIgequeH+UqsHzSdzntnlkYTS5mfXFfH3L/RykbLOAXPeMo+xwqVBwY8w10dgG6DCMnu1l/5qLRxetA5Dop3iHsrlYv3/bi/jJnfOi81ImQLg/AHN3sONSFxh1o1AXWJoweJcGyLZQ8Nj/VoQhZ4BCUXidVgOknp96XtxgrkoMkIM9bmGLEY6sxaIBYgCRTcYiRxu79N8bJW7YHLViYxe++IenMGfpBlnvyZk/zwKA7p8mD9Dy2sJs8uh2ayLO5P0aJFFgV111Fc4880yceOKJKJejQaNUKuHkk0/G5ZdfDgCYPXs2rrnmmsa2tIEIAn3y4FAPUWlKymwiVL9rKxXQXa5qAxLPWcKV8K5wTl8YLEVZYIAkA4incteyoApFMAFzEHPVlonCM/tmAFldYOVEA6SiM1zHc4mgJVTDRIBr+saTv9UAq4Tx1VCuY0YHQ18OK9VcygA5cx4pY69UAHoqsUFA9VNl5hYCgLVbEkZWK8KbUgMUEqalxVXPytNHipbcJuqzVupBYoA8xpLU/zl0DZDdBebVANXa01YqGBGZlTDEqxu68OOaEQNIddRMg/UXDywCAPy/Q2foRqDHBdZTqaIDtTwqggtM9WPA7wKjTFE1FFxgNgbI8j62leS1d2QA6YavywDiUanmsfR3A4jGip5y1TCYK1U3A2QLdgkCWoPQfn6bzkjbbjWAQu08gCXQQTL6DLZfZ4C+9MencM9Lq/HYorU4bu8dnO2TolttbY/GI1PL43ovX625x3cc145VtZJFdB5otgYoswE0atQoXH311bj88svx8ssvIwxD7Lrrrhg1alS8z/7779/INjYcPhdYLKotKGrTHNiAaFLe2FV2JhvkGZN7K1VnOKctcumfzyxDsRDgrXtN0bb1CAyQxBzxQoQ9ggvMF5brCquMiqrq501r3NkGOGUgtrcU4+fhShngYiake1INQxShBjC39oROFJVqaITB81pS0qRtawM9XzEI4hUqF1Orj5yd9OUBogyHJiA1BkpzBR+1MfnOJYKmg1U1NBNtjmgtOX/HgwUoJJeOqdFJb/zSd7GnHGlMaAoCwMYA2d+TtlLRTElRDbU8VwDVANn7sMLqzYnBunZzj3MiBCzvpsAAGa6j2LCRi6FSN3NXb1UQQbPPob3/j/TkKuDV4F3GD6AbctY2hXTfqIFtNQPI5p5K4wJTTSsGQawB6isDZBsPVb/jtdvoMSWyU2J1KtUQL67YDABYuKZTDOjwi/X183LhugJnLRUSA6gjjljuLZvj7qDJBK0watQo7Lvvvo1sS78hCYOXVzElS5XfkPwu9v062JAwNItU8heuy+ECW7GxC1++6WkAwJzzj8UoMmBIGiBpBcxf7CxRYGkTawWWa0nr3rOliU9E0AUUHQyQ6QKTVy38t2EYWvNRaNEQigGKXVP6dZgMEPmth5RQ29Xl6wxQsh+9LF5/qIcnuGP3gDIctAacVNg3On9YO2byfWJ86dehDlUqFNBTqRoV6ke0qv3MQVQTwwtGvRTdAngY0HIFjy1ah9fNnBgbshSd3RWMHcEMIN4Wx3tiYzTCENjcpRvGsU7NYBv141LGrqtcYa4FN5PLtxv5YJiOJQ6DL8gusOQ6I0PPGfJtWezYDCAfA1QN07vOfAwQD6cHaixmt7m4rVaFnDWWMa8QBLE2Ma0uKh0DVNUWPABngGRtlaQh5eyaxNhnEecDTPhPk0g6jMql6yMX2A7jOuJ3o9vSfweNCwwAHnnkEfzxj3/E4sWLDbHzzTff3JCGNRNSFBh94Mqyp4NeSChd9RK78gABLJV62Vw5KYaDt2UDKQK6bP1WzJo8Ov4sG0Dujm8O5m6K0uamoKCXycMxvS4wx4vbW42MkXWdvZhQq/weu8BKRXcmaMMFph9XYoDCEPjaX+bg5sdfwXsP3Ikdl+xX+5+6vej95HlkbMaTC5wB0jRAjFFUUIOFOg93N/GBi9bb0RggrgFyuELp9bQ6XWBqMgVQ0fumLbKD/k5a7UtiT0kwzXHh/z2PXzywCF966+44/c2zjH239JQxdkSL9p3BRjn6dluLOaFXw1DTWwFJfhd1vS+t2IRSsWDcy02EOeKCV0PIK+i4RFc6YQojEbSayC0aoIp7zKNI6wLzuSpDx+9sKFd8UWBkX8VkOdiuaujWGtk0QEEAwgC5Fnae8dDyuzA0mVweBi/rnpybIs+EZsyZ221/q/Pq5zENXlt7XbqqZRsiBmjquPaEgbTc50ETBv/73/8ehx12GJ577jn8+c9/Rm9vL5577jnccccdGDt2bDPa2HgILjBrinPGACUGkOnrNH3u1MgwX2pXHiCa6IsaQ4DeQYwJwLMCpqCTnTHpONwbNnD9Bt81beRMb7mKy297EQdecBvumhtFGm6lImhHuKkhzk0xwMRtCUP89qHF6Oqt4jcPLTa2KXBftGKNFHgpBc4ESlDbaSp+mwGkCy/1VWdPWTdm+fOjBlq34CLpcdSEo8/QxowCiZGoXJX0PNQYsg2aUpSTxrAKjAYALFrTiTd990789K5Id/PYonU49KJ/46bHXok1NT/490vW9q/v1N8z2/F5X1bNoQU0aVt5dJnKdQJERs4JP7kPR112l7GQoXq97nKVGYjcle3+LNkZVEdSpIkQLav1mAFqkZP+2QISbLtyPaJ5HP/CQcGfB8g0oBP23nS3OjWKNhcYYWudBpCQCDbaHn1+zwFT8Y59Ez0Of660kGzFMpdQSPeDX6NkxEjRrbbtrgS5vZUqzrn5abzuwtu1tBjUBaaMUk0DVPt/0ITBX3jhhbj88svx97//Ha2trfjBD36A559/Hh/4wAcwffr0ZrSx4ZAYoIploOdCuXjQa0kEjarT8A5BO20vyWUxojUaCJVuwKDjye+4tkDTALFtEgMkRYyZBRZlS5+CMyXeukaOY5WrVfzwjmjiOufmZ2ptTlxgMQPkWIW3OLQpUm4YW1Pi9AY2FxhxTdEBUUrel54Biv4vFUgeIIcrjQu+uUvS1AARA4gaIx46XvUDyhT5hLzqHmn5qsoVvLB8I/75zDLTcAohung0LRb7Ld/3D48uwcI1nbj0lrkAgGvueRnLNnThS398Kt6nvWasUNE5ALz9h/fE7NiKjV1454/vxbX3LtDb4lgo2F1gZkRRR2vCAK3a1B27Jldt6tb2c1Vtt10zn8SlXFfa76qkGGoh0bLYWDT1XRu7dxxJH07eRduCp8tREoMirQHkcrMp0E08H5ON0XCNT9wFBURzSdExLiVt079zJRN842u2w2Xv34+0lRn7jAESWR6PcUSZbKl0kVkLzDO21z4bi5pyFb97eAlWbOzGP59ZBiBaNK6rLTp2JC4wWyLEQRMGP3/+fBx//PEAgLa2NmzZsgVBEODMM8/Ez3/+84Y3sBmgq3gOXdBrYYBC+6CnjCRJdEgnJqXpicPgBQaIT65SJug+a4CM+lT6byUdi9Z2snIr2AyJqpuupi+8chUoA6+1WHRGWyS5cSysiWegsA2ctmgydf1xCgWEGqMmu8Dc56dtUL8pFgrWHFS20FsbA8RDZKP2JUyExAC5XKE2BshcOda2F8xoonIlxOm/fQL//ZvHcdfcVewcrGCm4NbyaYBeqAkpFZ5jn+nx1LHGdiRur4fjvDQv4ulXNuD++WucbVFtB+wGEF0YKSQ1nvTr5OyT7j7QS+iYuWzcE6U0EdLxqBC4mT36XZuDOeH7qWNxgTu9Bp+LK21An1S+AmBuZLZYsgnu+TMrWQx6OsbF900Qj7vaE+1TrR0r0AwT3jZ9LvFEgXkYIKneYFp9kO23cWJW9kDoon3x2k4AwKs199eothLGtLckDJDmwo3+b5YGKLMBNGHCBGzatAkAMHXqVMyZMwcAsH79enR2dja2dU2Czb0AAHOWbsD3b30x/mzTAAFJJ6B0tnpoBgPEDCDVQUa1RwZQlyMKjFLisgHEmYe+GUA8H4ZP7KZtYy5C9bFkYWQk4Z6Ugr9UDJyZuaVM0NL5ot+a37U5XJ+Azh5KtW70LNKeNjAjo1iAVe+kaYBYG01DWz+H0wVmMCr2507ZKVc+pthNqAwgZpTNWxlFnjzzygZ2Dv3apL7oc4HR9oeh3diO3Xq1m/Th1yXM9SvrokF53RbTHRa1hRmIjBnh5+HtpRogrRixQyQKRIsAlxYEMCdZm4bChnIlmewjV467FIbhOvK6wAg7Xtv1DbtOxHaj25J2eiyctBqgSjW9HiZhsuzXantmykC2icsLxAVmZ86S37hYJ9u7xc8H6Gy/bZHDr8OFSjWM31HAzajbtpWrIX5293x879a54m8N9orMU+onSug/aVSk97QlQhx0GqAjjjgCt912GwDgAx/4AD7/+c/jU5/6FE466SQcffTRDW9gMxA4XGDv+NG9uIZQ3nySUVAds4MYQC5XVjeLzlEvxGjFAKk8QILLoqsnPQNkq6dlawvf15ZAjg4q0hxe0fZLBtUkUaR7BU+hGWS19iR5O0i0hUOYWrK4ZnyDqO26W0rmc1cvYokwM/TQUmiyLw9QGE/IyeShch5xNkvBFEGzwZFdN839w3PBSEiMs+j4xULyHAwDqPZ/zACRY1MGSq2YaU0+KQ+QJIKWJtGtvRUrdc5Fq+87aCe8Zc/JABK9XasjSonbBnFOMIsI2sYmjKi99yHcGimOnkpV62tG8kfW99Z19uKB+WtqUUTyRKiOW9DCud0GUJvl3bDtRxcr6h4cu9cU3POVo+J9JcG6dA4O/i5y6FFgNUZZuVsMY8Qc68bUDCBbkc5i4F4QAPo1KiPZpZtR75YrSWMPY1Rlds+5CdVQLyyrxh9bFC3vvxs6e3HxP1/Aj+6YhyVrO50uMN4nbXm21tUMoLG18FDVt/qzFEbmKLAf//jH6OqKQtfOOecctLS04N5778V73vMenHfeeQ1vYDOghirfytylAVITVaEQoKOliK29lYTJ4S4wrfhgEgavGKBEBK2fe6uDAQpDPUrBSG6YgQFypS1XqIZJksAsSbe4EHLlpm785M55eP9BO8XXbYPNGFH3q1gokIFG3ydenaoXmOzQl0E2NnwtRkyyctInN25c2nIIuaC2J/qEgkMEnfymhbkrfJmgt7JoxGTfdMaZrk+yuyK5Bkgz1HvNc5YKAXprETy+PECVaohCIDOsgH6czV1lI68PkBjKdOKZPmEEAGBjzQCy/S5qC3cR6oYBhW1iVtq/MNTviWQAcU0XfxX5JP4/f34Ga7f04Nzj95AnyVDPBJ0wGbaxoPaOxYEf9uOq0+kMULKKpy4eKT2Fal8a+MLgtUSIFXUddleebRwcUxuzbO9NEBDmzGY4kmtsKxWwuduto1HzTTEIULbox7TjVkOtCDCHz/Cl9kTiui6gt1KxugwVNpKoxpWbuuN9gyDql6rv2BJMcqyvvWvja5GXrRYDaNAlQpwwYUL8d6FQwFe+8hV85StfaWijmo0kD5B7nxYSimyGCtdWw0GAEa2RAdTpYHLowEbDTke3RQ/dFQXmcoFJwjhATgTH97W5wFRHVm2KkwR6XiiFEOYg+LO75wMA7n1pNa766EHO4+jpBmrf1V6kFiHagtPzWhin5X60FIP4PtoGPFXs0zbpUBdYX3UrHOo4atBoKRJhJTmsLtAXNECW1aGrfIrXPVc7jl6nLNrmygRt0y91WfpwsWYARaHSyb78Xi5e24n9v3Ur3rX/jtidpIPg1wXw5IvVmImg4MZjqVDAmPbofVQDPG9Da8meOE/dv5Gt5lDKQ8CnjGlnUYTkHa+NH7RvKtjyOmnbWVuVa+GaexbgsN0muX9X1V1gaRggXoPOtZ+mAaomiwf6PHxlS1zn4KiGZnFZvp2f01Z2wfYZSBgg23sTGXWqvWYr1PmCwB2lSqM/gehZlKvuqvTRb6oiKyKlP+CbYna7GAC9sguMMrlbeyrxsVqLBS2XmhSMo65rfWfUT8fHDFBN90kNoNr/g0YDVCwWrcVQ16xZg2LR9IMPRriKalLQgd7wsSsDqBDEOqCkppd+HJcGaESbEvn6XWBaQikhNBJw51uI9nXrJdSLSgcoadVJ4Yr64qvoB15ek7rER2IAkYm3YDfGJH2CbTVbIJmWbQajLZpMHTJxgbFJmzER67f04q9PLq0NEikNoLIaiAqae0iBluMosXthuMCEc+psjNi0+LqTia3gdoExBoiCRv2oPuqKFOJ9/NFF67Cpq4xfP7jYK4LWtlXsCfvCUC/tEb3HtdVn7X3q7Lbn73Fp48Z0tODI3bfDbtuPinNYUSN5353G4p+fP0Jzv9uiCG3Mk82VRuFiOYuFQGYCKlVtBV90vF+qDUDi6vNFgdFSLjTUPiCuNtu7R/tO2qzekdZLmvDJeBDnM7JHs9km7tgFZhmfqHZKMhxbSGDDkrWdOOziO5I6b8QQV8eM2iIzQOKzTblgpfvaEpzy4ZMuxqkx1MoWZFI6FnWMjVuj3yuNlaQBahIBlN0AcnW07u5utLa21t2g/oB6xx5asAaX3/YiunorxnW1FApWISqQvERBkIS1JgkN9X01DVAl0QCpFaMykKQ8QL3C5GCUwqgzDF69hIA7AomDMzcJXW4fzF2wpUtXxy4ViQvM6XIzo7ds5ysWgviFshlINu0SFT1GnxkDVLu3qm/d+OgSfP73T+L8/302dR4g6gKz5TxK3BXEiK9UUa3qblEegsqhaYBSGmdlwtq4XGDqUC0F87l3Wdw9NKWAJIKmyKIBUuUtbN/Tw5TIQka9I1tYaRPlujIFrIiv5ZenvBa3nXkkRrYlxpJq727bj8L4ka1xv6uGoVUDZGOsypa8ThSue9Bb8UUKJfc9KulQmwBrz/r/nl6GA751K25/boUR+eoaZ2I9SSGZTLmOQ7FD3G0MMBeZz3ccX0e6UhjU6LVl8Qeyu8B82in63qhr+8uTS7F0/VZ891+RkJinY0hjAEWsoHOzeD8q1RABzPtsCzIxFznJ3/QdUbpJnpaD6mQV1DZlUKo+lbjAaM6w6P8B1wD98Ic/BBBRUddcc41W+6tSqeA///kPZs+e3fgWNgHqZr64YjNeXPES2luK+MThM7V9SkUiRnNUoC4GQfyAt/ZGnUFyPVTDMB5cFAPEo8dUin7dZZCc3xcB0tcosNjQIAOQ9CK4jktr+ChXA4U4MVuS5WkREh4GyFYLzLZSVYkGq2Fo3R6XK7CxL6SMip6bJRlY6WT/+0eW4Jy3ye+Fzd1ny1VFBwOas8XWJ2QDiAzkHgooZqcqSdvoPbDta2WAek13j4ttFI2aFC6LeN+yvYBmd0WvyVcsJgyQaifPvaUMIBcDpC4lCPT7U2H9hrrftTxJvYnxy6F0Ui64jBFbuQ/edp3J0KOUvvm/z2JdZy++/tc5hlCVH/dfzy7HHlPGJGxCKZlMqQsMUIusqrEgA6BFQaXXAMnjUxxkQNrs0gDZGHTlHrVGJxVASmFYNIzEJajur6qAHh+LuQ3jPFqehUCxIDxb4bnz95YGX6hjx+cR7ist88IZINV2JRGh4PIDdd1tFgYoJPe5GUhtAKlK72EY4mc/+5nm7mptbcXOO++Mn/3sZ41vYRPAjcmnX1lvdPxioZBUjTdWCclAnzBAuiFjQ7kaxmwOZ4Coj31rtaLrflg2aQliIkRBLxQbdUX7ACS54/XEVaYGiEJ6oajbj7MidAAJw+gFT1xi0b5JiYZku+15FAI1EYXWycMW/af+KtA2WBig1qJZFdy3kFXHUYNGS8me9JEWrqQuBmsuk5QGq8/LoNqu3o/Wku6eu2XOcjy/bCO+cMwsQwNEQe+JOr8r54nkxt3CXFO2SZQex3YsruUpFYLYJaJcdbzfqEKurqzmNKyYGq9cO6buHXfbqOuwvTPS/YjaZN+ujHwXqHESBIGRB0glZ3x1QxdG14yAxHWUnPPel1bjM796DK2lREul2CS6UFC3SJ3HJvx2GcUSXMkW6XZAH+9id4unrAiQuMCsYfAaA2SeWxlYdAHHz8A1QLY8WsZxqyGKKa7ZhkoYaoxKDzNEbGOODXS85rpJ1T/aSgWUapomBXVdlPEGfGHwA8wALViwAABw1FFH4eabb8b48eOb0qD+AL+X1TA0wvYiEXT0t4tlCTQGyD5wUlBKXK0o1cOO3QfFAFt7mQZIY2rkwVAsBinohXpjBoi4wMihJB87N6y4S4pCuj+dlgGRsjt8dViA7iZqJedT2233o0hCTW0MkI1JildpZBCzCXejKBl9kk6rASpXzcHSFpFRJCxMuWpWr476mft8mpjTM8kk+qTEAEqMM+Czv34MAPD6XSbKGiALo0n7R1oGiBcX7YsLDNC1DLoGSB+cFdT76spqTvsmNRA5+xEzQND7T3xPSua9k3RO0W/7xgBVqrRPwWCAtH2ZW5vuc2etbE0PKdmhl8LQ+4UaY/hCAdANySxh8NIrFi+miNEWu/Ic7D7F9rXcRUo0XigEibEf0OAMNwNEo1hpW6lIvMT6iF8D5Nzsfe4F4pnqYca3TULQWiyYJVdIv+SJWZOFawEtxQLKVV0KQv9Xv7WJoJudCDFzFNidd97ZjHb0K2zWJH+4tCClS3dQLCQ+zq01f6gv0Z8yYEa2KQZIzwStBhgtbNnC1LjgqroLeBIhkpWKgisEWzpnCBiDIIXEJG0lPmXueolE0Mm+lWoI5V7mImi63c4AJc/WZlDa8wDVfktE0Daj0FUSQQJnuyIjo3beaohFa7Zoq/lCoGef5X3XVxspiwZIbe4mRovNOHth+UZSDT6dCFpngELr3xybGAMkiqDLVef7QDV2pUIBbS0yA6TeVz5hcoaH/k21WHwtwEO3ExejhQHyGkD27ZEB5P5dlfThYsY8QJQpUcYhkBRxpQJ3qpcBknGhYQyQh/FUh7ExQCa7bzGAxrTHf/dUqmgvFGMjgYrHrYZjvIALrAuD7nLijk0MRL8B1Fupags+23FdiO6Vyb7anj/Vcxq1ycg5Wpnx1FtJrlst6hXUcXrYeW0MkGpJc8yflAbQWWedlfqA3//+9/vcmP6CLacAH2RKhYKTJYhdYLUweCBhbKQVdaWaVIOPGaCK6QLj7dEzDsuDgpT3RgqZp2I9hdQaIHrcMDFybAyQja5Xofc21itOhEiiKHh7+L2j31k1QCTCzzbZ2lxgnMavhvYB2ib8VrvRFAP6dj5oJJFW6zt78abL7sKEEa347adeH7ef6qFsmZNlrVVV21eC6s89ZbtxRo8jaYC6LS4wOtn5clIp8ElTZDwdGiBAF3AWgmRiV6wE7zcuDRBneABd3E0joKJzJSwANYz5KpzC5QIrBNE5XO981N8Ew6CaaJQCTx4gMww+OS41/mIm2VIMlYZ5A/ZJuqD1iZQGEDmHDWH8flVr7aDJOt2shsJO4zviv7vLVbS3FLX8SbF42NIIuoCjZXQUOnsqsZGq7pm6B7agEAWf0edjj2z70txNyb6obbMZb8m7yJlBekw+JsZjO2eAijYRtD7uNhqpDKAnnngi1cGaRVM1GpwBCkPzZSwVgkQDZCRCTFxgamWotAkiA1QlYfBKA1QbcKXIKcpS+BigLCJozchiqxCAuYAkBoi0ibIPtsHc9tKOai1hU3dZW5VzA6ZIGDm6nbazhTJAte+sUWBB8mytUWAl94BWIoOY7Z7YVmV0Eixbrl8dh67E1IS5bMNWhCGwZksPVmyMxJNaAcZqiJ6KWYdMNIDo8/K6wPS2tTrC4Kn2K60LzBXyLK1eudtEYotcGiB6HPWeJ1FgUTt5vxjp0gBZBugk1N10gSXuMf3ex4Z+BhdYqRCtyl1u8XJFzh8UtSH6O0qt4A/nVmHw1HCwPS/17tPM8OrVaLFMdMk19VED5NE6AbpbJnEz2Re3raUCvvf+/bC1t4JdJo2Mt3PJgk08TqG58JXhxxYDan5R73RsnAnvgS83lMQa8ijRHsNoNRd+trG82+ICU9dCjRs+JsYuMJL3DEj6lp5uIDE0m4FUBtC24PaisN1LbljQl8TJAJHw2c3daRigpOONdDBArigQVzulfc1tzABi4mUgydZaqeqRJ6lFteQa7Rog8/cj2yIDqNNmAJHoI809R46T5B0KjO9sg5KmAZIYIMtA4EqEGP9WYIBKxcDaHi7SpDob6vLZXPu7wLLPclYwjQhaEonb2qYzQCZVXgnDeGXrN4DM/Ww6N5vugE+akrHEc/nY2qPaEKfh79UHcIURbToDFIYhAuKWpBqghCXUMy3T/+EwoEs2F5jjnW8pBuipuKPAussV8i6aCRYr1AXmmcjjBZqFAZIMGWqcBGyCt2qAHIscCa6ab0nbo//j96sopDghxsh/7bdj/L1KhMnHa8qc2d452tfVfpzp5mHwUlRZck3yNUvvRSVkBhBjH10uMOMcvYoIIHUzFWNcSYybFgcDFAd9KBG0rRhqrSmDJhEixSuvvIKlS5c2qi39BoMBgs0FRkTQrkzQhQCjagNjWgYoFkG36QyQTcfCz8f/tiFLNXjbwEndQ6+u34pf3L8QnT1l0b3BqdpEy2LuaxvUVHkMmlhLCQ4pq6AxBmRwqLDBWf0+Op/d5eYybqN2uzVAcRsyGEBqpLJNbtFmfdAoFZJaYCpZGJAMnFQDVK3awuDtCQAp1G98Am3uPogmj2gbT/IZG3q+KDAWdRK1mRr57nfBZIDc/X2zYAB1MzccF3G6XGDlaohfPbAQB15wG+Ys3WB1gdEyJiHrN9SFarv3NleDkwEqmitmfo3ccKGgAlw6iYWhRewdj0+1++Bh7Kg7Re0aMxxFPeUAhf6Op2WA5H5sBBkwNpnCZpwDiXtGPYtkPCQaIKGILA1s2MrYUJ4IMak+n24xbb8O2QVG5ylVqNRaC0zoP8rwLVgiCLkI2ta25HnUXGAqEGEwF0OtVqv41re+hbFjx2LGjBmYPn06xo0bhwsuuADVlKnLBxr8ZkY1ifgkkhSMMxMhJpavcoFtrk3eciLCpONzBkj1OTsDRF1g8qDQ11IYCgESa/uTv3gU3/jbs7jg788ZUVDacR0VudNGgal7SAeGSlXP0RNlR06YG63cBVlBcX2KK9tsYty6B28tDJ5NZCHsA5DdBab/1rW9l6yaYgaoK1EPKgNRE3FXkyiwuNJ41S9u7mJRi7xt1FUD2BkgbaVW1dkEDtr3kzB4OQrMZgBtZUUVJaq/01KAUYEzQFx4yvuFcllXqiHO+2uUH+fLNz1t6FsAkiyzSjRCLAze5baxaoCcLjD3xAtEAl9pYUUnwmIQaCkwXBXLbdFTVjEzmUyrrI+pdls1QEFyj9KXwrDfS16ShUa6uiZUqhOiUCxGL1s4cHe0cTxidKn9+EIvfgeVBki55zwusLSsPAfNRxddk26ArevswTt/fC9+cuc8Uc+pnl8xMLNhU7bNNIB0I0kZXq1FPTI6amv0/4CHwSt87Wtfw7XXXouLL74Yhx12GMIwxH333YdvfvOb6Orqwne+851mtLOhKLDeXQhM10RPuUImGfsEX7RogMToG7J67SCiSprp1TaB6jW7+q4BstUY4qAh1mtqNYX++uSr8XcttZovrvYBlP5MlwdodO0e0vZFeqnkuGrQVDoamwtMsURVon1waYDiQcayXaKCbTleKOwuMGUQugwgfdCgeoFNJOx7S3cyadOIjTjrai3pWLlaTVID1Kh7ji7OPNbyTymoQqWqbTRPTWwAMe0XNxJt56OwGdOAOTBScHeLtNLl2Zz14+irT/XMufheQaXr110HFUPfAjAXGNuuFhdhaHcHZzKAirKrpLeaZLx2uWZDMsFI+ps4E3SLzQVme7ZJVFDiAtPbbTOcIgY6qLlprJdlvw7L96Wai9d8vwJjDlDojY1zfTt3z6hbTnNyWUuIxIxSgVw31wAl8wlAinALN6BaTQxLJYan8BVStRUfVs9/ztKNAICnX9mAS9+3LwC7Nk0990LB7QIrFQOnCJovlG3FUMH6TqOR2QD6xS9+gWuuuQbvfOc74+/2228/TJ06FaeeeuqQMIC4P5FOGAo9lSoRQevbqIhzFBdBC7RkF3mwtHhiT0WfsDh6y1FnX9fZU5cGKA0idkH/Tg0kgO62UHCJq+0MkNl+VTuJgxqMWoQEe4H1Qp0BaIJDm5EXBEkfsDFANhcYZzeo+8D2WwU6OKVngBIjo8tSe4eG3lZsDBCZXNucBpDOAPFQ1aQytGpb0j+TTLU6A6QmmpLluXfZyh44RjVerkBvd3oXWGd3egYodoGxHCUKqmAjfeZtpaJhGNO/qWtGXavay80A2VzMLgZIGW0OBohMkrZ3kRcqdbmY1bEAM+MvYNYYBEggQWiyjCrU384ABYR5T88AqVtJk+6pxVosgk7lAnMYQGxytqaksIwHtmLO+na9Jl30v26M21AmLmf7otQ9D1RDvX9L47Ua92wL86T8j5kyRhdB69dtZIJmOrz+ZIAyu8DWrl1rLXkxe/ZsrF27tiGNkvDTn/4UM2fORHt7Ow466CDcc889mY/Bbya3iIHIwlf91cWc0CiwWARd29X2vGgiQiWqBGqrAEFs1lut4orbX8RB374df39mmXhtvkSJPgSBOTi0lgqivsP1ovKODySD5UiSO2T8iBbr7+lLHRcKJDlWFKg+idezsTJAfRJBR/97RdBsoCgWgngQ8WmAaNZrdZv1cgmJz50KVtV9Usn86LFUcjGOOAO5o9+piVi1TTEvNBM0z9eRVgOkUCjYffu9woCcRQSdigFSbplicj9txu34kS217cn5CoVE36IbQNH/PNOytl9oD5jIwgC1+BggwoS6XGCJgab3T379qq0qX5KuAbKJoJUGKDSMxLgWmI0BCkAmU+tlWa8jPi8Zc2goPm1zi+QCY89LgeeoodeU5BQznyeNsLK9//QeJCy3/lsb6H21yiZ8uaNIn7Fp8uJtKd5FmkPKDIMP3Bog9TzEWmDNZYAyG0D77bcffvzjHxvf//jHP8Z+++3XkEa5cOONN+ILX/gCvva1r+GJJ57AEUccgbe97W1YvHhxpuPwi3bVTvImQgwsImi2UqLgiaNoPgzpd72VKn54R1Q5+P+elg0gm0snC6gPXoFWlbZGqTgHaPc9oMnFVKp5DjXhU8bDlqyLUsgFtt3GAFENAM8DQttNN9EVpkIaEXQhCGJ63s0AqUEjGdBsLAstIUGLpVIXmEJiAOntSfLd6FGL/FklItZou9LTjGwtWl1g9D7bmB2ru8NibANJH7a9C41igLo5A0T6NXe/AsAOY6NcMC7DgD5bKoLm7J+uATLblcUAksS3ClS8zkGNeBr8ALgjXxMGKGmTjQEqxQa0uXiQRNCFIIhpMlcAA4dmAJHnSMtxAMniUGSAiK6FInaBxRqgWnsLJH2AZTwoE1bXniA0uUalASqlYICo8WpjDX2eAtpUW2Z2hY01F7w1CqzW9iBI2s6LobZYNEDqnvDkn20WF9ig0wBdeumlOP7443H77bfj0EMPRRAEuP/++7FkyRL84x//aEYbY3z/+9/HJz7xCXzyk58EAFxxxRX417/+hSuvvBIXXXRR6uPYGCA+mUVhrtHfTg1QAWYeIELf89WpsmxV7hGlu1BhyQCMkEEAYnVsjnoZIMouUMQGQIYoFdu1qEGvtVjAew6YivmrNuPw3SbhRzUDj4Kv0gEaImoaQFqCwKpigOyDs8u4jdpt+vRtUXA244obHDSiht875R5TTVT3sa2U1KHTDCAivteKoTIXGN23rUVvz5iOFqza1J24wByryITWjz6riKqRbSWrcUb7nS8MPrn+xGVJIQ3I/Dhi3TALA6TuuREFRjQOkdsk+vvc4/fAjuM64grvafIAaSwhM5C0UhiWCdP2fvFSMwpct2QDFa9z8CzNQW0lb1sQ8v7kC4OnBrRLBG17dkHgLkEEAO0ls7imiwFqIUYYkNxHymJy+FxgvHh1gSzOrC4wuqixPFvan+NkmbVHJbE41LXYl/px2r6WcVZBLRSsi9ne5F6ZDBBxgRkaIJMlAhyZoJscBZbZAHrjG9+IuXPn4qc//SleeOEFhGGI97znPTj11FOx4447+g/QR/T09OCxxx7DV7/6Ve37t771rbj//vutv+nu7kZ3d3f8eePGSNzFO38Uiqh/Vw3h1ABpiRBblQtMF0FLDFCce6SlgK29FXSXE62FTwStYBO+RfvWzwDZEkUmDFCGAdq64klW3t//4P4AgOde3Wj9vRoc6KrOlnMjXmUTKlZNLnYGiIigPZmgVb6XkKyUFdJogMpEiMrvXalY0OonqYG9vaUYD4Z0IFMDjia8rCa5SdpbdLcqYLrAxrSXIgOIDeS83dSFASQG/qi2UuKe07KV2yehuO2WwTywsI0AtLpjHAYzISwOFGs1dVwHPvS66ejqreDWZ1dg7opNBgNE+xidlN5/8DSM7WjB2lpAALdZrGHwtUPRavC2KDBbluYspTCo284FyYVhY6iKNQOoXA2tmcuVgR9VqI/eDbsImrJg+iRmSwioUAgApQKyvV8dluri1JCk7xhP7KeeeXup6GRjlduJPwaXC8yXPynWHRUC+3jIatJF++qGre05RNsFF1iGOSPWEtkWrOpdlFxgBRoJx9idYmD8tqdSRRgm2ifFCFKdVTLuRr8ZNLXAAGDq1Kn9LnZevXo1KpUKJk+erH0/efJkLF++3Pqbiy66COeff77xvVUDxHpGiNCpAbKJoLvLUUZW9VBtNaHUC88TP3VrGiALw2LpzB0tRWyxhPn6qE8fgiAwOhtdraZ92Vz70lWDgu2aAWoAme4Fqwus4BbjUWhlTixtp8+uGkY++cTISvazskfsmqOVmrpm5mYqBOhBMrh1xQaQwwVGXK9J5Ely/2lNJtfKX1X15iJo0zhTq2fdABrZVrKGwdM+YKOr7XoPhwuMROv4IEaB1drcUgxw2lG7AQDueCEq3NkVr3oLxrm6bLoMj4DdJoKmImQeBebSkNmibVzXqNoupr4QJjDaPnV5pUKAbsCokaVgezfsYfCFeJ8KWzzEiRAtzBENwrAaQC2mpo22lT6nlkLSBiBxn7a3FK39DtDlDRStjG2jGiCpFIYe2ekeD4HkvvBSGC1FeyBDT8X+jkfttI9NkmZOMtCkRY1eRkV3N0YuMPO31ZBq/WqEQElnsGmQwaDRAM2cORPnnXce5s6d24z2eGFMzjVL0YZzzjkHGzZsiP8tWbIEgGnd23IqHDFrO0EDVBvUiAgaiMKUpWguyn4AeuInKVrDNsB1tNptV2kwTIOI0tW/C0PqArNFCtiPZVtRJKGTZKXmEAfHkxR5gdTpeRbiaJvpAnOF+kuJEG1VylWWY1+tIruI3W5kUDarSsTMHS1Fq9C4Jx5wqBaqGn9PGSCbBqhUCOIJJDGAYOxH26ouUSVk1AwgqgGiDJBH66AQsY3G12Rgtwu4gWTQTJMHiD5P1X85A0QHcc0AinUZLgMoGQsUqAvMzARd2ylMHwbvXmAE4nYged9cYfC8fbHhXana0zwUk2eipAHWRIiFxICmIeMAfQYOBkhwT3OXbtQO2vfos9YZILrAcLlU1MTNw+QNBohck80tr0ADG2yGADUCuYuQZsG3QUoXYesTUvHUqI1uA40mBlaINYlBkggxrh1Icgu5+nQvm/NGkbl0c5fyqESfB00U2BlnnIFbbrkFe+yxBw466CBcccUVWLZMFuY2ApMmTUKxWDTYnpUrVxqskEJbWxvGjBmj/QNkBmhsRws+efhMnH3cbKEYajIRtZaSWiebe8pi1AXtTECyQukty3mArAxQq/3RSXmAFKQXwbYqp1R9mlV5sq9bw0EPY1tdaPtSF1igD2qAzgCl1QCpS7QNFLTd6jzUzcbPS2F1YVoMOXoeqkkBai4wCwMUG4900CXV4GmW5h6LAdRaKsSRYjyc1yeCXrZxKwBgh7Ht8QKC9ksqJretdF1BBtLAZosi5O2zXaeCShugGUCxkWMykapvb+2hq/KCsZ8CdQ3rmaCj/6mLKXaBIem/NheYFG7MIble+G+tBlDVdIFJAmV+HGX0cgMoCPRkkNxI9GmAVJewaaRsDBAdC7QosFgEDe2a2kpF56KZLm4pYrbeYID0xQhH7OZhxZwVaDoGHikYGzi27PKggRnp+ozrOPF2IX1FxHQxV1Y8Hpl9UXOBOVzZ3ICjHpWNXbqkpFkaoMwG0FlnnYVHHnkEL7zwAt7xjnfgyiuvxPTp0/HWt74Vv/zlL5vRRgBAa2srDjroINx2223a97fddhve8IY3ZDoW7/y9JGPqPlPH4tx37IntRreR8MYq218fPEeSSDBJmNbNJkKafl/K2GoTw9kGAnUtPrgMDsA+KdGByOUKsMEaBs9cD4D9XtF9qdGlhIQ2FxjVxiTp72UGyC6CJoN8VRlAiZHFt1HYVqg83wVthzo21TVQip7qq2gUGNVY0Eku1g+UlSs26SeRAVQr+tmrin7a+51WzbsaYvmGqBDrDmPbEyEvuXyfBsgGOtnZYC0rUkMaA0gljmwpmQZQN2NjgWRBop6FLfqQgi6c6Obk/pgCYLVfCHvfyxRkwNwyVn2eRwRdJe8ObadN2Azo91n1HW4sUY2dXhAW+jmcGiD9+BTtlnFPZ4BMgzZmgJQursVujAB6mSMKKQxeFkEnY5h9QWi63JKs5O65hMJm2NiMS9/YbWWoVOqNghkc003YMp4Nm2Zzt3s1qkY1eCDSKAJJBvxmF0PNbAAp7L777jj//PMxd+5c3HPPPVi1ahU+/vGPN7JtBs466yxcc801uO666/D888/jzDPPxOLFi/HZz34203F4P6iQ2kl0JRevRAwRtD6oJbmAyqILrJuJemnGT8kFZqOYnS6wqnswVJC22YSp1LdtE2m6IIX00sO4XnCb/5m/aLRtmiCxEmr7UWgaIA+LE7vA1Eqe3Dvbis8uYjeNJyC57jAMteg4aqDZNEDRiisxnlX/aCPiTjU4UYOsjRhAauB19TsaQrxmSw96K5EodvKYdutgRBcJaQerQgDD1UAhDfzJvYs+t1kmxq3xPSWTC8vGaxPN2rRn9hp4VathnLhwLCJpCztkuy5+Hht4+Q7booiygxwVKlDm+hyLcQLo/UldGx+faKmZioUF82qABE2NVQNE3kObuzPRACVBBq5ul5TC8BlAtfZaWGf9eDUGqGiPruUJOenf0rPT2mYxXKwlgALTjaVtFwxoyvIo6Gk5kvEI0NMvuIzWJP8QMYBqKVGUy13d0kElglZ4+OGH8dvf/hY33ngjNmzYgPe9732NapcVH/zgB7FmzRp861vfwrJly7D33nvjH//4B2bMmJHpOLxzl6u0Jo65n+ECqybiLwBaNmjJlcWjwNSDL1eSQcJXDFWho4VPWLXoDZKxt+yohSStrG1h8PTy067uo31t98B84V3HtLFFPM+Pxk4FZCUS5/5InkcPWSm72D2ACT1jA8jU8ViTKArPj1PICQNEI8CifWwDlbp3kV4l+q5SDeOVNF3ZKtawjTwD6gIzM0G7NEAhVm6K2J+JI1u1HEUUvR4NkA0+F5hkAPFBv93CvNmOo56BvR/qDBB9Xio8m74L0cIl2a6gTkerwcchzoQ9q7sWGBk/gMgI3OQoAGsvhgqDwbLpoLRz1hYPYahW8Wbh3SjRoHmdNNIMcDFAQWYGqMIWQXE7GAMUC/lbU4igPQyQLQze1t5kQVqwjnNSqg+qH5Ig6cZon1ULxKrDSyBKFiwMUNxemwZIVXovFdBKxlg6T9k0TmNqQRobYwYo+n7QiKBffPFFfOMb38CsWbNw2GGH4bnnnsPFF1+MFStW4MYbb2xGGzWceuqpWLhwIbq7u/HYY4/hyCOPzHwMfjP1aA3SERVLYLjA9EEtcSskA6I4ESoXWPziyBogG/hKiNPhkpHjEh0DqGXn1W+QnmcjCwPkpvOpTsTFKnXbVuLMwNEGvyJNEKi3na5ciyTTss1lSAccdR6bGC+1BsgxqNJIK7o6te0LJG4tuuKqVEP0VHT2CLDnAWotFmKXmFp9Jy4we9uqIbBqU5RKYrvRUfJK22BU1jRAKQ2gguzbFw0g1r/bRcG0WwNEn7V6djYGKPpsaiC4gQPYXWCMAALgiiK0GZcyA6SeoWQE+jNBp2OAeM4Xawg8qbXFcw0ByfOwudno+GO7P7ZrdI1PlGEFgPWd0aQ6bkSrYACZngCAJkKsaMfU3NFiFFhgXRjEBoamXWIGkNd15R5z6Dbb2K4fx9a+ZLHvaofNCKTnf/MekUb30F0mxu9bD8m1Rds4rlYVYOXGaNHVbA1QZgZo9uzZOPjgg3HaaafhxBNPxJQpU5rRrqbCqAVWMfN10L9dlZHVc6NZQtVEYNMkKPD0+70VWrMn3ZMewVxgqpYTz9hqPb9HA2S4wBx5NoqFwDpIKYgsGDmHXwRt0sPcwFFtS17Eau1/NTkU48KiGgNkcWOpMHOq8bC5OtLkAQLc0Ro0TFddq8rmbHMNUReYNgnZGCALfd5aKpouMIfhTUXQqzdHOXAmjWqtnV+epNP2YVvKBQrpHeKDvo0ZsO0bl2GIGSBzm6o4z/tlsRAAZM5WeaKibcn31iiwgs4AAe4s5RyuV4wvRqR74NQAMdeu6j88145C1PeiOnGVamhlikpEjF8NzUks0Rk5GCC18PS4wDpaopxAfAzgf6tXfF3NABrb0eI00pMweP17mv8ISN59WjrIHgWmXGCOMHhL5umkGrxbFkEhySZaSeg7TZ9hg63vJeV33AsbPQ+QYoDU+QPsP20cbjvzSGw/ph2HX3wHulDV+hd9z3bdfhTw3Aq8tHIzgOZrgDIbQC+88AJ23333ZrSl38AV/rQYqs2X74qyUNtV7g5q1UoMjHoRKGuTRI+5BzEKPtip85UtK38O6YUKiBtJwTXAtBRlA0ii84uWgYqjq9dcxbgMHMAuglb6ALpy1ITMFgZIifoqCPGlPz6FmZNGGvoFfm4FVzFbfl76uRqGceSRYjKsLrDexAVGV8mJENiMHqPamLZSgaSbT+cCC8Mkmkq5en0uMEnXQ2ErvEshGVK8vdRYGt1W0lxBlN1Sg7xVA8TcP3zC4v2UBi9QQ45qB2P3A3OBRduzR+po+7L2uAIjgHSZoAF6f+x1uigT0FuportsPqOWgi6CdmaCdhpAbkaFlnsZ2RYZQC4RtHp+KoXFy6ujSXXahBHYQCv/ErjY2lh0zzVA1P1jcWnSYqi2cHYui4j+rrWl6mfzo+3uBQk1LqhY2QaJfZSMJ702YVX7nWr7rMmjo+OoRQbpX/Rd3nvHsQCARxauBTAIw+CHuvEDmHmAtGiOFC4wBdWZbJSuxMCojkYNoDCF4UQxss3hAlMujRTnt6EQ2DVS/Dz8b+t5pDxA2oRhz5Fh1WkYBo4++PFCiqrtdHLQGSBz0CoWgriP3PPSavzygUVYvTlyA2l5gFLm2uiOByPOsiRGRuwCqw3wtoGKJkKkNdEUA9RaKsS/s+UBai0VYiNmMwsz5c+qRBggxYioe2gbB+m9SK8Bkgc2MQqMbaMT46h2zo5KDFBg7Lc1NryZwco+VyphXAyVPi+e30k7DzmEXYCffqDnDNX4ka3Ofa2ZoKuU2dTbbmV2VEoAEolpY3Goi9mWDVs6RxDQKDDz2DRXjHLn+kphVMOI1VuwegsAYM8dxgh5gOyMg6safDEwXZEUveTdt5XCsLr51fHiXDpyn7C7wMyFDa2VmPY4SfkdjwYoHo/037mCK7b22A2gN+w6EQDw4orN2NJdHnyJELcFcKqv1zGQSb5oIOmo6gFSv7lkHEgrobQGEB3wgeTFL1s6nlnpW9AAeUKTbZoJF+xGjV3YZ6dfzYmowAaHZAWOWmFC9cx0sSJlzErFQmzg2IwYW86LdZ2RG4j2j7QMUNnhy7eFwbfXfm9zDcWlMArJb6NJSOU30QvsAvozaisVYh+7cgeUHS5TOnnEGXSVe87qAtOZuDRopAhaiScBfZLkx+H3p2QzgGqMl6HZYp8rJJcP7S5UAMwXVvQQaTKJS+AG9cjWIi57/374wjGzMHPSSG2bzZ2oRYEpBqio3x8KdY1xBmqHC6ylUCAsDgw3W6kgnIP0iVhPSa5z/IjEyEtyfZExgPQndX/CMMTS9Z0Iw4gd3G50m5MJ6VsYvGLfJRdYYNU6qtB8ahzxPEA0atUG29hpY3YlIXPURpm9dmqACtQo1hkgM7+YYoCid4y71saPbI3f3+UbuwYfA7QtoI09lKpHBO2qsK6eiXo56GAgi5A5c0QMIDawu2jtkYYGSH8JqetjtDAhcPgmpTT5exSk+jH8HFIOijQMEE8jzxkgKpLVaoE5hKj8XVc5ZfqiAapY+hagh+lyDZA1JJWE6FLRIc2FY7rAiCFcLMQTiDLoXIk7aS2wxDiTDCC1Ukw/WAWBvLJLEwavoMJnAWCE0N/55GuLRlSTEj8HfybUBaYzmtH/tiiwwGNAZwky4BNSoRDgfQfthC8cs7vxPrVa7kEYhvF7koadSRjvZIJ2iqBtLrDYyEoMKOMcBaoBMl1A9G8efs4jWFvisQJ4ZV2UyHPq+A4A7rBqnuIkPi/ReapjAtE9V+71zd1lvO/K+zFn6QZyPOUCs0dPxhnJLQwifackFshVSghgi0fvgsP9XosaoEAuhkqR6OzsrDgAbDe6DQCwdktP7L5sEgE0TA0gpo9Rxf8AVz4PmQFKokfsTA7vNzwPEB1ENNV+4I7sGMEYoLhWTW3QGEPcAKMNl4C7O0kdPQh0saePrbKJMm0aoKhNbneZfk/0F00NkvEArp4ZM5DamAYo1ndZGCBb1lZF2XoTIQoFPM2oomSS6GJGhjXvDHEf0siTWARdKhgRJDwR4viRigHqiX8PmH3CFqGmso9b8wCRSSilB8w7IGdhh2h/5wscPQ+QvliRNUD6+W3aOBpizNtdsUSBaQyQrV5T2psHc+Vf0CZR+8obSN5bW/Qrvwfa8WvbqJDeVuOtVEgngraB9gl1e+g4UyoGmD1lNIqFAMfuFQXgqL4XQH9GNiG/mlx9Imh3HiBdO1cIgBEtSd97dNE6nPqbx5PjkfdLYsRt/ae3Qt+p9O+Crd2AYo6du4oZpW2JEJPjmollk2LMDheYqjJvOaaSd2zuLlvzrzUSdeUBCmP/XLPss+aAG0CUCs7kAmMrIprYi3a8tlLRqnpPcpLYDSdXFk3AdIFxBoiuiF2rexukCcxYYXkMKW6kAfaoB8AeCSZFgSWJEGu/VwM4o2JjRsxggKBtp2gtmS/7lppbJEBSnTmtC6Mc0+p2nU1kZOhibemVKgTEFVhNVuFtpSIJP0btO93wUwzQms09WkVmg6omYfaxAaQ0QJbuUyYrxfQiaDm8VRqsXaU7ANnlazJAdJvbOAIsGqCqmUkZSPq2rVRGQNayvjp0PhgaJfKRt72VGcKdPRXNOFHNTxggi7antq2NMN7qCka1lbC5Jjw3GCCHC8wGevnqHdaMt2IBv//067F6czceWrC2th8xFCyMXjVMJlzFnPPb3FIM0FsJnSJo7gKjYfB8LF68tjP+u0w0QDYjxpbrjNcC87mupD5Dj1v0sfu2tCXEILRovONtJgPk0gDVGCBlAFkWjOoZbSGJhQeVBujaa6/F3nvvjfb2drS3t2PvvffGNddc0+i2NQ080songnYhjgKLtQOJkUNXofwFSbRDtcHYoYhvKRacLIvpAtM7IHV7BYxAlCJNCgW3QVsI9G1SxFohCIxQfcC+4gEcGiDL4MANIMUAqe+5CFoN8HoUWDIY2VxgNgZIJVGjqx2bSLPNck/KDpaFUvRGHiAPM0JF0HopDP13lIVrKRaw0/gR8QS4YPWWJAxeKIXB2yZpgHyh7fw6+soA8ZVloRBgbM3oP3YvvTagXgpDn8jsmaDT69RsjIHarVo1tYX0kuqNAuPts03+8XHJZ3XvbC46KQpM3SvVD7b2VuKxayxZcJUK9lB27mazgQYg0KSuCq2lAsaNaMVu2482AxkCOwMUhmGs61JjMe+jvF/wvmeGwSM+ju29u/25Fdjz67fgX8+uqLUlsBoYvCgv/bunkkz+fTWAWjQGqO8usGLgjvgtBgGKim1TDJAj9UecbLRHpSQx204TCzdbA5SZATrvvPNw+eWX44wzzsChhx4KAHjggQdw5plnYuHChfj2t7/d8EY2GpwipwaQls/DYwFxETSNAqOdst3BwNhcYDpzVHAKjTm7IukVuBtNotkltT8PkfdllOaGH5BQyK4VFoVUkoALIDmFX2UGEtVS0WrQVhdY0QwXVc8oqLEWFdgZILsI2q4roCJoNdBIRoaCln4/tIugFagguBqGaC0VcOD0cXjw5bW47bkVSQ06B6MSUg2QlKRR6RXgXzgo+GqBZRmsi0GAf3z+CLy8ajOmjutg++ouFO13WtQQZ4BkDRCg52ZSiAXAIQwXE70kKwNUhwvMVk9KQU+HUKy1L4xX9ap9MQPkECgDybvU1VuJvxvT0YKl6yOdjZYbh7xfPNmiDVEmaP0d19g9JhEAoLkZXXrBOM2EY4FRKgYAyaPGh1214FQZirlbjz7LIAB+/p+X0UkXxKWiNUze6gJjbmw/A+TeRt2/fckDlBggesFjCqpRMkphGHNfjQHqUUEaZnuS0lKVwZcI8corr8TVV1+Nk046Kf7une98J/bdd1+cccYZQ8MAsuo07K4ZCeolUQ9ZMUCFQB9YuRbGFEHbw+dbi24XGGdXeEcrFgIcMWsSHnx5DY7fdwc89cqGeJtfBO3apr+oUshuoSC7wLhxaS3kaKkFZoigYyq6oB23zAykds0AKhINkN0NwdunVoYB1AAdWicwHoEUtcUeBUarwXeRZIb0Omygz6FSCaEcEa0WA8imWTpmj8l48OW1eGLxemceoMQ4A3p6uXFmtknXAKVlgDyGnnAYm7hy6rgOTB3XgSXEBQEwDZDQ7zg9L+2rYNO0qT8rocks+zKJSwyQSs4Z72tL1Bi3VT/OyFbdBQZE7mOex0jSAKnjqwVVd281vq6xHUm/L1eqRig3QKLIRJeNXkcM4Mk8k7+TPG0Ja6OzYMl1bmVuXJfImTPKCtuPibRDKzdG6TBCi2SCYvWWbu1ze0vBKhi3pWMoMuOxELjz9/jeIV5GSI4CkxddtrFStd2VCNElglZyEVtfUM9oa085kdk0SQad2QCqVCo4+OCDje8POugglMv2OjSDDbbCibYU6L6BPHGBqUEjeXnoYMkNIGUcxQZQb8IuaHksSm4X2AiWB8hwCQQBrj35EGzs6sWjC9dp20QXWCC5wPQVu48BkhIhGpOLIIIuWZ5JLIJmuTJctcDaWTSUOqRtVVOyDBRlsspU98DmE7cloEwE9nYjQyuFUfK7wOiKkEYi0USICrQ/q1DxXbaLQqSXrOtMGCCnCyyp2aP2sfUPGi2SdrXmM5bEVa+lvyuk0QDZzhEzsg4XmMh8WTVAobGC9WWC9q30pbI0kguMLpjUwoQaaAYDZE2EqAygpJxKzACRNATlamhEctHfiwxQIXGh2vqmFgVGmDZAiaCTY9FaYOp6RsQuMP28NCs/bavC9rUyMKs3d9dcm279axia5UsiBsi8XltCzoQBsmubKKg73IYWdr+kd1NKa1IIAmdCYD4e0bYb7yLLA2QzuqjeSp2xWQxQZg3QRz7yEVx55ZXG9z//+c/x4Q9/uCGNajZGtBZx4PRxmlukxyLO9d10ngixi4R408nO5YIyBJmsM0cMEDGIyN+uWmBJ2yPf9KRRbSbz4KGg3auNwOpjd+0LAOcevweO32cHHLPH9gDsiRCjY5nnTHIGmS6MKmN44gHcsZ0aocUCpejtq3Ap6Zc4aVu2VeKQUG700QHaz7IoRNl4Ex2HGtzbSCJE2p7/9/oZGN1ewqeP3AUAMGFktJpd39kbD+QuEXQ1NKPYbNdYJhqgLAyQtGsQBNhv2jgAwCE7j9e28cHals/H9pkbDToDpL/HnEVJywAlLjAzuIIewcYAiZl6Pe2hH/k2ykwqIyAkeYySEHXdCNTaVjtmskKvxO8ofb8q1dDU58A0smwokkWWzT2rucCUVsjFAKlM0GEy4XY4Eo36Uh5MGtWKIIiuZ82WHiP6T+XXUlhbizpToGVqKCQGqLeaLCq0eYHreoT7qbnAvAyQzD66DK0gsBVDlRkg9TxsRldsAFWS92dQVYO/9tprceutt+L1r389AODBBx/EkiVL8NGPfhRnnXVWvN/3v//9xrSywQiCAL/91OuxtaeCAy64DYA9AZZvII/D4FkeIC8DFGuAdBcYF6m1MBfYpFFtWLYhKhI3qq0EVVlX7aufg/xtCCLdHT0I7FE+gM0FJjNJAPDJI6JJ9/TfRqGhacLgVUSGTQPEB9bEBaZPzkmYfPQ/XaH2Vqok1NQiRC2YhoRC4Jm0S8UoF8s/n1mGQhBgU3c5HshM4XeyglWTbnsqF1hSDb63EqJTrW7bbAwQcMEJe+OCE/aOvxs/IgmF374WFiyFwXMj0/ZeuJLRSfAZS8VCgF+e8lrc/twKjGwr4hHCZPL20vtliM0tuWOSz6Zx3WVxvfJzKPDCyEBy/dXQTITo0wB5WS/iWTHYLMpCsZeYMsZKz1LRmAz9d7ZaYOp8bSQMvhSzj8n5whDk/dK1MYDsaikWEmeHjQHSRL2KKVLnCJgOSvVh+HVsfCwzNUIFTB7djuUbu7B0/VYjvcGnj9wFl94yN95/S49+/9pbilZWrdeiD1RNiUPA2XvSVioQsbbcZ6gR73s3JSZJ+m2RtKFcrWq6Qb5QV/ttdbxjgM4ANVsEnZkBmjNnDg488EBst912mD9/PubPn4/tttsOBx54IObMmYMnnngCTzzxBJ588skmNLdxaG8pxmIrwLWSk4+htvM8QDzluFMDZGWAdLqXvvx0Eh/dXtKNEUtUDD9f/FkMX3dPSny1IUeT2Q0c24qHt7GdiCx5e2n0E/0/ZieUUcG2U9dUZ09FLLhYKspCcB8D9N337Ysnvv5W7DRhRHQOZ1KwhMXpThFplZwjmag6e5JcGSNaS+YEbznOuI7W2m8rsVCTu1BpDhXOANkM5F5tFe5sugbfvoUgii5670E7Ge+QYfAH7m2tDhYVYMwRm/xTaYBIsjrabqCWYJUxBVT4bYsCk8YcybADZCOQMkBUe6bs/2x5gBKmjPdbdQ0FyzWqvmgrCkrPwdOPuETQsatMy8ps3gMaBq8mZCMKjN0vG+MwbUIkrl+yttNIb3Dqm3bDs+cfG7uXOaIABZlhUeBjJ2duaKRpkUkNDG8DM/4lY8mVc06dx/VbrgHqrSSLJle6ljgM3sYAxUknK6QYqrNpdSEzA3TnnXc2ox0DAvpA7WJG+a4bLjDFABU5A2SnAXlStkKgszU8CowaOYoB6rZso23j10Tba0PklnAYQMyHzKPp+L5aewjb4WtTR61ye+If1ylfgITBM+0W90VTevzw3Sbh3nmr8e4DpuKxRetqv7drgJxGYCBnJS0WglpobMLSUIGwds21toZEBK36ipQOhvr96Qq7o8VkgGyDFq2VtalWE8zUzShDMpnEJAYoWa2mX6359tV0Pdyo4f2dpY+g0DVAbldHMWaAzH7H9+WwhTHbio0CqEno7e5XKUeXy00Zn1djPxgDRCaiOEyfusDY+0NzmvHj0wVKpXYePsbZggziqNmsLjAWGRtfB9uvEPCFX2LE88R8vjQctvdvp/Ej8MjCdXhl3VYjgzYQRS/RRSpFW6koXrdNjK8QBGAGkM6C0Xvf0VLUSzIx15rUh20pPOh5bMVro/bpGiCaDoYHwiRRYCoRouACK1dj8XOzEiFmYoDK5TJKpRLmzJnTlMb0N+g9teV/8N1zHgYfG0Cso7mjwKL/aWQUHcTaWoraoLfT+CS8lyfW4hME3cZfbjmBYQDX5kKgD7I+ETSFRNcD+gpMvTSJFsMcHNSqT63EuD7FVirj+o8fgsfPewumTRiRiKAtkxD1aduuyzVnK+OH7qtdo8HE1QboqimClgyDIDD9/u01jYEkgqbtjCMXHSsxjQFiNL2vbanzABXkfQvChG4yQLoBojMBppsr/qwxQDr7wV3HvgSiCjQMvlI1V7BSglXJ8DV0T2IUmL6NTm7TJ4ystY8WKtV/JyVCVGxStEgxXR10oUSDDNR94X2UdgFNn2fRAI0mBga/j640HfQ5qHtmaIAsUbQcKr3Cq+u3WhPnRu2zcwpjGGNvRvCZrj3aFm3hSQyeQiHQyvxI2lBfHiDJMxAEwAkHTAUAzJ4yWmtPMdA1QJ29KsePGQhjMECWMh4xA1SuWlMHNBKZGKBSqYQZM2agUjFXB0MRynKNaDt3Pgbp9wDVDiSGTBoNEI8C4wN3e6mgvZjH7T0FO43vwME7TzDaIrnAsjBAkouHT7w+JonCNzFrDFBNo6D6Pp38aPg3QCOsagObSgjJiqUWay/jhFrFbCmZId3OEQTufmFco4dm15INljO4wArmBKeifHyGpkJHS1Fb0bkGKprxOjaAPG6rtIu1wLMvPQ+/d5IIGtAjprRSCnylbymTod5HvmKXGSDS7tpumgjaYJbtaRSyTFDcKKTGpC3a7ZqPHoy5KzZh76lj8bO756NShcFQxWNZjznGq0l70qjoHVq9uTvWkLUZLjD9PbVF2ym0lQrJ2EmuQbUtRHKfxpBwe3VIGqGpGQol1YdDI7yd32ae0sP2HJTQeWNXb5z4kY8FNAM/xdgRLdpYPqqtFBckjtoF8rfZFtpTNBdYIdDmF8PlRAwMHwPk0+P995t2RYgQJx4yHcde/p8kB1YhmdMoA2TLAxdrgFQUmMAA9VZCqEsdNBqgc889F+eccw7Wrl3bjPb0O9QDsYmgfSvZWATN9S2cASpxq1wfbOjvtBUpc4GN7WjB147fM66BQ30xtsRwCmlCzhUKgZwJOi0D5DO6bBOWQgd3GVqMuaTWl/7cqP8YIBFMDh+/r84bRxC4M1JIIda27XotMD0PkG+g4ttHOIqouo5j1JJzucCIG0cNVl52SmAm+XWkdYFxqlwSQUfb7boRiQFS25KxQO6zrrbGIuiqWW0dSCZfm/Eth8G7tU3Rb0lbjQkdOGbPyTjtqN20MH0qtAXMSDgKNW6oelqrN3djK4teBCJDQd26XgsDxu+rVqamaGqA9t1pHCaNasUeO4zRGA7+DgdBoIWaK6NM78O1hZLXBWY+h5EkQ7GN2QOSAAOOtlJRe+dGsnxhtmz3CjV7mRxLdwNqLjDD5cQ0QOK769yEQhBlWj/nbXtg5qSRWv+i0cEbu3rjWmi2PHA80MDmjVBjUTdhgJrkAcuuAfrhD3+IefPmYccdd8SMGTMwcqQu+nr88ccb1rj+gHpwfXKBsVUTzeqpu8DsL5ca1DUXGMvcSSv92pLsKbQWOctkni/Z1ze5urelZ4DkiVgagIyXmN0TgIqg9eO1Ef8x3Y8PupILjJ6HoxC4DQBbCLp+HXY3ZUiyOacNg+fHdhlArrbye2wyKokLjEfa+ZIX0ia0lgqxQeHb19zuZg1Ml4X+W5d2TnI9ZDWyXG2l9dh4/wSSicZWDDWLASRngk62BWxRozbpGfCVART9b3sv1LYpYyJX0IJVW2Lmsb2lgP95+2xcf99CfP0de+HVDVFW6LKlVIjpntPdP1wDNKa9BXd86U01fZBpaMYGEPT+pDLwV6tmLi5j/EnBAFHX33ajo+/4e6hq7QHAxJGtWNfZgzfsOgmAXr6Ij+WS9rQYBJoryNQAuV1gPGReMnLE8jvC+E3nuyVrt8bfj7booXiggSyCrhoGeqOR2QA64YQTmtCMgYN6GZNVX7LNd9PVZq4BKjAXBReX8cKdNAqMduBKGGq/tdXWUuAr+ECYPHwMkFsAzFb3AgPED2HmLHEPQPwltiUJSwwgPZEYL1roqsSe5AGyT86uiaggaFy4ZoTvZq7skokyFkErDZDH3cLP1REXefSvZAF/HqkWop9wJZu0IYB+f9pKBWzutu8r3UvediMCykj74NYIacnzDKPBfj7bZ7mIp7lwkl1g2cPgfRogVyJE/rySMP3QiGbi/YpC3dPZU0Zj+oQRWLy2Ew/XCpK2l4r48Otm4FNH7IIgCLBiY5Suw1YGxizTQZ8PMWzI6t8mLlaHcRVDTTRAJgPEb7MRBm95Dip4YEtPUqSTv6fjiAF0zB6Tcfqbd4uzSNNFh0scbDs3f0/0/sxE0I4akdFx/Myye5v+WdMWBXbN5OI1ncZ3ar/OOBGi2wXWU05KYTTJ/sluAH3jG99oRjsGDLzuSt9E0MlEBsCoulsqBnFum+hzQfufFsSjHatcqWJMu3vVQCG5XwwmQrgwWQOkG4gSk+SbTKQVO3+JtUSIzADiEVZ09UD3MzVI0f+Kon/7PlMwZ+lGfPywna37KwRwv4xZXWB0okxq56gBWh6o+LFGxgne9H1dtq5ZS44ZGMQ9x+9h4NUA6QaQC1Ffk4+lwNkOX94Wqn2g+3JdD+1bfiNLem9ou5PxQBJBWw0g4bnTawosk5nL7e1avVdDs6aVWUw30eeoyatQCHDGm3fDl296muynh5fHeYCqFgaI3ed2FtbNGSApCzIALZeRvRiqmW/Hp8+zGkCqRlVX2eraBIAJIxNDbeKoVkyrpcIAdAZI0kQaBivzKLQy44MukrkLjleD77MGSJhDbC55AHjz7O2N74xq8JY5RD233kqSRmLQMEDbGmIGSMjo6gKPAqPfayUtanll+EvI8wBxPVi5Emohy7z8BYUxyJG2Gy6wkjmZ9BAD0HXZNEIDiCaPILCXhDAHGHnFTts4IhMDpGt8qP8YcDNASZhutN/MSSPx0w8fZJzHdl2uMSSr2y92gYGyLDWK3mMA8XONcDBAbheYXEuO5ijiOipZR6DfHx4AoLfNb+gl7ZH7sKQ5kzJB0wHY7KPpFw42BigMQ5IwTzdeADv7KDF/9Dr4Iov/tsT21fYjhnds3Cp3Pk+g2FpCV2+PsW3vqWO1/bib32Rnkm2GBohFNfFxV1qQASxhoMXVWA1DhB4NkC2TPodaNGzpqRjRcwqUAZo8pl3bRu+RlGXcHCf4/aPjof4uUBccYMkaLbq5nJvM8Vxrr/lujO1owTffuZdxHNUv40zRlpPSwqqDQgM0YcIEvPjii5g0aRLGjx8vGgZDTRytXhhbjSqf1ZmsmsyBU8swWyjU9tHPoV66MhuE4t8VA824kBgg3kHoocwweHMSUEEfEk3KJ95iEGlRyiQUXV2LzwXGDX9qQ5lCPnNlm4igGQNkaIDsWZjpKl1di9RehUCYtI0JibMSxiAb/R8SBoiusl0oBGZ4qYpK4YyP2wUm94kkrNV0M8oiaH27L1VCahG0IQCWjRWXBshk6dzbTFbAfS20/1Bxrs0Fpv6yCfAlI4vnw5L6W4s2jsG6X4UkalT9jZ+fukqpsTiVpOQAzHdW3QNbjUV+jlbDsOPthRX8+nnfU+EKtqr3/LdmfzLPp5iWnnLVOJ7CdqPa4r8nj2nTttF5c3u2jWtqKKSFVTEIsMukkXjz7O0xtqMlHgcUeCmlPrvABObU9h5f+r59MWWsbgBGv2NjoiUMXrlhK7Ws0rbzNwqpDKDLL78co0dHqq8rrriiKQ0ZKHAGqCAMHBzJpGt2WL02kd7xEheYfQU3qq2Ezd1lHLbbJO2F4qtp+muJbTDzmfBOWICygKRVAqfdi4XaiouEG5d7kog2V3tsn0Ni6ZnFY83VrJo8lOGgXC1qslu4ZgteXb/VqkEALJOCZ9BRkKLAQugTGj+HUwNEwpGTSCvHSZAYqa0kJX5iAPVNA+RiOygDpI4trQv4KpwXHibdBcWCzjZyNlHSjXARtBlVmGynbjgxD5AnUtHnOubtroZ6lmIFdX+sYfDCOeg4E8DWv+jfurGknYO9Q/Q7zoJRw4ZuG9PegtFtJWzqjnK+8InXaJvASFMXjs+wk74PAmhi4XiBAZMpNid0Nj5ZzkkDLGjkGcXuk0djyph2rN3SgwOmjzeOcfy+O+DhBWtx7F5T8NcnX03Ob2G547YUAq0aOteTlYoFXPexQwAAP/z3S/p1sYV42gWHuU3/zNvL758rIaRZz860NNU+5UpiuDbH/ElpAJ188snWv7cFqIfeI9T0cSGJnDAnHe4qshU1dSVz+/UnX4c7X1iJEw+ZjkIAfPLwmdh/+jixLfxFlCYPqVq25ALjkxsPq2wtFWJxm8l+2I09hZ5yMnCN5PoU7ZxRW9UA1MPKTKiV3JylG3H8D++Jw029qyrj/sGKQpC+MJ+k0aBtqNjcTNJKrbZtRGvRYgDJbVAwjExH22geIJf7QP+dPlhyDVB7SzHuI/w9aSkWtNxEGospuK4Asz/p75vgeijq/VnbJuQM4nC7wGzbTQMkPo5lUleTgMEgCn1aui71mUZ6JS4wfV+qFeP6qZ0mjMDzyzYCsBhAvG1sQUihu4bMBYZ7POKfA+y14xgAUdmKOBqvSpN52hcYRoSmpY+3xe71xAXGu0RrqYD/PeNw9FSqhgsMAH7yoQNRqYZ4ZukG5/msfYAsrnQXmHvcB/SFQlTix2iSdh4XpKi5QmD2G5qvSWyf5Z2KU51UB2kx1Gq1innz5mHlypWoslwWRx55ZEMa1l+Ic3+QgqQK/J7T1Wv02WHIMIuYlyhQ+7tEs/tPG4f9a1WwAeDcd+zpvQ4XzU2Py8+voIvq3BoPPrnxcH862fFD+HKq0FBpSYuhNlWqIb7252fwm4cWa9dEjbt1nb1xsjE+mRnP1jOQxPsF7vpVXAtlajT49uh/WpC1JWZZ/Cu1jpYi1iO6vrEdKhGiLA5W4AYQv36qn+DJJn2rSEkErRlAgSnupAaQFAXmE0FrxxXC4DlT69pmO4drG42ysjJAtT/TRIFRF7PLhWr7Lb0W24QanZ8Ym7VD85U8ZQr5th3GtscGEE8AaI5HtJ1MA8QS+6VlgPg7EgA4fp8dsLGrjIOmj4+FtlWbEe9zgVkZIJVXyO4xUFB5klwoFswgBq6pkdpiM7Zt2wBeB0+vSG9jXD/2hp1xw/0Lset2IzF/1RayL28DF1frjXYyQJ5AAyDpZ5qLdrAYQA8++CA+9KEPYdGiRZrbAohu0lDLEq06l1TVWaHEBmjV+Y3VaGCWwihZtAauvDD1XIftWD4qXxPKCbqMQhAYVDY9FA/PlM7Jz9FNii9K7gz1oq3v7MUtzy439nFFHWXxq9PzcAQB4HaCyed0iTupAaRYBlkEHf1P3RNja9EfkjCWwsxObm+bLQpMIICAwCxtUCwkWZnbDVFmsq/tPVLw6djE8PG01eANdij9OehPkyKdNJKJ7i0YUhZDXBlKPqGuvlCQrjn6XM7IAPH7QTWJo5io3pgwhfFIE0FbGGj3eGTuVyoW8P9ePwMA8MTidQDsQn7DBSYwVrZ2JvUb+zZmS/oy2zusucCEOcqIhmQRtHxxQkueFIIA//P2PfDuA6biheUbcfafnhGOS9pQMPOSuTJi8z5kC4OP+2c1bHoxVIEQs+Ozn/0sDj74YMyZMwdr167FunXr4n9DTQANUDrYXwzVSI0vMEC0Q3S02hkgMylbtqdsY6OSY7mPaxNBJ8cxmQoFXgqDM0A8PFNvj/y5y7Hy55/VKVZs6tL2aWUaIA5XCHp8XGMgsR7GG7qtn0M2utTHbjIIJW4m/3Hp5KRcEGm0DIAlOaejrXT1HIfB+9ykbLLji4HknPpEaZRz0dxjch82NWXJ31oYvJBLR9IH8bZz6MEB0f/VqmlgRPs6D6OxYm/YdaLIgoki6KL+DGz7aYa3Y1GmaYDYcd62d5SR/uAZ470aOqk0TxszUM3rghUu1pK3oVoNvUL+NLXAaD/aSty4fUGWKLAg4LmS3PtKY32JMUA8P10hiN7B/aaNs7yLevv5PEndw0EAjHYE7JgCePP+0VQnzWaAMhtAL730Ei688ELsscceGDduHMaOHav9G2qg1iYgu8BMxkZ9b3ZCXt3cNtDylyCr0l2jsIVVk2/13Kq5rtzJ6QoBKyvADSAqZmSH8Bl77z0wKrT39n2mmJECmp4hOv+qTXp2PfUi8YzYrvP5mBJ3GLz7ZeQODXNSsLeJuv/UsxFdYLXfjWhJBplEA5TuOoxkk5bSCYA+SaaJkOT3x6Dkjcku2Sa5ePj9aHNkV1egz6IlpZEjGUeAbnBKYfg8t5ix3fNsf/Hx12LvqWPw1bfNti6cXMdxvfNcu6T2oy449VN+HztIH+PjyLF7TcENHz8EP/nwgeZ1iOMRN4BopFnB6552ncOlg6yGlkzQKRe3vB2qL22NGSBr07yQGCebG/RDr50OIEquKPUlSWPTUjA1mwpBwIX8XDLA75f+HtPrGd1Wcj6zNGWZKCkx6BIhvu51r8O8efOw2267NaM9/Q5JqGpO4naDxSZmnjgqycfQWiqwUG7FVvBzZ2s7FVHKrAnvdO5VAndzURSCwDKB0RVFOleDbfu79p+KncaPwG7bjcLfn3mV7Uv9zdH/azb3WK9hlKMas6sWGD9u8tl9D9KGJPBjUhqbGgrd1K2qJqIULrB2MiFvN6rd+ru0ImjXgKy5SWifCgJUDJMvukZ6qFKhoFkj9Lw84scn8pXay6+T5tjxFQl1HUNyB41pL2E16YNa+LXFwMgSXXr4rEn4+6wjjDbRPhzCprOzt51H3qhNFQtDxRcqmgjaIjx/02vMZHfROdz3mU96dNxoLZmRSmk1QKZBFP1fDUMjmzlnudP2vbZSEb2VMjGA+jYzS4a4bbH2voN2wsRRbXjDrhNxyS0vONvpY4C0TNkCY+97v/h7Qz/bSmDQNkjnib6L9hk0GqCnn346/vuMM87AF7/4RSxfvhz77LMPWlr0i913330b28Imw3ywyd+G1etwL9joeFV1HIiyc2o1hxwMUFY6VRtgxdWg+6Xgn6OJ2X6+QiHQXpq2kk6pSlW30whKD5ox3rqvFtFSO//WXl1rps7tEiB6XWAeOj3+HulfRonKp+7EOClYMWHf0iQlqxAGUOUV8UWeKfD8Lmn0Sby+lA3mSjLQIlh4xI+WMyiDJs6nfaBGJYXEhhoiaMEdNLq9RTOAbMJUeu9sBlIa2HJgAQBCmdVMEwVm+44vVDpadXYmLVzuXtv5242+yI+V7hwuo8uuY5OftWsx2loqAN2JC6yvE7PkwrVlgi4VC3jLnpMt++rHlQyglqK+uNW1V/Jx+HbNo8EYIClfnRHMYJEsWDVAmX1V6ZDKANp///0RBIEmej7llFPiv9W2ZomgFy5ciAsuuAB33HEHli9fjh133BEf+chH8LWvfQ2tra3+AwgwXxrBKnZQybZ8Pi3FAi57/37YuLUXMyaO1AcyVx6gjC8T1TlILhy+TYr6KhQCkXJuFVZrWpE+1mHTpJqP9+WTFIs4sEG96JNG2fuDL0Myv2ZHiTBDAxQE9kzYtmO6VqxJEk5336NQ947WhlOTiOkCsx+DDn62iS1um8ONI0bJkU2lgp7MU2OAmJaIJ0WT1gO+Sd1VgFXqhz6jnbpqxjCmke4au5gsImMgG52vR4+lm/ABfUL3uX+jNtUWc2xfaijzZIcSeL+TRNDUKG4tpmeAfOtFqmMrMw2Q5CqybVdQY9zW3vo0QBLb6HWdC31CYvtLBT2Clc4DfGzyicJbWP/S80VJYxd/x8yxRz0LGgY/oAzQggULmnLytHjhhRdQrVZx1VVXYbfddsOcOXPwqU99Clu2bMFll11W17FNqi/5m3c8g0qufTRDKKP/33fQTuS4ycHUIJMlksUH6SXh4KtDHhrpWulxF1hrURd3t2VhgCQDyFiJ0/baf6Pa1VYq4tsn7I3z/jpHD/H00OV8u1TBXHdlBXGos09HoBlOZHsPywIN6PeH1mMCkgn0fQfthNueW4Fj9tje+jtbG5JjusWt6rqAPmiACqYGiNqHrWzglFxgUh/xGUA+Q1lBX5jICx4KSvMXAsZ6We5dQRtX0r/n0j2XVu3Sdfkqe1NQFxjXjUmQI9TchqVNA+S6XT5DSZ2mXKlqyTdt+xqiX48BpFI59HVe5nOJKGzm95JFYEn7appNZly2aQEJ8vskGtsFvR6ZdE/MYAZz54QBqsZ5tAY0D9CMGTOacvK0OO6443DcccfFn3fZZRfMnTsXV155Zd0GkBS9YEQKOAboNJO7reaQLzTch/12GounXtmAsR0tlg7q/h0X0RXYZ1unjLaZDJDLBWYOsun1HdLqyBWeTgfqj7x+BrrLVVzw9+eS33k0QLw93b12JpNHQFEtjE9I7eprvjIsbaWiEa4KAG/dczL+fsbh2HnSyKQ9KQ1NOpnZaGh1epUeIgj09rtdhGYhYApu5NHmpanH5NrGr/P9B++EC//xAvYj+bRs+/FMua5tADCOhPbS/uZy95T7EAXGoU12xnncn6V3xox4dBuhI9pMljEN+DVKOizKALVk0gDJnxMjPnkOrkzrafNnqftjqx2ZBXw8koTNYp1HLwPEXGB0wco8AdrvPPfDFpjiar90XGseIE0DNAhqgVFcdNFFmDx5suYCA4DrrrsOq1atwtlnn92wxknYsGEDJkyYIO7T3d2N7u4kWmjjxo3GPpLxwp+jy2VVLASaK8TWAWxixjTZRyX86KQD8d1b5+IzR+6CV9Zt1balSaQH1CK5ArrN1HrE6cgDUwNEm0xXAb7cQ3LNI/dL7DLsuN/ZqHbuW9Gk1JDw1X6g3Tv7CjTel/5NDIruWhJOXl8nbnsxus+8blkQBEZRyhLrv65+oDNANhdY9DueQE7B7QIz9R7Udc5dzH3VAPkMvQ+9bgYKQYC37bOD9r2Ril+IEOMLgSN2n4R37rcj9p82Do8uSlJ+uAxbGqWZNgqMQ8+7xbYJEyPP/6K3Tz8Of14Uk4iWseLy9VpgRmS5z0GZiNZiwWif2wUmv9PWcH9HpnUfSxa3T0jVkAVyIkTPWKW5y+DcBgCj2nRDXWeA3C53nwZIzzOlbxPH9hSJEHUNkL19jUJmadFVV12F2bNnG9/vtdde+NnPftaQRvkwf/58/OhHP8JnP/tZcb+LLrpIC9GfNm2asY8cBSY/rAKZiHhYIAedZNS+pqhavBwD0yeOwI9OOgB7Tx2byQXGQ3b54Ezb1c5C23nEhssF5tNPye1zuylcDJDPAPLlteCHrToGe65xodfPSxuYwmr7oJJURg6MbUDUT6hxJI0FmvtJ2FETQVsKEvoHRMexA70/FQPdBcYH+kCbtPkk5Gy+yGIAUX/45BG7YOo4vWinpAEy3RL657ZSET886QCccvhM8Ey4tnZTDZD27DO85/xdVQgRWiYl++9MXZj7HvD7Q6MqKy5hnAWScRIEumhWTy9gE+SnPYd9O2Xi1Hk5k5smEzSQjaWUIBXl9ZXlkYxp/qxpRuaQbde0oOx33lIzljH5+Npi4xOH7wIXfAWH6T4h0W41iwHKbAAtX74cO+ywg/H9dttth2XLlmU61je/+c0474zr36OPPqr95tVXX8Vxxx2H97///fjkJz8pHv+cc87Bhg0b4n9Lliwx9pEGB9MAEgZPIerC2Lc24TRWAyS/CPq++n7G4ERzGDGqn7I8HS1FfQUvVt1O3z5pleAamEYYBpD+OUsdJcBN9weB201aZmVhxCgw4iqK6XRHHyoW9AlDpJgFfQCF5nawMkDsuClp7mJgZu7WxPrs3kkuMDEVAJ8UUq4eDPErdYFl0AClWbH3WJKr0u1Z20t/F4aykcHFr9oxpd9Z3IBHzJqEjpYijtvbHPdd8LE49LomjkwiN9tKRcM+TJsHiK8MbAa06z0yGSDrKb0LqbSQoo+9DFDg7nuSvioMQ7dkwTCmPW0omP3rwvfsg5s+eyjevs8UuOCr6Qfo73Ligm+OBZTZBTZt2jTcd999mDlzpvb9fffdhx133DHTsU4//XSceOKJ4j4777xz/Perr76Ko446Coceeih+/vOfe4/f1taGtjZPXRaJXvROAmRbsQCg5sqwvBV6ZtbGaIAofKs813l4MsNCoLernbE6NMx8u9FtzhWFpLWwbdf3dU9Ett/NnjIah+w8XvvOcIGxF4/fan7czx89C3e8sBL77jQWTyxeT34XMLdX8jdd8duO6fLtq4mSTsY6M1IwDCIXpHBainahxhM/f9R2iJ+T7wONCZTqa/EweJ6NVxr00oqeOQwjS6uV5DaOpPM7mQdLeR3b/hJczEChYIaL6wsyXfyqnV9wb9jcgDd8/LXY0lN21neywRudVAigxAmTRrWitRSVGZo8pj2DBsjXRy2TK3s/lH4vLbNjMEV9tIAUC8YTNNqOadxLQRdm1H0jzd1lu1FYsLoz/sxLIFGYi3O9/bYow7EdLTh4Z1mWwqUIdg0QNYAUAzRIDKBPfvKT+MIXvoDe3l68+c1vBgD8+9//xle+8hV88YtfzHSsSZMmYdKkSan2Xbp0KY466igcdNBBuP7661FoUGIAqbMZoYEs3TefpJJjuv2a0b5BfHz9Jej7Q+b9QzqUTwRdINepRQoUonDHm099AyrVECPbSroLzJGuHUjvY7f+Vpj8zzxmd3z+mFnGMUwDKP2qCgD2njoWj5/3FryyrhPH//Be8jv9uRcKAUa1lbC5u4z3kqg/ta/rnKViwn6oVY7L0DMZIDghrQ4p/Bog/XPaunU8UpDXZuMsFz11W4bJxTQmnbsaxwwCUmHdQuWnOX8aBsheBywrA0R+xyZvadHjigiLzs/P4d5XlU/IYvwA/vGIMxH/+NwRKFer2G50m7NoMAf/nu9mY0f0dxdqzZo6DD5ttFgalIrJ2C8WQxWMfck4Uvv+/YzDsWJjFw7ZeQLumrsy3qYXr5avXwqTlzQ/HGYiRHmu7Kk01wWW2QD6yle+grVr1+LUU09FT0+UCKy9vR1nn302zjnnnIY3EIiYnze96U2YPn06LrvsMqxatSreNmWKm25LA4lC5De9VXDFSLV3ou32FRl9Cep5mbKsiHmYMo9Qoe1oZwYQABw4fbz1WLyqM0U2ETQXqrpda7wkggJ1gbUWC/7VoqU9YztasGKjOfHTXYtBgN//9+vxmwcX4zNH6r5vqVZRMTAzbrtW+6UC1wClMx6l7kRdYDa9k28F75oggoAzgW49V4FNSFncC5Iry4dSIUiKHwsDuSsakv/OJRiN6wvWxeza3RSFQHaBSZpEadFnRun0re0+FoMzCDMmJpGMUnSbdExXNJ6rTTSdRfooMPmcWRCd01+DUjIeDWPJ8t7uPXVsHCzhKoXBj+NK+hu33cPKu8D35dUQAL3vqneoSQRQdgMoCAJccsklOO+88/D888+jo6MDs2bN8rqa6sGtt96KefPmYd68edhpJ32VzSvSZ4U0URsVgwXqUcumbOkQVHSquQgKBXSh/oHSFzqpb9N/R+9BEOh1zNqFSAHAXMnZvrd9zhLh0yI8E1f1dymFv+38rntvc1PSb4IgwOwpY3DBCXsbvzXoaDqBFUyxp1a3hwwMpWIgMg7aOVPuRw3bctVvAPH74Hp8nAGSJqFi0PcweCk3ShZowQlGLbB0LjDXhO1a2GSLArOf0+oCc7B/Plc7bV+aKJ008BknttJACvzuuBkgz3V5+jBF2lIYrayAaD1jtsT4Sm3JIoI2mDiyva3kTuXgC21vYYv4tDBd4hb2mbC0veXmaoD67EcaNWoUDjnkEOy9995NNX4A4GMf+xjCMLT+qxfSxGy4AehqzPCJugccftwOh/6ikS4wcZJkAyUXptJO2iasEvixJIasPg2QwACV7GJlagDZzuWjfJPzmayE1EekYxrMm2B88/w0fdIACawIHcB49BqQYvXsaEIQyJOmvsBgrEWGtBDG4iTDu6Ot/IUweOmYktZKbest2/ULWbz3ruzgPKSZH1cKypDY4ixMrQRf/9EMNA+r4nS38vsoGIS2NlCYdRnt+5oMkPOQXrgWNb7FGTeEXdusv3UwQD5jUXp+0jjDYbL7rnG39g41WQPUGCHNEIb0YKUVupRx0z7hJn/rAlSZYUmLLEJLXefEdAaB3klHtSW+f7u1nvytaYA8ETVZckVIzFt7CheYbYJP4wKztYUbjNKg6qqvlRyHnYvcTNqfWhgDlHpiTvl286ONaC2KxhkA0IA3XlRRdh3pRrIugu775NLXxYOmzUs5OAM+DVD0f2+1/igwVwbpQiBPbtKiQXKxpElUlwY+Rpp+8mmUJL1Zlt9lYYCcGqA6c7fp7bEHC3hF0CmMb+exKGOveS1Y2zzjd0vK8YiDH4ffTwXV7mZrgHIDyOhAyd+S31rKc+MzgIqOTtjHsSZqT4ZBVsvoCz5p6hOYlkjLcl2aCJpqgDyDj1zpmw3CQqiyiwGihlEaF09qF1gh0EbvLG6aQqD/LblYqTHA2aLU4tyUE63a7Qs1Mfnnj57lpdapUUkN3yBgiSLBJ1j9OuhpfLlYpoyJKt7vOLbduAabce4CTeinvX8p6Pl4X4ENNkTQ3EWWuqV6G/jYlCY0mbc1+i1rL903RbHKNPAZJxQ+gb3kbhV/Z4iJ07k0AckFlt5N64OLRfGNlVJWcZ942ZW2xDQWZYNQilqTILH7tvPnDFCTIdGv/LlKOh8p8yrg9mE2ygXmexGkbZyOpp1/JMmvY1sQu14o30okLYvBP/MXwaUBovfbbgCxz443wawSrTM3YrI+to02vbcSigY2d4Hx4oMuaP03ZX9Svzn9qN3w9zMOx6eO2EVkpwDdiOAFTrVjFwKc/ubIsHrfQTsZhpzkAuPvzDUnH4yjZ2+P6z5+iOUanJdngIq+Nf1Lhj4qGZrqYyK0BtuevrF6+ZHk755K1ZjgXVoePmnzgr46C+Ye17LAGI+Eazbuc8qxzPiZ55wGi0n6AV9IpU2EWM+iVdP8iW4tsM/Cvh52mh6rTRivvZn8PZIPF/j9c7HFMQNUHmQi6G0N0irKFH65O5cvE/ToNvutTpvgzoe0fvNoW/J3EPAosEDr3DQTrI8BypIHSGqfFI3Dj5umPpFd4+IeOLTvLcYY12K4IEWzdPVWzEhCx72M3JTpBpy+GNTqGkrFQhwt4tNIVat2FkXtplIDHL7bJOy54xgcustEHDB9HK7+z8vaMV0Tse3z3lPH4tqPmcaPrb0SXNJBUwSdzkjPqsPIYqy5DK2eclV85+n7ZlskFAsBqhWToTLGtT6Ky9NGctnO2fc8QPJnfh7aD/g9SpsIsR5xri2XDmDrL+nnKB9TrEftuhftPl1W2qAMjrQie3V8NczkDFCTIPnH+T13CRIBFrVj6RD/td+OKBYCnLC/niwy7creh2wGELlGMAq8EGisz6hWygCZx6TXSl0hvhcqSySTVEjRFQbvg29wVOATQOTiIb/r48AeQGbt6P0Kw/SGsjaZeQaNcSMifde0CSMsx9E/8+dHbQibTuXfX3wj/vjZQ7HftHFoKRZw6K4T0d5SNPqaNPnW8Tr0Cdwll1bM7ZuwfBP1/7w9Ki30uaPNfFbShCZqgCir40l0SQ9rZuptEAMkHMavAUp3Dg5j/Gb3wcUEAhkYoHoMIO19d3sX+qoBsrXNKVnwaL9MTZCdrfYhrSegHt1cFuQMUAZ3i85E6MfRI8TMh7X31LF48JyjMX6EnlBMEvhmgW/1LO7LBk4apTaOFEO0rYhdKwpflE5aQaJPwOkS0flgusDs7bH5wiUjWdvXsvI/+7jZuOSWF3DZ+/cT3aj07xCh0ziS2utzgZ193Gz87O758QSst1XuTxpzo92P6O/JY9oxeYxNq6P3l0Aw2OoRmPYVrhxBHHKVdrZvQd5+4mun45g9JmPmpJHgKLK+9tY9J+PW51bgbXtPsYQ4J39TZtRCgDqT6Znsa3MWGLRJBlsEfr/6Nkn6xkRqAKWNGDOYoroYIPt9z3Jd0vxld4El39VTuohHc6YFDzRwaczMlBjpz5EFw94AylINXqpJ5dMAAdDKSCT7NoYBMgdd977aCxWYRt8eO4zBEbMmYdqEERjZ6tZ38O8kSjWtyJDv61uJpHGB2U7lW03H57Psp03awnXYVnL//aZd8aHXTcfYjhY8vGCttl0TQbMJVu8n6cScvtXpSa+djpNeO93edo+LkGfDTn4nntJ4tnR/mv/D1oZGgWZf54gm31p5BOE+S/nC/LlZ2NhRKGCX7UZZz8MzZ3/7hL1x5O7b4f0H72QYCvQ8NAhA6Shc+0rGdV/HJB8LJv7WEJXb98taCoM/T9oFjHOmZITrKUigCZ+FCGMp2aHEItsuwS2C1vczF6zucTjLIjStC8z3zjQKw94AkgYvKdJLqp6bJS+ClkG6j/52oA4NEEzxZLEQ4FefeB0A4G9PvRpv8w2GrUW3sZSFOqYvn7HKZV+4RNAUtrkubR6gQiHSqcS+6II+7aS9zxRjO1pq59S/141vZgAJA6TrGPUwKGYEDV+lk23CO8NBn21rqWCwD4n5UZ97QWxD0W0A8f1c0KNg9G3+8Gz9c1oWsVQIsP2Ydnzk9TMAAGVWnd3GxAFJJI2rDS7tUD0witVmeJY+l2Hyve93rA3SYsVj8Cs0qhYYwEPJ/VGFtnNKCzkfA9QhLB5942OLpjHzL0Lj37H75wuDV2gWA5RrgEQXmL6vxPLoWp7059fcHnUMPll8ppIAWBK72Y4Zwh4OzalN40WVJhdac41ty6IBOvOY3QEAF79nH2Obb7Won1Nn/lyTB4eP9bIxAa7jpA2D1/dz7uaFZPzz7brR5TkuNYCsDJDb+G0UxMmYbJLus6QB8tVySqs/M87jCU12Gby2UieuZ1bPhK61xWOMSAZo2nfTdw5euFg0aFM+E16wt1GyBd0dJp+jHhE0vc6O1vSGi+QSy6LDTNtncw1QP0ESEkoF4KQcLpkyY/YxpThHltUORRDoxVANqtPzQrkiKYwimClXWPychpHAjtsurD7OePNuOHbvydh9+9HGtkyTUDFATyX5nR5q7vyZd4CW6uvw45QcgyVHFheYBLM/uX3yBeGd4aDRYy0WDRDN7t7XLMQ+SJOvK7qNQ2LafAyGj9XUtmnvpnwe/rwP3WUiHnh5DY56zfbmcQXtVSNgS4dAYYvMVDA1QOnOYcuwVAiCOGWDjVWgzK587AhZyrX44FpQ+8byuqLAyHdawegMzC1Qhwss5Tvt0342CsOeATIGdktEi4KkAWpNoQGygdKgfRUcAv4B55CdxwMA9p82Tvs+AGOAuLjbk++BDmOU9fFVTZYMDikyjr9s0uqjUIjqdNlWGeYg4zyMsVqmt7qvUWC2z65+EwR6P02bQqAeF5ivbS4dlG+g0kSYRd0FVizo/alRbATHEbO2AwBMm9BhbKsIkUEUWaLA/J/dbfUtQOhXfPv3PrAffvPJ1+G4vc2C0YUG9RMXfMa+zS3n/K3wXki/4+eVJtW0QSSmCNq6WyroDBBNe6GzzPw6dR2dYABZ3kU6zo3wMECB0Le0NAsZGKC0Wh5f4ECjkDNAUjQXu+lSPpq+JjTsa0IpDt+g+t337Yfr7luA04/aTfs+cq+Qz8aKQo4q0jICEzbGpyVIawDxem/csOprFFhanQFvDw/Ll15ok5Jn2w1j034t5UqV3VvpnI1Z2UuDrnFOYfXK0UHSKhgusCDQGMVmCR+/+rbZKFer+Lwl7DxteUHJ6PNN4NzNJ/YhD/NXCILYxcXfzx3HdWDHcaaRBzCtSBPus+/9EhmglO9mGjeJNIkXCAWUNldT2pIZadAijP3FQpKnSYzaFQwg+8Iv+Y6+i76rkNy8WTRAadFfDFBuAGVggMRSGH1NDa65wBrHAPE27DxpJL71LkvF8kIgDrKUobINlNSdkMWYSzvo8mGSr8D6es+yiMb5qipwbPOdg1P7Pp2NwuQx7djcXU51Tqm4Zxb4GCA6gdHT+AaqVpYqgecF6g/stv0o3PDx19Z1DD0gQt/mY2Nd7kPreQT3dHzs2rPIsoBqlFheguRikt7/tAyZz7XI97EVNnb91lkKo4EuMI0Bsk74duOsKPQJnjaBgxpw7Z4AkqQF5v0oawvfxjuSTLdyw08Rnac5hx06kEIM+U2X6GipDIQE3QVWx4TVx6iLYsHMBM23J+ewGECEytZdafL50w66VbZS7CvjY5w/A8PB3Up6pKD7HL5IBim3BgBc8cH9cfhuk/CFY3ZPrQGibavHpeoThfbQ515wvzMcb9ljMvbacQw+9oadjf37ywBqBKRaSGZEkf5bzYD23DDJTRNtd59XQlo3bj3g7k0KqcYYb46LIeO3w3b9kiZGdIG5NEAe135fIdXekiKyDOaIJVDloJFfbZ4UIhIzSY/jc6X1BTkD1E/IorCXjJy01bo5+ppRkyOLqJfvJ60ofOHXrpVAper28WcBf4kbNeD4VumufQtBILKE4jk8K1t+7084YCpOOGAqADbhptQA1eNSlYx/AHjnfjvihvsXYuakkcb9kdDRWsT/fe6I+DOvJD9UIEVHehkhzyrddR4vq9pHBqhZhidlMfg9OG7vKfjNQ4ut12QaNvbjGxO0ZT+6iy2nl+1vwH1P+AKM107rKwxXVkp9kq1WoQSq1xnp0wAJ2w7bbRIOnD4Oe+44pimu6v4Kgx/2BhDPOcPzr+j7ug2gvpa00CIBGpkHKGUbSpzREDRRtvZVNBdYsu/o9hZj374gpSQjMwyNi/AS89UydWWljeCx7WuK7NMZNmnD4OtxqaoQYmWAclfxmW/ZHSNai/jQ66bjKzc9nfwu43n6WlNooJGWWQBsdH76a+aJEDnoAiELk+NzlTQC9Lj8npx21G7o7KngE4fPNH6XNaeZVC8qraFnvKsuA6ikf9+oPiulCZHSKkgiaBsD9NqdJ+CIWZOw63aj6ko50d5SxM2nHpbtRxnAF4MBMaYbep6GH3GIQVLNGyt0gQ2RBNIStIrADXSBpV39h6HHpyysdKPf653yghP2xhOL1uGte05OdX4fbDlMGgHfqt21rxEFJhkjXKPgYQYkg0XKE6Kds0EuVQBaCDHvT2M7WvCV42Yb58zK4rSUBhcDRI0+CXIUmL6vtN0bNedxabpqsvnQH9oriRnccVwHLv/g/tbfZQlQ0ETglt00DRB7H3g6hGIhiBd07kSIOmtSD2tPA+GMBIuaceI2ctJGrymUioU4ya0PzX4dpeP3FwOUa4CEKCcjB40gfJRC5CVoDEsDXWBpJ5PeSpUNhqx9wkoEMAfl//f6Gfj+B/evi32gkLQC9SCLZop2i2IhQy0wdg6+q08D5NomdROfaDYLtIk6rYsw4ylp/+Gr64FAX6LAfBO2FNLrG9i9DFlI901/87U+zdr7tlrY/Gt3npD6eDYUhXFFguHZkhYn9DnYtpMv+f0pMze93t/t52vhDFAdiwwqE5AYKFEE3cDirBw8aKPRSJtnC2je4ig3gIQQcEmjYYbBu3PgSJBCIbMgrQ+bo6cSejJByyv0Q3edCACYSIqmNgJvqB33jbtv19DjKmTRTPGVbFoGKGtCPOn5F1Mayr6w6Syg7Zfb5jYGfKCDYD2i7UbhdTOjSX/W9vbaXAr0GRj1oTwuMN1glO+XlAgR0DOxZ2KAhDZ8/phZeM8BU3Hp+/ZNf0ALNEMvw9jmY9Bc+9rGp4LQh1VOtDHtkSNEKsyrwCftesZsKSGnGJhCWcGUrjsfbNcbNk2AEEGaJ/NM0P2ELNEcrQJd30ozY2YwgPSw5QaKoFN2mGJBNwKN4qMF+bo+cfhMbOoq4+377JChtX58+4S9cdNjr+BTR+zi3Keed8IwTqSBQ2CAxPB5j5ElGdHGsaihnpYpqnPQ4MyXez96zmzn0AvADrwB9I3/2gvf+vuz+NJbXyPuJ63CfWL3LLmasmikMmmABIZh9pQx+L7DPZUFWcTxrt/5fquzsbIBxO/fZe/fD+f/73NxyRy61XWvpfExK6RcSDz5qmtbo9yXPn1nMyCFz5uJV5vThtwA0iJ69G1SJmgzNThhgDKlBm+MCNrQl3hejJMPnYFfPLAIn33jrtiq6jzAUsKCGkCW6xrd3oLz3rFnH1osY5ftRsUaExfqy5ytf06bl4QzQGnzBwH+EgjSYKqVHPFkv47P59wrHaTVM4X+DmU7q1YLr4/9v5Ealj13HIPff/pQ734lQbvnE9jTjz7GzMfoaSLoDPehf6LAyPky9At+T6Sf+tzRmguM3b8ZE0fiuo8dYj+uUwTtHh+zQqyHJix4dJ1fYxYNNla5yfaPzIA1iNnyYeCXXAMMiQHiRoUkdG7powuM7ltXMdSME885b98Dd37pTXjHvjs6y1kAfIIaXN2lp9z3UPssLjCdjgaLAhPOwQcuz8pWYoBoiYa0K6f6GSDS31PWH8t6zka4wLgQvz+gTUIZi5QGQbr+A+h9xtZHaZBAFvdjFjdcX9FXZpDvKvUpn54qi9hbK8OS0gVWTwh4WSgHkjY3W71u7vgczVIZW/CeWmqPEw+Z7tzHzAPUnLYMrhltACANMJIeRhJIZzGA2klCqfYMNVU4sk487S1FzJw0EgArACmscHgSsIHCu2sv0McP27nPx/CxfRR8xZ7WNWRLby+1QWJAKimLdGbJMeMD/X3a8htZz9kIA3tkW/8T2VJiSp87Om3/AfRVeFvRzNvSV9NPZ2f6eBAPgj4aWWkzQfN9baJdKRO0BKcLrIFj4K7buXVmBWFRISVC7Ct661hMZsU5b98Dl75vX5zx5t2c+6QtTlsvcheY0NF436JRKvxx0ME7S2pwmoyqo46MmvX0D40BEnzczcoYmxXfetdeOHavyXiTpcp1Wkihpb59U2uANHGw/5xSG6gBJK069bxWDWSAUobeZx2o6tEAXfX/DsI3//asM5y6mZDcEIZ7VRJBe+4XjRTKUnTSh/4qhRGfLxM7xT+nZB8tt6evrj7XORuViR4ATj1qNzy5ZD0++8ZdjW2S9ot+bvdkc06LGRNHGN8Vgua4wbYb3YYPHDxN3MeqAWpCW3IDSOhokgaIQxMLW1ZqLtDVa0cdnbkeX7S+mmUGkCcMfiAwur0Fx+1dn+g6yyqTb0ob3SIJTaPjuBlGjrT5kHRjJNVPnND0ExlchFlQjwbo2L2m4Ni9zErn/QE9fQUfrC2Dt+Ozj5Torciuz756/7IIsfuKvrrZstSBorvaDP60LCaHWwTduHs1c9JI3HbWG63bJPchfV4jWt1TeBrX8PUfPwR/fHSJVW9ZKhbqkhnUA6NGZxDkBlAzkCXKQo7SIZ2yLYsBRGuq9P1x1EMRHjhjvHOb5PYbyqCPumBhZyTo4bLu/XyrbFNHlo4BStu2enMo+epQxfvVwQD11XU80JCjwNz7RtuzMEB90/j4UA9rlxb6O9a3c9iYU327m5Xn583GAPnP10xIz4fOE/Xq3456zfb4/+3deXRU5f0/8Pcsmck+hEwIIUAgadhDiOFLDEtBxCAi4loXRPBYvqYeKojIFwoHQs0pCmpF61a/FrXHhSOKbVW2nyhrhYKk8gWPKEsRCdJoZRA0EHJ/fyDh3knmbnPvnTtz369zcgjJXZ7MnZn7mef5PJ/nsgg96QM6t8P2Q9+aVopEDtcCs4hckpzcUgXh10McKQdS1C8DIY50oxkCi+bTflFOOt759VAE0/2tfqfUixGvtLwxhr/FSN7YVeYAtfXYhe8qH2BrDw6iDoBU5hrIVa1VIn7/Nmr5FCuIHw+55QiANmaByfwunFkTD6xIgtaS7C2mpXdKKcgS76/YAyR6Lsb6w57cyESKz4Oyru1wPNSIPp0yIx8jyt6qh2/sj0fWfIb//nnkUiRm4VpgFtFS0l482yM84e6Sgiz4vG6k+jya3rR65J5PhAum+1oKcukR7Qu2X36gzZ+L39zbpcbPDUqJ2qnsQOtPWWr3Vco/aBVgy7zKbyzvjNe2H8ao3uqXGDnbFN2nQ7XJutIeIG3nKMxJQ2ayF2l+r+LijHYizsdpe92ii+QSOpVetqP75eL3/28fCn+asGAUuervRtGffyP+XikAkn8sXZLncPz0MMot4QEAb1YPxplzzbI5QNF+YO0eTMNTEy6J6hh6tS4hwh4gU8h9Emp1g5JZDT43Mxnv3TtMcxCTF0jB+vuHI8XnMewiG/lccblcuP3SrjgeakRZ18hDZfFGUw9Q+Ir0Kj+hSqtoy7dBqR3lBVnY8MAIdMhIlm2rWO+8DNXbtkXtYxRNHaCM5CS8f/8I+DzumH/q1iI16eLrPLzZcjkbgDTvR+nx6tUxE+/fPxwdMlr3zkZDfE81LwdI/L2WAEh9gKg0nKgUSMSDtsqjuN0uJLvlPzDYYW09vVgI0SJyC5yGP+hK+UI/UyifH0mhzHRIO6i9tiTWTTCclm728ARk8dbySdDy22mpBA2cL9ymxlv3DMY/Dn6LGy7prGr7SFQXQowiCRo4Pysk3iT7Ll6r8HouSkthaFkNHpCfLq2XNbPA9D0vtPTOimODtjY1Y8q4FcS9znoDNytr+xitrXQUM9Kx46dP8CeNjY0YMGAAXC4X6urqoj6eXA9Q61k6+rp0rWbflp1nh6EOtXk8QOscIOkNLPJ+kiKbKnKAjJphcknXLNw9vCjqN0DJDBq52kMGTr1/esIlSE5y45kYdb2rJZ4OHf78UMpfEP83Vr1eata9iv4cF7/X8n6pJXdIuQ6Q+jaYvfaVFuKW6M0Di+ecTRZCjGDWrFno1KmTYceTBjXy21pRPt4Idh1K+J+fplrWXtcvxi1Rv9An0DoHSO0sHq/Cp2yXS7qsRrSrtxtN9RCYhiELJVeV5OH/akZjjMFryxnNJfMcCH8M5CZXxKq0hFKFaSMordMVeb+2j6F0jjaHmTX0AJm99pUWepc4EYvvHiD59fWMEldDYKtWrcLatWvx5ptvYtWqVYYcU8ssJys+NRnBri27++eFuLp/Hrq0b110y2rR9QCJjyM3BKb8fHG7XC3LXBhZY8QIqusAGTylOppFgWMhfHKA0mKeRkwPj5bVQ2CaeoDE3yvs5lJ4HUtzgOSfVzaKfyTD7nqH7uLsZSQRPuxn1sskbh6ir7/+GlOmTMGf//xnpKYadwPV+0Zg5+jarrGZ2+2yRfADhM2CUXjAms6F9wBd/F7tUhiRtvNoeIO2mr46QKY2yVamDOuO4g7puKZU2iOtlNwu13tkFS3Pf70kQ2BaeoA09LRLh8Da+v3F7+MpB6jZgCn58TTrLZzShwjDzmPKUQ0mCAImT56M6upqDBw4UPV+jY2NCIVCkq9weuvcyC1kR/anJTdgcFE2gIu5S7oCgwivNJeN36DVDs9FUwcons0d2wfrZgxHdlj9rFazwGRmtMTqkrstaIPeNeK0BIjitrf13NPbCxVr0RQ4vDBjsGeuvSfXyLGqEGJMA6Campqf8iAif+3YsQNPPvkkQqEQ5syZo+n4ixYtQiAQaPnq0qX1+iN6e4BOnz2nqS1kL1pm4tw9vAiX9+qAZyeW/7Tzxd+pzQGKxIyVnY1iRSXoRBSe29V6mnzsb8qSmXtmDYGJ7i666wBp6QFqKwdI9EOzikqaIZoCz3PH9sagbu1xf1VP4xpkMUcUQpw6dSpuueUW2W26deuG2tpafPTRR/D7pZ+0Bg4ciAkTJuCll15qc985c+ZgxowZLf8PhUKtgiBJMqCGN+/8dimqtyX70XIT6h5MwwuT/6vNfeV2FR830huatFKtvd6gpTcPmRygKKfBJyJxbpdcgdVY9ZhZMQQmfV5oyQFS/3xSToIWtSeOnpxq1/5ry/gB+Rg/IN/A1livdQ6QOdcupgFQMBhEMBhU3O6JJ55AbW1ty/+PHj2K0aNHY/ny5aioqIi4n9/vbxU0hdM6s+u5ieX4a91RTB35M8VtYyXK5WEcQcsQmN59xQFNpGsifl3bLQla7TTmaAohJiq3C7jQRyw7CyxWSdAW9AC5dJ5D8vrSUAdIsRCiwX+nHcp5JCojF3WWExezwLp27Sr5f3r6+bHNoqIidO4cXbE3rUNgsVyBWi3GP8qiuQlJP6HKDQ1d/D7SmL5kOr7NuujdKnunpHWATG1S3Dh/Xc9f81bPkSiCb6NoSTTWfQ4NgYx0P/U5ZcpJ0Ma/vh4Y3RNL1nyGB681r5xHPC0MbAaresbjIgAyk2RRwzjqIqXoKE2flaOnB0gNuyVBq+0ddWoStBy5OjtWLESqRG9wou0c+oIs6WtTaVuZZKuw8xr1+qoeXoTrL8lHXsC8NIh4ylcyg7RjwrzzxGUA1K1bt6iy5MUkhbJsNgShl1GPTSKLpmtcbaVa8e8iXRE7zwKTTCGWywEy4SYT7+RmWVkxA0uJresAaeidVQrkohnqjsTjdpka/JD8ElVGcnaYCWsqolqN4Y8ypSrNctR+ghe/kUfMARJ9b7fnn9qZcnbo0bAbtYssxyoHSNoGc84hzSFTv5+WQpHS9+82fh+nH3Cd/h4urmFk5nsKAyDRiyJRuu/ZAaRMWv9J2756Pp2oWWfIbs8/8ftOWytSX8AeoNbkigCK/xergNGKZX3ULhkju5+mafCttxXn/dhtlqWcMf3O55mm++NykCZqVq276cxHV0TvVE2Kb0lRvDHq6dqPPAvMvs85PXWA7LxEjJXkAgw7LKmjpdaO7nPonIKupVCkdNvWG4sXrbVbD6ucOyoL4HW7UNXH3hNuzGJVL2n8hMQmsWq6nZWC6fJT/ym6JDvxpxM7BzDRUjt8kIjDyNGS6/2Q9nBEd54/3FaGlCQP/nihSKfa9kkmf5hzG9B7E9NWCVp+CEwyySWOhsBSfV78clghumbbY+kgq0WToqAFA6AEqmL7+M0DkJLkwcM3lMS6KbYXTRernuGzSANgdk5YF0/FVVsHiAHQeXKJ8lpyXJRc3b8T/m/haFRpLM0hXYPOnGtmRB0gxQBIoQ5QksrnMHC+1wUAJl5aoKKVZCaPRUnQHAJTKKUeT64ty8e40k68CakQTeCrJ38i0ou4yU5LUIeRDhOqS4Lmc+88udlHagtMqqXnGOJra9aUa4/Ov1PL80kpz8inYaj7f67shSE/C+LyXh3UNpVMwhwgi0iKuLVZSiu+8AakTjRF0fRMIY60WbONAyC1b0JWJNTGG7lEXjvkAIl798waGtKfBN3298rnaP17LTfSNL/X9kVuncKq9xTHD4GJ8b3bOcRvjFpHofT0HkXKFTpn4yGwJK+6XgIGQK1Jh0kj5wDFKodMS8+IXloWHA7bs81jtEWpzk+SBYEeGc+qvEIGQCLxngNE6kkWKtVYdUPu5hZJpHtMc7OmU1sqSWVgY4e6NnYjNztJetO2qEFhxMGAWTlAeqtNayleqBRMip/Dfi/X7ooX4uekmZ+pGACJxFGZCIqSuEdDcw+QjuTOiDcAG8cLaqe3SwJCfsoGIJ/HYnQOkB5qe/eioXe2m9KwlpjSjDHx7/0OX18rnogLIbIHyCL8hOAckmUqNAZAkkKIKl9BkU5R2jmg7eRWEjVabnFG9gC1JteLoTc3xkg+C5Kg9dYBUprZJdlWoTdNPMvSn8TbXbzw6kgz0IPPCBG+QJwjmtwLPTlAjWfbHuu69/JipPu9eOSmUt3tMYs4P0nu0zMrQbcm7j2TS4KOWQAkup5WTIPXVAcI6h8fpSEw8RwDn8MXGI0nVuUVOn4WmFjHzORYN4FiQHMdIB03sB+bzrX582HFOfhkQZUt19AS3zzkZs2Jf2XHvyMW5Bbb1ZLjYhbJNHgLCiFqeV5oGSJUysdrFgXx0cz8JGsxALLQ/94xEFv2N2BCBQtgOZHWm7aeHo/uwTTDzm8VtUUa5W72TiVXzM8OQ2CSGk8WJEFreV5Ie3Xkt5Ukm7cR39i4ygTJ4DR4C43qk4sF4/q2medQ1rUdAOCSn/6lxKP19SV+QSrlT7w6pQI/75GDx28eoKNlsdWsMgDSUxcp0alPgraqRVI+q5OgdS6GGm0hxKzUJNXnJfvwKvTsGXYe046cIJ69vRwv//0Qe4cSWDSVoJU+PQ8uCmJwUVBXu2JN7RR9D3uAWnHJPCZ2yAESTw9P85sz+UNvhXClBU6l55Df9raKrli95xhG9c5VfX6KPas+VDEAUpCbmYwHRveKdTPIRNEEQImcWKm2SKMk4ZezwADI50VZtdCjWul+c24DenOdtAVA8kFWRnISVt4zRPW5yR7ExTm5GjyRqfQXQkzkxMrKwmwAQCBFfhhBEhCy1goA+dIAegppGq1L+4urjKf6zAqAoh8C01YHSH3byN70llDQij1A5Hg/RpiiHon4ppXI5fUnXNoV3546gxE9c2S3E9+wkllLC4D8MhB6CmkarUv7VDx5axnap/ksmYmmdzFUpcBJ/PkjVsuKkPHEPUBmXlYGQOR4A7q007S9OO/HrARSO/B7PZg5uqfiduKbWzJraQGQH/6xqsy/knGlnUw9vniJGS09XVpmALEIZ2KSLFVk4kw+BkDkWO/8eijW7jmGey77mab9xGXaEzkAUktabZc9QED4Yo5hv7PBEJgVxDcuLaWGxI+P8jR4cW+a+nOQvVk1mYIBEDlWv/wA+uVrX4rCZ0ENlXiSk+Fv+T7VxwAIkB/GsVsStFnESfRaPih4NfUAib9P3MfSaTgLjMimMpIvvmy4wCLQOSsVC6/pi3apSewR+4n4XuwN65qwaqHHWDvXrC8A0rLUjB2KSpLxpHWATDyPeYcmSkziAEhphpRTTBrcLdZNsBW5ldClCz1a1SLrNYkCIC2BnpaFMO2wrAgZT896i3owACLSqF2qD7PH9ILH5UJGMgMgak1uGq9Vb+6x1qxzHQqPhgDRrSFfiOKHOLfLzNl9DICIdKgeXhTrJpCNya2PpiXHJZ6d0xkAeTUMEXIILPGpXZJHDw7YExEZTO7GbNVCj7GmNwBya6jtwyGwxHemSVudNi0YABERGUxtHaBEThpvMqAHSHEIjJWgEx4DICKiOOKR3MTDe4BEZRQS+K6tt0dGvJ9SgGiHhWXJXBwCIyKKIz6veL24yEthJPLaaXoDIK+GxGYtM8YovnT4qb6Y1kr9WjAJmojIYOKeC7nFUMNrBCWSopx0rMPXmvfziAJGF+SDGnFwyRygxLLszv/C+58ex93DC007R1y9+t59911UVFQgJSUFwWAQ119/faybRETUiiSPRTYHKHFv2ndUFuDSwvZ49KZSTftp6QESB5qJnE/lRH07BXDv5cXwm7jActz0AL355puYMmUKfve732HkyJEQBAG7d++OdbOIiFoRxzzheT5aclziWad2KXj9vys17yceylIKD8UBJJelIa3iIgBqamrCtGnTsGTJEtx1110tP+/ZU3mlaiKiWArP8/E6JADSS1sOkKgHKIGHE8kccfGM+fjjj/HVV1/B7XajrKwMeXl5GDNmDPbs2RPrphERyfJ5wtcCY6+FHOlq8PKPD3uAKBpxEQAdOHAAAFBTU4N58+bhnXfeQVZWFoYPH45vv/024n6NjY0IhUKSLyIiK4Un56YkeSL+jsKWQVDYVtyDxgCItIppAFRTUwOXyyX7tWPHDjQ3ny+ENHfuXNxwww0oLy/HsmXL4HK58MYbb0Q8/qJFixAIBFq+unTpYtWfRkQOJq5cEt6LIV5AV2+1ZMfQsBYYh8BIq5jmAE2dOhW33HKL7DbdunXDyZMnAQB9+vRp+bnf70dhYSEOHz4ccd85c+ZgxowZLf8PhUIMgogoprweNwYWZOHIf34wtcZJIlCaBi/GHiDSKqYBUDAYRDAYVNyuvLwcfr8fn332GYYOHQoAOHv2LA4dOoSCgoKI+/n9fvj9fsPaS0RkhOV3V6KpudnUKb5Ow4Ry0iouZoFlZmaiuroaCxYsQJcuXVBQUIAlS5YAAG666aYYt46ISBuP2wWPm8GPklSf/GMk7vNJ5GVFyBxxEQABwJIlS+D1ejFx4kT88MMPqKiowPr165GVlRXrphERSZi5gKMT3DOiCKv3HMMdlZF7+AHpgqtMKCet4qbPMCkpCY888gi+/vprhEIhrFu3Dn379o11s4iIWhnVJxcAkBdIjnFL4tOsK3th/f0j0C7VJ7tdp3YpLd8rTZknChc3PUBERPFiXP88JHvd6JcfiHVTEtrPi4OYdnkxenbMiHVTKA65BMHEteZtJhQKIRAI4MSJE8jMzIx1c4iIiEgFM+7fcTMERkRERGQUBkBERETkOAyAiIiIyHEYABEREZHjMAAiIiIix2EARERERI7DAIiIiIgchwEQEREROQ4DICIiInIcBkBERETkOAyAiIiIyHEYABEREZHjMAAiIiIix2EARERERI7DAIiIiIgchwEQEREROQ4DICIiInIcBkBERETkOAyAiIiIyHEYABEREZHjMAAiIiIix2EARERERI7DAIiIiIgchwEQEREROQ4DICIiInIcBkBERETkOAyAiIiIyHEYABEREZHjMAAiIiIix4mbAGjfvn0YP348gsEgMjMzMWTIEHzwwQexbhYRERHFobgJgMaOHYumpiasX78eO3fuxIABA3D11Vfj2LFjsW4aERERxZm4CIAaGhrwxRdfYPbs2ejfvz+Ki4vx0EMP4fTp09izZ0+sm0dERERxJi4CoOzsbPTu3Rsvv/wyTp06haamJjz33HPIzc1FeXl5xP0aGxsRCoUkX0RERETeWDdADZfLhXXr1mH8+PHIyMiA2+1Gbm4uVq9ejXbt2kXcb9GiRVi4cKF1DSUiIqK4ENMeoJqaGrhcLtmvHTt2QBAE3HPPPejQoQM2bdqE7du3Y/z48bj66qtRX18f8fhz5szBiRMnWr6+/PJLC/86IiIisiuXIAhCrE7e0NCAhoYG2W26deuGLVu2oKqqCv/5z3+QmZnZ8rvi4mLcddddmD17tqrzhUIhBAIBnDhxQnIcIiIisi8z7t8xHQILBoMIBoOK250+fRoA4HZLO6zcbjeam5tNaRsRERElrrhIgq6srERWVhYmTZqEf/7zn9i3bx8eeOABHDx4EGPHjo1184iIiCjOxEUSdDAYxOrVqzF37lyMHDkSZ8+eRd++ffGXv/wFpaWlqo9zYbSPs8GIiIjix4X7tpFZOzHNAbLagQMHUFRUFOtmEBERkQ779+9HYWGhIceKix4go7Rv3x4AcPjwYQQCgRi3xtlCoRC6dOmCL7/8kgnpMcZrYR+8FvbC62EfJ06cQNeuXVvu40ZwVAB0IYk6EAjwyWwTmZmZvBY2wWthH7wW9sLrYR/hk6GiOpZhRyIiIiKKEwyAiIiIyHEcFQD5/X4sWLAAfr8/1k1xPF4L++C1sA9eC3vh9bAPM66Fo2aBEREREQEO6wEiIiIiAhgAERERkQMxACIiIiLHYQBEREREjpNwAdDTTz+N7t27Izk5GeXl5di0aZPs9hs2bEB5eTmSk5NRWFiIZ5991qKWJj4t1+Ktt97CFVdcgZycHGRmZqKyshJr1qyxsLWJTevr4oItW7bA6/ViwIAB5jbQQbRei8bGRsydOxcFBQXw+/0oKirCn/70J4tam9i0XotXXnkFpaWlSE1NRV5eHu6880588803FrU2cW3cuBHjxo1Dp06d4HK58PbbbyvuY8i9W0ggr7/+upCUlCQ8//zzwt69e4Vp06YJaWlpwr/+9a82tz9w4ICQmpoqTJs2Tdi7d6/w/PPPC0lJScKKFSssbnni0Xotpk2bJjz88MPC9u3bhX379glz5swRkpKShI8//tjilicerdfigu+++04oLCwUqqqqhNLSUmsam+D0XItrrrlGqKioENatWyccPHhQ2LZtm7BlyxYLW52YtF6LTZs2CW63W1i6dKlw4MABYdOmTULfvn2Fa6+91uKWJ5733ntPmDt3rvDmm28KAISVK1fKbm/UvTuhAqBBgwYJ1dXVkp/16tVLmD17dpvbz5o1S+jVq5fkZ3fffbdw6aWXmtZGp9B6LdrSp08fYeHChUY3zXH0Xoubb75ZmDdvnrBgwQIGQAbRei1WrVolBAIB4ZtvvrGieY6i9VosWbJEKCwslPzsiSeeEDp37mxaG51ITQBk1L07YYbAzpw5g507d6Kqqkry86qqKmzdurXNff7+97+32n706NHYsWMHzp49a1pbE52eaxGuubkZJ0+eNHThOyfSey2WLVuG/fv3Y8GCBWY30TH0XIu//vWvGDhwIBYvXoz8/Hz06NEDM2fOxA8//GBFkxOWnmsxePBgHDlyBO+99x4EQcDXX3+NFStWYOzYsVY0mUSMuncnzGKoDQ0NOHfuHHJzcyU/z83NxbFjx9rc59ixY21u39TUhIaGBuTl5ZnW3kSm51qEe/TRR3Hq1Cn84he/MKOJjqHnWnz++eeYPXs2Nm3aBK83Yd4iYk7PtThw4AA2b96M5ORkrFy5Eg0NDbjnnnvw7bffMg8oCnquxeDBg/HKK6/g5ptvxo8//oimpiZcc801ePLJJ61oMokYde9OmB6gC1wul+T/giC0+pnS9m39nLTTei0ueO2111BTU4Ply5ejQ4cOZjXPUdRei3PnzuG2227DwoUL0aNHD6ua5yhaXhfNzc1wuVx45ZVXMGjQIFx11VV47LHH8OKLL7IXyABarsXevXtx7733Yv78+di5cydWr16NgwcPorq62oqmUhgj7t0J8/EuGAzC4/G0it6PHz/eKlK8oGPHjm1u7/V6kZ2dbVpbE52ea3HB8uXLcdddd+GNN97AqFGjzGymI2i9FidPnsSOHTuwa9cuTJ06FcD5m7AgCPB6vVi7di1GjhxpSdsTjZ7XRV5eHvLz8xEIBFp+1rt3bwiCgCNHjqC4uNjUNicqPddi0aJFGDJkCB544AEAQP/+/ZGWloZhw4ahtraWIwYWMurenTA9QD6fD+Xl5Vi3bp3k5+vWrcPgwYPb3KeysrLV9mvXrsXAgQORlJRkWlsTnZ5rAZzv+Zk8eTJeffVVjqsbROu1yMzMxO7du1FXV9fyVV1djZ49e6Kurg4VFRVWNT3h6HldDBkyBEePHsX333/f8rN9+/bB7Xajc+fOprY3kem5FqdPn4bbLb1lejweABd7H8gaht27NaVM29yFaY0vvPCCsHfvXmH69OlCWlqacOjQIUEQBGH27NnCxIkTW7a/MJXuvvvuE/bu3Su88MILnAZvEK3X4tVXXxW8Xq/w1FNPCfX19S1f3333Xaz+hISh9VqE4yww42i9FidPnhQ6d+4s3HjjjcKePXuEDRs2CMXFxcIvf/nLWP0JCUPrtVi2bJng9XqFp59+Wti/f7+wefNmYeDAgcKgQYNi9SckjJMnTwq7du0Sdu3aJQAQHnvsMWHXrl0tJQnMuncnVAAkCILw1FNPCQUFBYLP5xMuueQSYcOGDS2/mzRpkjB8+HDJ9h9++KFQVlYm+Hw+oVu3bsIzzzxjcYsTl5ZrMXz4cAFAq69JkyZZ3/AEpPV1IcYAyFhar8Wnn34qjBo1SkhJSRE6d+4szJgxQzh9+rTFrU5MWq/FE088IfTp00dISUkR8vLyhAkTJghHjhyxuNWJ54MPPpB9/zfr3u0SBPbdERERkbMkTA4QERERkVoMgIiIiMhxGAARERGR4zAAIiIiIsdhAERERESOwwCIiIiIHIcBEBERETkOAyAiIiKS2LhxI8aNG4dOnTrB5XLh7bffNvV8NTU1cLlckq+OHTuaek4GQERERCRx6tQplJaW4g9/+INl5+zbty/q6+tbvnbv3m3q+RgAEZFpRowYgenTp8e6GZqMGDGi5RNoXV2d4vaTJ09u2d7sT8lEVhkzZgxqa2tx/fXXt/n7M2fOYNasWcjPz0daWhoqKirw4YcfRnVOr9eLjh07tnzl5OREdTwlDICIyBBtBTtvvfUWHnzwwdg0qA3Tp0/Htddeq7jdlClTUF9fj379+iluu3TpUtTX1xvQOqL4ceedd2LLli14/fXX8cknn+Cmm27ClVdeic8//1z3MT///HN06tQJ3bt3xy233IIDBw4Y2OLWGAARkWnat2+PjIyMWDejxT/+8Q8MGjRIcbvU1FR07NgRXq9XcdtAIGB6rgKRnezfvx+vvfYa3njjDQwbNgxFRUWYOXMmhg4dimXLluk6ZkVFBV5++WWsWbMGzz//PI4dO4bBgwfjm2++Mbj1FzEAIqKoTZ48GRs2bMDSpUtbhoMOHTrUqldoxIgR+PWvf43p06cjKysLubm5+OMf/4hTp07hzjvvREZGBoqKirBq1aqWfQRBwOLFi1FYWIiUlBSUlpZixYoVmtp39uxZ+Hw+bN26FXPnzoXL5UJFRYXq/VesWIGSkhKkpKQgOzsbo0aNwqlTpzS1gShRfPzxxxAEAT169EB6enrL14YNG7B//34AwKFDh1olNYd/TZ06teWYY8aMwQ033ICSkhKMGjUK7777LgDgpZdeMu3vUP54Q0SkYOnSpdi3bx/69euH3/72twAQcfz+pZdewqxZs7B9+3YsX74cv/rVr/D222/juuuuw29+8xv8/ve/x8SJE3H48GGkpqZi3rx5eOutt/DMM8+guLgYGzduxO23346cnBwMHz5cVfs8Hg82b96MiooK1NXVITc3F8nJyar2ra+vx6233orFixfjuuuuw8mTJ7Fp0yYIgqDuwSFKMM3NzfB4PNi5cyc8Ho/kd+np6QCA/Px8fPrpp7LHycrKivi7tLQ0lJSURDWkpoQBEBFFLRAIwOfztQwdySktLcW8efMAAHPmzMFDDz2EYDCIKVOmAADmz5+PZ555Bp988glKSkrw2GOPYf369aisrAQAFBYWYvPmzXjuuedUB0ButxtHjx5FdnY2SktLNf1t9fX1aGpqwvXXX4+CggIAQElJiaZjECWSsrIynDt3DsePH8ewYcPa3CYpKQm9evXSfY7GxkZ8+umnEY9vBAZARGSp/v37t3zv8XiQnZ0tCShyc3MBAMePH8fevXvx448/4oorrpAc48yZMygrK9N03l27dmkOfoDzAdvll1+OkpISjB49GlVVVbjxxhtlP70Sxbvvv/8eX3zxRcv/Dx48iLq6OrRv3x49evTAhAkTcMcdd+DRRx9FWVkZGhoasH79epSUlOCqq67SfL6ZM2di3Lhx6Nq1K44fP47a2lqEQiFMmjTJyD9LggEQEVkqKSlJ8n+XyyX5mcvlAnC+m725uRkA8O677yI/P1+yn9/v13Teuro6XQGQx+PBunXrsHXrVqxduxZPPvkk5s6di23btqF79+6aj0cUD3bs2IHLLrus5f8zZswAAEyaNAkvvvgili1bhtraWtx///346quvkJ2djcrKSl3BDwAcOXIEt956KxoaGpCTk4NLL70UH330UUuvqxkYABGRIXw+H86dO2foMfv06QO/34/Dhw+rHu6KZPfu3bjuuut07etyuTBkyBAMGTIE8+fPR0FBAVauXNlyUyBKhNBLIQAAAcNJREFUNCNGjJDNc0tKSsLChQuxcOFCQ873+uuvG3IcLRgAEZEhunXrhm3btuHQoUNIT09H+/btoz5mRkYGZs6cifvuuw/Nzc0YOnQoQqEQtm7divT0dE3d483Nzfjkk09w9OhRpKWlIRAIqNpv27ZteP/991FVVYUOHTpg27Zt+Pe//43evXvr/bOIyAY4DZ6IDDFz5kx4PB706dMHOTk5OHz4sCHHffDBBzF//nwsWrQIvXv3xujRo/G3v/1NMvz04osvtgydRVJbW4vly5cjPz+/ZaaaGpmZmdi4cSOuuuoq9OjRA/PmzcOjjz6KMWPG6P6biCj2XALnchJRnKupqcGHH34YdSl+4HzX/4ABA/D4449r2s/lcmHlypWqKk0TUeyxB4iI4t6aNWuwePFiw4739NNPIz09XdVijNXV1S21T4gofrAHiIhI5KuvvsIPP/wAAOjatSt8Pp/s9sePH0coFAIA5OXlIS0tzfQ2ElH0GAARERGR43AIjIiIiByHARARERE5DgMgIiIichwGQEREROQ4DICIiIjIcRgAERERkeMwACIiIiLHYQBEREREjsMAiIiIiByHARARERE5zv8HGP2HS1ACyMEAAAAASUVORK5CYII=", - "text/plain": [ - "
    " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots()\n", - "\n", - "ax.plot(t, chirp_2, label ='chirp from multiple reflectors')\n", - "ax.set_xlabel('time, $t$ [s]')\n", - "ax.set_ylabel('chirp voltage [V]')\n", - "ax.set_xlim(0, 1e-5)\n", - "ax.legend()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Finally, let's check that we can extract the frequency information from the chirps and use it get the time delays we used to produce them. \n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "def chirp_fft(t,chirp):\n", - " sampling_interval = t[1]-t[0]\n", - " sampling_frequency = 1/ sampling_interval\n", - " no_of_samples = len(chirp) \n", - " S = np.fft.fft(chirp)/no_of_samples \n", - " indexes = np.arange(no_of_samples) \n", - " frequencies = indexes * sampling_frequency/no_of_samples\n", - " dT = frequencies/K\n", - " return S, frequencies, dT\n" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAicAAAE6CAYAAADN8PIFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABIA0lEQVR4nO3deVhUZfsH8O+wb4IKipBslYKKiWIlbrgUikupmZYlolD5usdrqVm5ZFqaS76KSypkuaWimZlGCmpqLgQqYeYCgThEYAJuIPD8/vDHxDAzMDMMzAG+n+uaq+bhOefcz5y5j/ec88wZmRBCgIiIiEgiTIwdABEREVF5LE6IiIhIUlicEBERkaSwOCEiIiJJYXFCREREksLihIiIiCSFxQkRERFJCosTIiIikhQWJ0RERCQpLE4k5v3334e7uzvMzMzQuHFjo8aydetWrFixQu3fZDIZ5s6dW6vx6Orw4cPo3LkzbG1tIZPJsHfvXo19ExMTERgYCAcHB8hkMo3jJjIU5rrhaJvrN2/exNy5c5GUlKTyt7lz50Imk9VsoAaQlpYGmUyG6OhonZeNj4+HTCZDfHy8weMyNDNjB0D/+vbbb/Hxxx9j9uzZCA4OhqWlpVHj2bp1K5KTkzFt2jSVv506dQotW7as/aC0JITAiBEj0Lp1a+zbtw+2trbw9vbW2H/cuHG4e/cutm/fjiZNmsDT07P2gqUGh7luOLrk+s2bNzFv3jx4enrCz89P6W/h4eHo379/LURM2mBxIiHJyckAgClTpqB58+ZGjqZyXbp0MXYIlbp58yZu3bqFoUOHom/fvlX2T05OxhtvvIHg4OBK+92/fx9WVlZ14hMWSRdz3XB0zXVNWrZsKekirMERDciVK1dEaGioePLJJ4W1tbVwdXUVgwYNEhcuXFDqV1JSIj766CPRunVrYWVlJRwcHET79u3FihUrKl3//fv3RUREhOjQoYOwt7cXTZo0EV26dBF79+6tMjYPDw8BQOkxZ84cIYRQ+v+Ky4wZM0bxPCoqSgAQR44cEePHjxeOjo6iadOmYujQoSIzM1Nl+S1btoguXboIW1tbYWtrKzp06CA2bNgghBAiMDBQJZ7ybxd1MV28eFG88MILonHjxsLS0lJ06NBBREdHK/WJi4sTAMTWrVvFe++9J1xcXESjRo1E3759xe+//17l6ySEEMePHxd9+vQRdnZ2wtraWgQEBIj9+/cr/j5nzhyVuD08PNSuq+w1UzfOsr8dOnRIjB07Vjg5OQkA4v79+0IIIbZv3y66dOkibGxshK2trQgKChK//vqr2m20bt1aWFhYCB8fH/Hll1+KMWPGKMVU9rrExcUpLZuamioAiKioKKX2s2fPisGDB4smTZoIS0tL4efnJ3bs2KF2bIZ4P8yfP1+YmpqK9PR0leXGjh0rmjZtqnhdpIC5roy5/m88ml77snWV5+HhIQYOHCi+++474efnJ6ysrISPj4/47rvvFPvBx8dH2NjYiKefflqcPXtWZbva5KommZmZ4uWXXxZ2dnbC3t5ejBgxQpw6dUrvY4K648zZs2fFyJEjhYeHh7CyshIeHh7ilVdeEWlpaYo+qampwtTUVCxcuFAlxqNHjwoA4ptvvtFqTNpqUHNObt68CUdHR3zyySc4ePAgVq9eDTMzMzz77LO4fPmyot/ixYsxd+5cvPrqq/j++++xY8cOhIWF4fbt25Wuv7CwELdu3cL06dOxd+9ebNu2Dd27d8ewYcOwefPmSpfds2cPwsLCAAAHDx7EqVOnEB4ertc4w8PDYW5ujq1bt2Lx4sWIj4/H66+/rtTnww8/xGuvvQZXV1dER0djz549GDNmDP78808AQGRkJLp164YWLVrg1KlTiocmly9fRteuXfHbb79h5cqViImJQdu2bREaGorFixer9H/vvffw559/YsOGDVi/fj2uXLmCwYMHo6SkpNKxHT16FH369EFeXh42btyIbdu2oVGjRhg8eDB27NihGH9MTAwAYPLkyTh16hT27Nmjdn0DBw5UjGv48OFqxzlu3DiYm5vjq6++wq5du2Bubo6FCxfi1VdfRdu2bfHNN9/gq6++QkFBAXr06IGUlBTFstHR0Rg7dizatGmD3bt34/3338dHH32EI0eOVDrOysTFxaFbt264ffs21q5di2+//RZ+fn4YOXKk2uvQhng/vPXWWzAzM8O6deuUlrt16xa2b9+OsLAwWFlZ6T0mQ2Ou/4u5/kinTp0QFRUF4NF8n7JxVvXanz9/HrNmzcKMGTMQExMDBwcHDBs2DHPmzMGGDRuwcOFCbNmyBXl5eRg0aBDu37+vWFbXXC3v/v37eO655/Djjz9i0aJF2LlzJ1q0aIGRI0eq9K3OdtLS0uDt7Y0VK1bg0KFD+PTTTyGXy/H0008jJycHAODp6YkXXngBa9euVdlvq1atgqurK4YOHVrpdnRm0FKnjikuLhZFRUWiVatW4u2331a0Dxo0SPj5+Rlk/Q8fPhRhYWGiY8eOVfYvq9z//vtvpXbo+GlqwoQJSv0WL14sAAi5XC6EEOL69evC1NRUvPbaa5XGM3DgQI2fQirG9MorrwhLS0uVT9bBwcHCxsZG3L59Wwjxb+U+YMAApX7ffPONACBOnTpVaUxdunQRzZs3FwUFBYq24uJi4evrK1q2bClKS0uFEP+ecViyZEml6ys/nokTJyq1lb2eISEhSu3p6enCzMxMTJ48Wam9oKBAtGjRQowYMUII8ehTuaurq+jUqZMiLiGESEtLE+bm5nqfOfHx8REdO3YUDx8+VOo7aNAg4eLiIkpKSpTiN9T7YcyYMaJ58+aisLBQ0fbpp58KExMTkZqaWumyxsZcZ64L8egsQcV8KqPpzIm1tbW4ceOGoi0pKUkAEC4uLuLu3buK9r179woAYt++fYo2bXNVnTVr1ggA4ttvv1Vqf+ONN/Q+Jmg6zpRXXFws7ty5I2xtbcXnn3+uaC9bds+ePYq2zMxMYWZmJubNm6dxffpqUGdOiouLsXDhQrRt2xYWFhYwMzODhYUFrly5gkuXLin6PfPMMzh//jwmTJiAQ4cOIT8/X+tt7Ny5E926dYOdnR3MzMxgbm6OjRs3Kq2/pr3wwgtKz5966ikAUHxSio2NRUlJCSZOnGiwbR45cgR9+/aFm5ubUntoaCju3bun8kmsqhjVuXv3Lk6fPo3hw4fDzs5O0W5qaorRo0fjxo0bSp+KDeWll15Sen7o0CEUFxcjJCQExcXFioeVlRUCAwMVM+EvX76MmzdvYtSoUUpzVDw8PNC1a1e9Yrl69Sp+//13vPbaawCgtP0BAwZALpervAaGej9MnToV2dnZ2LlzJwCgtLQUa9aswcCBAyU3gZi5zlw3FD8/Pzz22GOK523atAEA9OrVCzY2NirtZePSJ1fLi4uLQ6NGjVRev1GjRik9r+527ty5gxkzZuDJJ5+EmZkZzMzMYGdnh7t37yq9l3v16oUOHTpg9erVira1a9dCJpPhzTff1Lh+fTWo4iQiIgIffPABhgwZgu+++w6nT5/G2bNn0aFDB6VTcbNmzcJnn32GX375BcHBwXB0dETfvn1x7ty5StcfExODESNG4LHHHsPXX3+NU6dO4ezZsxg3bhwePHhQ08NTcHR0VHpe9k2AsjH+/fffAGDQyV+5ublwcXFRaXd1dVX8XZcY1fnnn38ghNBpO4ZQcXt//fUXAODpp5+Gubm50mPHjh2KU6FlsbRo0UJlneratFG27enTp6tse8KECQCg2H4ZQ70fOnbsiB49eigOTvv370daWhomTZqk11hqEnOduW4oTZs2VXpuYWFRaXvZ/tcnV8vLzc2Fs7OzSnvFY0d1tzNq1CisWrUK4eHhOHToEM6cOYOzZ8+iWbNmKvtoypQpOHz4MC5fvoyHDx/iiy++wPDhw/U+nlWmQX1b5+uvv0ZISAgWLlyo1J6Tk6N0nwEzMzNEREQgIiICt2/fxk8//YT33nsP/fr1Q0ZGhlK1XHH9Xl5e2LFjh9In5cLCwmrFbWlpqXYd+iZns2bNAAA3btxQ+fSjL0dHR8jlcpX2mzdvAgCcnJyqvY0mTZrAxMSkxrdTUcVv5pRtY9euXfDw8NC4XNlBOSsrS+VvFdvK5mtU3M8VDypl2541axaGDRumdruVfWVaHV3eD1OmTMHLL7+MX3/9FatWrULr1q3x/PPP67S92sBcf4S5bjzVzVVHR0ecOXNGpb3isaM628nLy8P+/fsxZ84czJw5U9FeNqeqolGjRmHGjBlYvXo1unTpgqysLIOelSuvQZ05kclkKvcT+P7775GZmalxmcaNG2P48OGYOHEibt26hbS0tErXb2FhoXSwysrKwrffflutuD09PXHhwgWltiNHjuDOnTt6rS8oKAimpqZYs2ZNpf0sLS0r/XRTXt++fXHkyBHFgaPM5s2bYWNjY5CvI9ra2uLZZ59FTEyMUlylpaX4+uuv0bJlS7Ru3bra26lKv379YGZmhmvXrqFz585qH8CjA4KLiwu2bdsGIYRi+T///BMnT55UWmfZZZGK+3nfvn1Kz729vdGqVSucP39e47YbNWqk03i0fT8AwNChQ+Hu7o7//ve/+OmnnzBhwgRJfq2auf4Ic12ZNmdtDKW6udq7d28UFBSoHAO2bt1qsO3IZDIIIVRyZcOGDWonLFtZWeHNN9/El19+iWXLlsHPzw/dunXT9iXRSYM6czJo0CBER0fDx8cHTz31FBISErBkyRKVU56DBw+Gr68vOnfujGbNmuHPP//EihUr4OHhgVatWlW6/piYGEyYMAHDhw9HRkYGPvroI7i4uODKlSt6xz169Gh88MEH+PDDDxEYGIiUlBSsWrUKDg4Oeq3P09MT7733Hj766CPcv38fr776KhwcHJCSkoKcnBzMmzcPANC+fXvExMRgzZo18Pf3h4mJieIf3ormzJmD/fv3o3fv3vjwww/RtGlTbNmyBd9//z0WL16sd6wVLVq0CM8//zx69+6N6dOnw8LCApGRkUhOTsa2bdtq5R9KT09PzJ8/H7Nnz8b169fRv39/NGnSBH/99RfOnDkDW1tbzJs3DyYmJvjoo48QHh6OoUOH4o033sDt27cxd+5cldOgLVq0wHPPPYdFixahSZMm8PDwwOHDhxXfRChv3bp1CA4ORr9+/RAaGorHHnsMt27dwqVLl/Drr78q5oToMh5t3g/Ao2v+EydOxIwZM2Bra4vQ0FC9XsOaxlx/hLmu7IknnoC1tTW2bNmCNm3awM7ODq6uropLRYZWnVwNCQnB8uXLERISgo8//hitWrXCgQMHcOjQIYNtx97eHj179sSSJUvg5OQET09PHD16FBs3btR41+IJEyZg8eLFSEhIwIYNG/R6XbRi8Cm2EvbPP/+IsLAw0bx5c2FjYyO6d+8ujh8/LgIDA0VgYKCi39KlS0XXrl2Fk5OTsLCwEO7u7iIsLEzpe9+afPLJJ8LT01NYWlqKNm3aiC+++ELtLHB1NM3gLywsFO+++65wc3MT1tbWIjAwUCQlJWmcwV/xu/aaZmhv3rxZPP3008LKykrY2dmJjh07Ks0Av3Xrlhg+fLho3LixkMlkWt37YPDgwcLBwUFYWFiIDh06qMyKL4tl586dSu2a7uehTtm9D2xtbYW1tbXo0qWL4r4DFddniG/rqLt3gRCPZuf37t1b2NvbC0tLS+Hh4SGGDx8ufvrpJ6V+GzZsEK1atRIWFhaidevWYtOmTSr3ORFCCLlcLoYPHy6aNm0qHBwcxOuvvy7OnTun9nU5f/68GDFihGjevLkwNzcXLVq0EH369BFr166tMn593w9l0tLSBAAxfvx4ta+LFDDX45Tamev/2rZtm/Dx8RHm5uZa3+ekInXHC01xaJOrmty4cUO89NJLws7OTjRq1Ei89NJL4uTJk3ofE9S9P8q20aRJE9GoUSPRv39/kZycrPKeK69Xr16iadOm4t69e1WOQV8yIcqdbyaiWhEaGor4+PhKLx1I1f/+9z9MmTIFycnJaNeunbHDIaJalJ2dDQ8PD0yePFntfW0MpUFd1iEi/SUmJiI1NRXz58/Hiy++yMKEqAG5ceMGrl+/jiVLlsDExARTp06t0e2xOCEirQwdOhRZWVno0aMH1q5da+xwiKgWbdiwAfPnz4enpye2bNmidO+XmsDLOkRERCQpDeqrxERERCR9LE6IiIhIUlicEBERkaQ0uAmxpaWluHnzJho1aiTJO1sS1SVCCBQUFMDV1RUmJtL9rMO8JzKM2sr5Blec3Lx502C/MUFEj2RkZBj0x+UMjXlPZFg1nfMNrjgp+42BjIwM2NvbGzkaorotPz8fbm5uOv+eT21j3hMZRm3lfIMrTspO6drb2/MgRWQgUr9UwrwnMqyaznnpXiQmIiKiBonFCREREUkKixMiIiKSFKMXJ5GRkfDy8oKVlRX8/f1x/PhxjX3j4+Mhk8lUHr///nstRkxE1cW8J6LKGLU42bFjB6ZNm4bZs2cjMTERPXr0QHBwMNLT0ytd7vLly5DL5YpHq1atailiIqou5j0RVcWoxcmyZcsQFhaG8PBwtGnTBitWrICbmxvWrFlT6XLNmzdHixYtFA9TU9NaipiIqot5T0RVMVpxUlRUhISEBAQFBSm1BwUF4eTJk5Uu27FjR7i4uKBv376Ii4urtG9hYSHy8/OVHiR9/zt8Be/uOg/+aHb9wrwnTfLuPURY9Fnsv3DT2KGQBBitOMnJyUFJSQmcnZ2V2p2dnZGVlaV2GRcXF6xfvx67d+9GTEwMvL290bdvXxw7dkzjdhYtWgQHBwfFg3eJrBuWxv6Bb87dwPkbecYOhQyIeU+arDj8Bw7/no1JWxONHQpJgNFvwlbxRi5CCI03d/H29oa3t7fieUBAADIyMvDZZ5+hZ8+eapeZNWsWIiIiFM/L7m5HdcODhyXGDoFqAPOeKrp1t8jYIZCEGO3MiZOTE0xNTVU+LWVnZ6t8qqpMly5dcOXKFY1/t7S0VNwVkneHJDIu5j0RacNoxYmFhQX8/f0RGxur1B4bG4uuXbtqvZ7ExES4uLgYOjwiqgHMeyLShlEv60RERGD06NHo3LkzAgICsH79eqSnp2P8+PEAHp2azczMxObNmwEAK1asgKenJ9q1a4eioiJ8/fXX2L17N3bv3m3MYVAN4nzY+od5T0RVMWpxMnLkSOTm5mL+/PmQy+Xw9fXFgQMH4OHhAQCQy+VK9z4oKirC9OnTkZmZCWtra7Rr1w7ff/89BgwYYKwhEJGOmPekjrR/OpJqm0w0sO9q5ufnw8HBAXl5ebwOLWGeM78HAGx7owsCnnA0cjSkSV3Jp7oSZ0M2bXsi9iY9+hpx2icDjRwNaVJbuWT029cTERERlcfihIiIiCSFxQkRERFJCosTIiIikhQWJyRpAg1qvjYREYHFCRERSYCmny+ghonFCREREUkKixMiIiKSFBYnREREJCksToiIiEhSWJwQERGRpLA4ISIiIklhcULSxtucEBE1OCxOiIjI6HiXEyqPxQkRERFJCosTIiIikhQWJ0RERCQpLE6IiIhIUlicEBERkaSwOCEiIiJJYXFCksbbnBARNTwsToiIyPh4oxMqh8UJERERSQqLEyIiIpIUFidEREQkKSxOiIiISFJYnBAREZGksDghIiIiSWFxQpImeKMTIqIGh8UJEREZnYw3OqFyWJwQERGRpBi9OImMjISXlxesrKzg7++P48ePa7XciRMnYGZmBj8/v5oNkIgMjnlPRJUxanGyY8cOTJs2DbNnz0ZiYiJ69OiB4OBgpKenV7pcXl4eQkJC0Ldv31qKlIgMhXlPRFUxanGybNkyhIWFITw8HG3atMGKFSvg5uaGNWvWVLrcW2+9hVGjRiEgIKCWIiUiQ2HeE1FVjFacFBUVISEhAUFBQUrtQUFBOHnypMbloqKicO3aNcyZM0er7RQWFiI/P1/pQUTGwbwnIm0YrTjJyclBSUkJnJ2dldqdnZ2RlZWldpkrV65g5syZ2LJlC8zMzLTazqJFi+Dg4KB4uLm5VTt2qj0C/C5xfcK8JyJtGH1CrEym/PUxIYRKGwCUlJRg1KhRmDdvHlq3bq31+mfNmoW8vDzFIyMjo9oxE1H1MO+pIjW7nxow7T6G1AAnJyeYmpqqfFrKzs5W+VQFAAUFBTh37hwSExMxadIkAEBpaSmEEDAzM8OPP/6IPn36qCxnaWkJS0vLmhkEEemEeU9E2jDamRMLCwv4+/sjNjZWqT02NhZdu3ZV6W9vb4+LFy8iKSlJ8Rg/fjy8vb2RlJSEZ599trZCJyI9Me+JSBtGO3MCABERERg9ejQ6d+6MgIAArF+/Hunp6Rg/fjyAR6dmMzMzsXnzZpiYmMDX11dp+ebNm8PKykqlnYiki3lPRFUxanEycuRI5ObmYv78+ZDL5fD19cWBAwfg4eEBAJDL5VXe+4CI6hbmPRFVRSZEw/pptfz8fDg4OCAvLw/29vbGDoc08Jz5PQDgq7Bn0KNVMyNHQ5rUlXyqK3E2ZNN3nseuhBsAgLRPBho5GtKktnLJ6N/WISIiIiqPxQlJWsM6r0dERACLEyIikgDe5oTKY3FCREREksLihIiIiCSFxQkRERFJCosTIiIikhQWJ0RERCQpLE6IiIhIUlickKTxNidERA0PixMiIjI6GW90QuWwOCEiIiJJYXFCRERGx5+qoPJYnBAREZGksDghIiKj45wTKo/FCREREUkKixMiIiKSFBYnJGmCs+SIiBocFidERGR0MnDSCf2LxQkRERFJCosTIiIikhQWJ0RERCQpLE6IiIhIUlicEBERkaToXZxcu3YN77//Pl599VVkZ2cDAA4ePIjffvvNYMER8YvE0qIu7wHg0qVLRoyKiOobvYqTo0ePon379jh9+jRiYmJw584dAMCFCxcwZ84cgwZIRNKgKe8BYOHChUaMjOoD3r6eytOrOJk5cyYWLFiA2NhYWFhYKNp79+6NU6dOGSw4IpIOTXkPAGfPnjVSVERUH+lVnFy8eBFDhw5VaW/WrBlyc3OrHRQRSY+mvAeAW7du1XI0RFSf6VWcNG7cGHK5XKU9MTERjz32WLWDIiLp0ZT3AODi4lLL0RBRfaZXcTJq1CjMmDEDWVlZkMlkKC0txYkTJzB9+nSEhIQYOkYikgB1ef/LL78AAF599VUjR0dE9YlexcnHH38Md3d3PPbYY7hz5w7atm2Lnj17omvXrnj//fcNHSMRSYC6vA8ODgYAvPPOO0aOjojqE72KE3Nzc2zZsgV//PEHvvnmG3z99df4/fff8dVXX8HU1FSndUVGRsLLywtWVlbw9/fH8ePHNfb9+eef0a1bNzg6OsLa2ho+Pj5Yvny5PkMgIh2py/tz584BAPOeiAzKrDoLP/HEE3jiiSf0Xn7Hjh2YNm0aIiMj0a1bN6xbtw7BwcFISUmBu7u7Sn9bW1tMmjQJTz31FGxtbfHzzz/jrbfegq2tLd58883qDIWkijc6kZzyeZ+fn6/z8sx7IqqKTAih1eE/IiJC65UuW7ZMq37PPvssOnXqhDVr1ija2rRpgyFDhmDRokVarWPYsGGwtbXFV199pVX//Px8ODg4IC8vD/b29lotQ7XPc+b3AICo0KfR26e5kaNpuKrK+6KiIqxevRoTJ07EqlWrtFon857UmRVzAdvOZAAA0j4ZaORoSJPayiWtz5wkJiYqPU9ISEBJSQm8vb0BAH/88QdMTU3h7++v1fqKioqQkJCAmTNnKrUHBQXh5MmTWsd08uRJLFiwQGOfwsJCFBYWKp7r80mPqKHSJu+BRzdg1Abznoi0oXVxEhcXp/j/ZcuWoVGjRvjyyy/RpEkTAMA///yDsWPHokePHlqtLycnByUlJXB2dlZqd3Z2RlZWVqXLtmzZEn///TeKi4sxd+5chIeHa+y7aNEizJs3T6uYSBq0PJlHtaCqvP/zzz/h6emJfv36abU+5j1pwrSn8vSaELt06VIsWrRIcYACgCZNmmDBggVYunSpTuuSVbhnsRBCpa2i48eP49y5c1i7di1WrFiBbdu2aew7a9Ys5OXlKR4ZGRk6xUdEj2jKewBaX9Ipw7wnosroNSE2Pz8ff/31F9q1a6fUnp2djYKCAq3W4eTkBFNTU5VPS9nZ2Sqfqiry8vICALRv3x5//fUX5s6dq/E+C5aWlrC0tNQqJiLSTFPeA1D6nZ3KMO9JE/62DpWn15mToUOHYuzYsdi1axdu3LiBGzduYNeuXQgLC8OwYcO0WoeFhQX8/f0RGxur1B4bG4uuXbtqHYsQQunaMhHVDHV5v3fvXgDA4MGDtVoH856ItKHXmZO1a9di+vTpeP311/Hw4cNHKzIzQ1hYGJYsWaL1eiIiIjB69Gh07twZAQEBWL9+PdLT0zF+/HgAj07NZmZmYvPmzQCA1atXw93dHT4+PgAe3f/gs88+w+TJk/UZBhHpQFPeA9Dpci7znoiqoldxYmNjg8jISCxZsgTXrl2DEAJPPvkkbG1tdVrPyJEjkZubi/nz50Mul8PX1xcHDhyAh4cHAEAulyM9PV3Rv7S0FLNmzUJqairMzMzwxBNP4JNPPsFbb72lzzCoDhC80YlkqMv75s2bw9XVVafcZ94TUVW0vs9JfcH7HUifEAJesw4AADaFdkYfn8rnIpDx1JV8qitxNmSzYi5i25lHRSnvcyJdkrvPSXm9e/eudGb9kSNH9A6IiKRJXd4XFxcDAAYNGoRjx44ZIywiqof0Kk78/PyUnj98+BBJSUlITk7GmDFjDBEXNWAN61xe3aEu7xMSEgBA7Td4iHTDxKd/6VWcaPrRrblz52r9lUIiqlvU5X3ZKd6yibFERIag11eJNXn99dexadMmQ66SiOqAr7/+2tghUJ3HG53QvwxanJw6dQpWVlaGXCUR1QHMeyIyJL3OxVa80ZoQAnK5HOfOncMHH3xgkMCIAM4/kRJ1eX/jxg0AwNixY40REhHVU3oVJ/b29kqz9k1MTODt7Y358+cjKCjIYMERkXSoy3tPT0+cO3dO5VeGiXTF29dTeXoVJ9HR0QYOg4ikTl3e5+fnY8WKFbUeCxHVb3rNOXn88ceRm5ur0n779m08/vjj1Q6KiKRHU94DwFNPPVXL0RBRfaZXcZKWloaSkhKV9sLCQmRmZlY7KGrYOM1EmjTlPfDolvNERIai02Wdffv2Kf7/0KFDcHBwUDwvKSnB4cOH4enpabDgiMj4Ksv7goICAIC7u3utx0VE9ZdOxcmQIUMAADKZTOVOsObm5vD09NTp10mJSPqqynsA+Pjjj2s7LCKqx3QqTkpLSwEAXl5eOHv2LJycnGokKCKSjsryvuwOsf379zdWeERUD+n1bZ3U1FRDx0GkFu9zIh3MeyKqLVoXJytXrsSbb74JKysrrFy5stK+U6ZMqXZgRGR8VeX9gwcPAABr167Fu+++W9vhUT3C25xQeVoXJ8uXL8drr70GKysrjT/8Bzy6Ls3ihKh+qCrvyy75REZGsjghIoPRujgpf0qXp3eJGoaq8r5szsmFCxdqMywiqucM+sN/RIYgONGEiKhB0/rMSUREhNYrXbZsmV7BEJG0VJX3RUVFAID33nsPq1atqo2QiKgB0Lo4SUxM1KqfjL/eRFRvVJX3ZXeM5WUdIjIkrYuTuLi4moyDiCSoqrwvm3Oyf//+WoqIiBoCve5zUl5GRgZkMhlatmxpiHiIlHD2iTSV5b29vb2xQyGiekivCbHFxcX44IMP4ODgAE9PT3h4eMDBwQHvv/8+Hj58aOgYiUgC1OW9m5sbADDvqdo4I4DK06s4mTRpEtavX4/FixcjMTERiYmJWLx4MTZu3IjJkycbOkYikgB1eT9v3jwAwDvvvGPk6IioPtHrss62bduwfft2BAcHK9qeeuopuLu745VXXsHatWsNFiA1PLyUI03q8t7T0xNvv/02du/ejU2bNhkxOqrreAcBKk+vMydWVlbw9PRUaff09ISFhUV1YyIiCdKU98C/v05MRGQIehUnEydOxEcffYTCwkJFW2FhIT7++GNMmjTJYMERkXRoynsAePPNN40VFtUTnHNC5el1WScxMRGHDx9Gy5Yt0aFDBwDA+fPnUVRUhL59+2LYsGGKvjExMYaJlIiMSl3eJyUlAQAuXrzIvCcig9GrOGncuDFeeuklpbayWftEVD+py/sWLVpgy5YtcHBw4KUdIjIYvYqTqKgoQ8dBpBZ/Z0c61OV9fn4+tmzZgsjISN7zhIgMhj/8R0RERicDJ53Qv/QqTnJzczFx4kS0bdsWTk5OaNq0qdJDF5GRkfDy8oKVlRX8/f1x/PhxjX1jYmLw/PPPo1mzZrC3t0dAQAAOHTqkzxCISEfq8t7DwwMAFP/VFvOeiCqj12Wd119/HdeuXUNYWBicnZ31/rG/HTt2YNq0aYiMjES3bt2wbt06BAcHIyUlBe7u7ir9jx07hueffx4LFy5E48aNERUVhcGDB+P06dPo2LGjXjGQ9PBKjjSpy/v79+/jP//5DxYtWqT1epj3pI7gHY6oHJnQ46J+o0aN8PPPPytm7Ovr2WefRadOnbBmzRpFW5s2bTBkyBCtD3bt2rXDyJEj8eGHH2rVv+yHyvLy8niNXKKKikvR+v0fAADrR/sjqF0LI0dEgPq81yefmPekzvt7L+LrX9IBAGmfDDRyNKRJbeWSXpd1fHx8cP/+/WptuKioCAkJCQgKClJqDwoKwsmTJ7VaR2lpKQoKCiq9lFRYWIj8/HylBxHpjnlPNYlzTqg8vYqTyMhIzJ49G0ePHkVubq5eB4GcnByUlJTA2dlZqd3Z2RlZWVlarWPp0qW4e/cuRowYobHPokWL4ODgoHjwK89E+tGU9wCY90RkUHrf5yQvLw99+vRRahdCQCaToaSkROt1VZyvUraOqmzbtg1z587Ft99+i+bNm2vsN2vWLERERCie5+fn80BVh/AqtHRoynvg0YRY5j0RGYpexclrr70GCwsLbN26Ve8JsU5OTjA1NVX5tJSdna3yqaqiHTt2ICwsDDt37sRzzz1XaV9LS0tYWlrqHB8RKVOX93fv3sXAgQPx3XffabUO5j1pwtvXU3l6FSfJyclITEyEt7e33hu2sLCAv78/YmNjMXToUEV7bGwsXnzxRY3Lbdu2DePGjcO2bdswcCAnTRHVFnV5X3Y5p3v37lqtg3lPRNrQqzjp3LkzMjIyqlWcAEBERARGjx6Nzp07IyAgAOvXr0d6ejrGjx8P4NGp2czMTGzevBnAowNUSEgIPv/8c3Tp0kXx6cva2hoODg7VioWIKse8J6LaoldxMnnyZEydOhXvvPMO2rdvr/KbGk899ZRW6xk5ciRyc3Mxf/58yOVy+Pr64sCBA4obOsnlcqSnpyv6r1u3DsXFxZg4cSImTpyoaB8zZgyio6P1GQpJEO93IE3q8v7OnTsAHp1V6dq1q1brYd4TUVX0us+JiYnmL/noOiG2tvF+B9JXWFwC7/cPAgDWjfZHP97nRBI05b0QAiYmJsx7qpYPv03G5lN/AuB9TqSstnJJrzMnqampho6DiCROXd4XFBSgffv2OH/+vBEiIqL6Sq/ipOz0a0pKCtLT01FUVKT4m0wm0/l3NohI+tTl/b179wAAv/32G3x9fY0ZHhHVI3oVJ9evX8fQoUNx8eJFyGQyxc/al32lWMqnd6lu4e/sSIemvAeAUaNGYeTIkUaMjojqE73uEDt16lR4eXnhr7/+go2NDZKTk3Hs2DF07twZ8fHxBg6RiKRAXd7/8MOj30D6/vvvjRwd1XW8zQmVp1dxcurUKcyfPx/NmjWDiYkJTE1N0b17dyxatAhTpkwxdIxEJAHq8j4gIAAA8O677xo5OiKqT/QqTkpKSmBnZwfg0R0fb968CeDRNenLly8bLjpqkHgpR5o05T0AXL161VhhUT3BtKfy9CpOfH19ceHCBQCPfv588eLFOHHiBObPn4/HH3/coAESkTSoy/tffvkFAODp6WnEyIiovtGrOHn//fdRWloKAFiwYAH+/PNP9OjRAwcOHMDKlSsNGiARSYO6vO/fvz8A4NNPPzVmaFQPcM4JlafXt3X69eun+P/HH38cKSkpuHXrFpo0aaLXjwASkfSpy/u0tDR4eXkhMDDQiJERUX2jV3GiTtOmTQ21KiKqI5j3RFQT9LqsQ1R7OE2OiKihYXFCRERGxykBVB6LEyIiIpIUFidERGR0gjc4onJYnBAREZGksDghIiKj45wTKo/FCREREUkKixMiIiKSFBYnJGmcI0dE1PCwOCEiIiJJYXFCREREksLihCSHl3KIiBo2FidEREQkKSxOiIiISFJYnBAREZGksDghSeP0EyKihofFCRERGR3vXk/lsTghIiIiSWFxQpIjeDGHqMHhLQSoPBYnREREJCksToiIyOg454TKM3pxEhkZCS8vL1hZWcHf3x/Hjx/X2Fcul2PUqFHw9vaGiYkJpk2bVnuBEpHBMO+JqDJGLU527NiBadOmYfbs2UhMTESPHj0QHByM9PR0tf0LCwvRrFkzzJ49Gx06dKjlaInIEJj3RFQVoxYny5YtQ1hYGMLDw9GmTRusWLECbm5uWLNmjdr+np6e+PzzzxESEgIHB4dajpaMgZPk6h/mPRFVxWjFSVFRERISEhAUFKTUHhQUhJMnTxpsO4WFhcjPz1d6EJFxMO9JExk46YT+ZbTiJCcnByUlJXB2dlZqd3Z2RlZWlsG2s2jRIjg4OCgebm5uBls3EemGeU9E2jD6hFhZhSnaQgiVtuqYNWsW8vLyFI+MjAyDrZtqBi/l1H/Me6qI9zei8syMtWEnJyeYmpqqfFrKzs5W+VRVHZaWlrC0tDTY+ohIf8x7ItKG0c6cWFhYwN/fH7GxsUrtsbGx6Nq1q5GiIqKaxLwnTTjnhMoz2pkTAIiIiMDo0aPRuXNnBAQEYP369UhPT8f48eMBPDo1m5mZic2bNyuWSUpKAgDcuXMHf//9N5KSkmBhYYG2bdsaYwhEpCPmPRFVxajFyciRI5Gbm4v58+dDLpfD19cXBw4cgIeHB4BHN1+qeO+Djh07Kv4/ISEBW7duhYeHB9LS0mozdCLSE/OeiKpi1OIEACZMmIAJEyao/Vt0dLRKm+BsyQaFk+TqJ+Y9EVXG6N/WISIi4m/rUHksToiIiEhSWJyQ5PAEPlHDwyt3VB6LEyIiIpIUFidERGR0nHNC5bE4ISIiIklhcUJERESSwuKEJI2T5IiIGh4WJ0REZHScckLlsTghyeHdQIkaHmY9lcfihIiIiCSFxQkRERkdL+tQeSxOiIiISFJYnBAREZGksDghSeMkOSKihofFCRERGR1vX0/lsTghIiIiSWFxQpLDSzlEDQ9vb0TlsTghIiIiSWFxQkRERsc5J1QeixMiIiKSFBYnREREJCksTkjS+COAREQND4sTIiIyOhknnVA5LE6IiIhIUlickOTwSg5Rw8NLuFQeixMiIiKSFBYnRERkdJxzQuWxOCEiIiJJYXFCREREksLihIiIiCTF6MVJZGQkvLy8YGVlBX9/fxw/frzS/kePHoW/vz+srKzw+OOPY+3atbUUKREZCvOeKuKMEyrPqMXJjh07MG3aNMyePRuJiYno0aMHgoODkZ6errZ/amoqBgwYgB49eiAxMRHvvfcepkyZgt27d9dy5ESkL+Y9EVXFqMXJsmXLEBYWhvDwcLRp0wYrVqyAm5sb1qxZo7b/2rVr4e7ujhUrVqBNmzYIDw/HuHHj8Nlnn9Vy5FST8u49VPx/cQnvfVDfMO9JnX/uFSn+n/c8ITNjbbioqAgJCQmYOXOmUntQUBBOnjypdplTp04hKChIqa1fv37YuHEjHj58CHNzc5VlCgsLUVhYqHien58PABi6+gTMrGwhoJwEFXNCKP1NaPybugZdli3/5ypjqiRvDbqdSpat+NfqvG4Vl827/29x8t+d5zHvu99gbWEKU5kMMpkMMtmjn1eXQQYT2aOvIMoAQFYzp4Zr6iuONXUauybClWmItvjBXZ3WU9/zXvW9bfy8Vx2bLmNX2ZLGZXUZe8X1lpYKFBQWK557v38QdlZmsDQzgcn/v6HL8t7k//NdcSyoGKKB1KW8r6lvYavLe11zXl9GK05ycnJQUlICZ2dnpXZnZ2dkZWWpXSYrK0tt/+LiYuTk5MDFxUVlmUWLFmHevHkq7Vey78DEsrQaI6Dakv+gGPkPiqvuSLWutPCeTv2Z96SNopJS3LpbVHVHqnW65ry+jFaclKlYnQohKq1Y1fVX115m1qxZiIiIUDzPz8+Hm5sbNoR0hm2jRo+WVdlIxaf/NlTcTMVlK8ZR/qlqX80b1nk7lay3YvVbWZWty7I69a1iO+V72FmaoXkjS8hkwN8Fhch/UIwHD0tQKgSEwKP/4tG+F+LRJ7LS0oqfBw2jps4u10y0UPOxvmZXebegAP1W6L7O+pz3VffVvGGdtlPFeiuLXyUCXcZerddJZcuK9maNLGFvZY6i4lL8lf8A94pKUFhcoshxIQRKBQCUHQceHQtqQp3K+1o+lOib87oyWnHi5OQEU1NTlU9L2dnZKp+SyrRo0UJtfzMzMzg6OqpdxtLSEpaWlirtXZ5whL29vZ7RU21pbm+F5txNkpWfb6FTf+Y9VcXCzARuTW2MHQZpoGvO68toE2ItLCzg7++P2NhYpfbY2Fh07dpV7TIBAQEq/X/88Ud07txZ7XVnIpIW5j0RaUUY0fbt24W5ubnYuHGjSElJEdOmTRO2trYiLS1NCCHEzJkzxejRoxX9r1+/LmxsbMTbb78tUlJSxMaNG4W5ubnYtWuX1tvMy8sTAEReXp7Bx0PU0OiTT8x7orqrtnLJqHNORo4cidzcXMyfPx9yuRy+vr44cOAAPDw8AAByuVzp3gdeXl44cOAA3n77baxevRqurq5YuXIlXnrpJWMNgYh0xLwnoqrIhGhYXyjPz8+Hg4MD8vLyeO2ZqJrqSj7VlTiJpK62csnot68nIiIiKo/FCREREUkKixMiIiKSFKPfhK22lU2xKbudNRHpryyPpD51jXlPZBi1lfMNrjjJzc0FALi5uRk5EqL6Izc3Fw4ODsYOQyPmPZFh1XTON7jipGnTpgCA9PR0SR9MdVF2a+6MjIx6800EjqluyMvLg7u7uyKvpIp5XzdwTNJXWznf4IoTE5NH02wcHBzqxRulPHt7e46pDqiPYyrLK6li3tctHJP01XTOS/uIQkRERA0OixMiIiKSlAZXnFhaWmLOnDlqf7G0ruKY6gaOyXjqSpy64Jjqhvo2ptoaT4O7fT0RERFJW4M7c0JERETSxuKEiIiIJIXFCREREUkKixMiIiKSlHpZnERGRsLLywtWVlbw9/fH8ePHK+1/9OhR+Pv7w8rKCo8//jjWrl1bS5FqT5cxxcfHQyaTqTx+//33Woy4cseOHcPgwYPh6uoKmUyGvXv3VrmMlPeTruOpC/to0aJFePrpp9GoUSM0b94cQ4YMweXLl6tcrjb2U03k+O7du9G2bVtYWlqibdu22LNnj8HjroyhxxQdHa32PfbgwYOaHIYSXcYkl8sxatQoeHt7w8TEBNOmTVPbry7tJ23GVNf2U0xMDJ5//nk0a9YM9vb2CAgIwKFDh1T6VXs/iXpm+/btwtzcXHzxxRciJSVFTJ06Vdja2oo///xTbf/r168LGxsbMXXqVJGSkiK++OILYW5uLnbt2lXLkWum65ji4uIEAHH58mUhl8sVj+Li4lqOXLMDBw6I2bNni927dwsAYs+ePZX2l/p+0nU8dWEf9evXT0RFRYnk5GSRlJQkBg4cKNzd3cWdO3c0LlMb+6kmcvzkyZPC1NRULFy4UFy6dEksXLhQmJmZiV9++cVgcdf2mKKiooS9vb3S+0sul9fKeITQfUypqaliypQp4ssvvxR+fn5i6tSpKn3q2n7SZkx1bT9NnTpVfPrpp+LMmTPijz/+ELNmzRLm5ubi119/VfQxxH6qd8XJM888I8aPH6/U5uPjI2bOnKm2/7vvvit8fHyU2t566y3RpUuXGotRV7qOqewfvn/++acWoqs+bf4xrwv7qYwuxUld2UdCCJGdnS0AiKNHj2rsUxv7qSZyfMSIEaJ///5Kffr16ydeeeUVA0VduZoYU1RUlHBwcDB4rNrSdUzlBQYGqv2HvK7tp/I0jaku76cybdu2FfPmzVM8N8R+qleXdYqKipCQkICgoCCl9qCgIJw8eVLtMqdOnVLp369fP5w7dw4PHz6ssVi1pc+YynTs2BEuLi7o27cv4uLiajLMGif1/aSvurSP8vLyAKDSH/yq6f1UUzmuqU9VOWYINXncunPnDjw8PNCyZUsMGjQIiYmJhh+AGtU5blWmru0nbdXl/VRaWoqCggKl44Ih9lO9Kk5ycnJQUlICZ2dnpXZnZ2dkZWWpXSYrK0tt/+LiYuTk5NRYrNrSZ0wuLi5Yv349du/ejZiYGHh7e6Nv3744duxYbYRcI6S+n3RV1/aREAIRERHo3r07fH19Nfar6f1UUzmuqY+mdRpSTY3Jx8cH0dHR2LdvH7Zt2wYrKyt069YNV65cqZmBlKPPmLRR1/aTNur6flq6dCnu3r2LESNGKNoMsZ/q5a8Sy2QypedCCJW2qvqrazcmXcbk7e0Nb29vxfOAgABkZGTgs88+Q8+ePWs0zppUF/aTturaPpo0aRIuXLiAn3/+ucq+tbGfaiLHdV2noRl6TF26dEGXLl0Uf+/WrRs6deqE//3vf1i5cqWhwq5UTbymdW0/VaUu76dt27Zh7ty5+Pbbb9G8eXODrLNMvTpz4uTkBFNTU5XqLDs7W6WKK9OiRQu1/c3MzODo6FhjsWpLnzGp06VLl1qpxGuK1PeTIUh1H02ePBn79u1DXFwcWrZsWWnfmt5PNZXjmvrokmP6qq3jlomJCZ5++ulaeY8Z6rhVUV3bT/qoK/tpx44dCAsLwzfffIPnnntO6W+G2E/1qjixsLCAv78/YmNjldpjY2PRtWtXtcsEBASo9P/xxx/RuXNnmJub11is2tJnTOokJibCxcXF0OHVGqnvJ0OQ2j4SQmDSpEmIiYnBkSNH4OXlVeUyNb2fairHNfXRJcf0VVvHLSEEkpKSauU9ZqjjVkV1bT/poy7sp23btiE0NBRbt27FwIEDVf5ukP2k9dTZOqLsa1EbN24UKSkpYtq0acLW1lakpaUJIYSYOXOmGD16tKJ/2Vfy3n77bZGSkiI2btwoqa+oCqH7mJYvXy727Nkj/vjjD5GcnCxmzpwpAIjdu3cbawgqCgoKRGJiokhMTBQAxLJly0RiYqLi62t1bT/pOp66sI/+85//CAcHBxEfH6/0Fcd79+4p+hhjP9VEjp84cUKYmpqKTz75RFy6dEl88sknRvmKqiHHNHfuXHHw4EFx7do1kZiYKMaOHSvMzMzE6dOnJTkmIYQih/z9/cWoUaNEYmKi+O233xR/r2v7SZsx1bX9tHXrVmFmZiZWr16tdFy4ffu2oo8h9lO9K06EEGL16tXCw8NDWFhYiE6dOil99XHMmDEiMDBQqX98fLzo2LGjsLCwEJ6enmLNmjW1HHHVdBnTp59+Kp544glhZWUlmjRpIrp37y6+//57I0StWdlXaSs+xowZI4Soe/tJ1/HUhX2kbjwARFRUlKKPsfZTTeT4zp07hbe3tzA3Nxc+Pj61XigaekzTpk0T7u7uwsLCQjRr1kwEBQWJkydP1sZQFHQdk7r3m4eHh1KfurafqhpTXdtPgYGBlR7rylR3P8mE+P9ZVEREREQSUK/mnBAREVHdx+KEiIiIJIXFCREREUkKixMiIiKSFBYnREREJCksToiIiEhSWJwQERGRpLA4IarHjh07hsGDB8PV1RUymQx79+7Vafm5c+dCJpOpPGxtbWsmYCIisDipl4QQePPNN9G0aVPIZDIkJSUZOyRJCg0NVfxjq+s/2lWJj49XrHvIkCEGXbcu7t69iw4dOmDVqlV6LT99+nTI5XKlR9u2bfHyyy8bOFKqaWXvydu3bxs7FADQOe9CQ0NrPJfKF+MrVqzQaplevXopluGx1nBYnNRDBw8eRHR0NPbv3w+5XA5fX19jhyRZ/fv3h1wuR3BwsKJN00FTl4Nj165dIZfLMWLECANFqp/g4GAsWLAAw4YNU/v3oqIivPvuu3jsscdga2uLZ599FvHx8Yq/29nZoUWLForHX3/9hZSUFISFhdXSCEgfvXr1wrRp05Tayt6TDg4OxgmqjmjXrh3kcjnefPNNrfrHxMTgzJkzNRxVw2Nm7ADI8K5duwYXF5dKfwGyqKgIFhYWtRiVNFlaWqJFixYGX6+FhQVatGgBa2trFBYWGnz9hjJ27FikpaVh+/btcHV1xZ49e9C/f39cvHgRrVq1Uum/YcMGtG7dGj169DBCtFQdZe9JqpyZmZlOr1PTpk2Rn59fgxE1TDxzUs+EhoZi8uTJSE9Ph0wmg6enJ4BHn6QmTZqEiIgIODk54fnnnwcApKSkYMCAAbCzs4OzszNGjx6NnJwcxfru3r2LkJAQ2NnZwcXFBUuXLlX5VKbuTEPjxo0RHR2teJ6ZmYmRI0eiSZMmcHR0xIsvvoi0tDSluIcMGYLPPvsMLi4ucHR0xMSJE/Hw4UNFn8LCQrz77rtwc3ODpaUlWrVqhY0bN0IIgSeffBKfffaZUgzJyckwMTHBtWvXqveiqpGWlqZ2LkavXr0Mvq2acu3aNWzbtg07d+5Ejx498MQTT2D69Ono3r07oqKiVPoXFhZiy5YtPGsicaGhoTh69Cg+//xzxfsyLS1N5bJOdHQ0GjdujP3798Pb2xs2NjYYPnw47t69iy+//BKenp5o0qQJJk+ejJKSEsX6qzrbps6VK1fQs2dPWFlZoW3btoiNjVXpU9UxoqKDBw+ie/fuaNy4MRwdHTFo0CClXO/Tpw8mTZqktExubi4sLS1x5MiRql/IcubOnQt3d3dYWlrC1dUVU6ZM0Wl50h2Lk3rm888/x/z589GyZUvI5XKcPXtW8bcvv/wSZmZmOHHiBNatWwe5XI7AwED4+fnh3LlzOHjwIP766y+lSxHvvPMO4uLisGfPHvz444+Ij49HQkKCTjHdu3cPvXv3hp2dHY4dO4aff/4ZdnZ26N+/P4qKihT94uLicO3aNcTFxeHLL79EdHS0UoETEhKC7du3Y+XKlbh06RLWrl0LOzs7yGQyjBs3TuUf1E2bNin+0TU0Nzc3pXkYiYmJcHR0RM+ePQ2+rZry66+/QgiB1q1bw87OTvE4evSo2oIuJiYGBQUFCAkJMUK0pK3PP/8cAQEBeOONNxTvTzc3N7V97927h5UrV2L79u04ePAg4uPjMWzYMBw4cAAHDhzAV199hfXr12PXrl2KZcaOHYsTJ05g+/btuHDhAl5++WX0798fV65cUbuN0tJSDBs2DKampvjll1+wdu1azJgxQyUObY4R5d29excRERE4e/YsDh8+DBMTEwwdOhSlpaUAgPDwcGzdulXpzOWWLVvg6uqK3r17a/167tq1C8uXL8e6detw5coV7N27F+3bt9d6edKTnr+wTBK2fPlylZ8ZDwwMFH5+fkptH3zwgQgKClJqy8jIEADE5cuXRUFBgbCwsBDbt29X/D03N1dYW1uLqVOnKtoAiD179iitx8HBQURFRQkhhNi4caPw9vYWpaWlir8XFhYKa2trcejQISHEo5/l9vDwEMXFxYo+L7/8shg5cqQQQojLly8LACI2NlbtmG/evClMTU3F6dOnhRBCFBUViWbNmono6GgNr9Kjbb744osq7QCElZWVsLW1VXqYmZmp7X///n3x7LPPikGDBomSkhKttmEMFffT9u3bhampqfj999/FlStXlB5yuVxl+T59+oghQ4bUYsSkr8DAQKUcFUKIuLg4AUD8888/QgghoqKiBABx9epVRZ+33npL2NjYiIKCAkVbv379xFtvvSWEEOLq1atCJpOJzMxMpXX37dtXzJo1S20shw4dEqampiIjI0PR9sMPPyi9H7U9RlSWS9nZ2QKAuHjxohBCiAcPHoimTZuKHTt2KPr4+fmJuXPnalzHnDlzRIcOHZTali5dKlq3bi2Kioo0LpeamioAiMTERI19SDecc9KAdO7cWel5QkIC4uLiYGdnp9L32rVruH//PoqKihAQEKBob9q0Kby9vXXabkJCAq5evYpGjRoptT948EDpE3q7du1gamqqeO7i4oKLFy8CAJKSkmBqaorAwEC123BxccHAgQOxadMmPPPMM9i/fz8ePHig97dKli9fjueee06pbcaMGUqnt8uEhYWhoKAAsbGxMDGpOycjO3bsiJKSEmRnZ1c5hyQ1NRVxcXHYt29fLUVHtcHGxkbpzKKzszM8PT2VjgnOzs7Izs4GoHy2rbzCwkI4Ojqq3calS5fg7u6Oli1bKtrKH1MA7Y8R5V27dg0ffPABfvnlF+Tk5CjOmKSnp8PX1xeWlpZ4/fXXsWnTJowYMQJJSUk4f/68zt/Me/nll7FixQo8/vjj6N+/PwYMGIDBgwfDzIz/fNYkvroNSMV7U5SWlmLw4MH49NNPVfq6uLhoPE1bkUwmgxBCqa38XJHS0lL4+/tjy5YtKss2a9ZM8f/m5uYq6y074FhbW1cZR3h4OEaPHo3ly5cjKioKI0eOhI2NjVZjqKhFixZ48sknldoaNWqk8jXMBQsW4ODBgzhz5ozKgVUK7ty5g6tXryqep6amIikpCU2bNkXr1q3x2muvISQkBEuXLkXHjh2Rk5ODI0eOoH379hgwYIBiuU2bNsHFxUXpW01U96nLucrysLS0FKampkhISFD6IAFA7YccACrHhrJ1lqftMaK8wYMHw83NDV988QVcXV1RWloKX19fpctA4eHh8PPzw40bN7Bp0yb07dsXHh4eateniZubGy5fvozY2Fj89NNPmDBhApYsWYKjR4+qvFZkOCxOGrBOnTph9+7d8PT0VPsp4Mknn4S5uTl++eUXuLu7AwD++ecf/PHHH0pnMJo1awa5XK54fuXKFdy7d09pOzt27EDz5s1hb2+vV6zt27dHaWkpjh49qnJGo8yAAQNga2uLNWvW4IcffsCxY8f02pa2du/ejfnz5+OHH36okXkthnDu3Dml6+sREREAgDFjxiA6OhpRUVFYsGAB/vvf/yIzMxOOjo4ICAhQKkxKS0sRHR2N0NBQlX+QSJosLCzUnuWrLl3OtpVp27Yt0tPTcfPmTbi6ugIATp06pdRH12NEbm4uLl26hHXr1ini+Pnnn1X6tW/fHp07d8YXX3yBrVu34n//+59WMVdkbW2NF154AS+88AImTpwIHx8fXLx4EZ06ddJrfVS1unMOmgxu4sSJuHXrFl599VWcOXMG169fx48//ohx48ahpKQEdnZ2CAsLwzvvvIPDhw8jOTkZoaGhKpcu+vTpg1WrVuHXX3/FuXPnMH78eKVPFK+99hqcnJzw4osv4vjx40hNTcXRo0cxdepU3LhxQ6tYPT09MWbMGIwbNw579+5Famoq4uPj8c033yj6mJqaIjQ0FLNmzcKTTz6pcurYkJKTkxESEoIZM2agXbt2yMrKQlZWFm7dulVj29RHr169IIRQeZRNNDY3N8e8efOQmpqKoqIiyOVyxMTEKE34MzExQUZGBj7++GMjjYJ05enpidOnTyMtLU3pkkd1lT/bFhMTg9TUVJw9exaffvopDhw4oHaZ5557Dt7e3ggJCcH58+dx/PhxzJ49W6mPrseIsm/0rF+/HlevXsWRI0cUhXdF4eHh+OSTT1BSUoKhQ4fqPObo6Ghs3LgRycnJuH79Or766itYW1vrfAaGdMPipAFzdXXFiRMnUFJSgn79+sHX1xdTp06Fg4ODogBZsmQJevbsiRdeeAHPPfccunfvDn9/f6X1LF26FG5ubujZsydGjRqF6dOnK11OsbGxwbFjx+Du7o5hw4ahTZs2GDduHO7fv6/TmZQ1a9Zg+PDhmDBhAnx8fPDGG2/g7t27Sn3CwsJQVFSEcePGVeOVqdq5c+dw7949LFiwAC4uLoqHppudEdWm6dOnw9TUFG3btkWzZs2Qnp5usHVHRUUhJCQE//3vf+Ht7Y0XXngBp0+f1viNIBMTE+zZsweFhYV45plnEB4erlLo6nqMMDExwfbt25GQkABfX1+8/fbbWLJkidrtv/rqqzAzM8OoUaNgZWWl83gbN26ML774At26dcNTTz2Fw4cP47vvvtM4x4YMQybUXRAkqkSvXr3g5+en9e2da9OJEyfQq1cv3LhxA87OzpX2DQ0Nxe3btw1+6/ra3gYRaZaRkQFPT0+cPXu2ysswc+fOxd69e3W+DX1aWhq8vLyQmJgIPz8//YMlBZ45oXqhsLAQV69exQcffIARI0ZUWZiU2b9/P+zs7LB//36DxnP8+HHY2dmpneBHRDXv4cOHSE9Px4wZM9ClSxet54dcvHgRdnZ2iIyM1Kp/cHAw2rVrV51QSQ2eOSGdSfHMSXR0NMLCwuDn54d9+/bhscceq3KZ7OxsxW2nXVxcDPpLu/fv30dmZiaAf3+fhohqT3x8PHr37o3WrVtj165dWt047datW4p5Y82aNdPqd4gyMzNx//59AIC7uzt/FsRAWJwQERGRpPCyDhEREUkKixMiIiKSFBYnREREJCksToiIiEhSWJwQERGRpLA4ISIiIklhcUJERESSwuKEiIiIJOX/AB0xtVHQDu6aAAAAAElFTkSuQmCC", - "text/plain": [ - "
    " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "S, frequencies, dT = chirp_fft(t, chirp_1)\n", - "fig,ax = plt.subplots(1,2, figsize = (6,3))\n", - "ax[0].set_title('as a function of frequency')\n", - "ax[0].plot(frequencies, np.abs(S))\n", - "ax[0].set_xlabel('frequency [Hz]')\n", - "ax[0].set_ylabel('amplitude')\n", - "ax[0].set_xlim(0, 0.2e8);\n", - "\n", - "ax[1].set_title('as a function of time delay')\n", - "ax[1].plot(dT, np.abs(S))\n", - "ax[1].set_xlabel('time delay [s]')\n", - "ax[1].set_ylabel('amplitude')\n", - "ax[1].set_xlim(0, 0.2);" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "And do the same for the multi-delay chirp" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAicAAAE6CAYAAADN8PIFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABkqklEQVR4nO3deXgTVdsH4F+aNF1p6UYXKC0olKVAoaissik7KojwirJIUXnZ5UMB0ZdFBEVZVUAUqSibQEFEBCu7gAKlRSqIBVq6kFLaQvc1Od8fpSGTrUmazGR57uvqBZnMcibJc+aZc87MiBhjDIQQQgghVsJJ6AIQQgghhKii5IQQQgghVoWSE0IIIYRYFUpOCCGEEGJVKDkhhBBCiFWh5IQQQgghVoWSE0IIIYRYFUpOCCGEEGJVKDkhhBBCiFWh5MTKvPfee2jatCkkEgkaNmwoaFm2b9+ONWvWaH1PJBJh0aJFvJbHWEePHkXnzp3h4eEBkUiE/fv365w3MTERvXr1gre3N0Qikc79JsRcKNbNx9BYv3PnDhYtWoSkpCSN9xYtWgSRSGTZgppBWloaRCIRYmNjjV72xIkTEIlEOHHihNnLZW4SoQtAHvnxxx/x4YcfYsGCBRg0aBBcXFwELc/27duRnJyMWbNmabx37tw5NGnShP9CGYgxhlGjRqFly5Y4cOAAPDw8EBERoXP+iRMnoqSkBDt37oSPjw/Cw8P5KyxxOBTr5mNMrN+5cweLFy9GeHg4oqKiOO9NmjQJAwcO5KHExBCUnFiR5ORkAMCMGTPQqFEjgUujX5cuXYQugl537txBfn4+hg8fjn79+tU5f3JyMl5//XUMGjRI73xlZWVwdXW1iTMsYr0o1s3H2FjXpUmTJladhDkc5kBSUlLYhAkT2OOPP87c3NxYSEgIGzp0KPvrr78488nlcvbBBx+wli1bMldXV+bt7c3atWvH1qxZo3f9ZWVlbPbs2axDhw7My8uL+fj4sC5durD9+/fXWbawsDAGgPO3cOFCxhjj/F99mfHjxytfb9myhQFgx44dY5MnT2Z+fn7M19eXDR8+nGVlZWksv23bNtalSxfm4eHBPDw8WIcOHdjXX3/NGGOsV69eGuVR/bloK9OVK1fYc889xxo2bMhcXFxYhw4dWGxsLGee48ePMwBs+/bt7N1332XBwcGsQYMGrF+/fuyff/6p83NijLHTp0+zvn37Mk9PT+bm5sa6du3KDh48qHx/4cKFGuUOCwvTuq7az0zbfta+d+TIEfbaa68xf39/BoCVlZUxxhjbuXMn69KlC3N3d2ceHh6sf//+7NKlS1q30bJlSyaVSlmrVq3Yt99+y8aPH88pU+3ncvz4cc6yqampDADbsmULZ/qFCxfYsGHDmI+PD3NxcWFRUVFs165dWvfNHL+HJUuWMLFYzNLT0zWWe+2115ivr6/yc7EGFOtcFOuPyqPrs69dl6qwsDA2ZMgQ9tNPP7GoqCjm6urKWrVqxX766Sfl99CqVSvm7u7OnnjiCXbhwgWN7RoSq7pkZWWxl156iXl6ejIvLy82atQodu7cOZPrBG31zIULF9jo0aNZWFgYc3V1ZWFhYew///kPS0tLU86TmprKxGIxW7ZsmUYZT548yQCwH374waB9MpRDjTm5c+cO/Pz88NFHH+Hw4cP44osvIJFI8NRTT+H69evK+VasWIFFixbh5Zdfxs8//4xdu3YhJiYGDx480Lv+iooK5OfnY86cOdi/fz927NiBHj16YMSIEdi6daveZfft24eYmBgAwOHDh3Hu3DlMmjTJpP2cNGkSnJ2dsX37dqxYsQInTpzAq6++ypnnf//7H1555RWEhIQgNjYW+/btw/jx43H79m0AwPr169G9e3cEBQXh3Llzyj9drl+/jm7duuHvv//GunXrEBcXhzZt2mDChAlYsWKFxvzvvvsubt++ja+//hqbNm1CSkoKhg0bBrlcrnffTp48ib59+6KgoACbN2/Gjh070KBBAwwbNgy7du1S7n9cXBwAYPr06Th37hz27dundX1DhgxR7tfIkSO17ufEiRPh7OyM7777Dnv27IGzszOWLVuGl19+GW3atMEPP/yA7777DkVFRejZsyeuXr2qXDY2NhavvfYaWrdujb179+K9997DBx98gGPHjundT32OHz+O7t2748GDB9i4cSN+/PFHREVFYfTo0Vr7oc3xe3jzzTchkUjw5ZdfcpbLz8/Hzp07ERMTA1dXV5P3ydwo1h+hWK/RqVMnbNmyBUDNeJ/a/azrs798+TLmz5+PuXPnIi4uDt7e3hgxYgQWLlyIr7/+GsuWLcO2bdtQUFCAoUOHoqysTLmssbGqqqysDM888wx+/fVXLF++HLt370ZQUBBGjx6tMW99tpOWloaIiAisWbMGR44cwccffwyZTIYnnngCubm5AIDw8HA899xz2Lhxo8b39vnnnyMkJATDhw/Xux2jmTXVsTHV1dWssrKStWjRgr311lvK6UOHDmVRUVFmWX9VVRWLiYlhHTt2rHP+2sz93r17nOkw8mxqypQpnPlWrFjBADCZTMYYY+zWrVtMLBazV155RW95hgwZovMsRL1M//nPf5iLi4vGmfWgQYOYu7s7e/DgAWPsUeY+ePBgznw//PADA8DOnTunt0xdunRhjRo1YkVFRcpp1dXVLDIykjVp0oQpFArG2KMWh08++UTv+lT3Z+rUqZxptZ/nuHHjONPT09OZRCJh06dP50wvKipiQUFBbNSoUYyxmrPykJAQ1qlTJ2W5GGMsLS2NOTs7m9xy0qpVK9axY0dWVVXFmXfo0KEsODiYyeVyTvnN9XsYP348a9SoEauoqFBO+/jjj5mTkxNLTU3Vu6zQKNYp1hmraSVQj6daulpO3NzcWGZmpnJaUlISA8CCg4NZSUmJcvr+/fsZAHbgwAHlNENjVZsNGzYwAOzHH3/kTH/99ddNrhN01TOqqqurWXFxMfPw8GBr165VTq9ddt++fcppWVlZTCKRsMWLF+tcn6kcquWkuroay5YtQ5s2bSCVSiGRSCCVSpGSkoJr164p53vyySdx+fJlTJkyBUeOHEFhYaHB29i9eze6d+8OT09PSCQSODs7Y/PmzZz1W9pzzz3Hed2+fXsAUJ4pxcfHQy6XY+rUqWbb5rFjx9CvXz+EhoZypk+YMAGlpaUaZ2J1lVGbkpIS/Pnnnxg5ciQ8PT2V08ViMcaOHYvMzEzOWbG5vPjii5zXR44cQXV1NcaNG4fq6mrln6urK3r16qUcCX/9+nXcuXMHY8aM4YxRCQsLQ7du3Uwqy40bN/DPP//glVdeAQDO9gcPHgyZTKbxGZjr9zBz5kzk5ORg9+7dAACFQoENGzZgyJAhVjeAmGKdYt1coqKi0LhxY+Xr1q1bAwB69+4Nd3d3jem1+2VKrKo6fvw4GjRooPH5jRkzhvO6vtspLi7G3Llz8fjjj0MikUAikcDT0xMlJSWc33Lv3r3RoUMHfPHFF8ppGzduhEgkwhtvvKFz/aZyqORk9uzZeP/99/HCCy/gp59+wp9//okLFy6gQ4cOnKa4+fPn49NPP8Uff/yBQYMGwc/PD/369cPFixf1rj8uLg6jRo1C48aN8f333+PcuXO4cOECJk6ciPLyckvvnpKfnx/nde2VALX7eO/ePQAw6+CvvLw8BAcHa0wPCQlRvm9MGbW5f/8+GGNGbccc1Ld39+5dAMATTzwBZ2dnzt+uXbuUTaG1ZQkKCtJYp7Zphqjd9pw5czS2PWXKFABQbr+WuX4PHTt2RM+ePZWV08GDB5GWloZp06aZtC+WRLFOsW4uvr6+nNdSqVTv9Nrv35RYVZWXl4fAwECN6ep1R323M2bMGHz++eeYNGkSjhw5gvPnz+PChQsICAjQ+I5mzJiBo0eP4vr166iqqsJXX32FkSNHmlyf6eNQV+t8//33GDduHJYtW8aZnpuby7nPgEQiwezZszF79mw8ePAAv/32G959910MGDAAGRkZnGxZff3NmjXDrl27OGfKFRUV9Sq3i4uL1nWYGpwBAQEAgMzMTI2zH1P5+flBJpNpTL9z5w4AwN/fv97b8PHxgZOTk8W3o079ypzabezZswdhYWE6l6utlLOzszXeU59WO15D/XtWr1Rqtz1//nyMGDFC63b1XTKtjTG/hxkzZuCll17CpUuX8Pnnn6Nly5Z49tlnjdoeHyjWa1CsC6e+sern54fz589rTFevO+qznYKCAhw8eBALFy7EvHnzlNNrx1SpGzNmDObOnYsvvvgCXbp0QXZ2tllb5VQ5VMuJSCTSuJ/Azz//jKysLJ3LNGzYECNHjsTUqVORn5+PtLQ0veuXSqWcyio7Oxs//vhjvcodHh6Ov/76izPt2LFjKC4uNml9/fv3h1gsxoYNG/TO5+LiovfsRlW/fv1w7NgxZcVRa+vWrXB3dzfL5YgeHh546qmnEBcXxymXQqHA999/jyZNmqBly5b13k5dBgwYAIlEgps3b6Jz585a/4CaCiE4OBg7duwAY0y5/O3bt3H27FnOOmu7RdS/5wMHDnBeR0REoEWLFrh8+bLObTdo0MCo/TH09wAAw4cPR9OmTfF///d/+O233zBlyhSrvKyaYr0GxTqXIa025lLfWO3Tpw+Kioo06oDt27ebbTsikQiMMY1Y+frrr7UOWHZ1dcUbb7yBb7/9FqtWrUJUVBS6d+9u6EdiFIdqORk6dChiY2PRqlUrtG/fHgkJCfjkk080mjyHDRuGyMhIdO7cGQEBAbh9+zbWrFmDsLAwtGjRQu/64+LiMGXKFIwcORIZGRn44IMPEBwcjJSUFJPLPXbsWLz//vv43//+h169euHq1av4/PPP4e3tbdL6wsPD8e677+KDDz5AWVkZXn75ZXh7e+Pq1avIzc3F4sWLAQDt2rVDXFwcNmzYgOjoaDg5OSkPvOoWLlyIgwcPok+fPvjf//4HX19fbNu2DT///DNWrFhhclnVLV++HM8++yz69OmDOXPmQCqVYv369UhOTsaOHTt4OVCGh4djyZIlWLBgAW7duoWBAwfCx8cHd+/exfnz5+Hh4YHFixfDyckJH3zwASZNmoThw4fj9ddfx4MHD7Bo0SKNZtCgoCA888wzWL58OXx8fBAWFoajR48qr0RQ9eWXX2LQoEEYMGAAJkyYgMaNGyM/Px/Xrl3DpUuXlGNCjNkfQ34PQE2f/9SpUzF37lx4eHhgwoQJJn2GlkaxXoNineuxxx6Dm5sbtm3bhtatW8PT0xMhISHKriJzq0+sjhs3DqtXr8a4cePw4YcfokWLFjh06BCOHDlitu14eXnh6aefxieffAJ/f3+Eh4fj5MmT2Lx5s867Fk+ZMgUrVqxAQkICvv76a5M+F4OYfYitFbt//z6LiYlhjRo1Yu7u7qxHjx7s9OnTrFevXqxXr17K+VauXMm6devG/P39mVQqZU2bNmUxMTGc6751+eijj1h4eDhzcXFhrVu3Zl999ZXWUeDa6BrBX1FRwd555x0WGhrK3NzcWK9evVhSUpLOEfzq19rrGqG9detW9sQTTzBXV1fm6enJOnbsyBkBnp+fz0aOHMkaNmzIRCKRQfc+GDZsGPP29mZSqZR16NBBY1R8bVl2797Nma7rfh7a1N77wMPDg7m5ubEuXboo7zugvj5zXK2j7d4FjNWMzu/Tpw/z8vJiLi4uLCwsjI0cOZL99ttvnPm+/vpr1qJFCyaVSlnLli3ZN998o3GfE8YYk8lkbOTIkczX15d5e3uzV199lV28eFHr53L58mU2atQo1qhRI+bs7MyCgoJY37592caNG+ssv6m/h1ppaWkMAJs8ebLWz8UaUKwf50ynWH9kx44drFWrVszZ2dng+5yo01Zf6CqHIbGqS2ZmJnvxxReZp6cna9CgAXvxxRfZ2bNnTa4TtP0+arfh4+PDGjRowAYOHMiSk5M1fnOqevfuzXx9fVlpaWmd+2AqEWMq7c2EEF5MmDABJ06c0Nt1YK0+++wzzJgxA8nJyWjbtq3QxSGE8CgnJwdhYWGYPn261vvamItDdesQQkyXmJiI1NRULFmyBM8//zwlJoQ4kMzMTNy6dQuffPIJnJycMHPmTItuj5ITQohBhg8fjuzsbPTs2RMbN24UujiEEB59/fXXWLJkCcLDw7Ft2zbOvV8sgbp1CCGEEGJVHOpSYkIIIYRYP0pOCCGEEGJVKDkhhBBCiFVxuAGxCoUCd+7cQYMGDazyzpaE2BLGGIqKihASEgInJ+s916G4J8Q8+Ip5h0tO7ty5Y7ZnTBBCamRkZJj14XLmRnFPiHlZOuYdLjmpfcZARkYGvLy8BC4NIbatsLAQoaGhRj/Ph28U94SYB18x73DJSW2TrpeXF1VShJiJtXeVUNwTYl6Wjnnr7SQmhBBCiEOi5IQQQgghVoWSE0IIIYRYFUpOCCGEEGJVKDkhhBBCiFWh5IQQQgghVoWSE0KMVFmtwH+/T8D3f9wWuiiEEJ5cSr+Pcd+cR8rdIqGL4hAoOSHESHGXMvFLcjbe258sdFEIITwZsf4sTv17D6/FXhC6KA6BkhNCjFRUXi10EQghArnzoEzoIjgESk4IIYQQYlUET07Wr1+PZs2awdXVFdHR0Th9+rTOeU+cOAGRSKTx988///BYYkJIfVHcE0L0ETQ52bVrF2bNmoUFCxYgMTERPXv2xKBBg5Cenq53uevXr0Mmkyn/WrRowVOJCSH1RXFPCKmLoMnJqlWrEBMTg0mTJqF169ZYs2YNQkNDsWHDBr3LNWrUCEFBQco/sVjMU4kJIfVFcU8IqYtgyUllZSUSEhLQv39/zvT+/fvj7Nmzepft2LEjgoOD0a9fPxw/flzvvBUVFSgsLOT82aOC0iqhi2AxsoIyvLPnMq7esY7vjoEJXQSbRXFvPnIFQ2G5/cb9kb+zsfDHZFTJFUIXhQhAsOQkNzcXcrkcgYGBnOmBgYHIzs7WukxwcDA2bdqEvXv3Ii4uDhEREejXrx9OnTqlczvLly+Ht7e38i80NNSs+2EN9iZkosOSX7E6/l+d8zDGMHNnIt7bf4XHkpnH9O2J+OFiJgav0z0ugdgGinvzGfXlObRf9Csy8kt1znMjpxjPf3EGR6/d5bFk5vHmdwn49txt7L6YKXRRiAAEHxArEok4rxljGtNqRURE4PXXX0enTp3QtWtXrF+/HkOGDMGnn36qc/3z589HQUGB8i8jI8Os5bcG7+6rSTjWHk1RTiuvkuP5z3/H8l+uAQDS80vxY9IdfP9HOuQK2zrzv55tXTc9EkH775MYjuK+/hJu3wcAHLh8RzntdMo99Pn0BM6n5gMApu9IxOWMB4j59qIgZTSHnKJyoYtABCBYcuLv7w+xWKxxtpSTk6NxVqVPly5dkJKSovN9FxcXeHl5cf4cwYGkO7icWYAvT94CAFTbWEJC7BPFvWWN3XweqbklGPXlOQDAg9JKgUtEiGkES06kUimio6MRHx/PmR4fH49u3boZvJ7ExEQEBwebu3g2r0pB/bTE+lDcE0IMIRFy47Nnz8bYsWPRuXNndO3aFZs2bUJ6ejomT54MoKZpNisrC1u3bgUArFmzBuHh4Wjbti0qKyvx/fffY+/evdi7d6+Qu2FzGGMAdU0QgVDcE2MwavR1SIImJ6NHj0ZeXh6WLFkCmUyGyMhIHDp0CGFhYQAAmUzGufdBZWUl5syZg6ysLLi5uaFt27b4+eefMXjwYKF2wSro6KrnzmP5YliOTReeqKO45w+FDrFVgiYnADBlyhRMmTJF63uxsbGc1++88w7eeecdHkpl+2jQpuXQpcT1R3FPCNFH8Kt1SP1RsychhBB7QsmJnaKze8uhVilCCLEsSk7sgCFjToj5UOJHCCGWRcmJnaKze0IIIbaKkhNCjESJH7EmzM4Hndn33hFdKDmxA8YeLG0t2CkVIMQ0uh4JQIi1o+TETqnXSVRJmQ+NOSGEEMui5MQO2PvB0r73jhBCiDpKTuyUvm5oO++itjgac0IIIZZFyYkdsPeDpbXtnb23VBFCiNAoObFTNMSEEEKIraLkhBAj2XtLFbEtdt9Na/c7SLSh5MQOGNtKYmvdEtZ2pZGtfX6EEGJrKDmxU+qHc+s6vBNCiG2ytpMle0XJiR2w91ZPe78DJiHEdlB9xA9KTuyUvvCh2KofGnNCCCGWRcmJHbD3VkZra0alMSeEEGJZlJzYKes6nBNCCCGGo+SEECNRtw4hhFgWJSeEGIm6dYg1sfdfo73vH9GOkhM7oO08XvOpxLwUxSJsueyECIlix/ysbQycvaLkxA6YemYhV9jGOQldXUSIecgVjC6FrSf6/PhByYmdUo8f9ddLfrqKqCW/QlZQxl+hCCGCKauUo8fHxzBl2yWhi0JInSg5sQPGNjIyBnxzJhVF5dX48uQti5TJnKgVlZD6O/ZPDmQF5fglOVvootg06tbhByUndsqexpwQQoi1oG4dflByQoiR6FJiQgixLEpOHBBdCls/9PkRa2Loibyttp5SQ4VjouTEDmjrA1U/u7fls33bLTkhwlKtGuggbx405oQflJzYAXvvA7XvvSOE2BJ7r2+tBSUndkq964G6IgixT4aeyNMJP7Elgicn69evR7NmzeDq6oro6GicPn3aoOXOnDkDiUSCqKgoyxbQDqkm/nQWQIRAcW8+FML8om4dfgianOzatQuzZs3CggULkJiYiJ49e2LQoEFIT0/Xu1xBQQHGjRuHfv368VRS60ZjTogtobgXBsWRedAJHT8ETU5WrVqFmJgYTJo0Ca1bt8aaNWsQGhqKDRs26F3uzTffxJgxY9C1a9c6t1FRUYHCwkLOHyFEOBT3wqBDKrElgiUnlZWVSEhIQP/+/TnT+/fvj7Nnz+pcbsuWLbh58yYWLlxo0HaWL18Ob29v5V9oaGi9ym0PqJIiQqG4Nz97H09mbftH3Tr8ECw5yc3NhVwuR2BgIGd6YGAgsrO13145JSUF8+bNw7Zt2yCRSAzazvz581FQUKD8y8jIqHfZrY3WULGj+KHKwH5Q3PNLtTuXoojYEsMi3YLUDzyMMa0HI7lcjjFjxmDx4sVo2bKlwet3cXGBi4tLvctpzQw5r7Dl4zv18dofintiq6g+4odgyYm/vz/EYrHG2VJOTo7GWRUAFBUV4eLFi0hMTMS0adMAAAqFAowxSCQS/Prrr+jbty8vZbcJdTyVWMdshFgUxb352fJgd0J0EaxbRyqVIjo6GvHx8Zzp8fHx6Natm8b8Xl5euHLlCpKSkpR/kydPRkREBJKSkvDUU0/xVXSbR5k/EQrFvflZ25gMe0fdzPwQtFtn9uzZGDt2LDp37oyuXbti06ZNSE9Px+TJkwHU9BtnZWVh69atcHJyQmRkJGf5Ro0awdXVVWO6ozFkzIktxxNVBvaF4p7YMjq544egycno0aORl5eHJUuWQCaTITIyEocOHUJYWBgAQCaT1XnvA0KIbaG4Fwbl+MSWCD4gdsqUKZgyZYrW92JjY/Uuu2jRIixatMj8hSKEWBTFvfnQiTy/qCWXH4Lfvp6YgZZY0Rc+qnUZVWyE2C97OI5SHeWYKDmxBxS8hBAt6MBObBUlJw7OHs6sCHFkFMPEHlFy4oC4TyUWrhyEkPrTF8OUuBBbRcmJPaAKiBBSJ6oozIEuJeYHJScOzpQbOFVUy1FWKbdAabSjKpUQ4RWUVdGBmfCGkhNiFMYYOi/9Da3/dxgV1fwlKIQQ4fxxKw8dFv+Kd/b8JXRRBEeXEvODkhM7pTeAVE5+jH0uh4IBReXVAIDM+2WmFM0m3LxXjP6rT+LHpCyhi0KIXvraMsx1GF13NAUAsDsh00xrNByfbTWxZ1IxcM0p3Cuq4HGrRBtKTuyUoc2vxnbrOEqz7pzdl/Hv3WLM3JkkdFEIMZm5otVBwh6LfrqKf7KLsOa3f4UuisOj5IQQLUorqMuK2AZDW0eoN8Jw5VUKoYvg8Cg5sVOG9os6yhmRsagiJ7aCQtj86EnPwqPkxA4YexylwCPEMVCOTWwVJScOQldLgLEtBEKkNdSKQQjhFZ2/CY6SEwdH3Tra0eWChBAiHEpO7JTepxLXIyGhZIYQK6MnKFWTbEq3DUfVnPAoObFT9hBc5VXCXTGjryJPTH/AVzEIqRdbu/SfMaYR99a2C3KFlRXITlFyQozC12Da0yn30Or9w1j7Wwov2zPGL8nZQheBkEfsqAty9g+X0er9w0jNLRG0HLaW1NkjSk7sFB/VlSW3sWBfMgBgtUA3Q7Kj+p7YOzs6kO5LrLkj85YzqYKWw34+UdtlcnJy8+ZNvPfee3j55ZeRk5MDADh8+DD+/vtvsxWOGMbYwZtMx/8NWpanqHUSODmg5EQ7bXEPANeuXROwVEQXWx3YLXS+JfT2iYnJycmTJ9GuXTv8+eefiIuLQ3FxMQDgr7/+wsKFC81aQGIetlZJcctrW2W3V7riHgCWLVsmYMmIIWypDlBQduDwTEpO5s2bh6VLlyI+Ph5SqVQ5vU+fPjh37pzZCkccl+1Uo45DV9wDwIULFwQqFTGULY2jsJ2SEksxKTm5cuUKhg8frjE9ICAAeXl59S4UqT+9DyW2hUpK6G4doQtghXTFPQDk5+fzXBpSi4+nEvNN6CrKBmpIu2dSctKwYUPIZDKN6YmJiWjcuHG9C0Xqz1LBzd+YE2GrVRtqAeeNrrgHgODgYJ5LQwyhGq621K2jWnIhHrdhEydwds6k5GTMmDGYO3cusrOzIRKJoFAocObMGcyZMwfjxo0zdxmJAxK6GhV6+9ZIW9z/8ccfAICXX35Z4NI5Lnv8rVJuQExKTj788EM0bdoUjRs3RnFxMdq0aYOnn34a3bp1w3vvvWfuMhITGHqSZGwlwNdZjE2d5DkIbXE/aNAgAMDbb78tcOmIJfHdeiF0ckK5kfAkpizk7OyMbdu2YcmSJUhMTIRCoUDHjh3RokULc5ePWIAtBJ7gYz4oO9KgLe5btGiBTp06QSwWC108h2WPY07oah1iUnJS67HHHsNjjz1mrrIQE/F5HOWrzqDcwHqpxn1hYaHApSH2SPDURPACEIOTk9mzZxu80lWrVplUGEJqcR5YJkCiQrlRjbrivrKyEgDw7rvv4vPPP+ejSMREtvSbpoYTYnBykpiYyHmdkJAAuVyOiIgIAMC///4LsViM6Oho85aQmMRSB3S+6gxbqkjtmSFxD9TcgJEIQ++B3EYDSYgrdKxp+8SIAbHHjx9X/g0bNgy9e/dGZmYmLl26hEuXLiEjIwN9+vTBkCFDjCrA+vXr0axZM7i6uiI6OhqnT5/WOe/vv/+O7t27w8/PD25ubmjVqhVWr15t1PYchXqFpXppHPc96wxCobt1hN6+tagr7msfVzFgwACj1ktxzxPrDO86ceooAfaBWm6EZ9LVOitXrsTy5cvh4+OjnObj44OlS5di5cqVBq9n165dmDVrFhYsWIDExET07NkTgwYNQnp6utb5PTw8MG3aNJw6dQrXrl3De++9h/feew+bNm0yZTeICfi6/l/o5IByE0264h6AUV06FPfmJXSsWALdZ4SYlJwUFhbi7t27GtNzcnJQVFRk8HpWrVqFmJgYTJo0Ca1bt8aaNWsQGhqKDRs2aJ2/Y8eOePnll9G2bVuEh4fj1VdfxYABA/SedTkqW6+wBL9ah2jQFfcAOM/ZqQvFPakLpSbEpORk+PDheO2117Bnzx5kZmYiMzMTe/bsQUxMDEaMGGHQOiorK5GQkID+/ftzpvfv3x9nz541aB2JiYk4e/YsevXqpXOeiooKFBYWcv4cXX36U/mqNIR/KjElR+q0xf3+/fsBAMOGDTNoHRT35mfomBNb+kkL3XAi9PaJiZcSb9y4EXPmzMGrr76KqqqqmhVJJIiJicEnn3xi0Dpyc3Mhl8sRGBjImR4YGIjs7Gy9yzZp0gT37t1DdXU1Fi1ahEmTJumcd/ny5Vi8eLFBZbJVQtU5Fj2A21JN6iB0xT0Ag7tzKe6JIYS+zwkNiBWeSS0n7u7uWL9+PfLy8pCYmIhLly4hPz8f69evh4eHh1HrUj/AMcbqPOidPn0aFy9exMaNG7FmzRrs2LFD57zz589HQUGB8i8jI8Oo8tk7o+8Qy9d9TnT8ny+UGmnSFvdpaWkAQHFPzIpSA1Kvm7B5eHigffv2Ji3r7+8PsViscbaUk5OjcValrlmzZgCAdu3a4e7du1i0aJHOZ3u4uLjAxcXFpDLaMlsfs2HNDScN3Z3xoLRK6GIIRjXuje0uobjnlxWHkVWjbh3hmZSc9OnTR+9ZzrFjx+pch1QqRXR0NOLj4zmPYY+Pj8fzzz9vcFkYY6ioqDB4fkeh3iyp69I8o5MABwlafZ/L0PbB+P4P7VeW2DNtcV9dXQ0AGDp0KE6dOlXnOiju+WWz4WrFBQ/1dRO6CA7BpOQkKiqK87qqqgpJSUlITk7G+PHjDV7P7NmzMXbsWHTu3Bldu3bFpk2bkJ6ejsmTJwOoaZrNysrC1q1bAQBffPEFmjZtilatWgGouf/Bp59+iunTp5uyGwR0hqCLvpYnW2+VMpW2uE9ISAAAtG3b1uD1UNwTYwhRRenbppM1N+vaEZOSE103QFq0aJFRlxSOHj0aeXl5WLJkCWQyGSIjI3Ho0CGEhYUBAGQyGefeBwqFAvPnz0dqaiokEgkee+wxfPTRR3jzzTdN2Q27ZqkDKA0Uc1za4r6wsBDe3t7KgbGGoLgXhuox1ZAxPkQ7+tT4Ua8xJ+peffVVPPnkk/j0008NXmbKlCmYMmWK1vdiY2M5r6dPn05nS2ZmrS0nVAHYlu+//x6fffaZwfNT3JuPvhMGW40joU+C9NWLVlpl2h2TrtbR5dy5c3B1dTXnKokBjD0Dqk9wWWsyY3a2WqsLhOKe2BdHqeisl0ktJ+o3WmOMQSaT4eLFi3j//ffNUjDCD2tt2RW6ydlKPxZBaYv7zMxMAMBrr70mRJGIiRiz3ti3BvpOwuhj44dJyYmXlxfn4OHk5ISIiAgsWbJE486PRBiGVjxG3+fE+KLUmxCVKFXcmrTFfXh4OC5evIh58+YJWDJiaQ7TYkqshknJiXqfMLE+evtMqaIhJtAW94WFhVizZg3vZSHGUx0kb+1VgDXXUVZcNLti0piT5s2bIy8vT2P6gwcP0Lx583oXilgvR3laqKNeLqyPrrgHYPLNGAmpixB1jmPUctbNpOQkLS0NcrlcY3pFRQWysrLqXShSf9QtQcxNV9wDNZf/EuIIqGrlh1HdOgcOHFD+/8iRI/D29la+lsvlOHr0KMLDw81WOGJ9+DqjoArAeuiL+6KiIgBA06ZNeS8XqaF38KaOs5Sa1giKMl30tdZQqwo/jEpOXnjhBQA1P3j1O8E6OzsjPDzc4KeTEvMx/g70TOv/jWXPXTzU8vRIXXEPAB9++CHfxSJ2TOiqxX5rNtthVHKiUCgA1DyA68KFC/D397dIoYj14u2pxAInB0Jv35roi/vaO8QOHDhQqOIRQ9Fv2izoY+SHSVfrpKammrschOgkxOBUGhCrieLeflDLALF2Bicn69atwxtvvAFXV1esW7dO77wzZsyod8GIeam2eNSn9YPbJUTsXV1xX15eDgDYuHEj3nnnHb6LR+wU3b6eGJycrF69Gq+88gpcXV11PvgPqOmXpuSEmJPQFZUjqyvua7t81q9fT8mJDRF6TIe1o49HeAYnJ6pNutS868DM1AJj7WjMSY264r52zMlff/3FZ7GIAxGintE32J+qBn6Y9cF/xPZYa4KhOuaDxn8QYhqKHPOz0irT7hjccjJ79myDV7pq1SqTCkP4Ua+nEpttTcQW1BX3lZWVAIB3330Xn3/+OR9FImoMjULVRMXau0qt9aSJ8Mfg5CQxMdGg+YR+mqwjssuPXPBLie3xQzVeXXFfe8dY6tYhhJiTwcnJ8ePHLVkOYiPMddWPMQR5KjH/m7RKdcV97ZiTgwcP8lQiYg7UMqGf3rvu8lcMh2bSfU5UZWRkQCQSoUmTJuYoD7EQa2/GJbalNu69vLyELgqxQ9ZcW1lz2eyJSQNiq6ur8f7778Pb2xvh4eEICwuDt7c33nvvPVRVVZm7jMTMVEeiGxtoQiQ5dJZnHbTFfWhoKABQ3Ns5RwtBOpkTnknJybRp07Bp0yasWLECiYmJSExMxIoVK7B582ZMnz7d3GUkJuBjzIQ9hy8NOdGkLe4XL14MAHj77bcFLh2pi62OoxKinqFuHeGZ1K2zY8cO7Ny5E4MGDVJOa9++PZo2bYr//Oc/2Lhxo9kKSOrPnA/o422cier/acyJVdAW9+Hh4Xjrrbewd+9efPPNNwKWjmhjo/mIVbPnkzJrYlLLiaurK8LDwzWmh4eHQyqV1rdMxMLMlWDYc3eLvrNMR63wdcU98OjpxIR/9hiH9rhPxDgmJSdTp07FBx98gIqKCuW0iooKfPjhh5g2bZrZCkcMxd/Rkq86w5oTAEetOHXFPQC88cYbQhWLmMBRf8OGos9HeCZ16yQmJuLo0aNo0qQJOnToAAC4fPkyKisr0a9fP4wYMUI5b1xcnHlKSizCXA8BJPZPW9wnJSUBAK5cuUJxT+yGvrrNis+b7IpJyUnDhg3x4osvcqbVjton1ocxc3bl8J+QCFEZUAWkSVvcBwUFYdu2bfD29qauHRti/ScW1ls+6y2ZfTEpOdmyZYu5y0EEUp/uE77yFKoMrIO2uC8sLMS2bduwfv16uucJsRvUrSM8evCfnTI05zA2CB0laK15zAshjsTa6hyqGvhhUnKSl5eHqVOnok2bNvD394evry/nj1gXK4ttg3CfSixMCQiXtrgPCwsDAOW/xHpxHvxni5UCj/R9PPTR8cOkbp1XX30VN2/eRExMDAIDA2325j6kfn3P9lzB6ftJO+rPXVvcl5WV4b///S+WL18udPEclv7Bm7b5Y7XnuoUYxqTk5Pfff8fvv/+uHLFPhGXswdIWAt+aEwBb+PwsQVvcFxYW4r///S/GjBkjYMmIsRz0J2w4+oAEZ1K3TqtWrVBWVmaWAqxfvx7NmjWDq6sroqOjcfr0aZ3zxsXF4dlnn0VAQAC8vLzQtWtXHDlyxCzlcFTGnllxnkpMEexQKO6Jo6BLiYVnUnKyfv16LFiwACdPnkReXh4KCws5f4batWsXZs2ahQULFiAxMRE9e/bEoEGDkJ6ernX+U6dO4dlnn8WhQ4eQkJCAPn36YNiwYUhMTDRlN+xGXWfyjOkONVtIMIToNqQKSJOuuAdAcU/MSuhaSV+dKnTZHIXJ9zkpKChA3759OdMZYxCJRJDL5QatZ9WqVYiJicGkSZMAAGvWrMGRI0ewYcMGrX3Ya9as4bxetmwZfvzxR/z000/o2LGjKbvikOo1zkRlWd4uJRbi3ioGZie1v3lHoCvugZoBsRT31k31ZypETBFiDJOSk1deeQVSqRTbt283eUBsZWUlEhISMG/ePM70/v374+zZswatQ6FQoKioSO8VQhUVFZzbbRtzhmcrtH38DnK8JDzSFvclJSUYMmQIfvrpJ4PWQXFPbB1VrfwwKTlJTk5GYmIiIiIiTN5wbm4u5HI5AgMDOdMDAwORnZ1t0DpWrlyJkpISjBo1Suc8y5cvVz7WndQfb08lFrgGsNWrHCxJW9zXHvR79Ohh0Doo7q2D0WEsYEOLEF3PdCmx8Ewac9K5c2dkZGSYpQDqrS6GNpPv2LEDixYtwq5du9CoUSOd882fPx8FBQXKP3OV25bYejAJMubEwEuJHal1nOLeSun5DQqd5JtK6G4nobdPTGw5mT59OmbOnIm3334b7dq103imRvv27etch7+/P8RiscbZUk5OjsZZlbpdu3YhJiYGu3fvxjPPPKN3XhcXF7i4uNRZHltmbP3DiTtj7xBr5LbskaPWW9rivri4GEBNq0q3bt3qXAfFPSHEECYlJ6NHjwYATJw4UeM9QwfESqVSREdHIz4+HsOHD1dOj4+Px/PPP69zuR07dmDixInYsWMHhgwZYkLpibk46kHaUemL+549e1LcWznVrkqKXf30fTw22hhlc0xKTlJTU82y8dmzZ2Ps2LHo3Lkzunbtik2bNiE9PR2TJ08GUNM0m5WVha1btwKoqaDGjRuHtWvXokuXLsqzLzc3N3h7e5ulTLaornqm5qnE5qmN+GruFHrMh602h1uStrgvKipCu3btcPnyZYPXQ3FP6mLNuZM1l82emJSc1D5H4+rVq0hPT0dlZaXyPZFIZPBzNkaPHo28vDwsWbIEMpkMkZGROHTokHJ5mUzGuffBl19+ierqakydOhVTp05VTh8/fjxiY2NN2RWHZK7gsoV7pJjK0OTIfj8BTdrivrS0FADw999/IzIy0qD1UNwTa0ctS8IzKTm5desWhg8fjitXrkAkEinPpmsHtBl6vwMAmDJlCqZMmaL1PfWK58SJE6YU1+5pO4xaquXBYWKWWk406Ip7ABgzZoyy28cQFPcCc5hANj+qGvhh0tU6M2fORLNmzXD37l24u7sjOTkZp06dQufOnakisTH1qaMseXZB3SrWR1vc//LLLwCAn3/+WeDSEXslRCsGXUosPJOSk3PnzmHJkiUICAiAk5MTxGIxevTogeXLl2PGjBnmLiOpJ3N2v1Bzp+PeaVNb3Hft2hUA8M477whcOlIXzu/Wyg+xgoeV4AUgJiUncrkcnp6eAGouDbxz5w6Amj7p69evm690xCIc6YBqKn0NN4768emKewC4ceOGUMVyeA76cyR2zqTkJDIyEn/99RcA4KmnnsKKFStw5swZLFmyBM2bNzdrAUnd+O0CYVr+RxyBtrj/448/AADh4eEClowQ/lCPMz9MSk7ee+89KBQKAMDSpUtx+/Zt9OzZE4cOHcK6devMWkBSt7qfSkyJhLEc5WF+xtAW9wMHDgQAfPzxx0IWjRjJ2lv/hC4ejTkRnklX6wwYMED5/+bNm+Pq1avIz8+Hj48PVep2TrVSs+fuIUN/xfb7CWjSFvdpaWlo1qwZevXqJWDJCDEvO67abIZJyYk2+p4QSizL2KcSc+5eT1FI6oHi3jZR1JuOTr/5YVK3DnFc9Xgsj1GoBY4Q86KIMpy+q5koseMHJSeEaEFPJSb2wFaTfGrRJZScOKD6xD13zEn9y2IIIepXupSY2ApTDuR08NePPh7hUXJiB4R+SJ49stUzTkKIZVHNwA9KTuxAXXd7rHkqsa5lzbstc6EKgBDrYe13lDU3fS0njvVJCIeSE1IPPCUqVtatY0u3ASdEifO7JfrQ5yM8Sk7sgLZuHf3Hc9NDT5CHcFlZTWFt5SHEIPS7NRiNyREeJSfEZHb9VGKht0+IBdGxl1g7Sk4cAD2V2LzoUmJiK2w1x3aUO1ET3Sg5cXD1uqzYfMXQS5gxJ7o3SnUlsSb0eyT2iJITO2Dswbt+CYlj1ISCdysRYkGOEsem0ldHUtXAD0pO7IAhTyW2tdFwVAEQYl62VANYc/JkvSWzL5ScEKMIcYdYa0OtKsSamPR7dNDYNZQ1J0eOgpITO2XoU4mJdnT7emIr6PdI7BElJ3ZAqDN5S46iF/r28dQ6QgghwqHkxAHQiZV50aXExFbo+q1a+89W6LJSXAuPkhNiFCEqDSEebEiXEhNbQT9H86PPVHiUnDggoc9KbAF16xB7Rgm2fvq6rKlq4AclJw7CXJWR6ih2i96+3nKrNisa1U+EZiuxYi8o4vlByYkDoNs/mxe1qhBCiGVRcmK39IyZsLGnEgtB76XYDvIZENtg6M+R0+ppZB3A929e6BijEBceJSd2QKgTeUt2aQjfOvGoANTyRIiDoZAXHCUnDkBfnBl74HWUmNV3uTBdSkxshfBJvmmEHstFYS08wZOT9evXo1mzZnB1dUV0dDROnz6tc16ZTIYxY8YgIiICTk5OmDVrFn8FJZrsOIL1XdFECUn9Udybjym/R1v6DQtRVhvN6eyKoMnJrl27MGvWLCxYsACJiYno2bMnBg0ahPT0dK3zV1RUICAgAAsWLECHDh14Lq39sIWKSbWMwpz9qV6VxNTesYEP0IpR3NsevmPQSegmHz2bp8SFH4ImJ6tWrUJMTAwmTZqE1q1bY82aNQgNDcWGDRu0zh8eHo61a9di3Lhx8Pb25rm0tk3X4dTYw6zqgdqSh2ihD//6Eji6T0z9UNybl6HHcVv63VpxbiL4ozUchWDJSWVlJRISEtC/f3/O9P79++Ps2bNm205FRQUKCws5f45G34FW8DMUHaxpEKpGt44gpbAPFPfCsaXfrRB3heZsX0+9aJ01pv0RLDnJzc2FXC5HYGAgZ3pgYCCys7PNtp3ly5fD29tb+RcaGmq2dVszQ3MOYwNNtYKzZP4gdEXKOctkut8jxqG4Nz9Df4+Kevxw6Tf/iJWez9kdwQfEqmeojDGzNpvNnz8fBQUFyr+MjAyzrdtaGPt51Wc8B18tGtZUGWqOMbGiwtkoinsBcBJu675KT+gEgLp1hCcRasP+/v4Qi8UaZ0s5OTkaZ1X14eLiAhcXF7OtzybpqVmMDTMFT7WU0Id/fbfpZ/Wo5B0dxT2/VLtH6tNyUp9l7Q2lJvwQrOVEKpUiOjoa8fHxnOnx8fHo1q2bQKVyPMaeBShUshNLXrUi9EFf3+apojYdxb1w9HVVGrMsH1TrJSGujtNXLVLDCT8EazkBgNmzZ2Ps2LHo3Lkzunbtik2bNiE9PR2TJ08GUNM0m5WVha1btyqXSUpKAgAUFxfj3r17SEpKglQqRZs2bYTYBZukGuxGd+uYuSyGEKIu0H/jOt6KYZco7oVRrzEnZiyHIYQ+/usbkGutFxHYG0GTk9GjRyMvLw9LliyBTCZDZGQkDh06hLCwMAA1N19Sv/dBx44dlf9PSEjA9u3bERYWhrS0ND6LbnN01UvGjopXreAsOiDWihIAjW4dHf8nhqG4F0Z9fqt8t2QKffwXevtE4OQEAKZMmYIpU6ZofS82NlZjmtDN/bZIX7Oo8QNi61kYQ7cj9O2rOfeEYDrfI6ahuOdffT5D3rt1+N2cUWhALD8Ev1qHWIah4WP8gFh+bsJmTTQHxDrKnhNbYGgiX5+fLd8nC9acAFhvyewLJScOSLWSMrb/lLeWE8Efma47CePrXi+EmFN9rrSjlpNHrDhvsiuUnDgAvbdiN/KMiK8rVQS/IkbP5cLUckJsBecJ2io/amPji69bCNQSOgHQe4dYSk54QcmJg6vPJYWWPEgLffzXe7UOb6UgxHxUEwy5kdkG/wm5yqXEVvZUYrpahx+UnDg4Y8+I+GrRsKYEQL0sfJ9FEmIOqgmG8cmJuUujn9DHf733OeGvGA6NkhMHoav7xthuHd6ebMq5xT7/1QHn6cv6BsRSokJshOrPVm707et5HhDL69aMJHTm5CAoOXEA5ryhGH8tJ1Z01NdznxNCbIVqTFljy4lq0m9tx39O2QQshyOh5MRO6WttqM+4EU6dZsEKS+iuE7me+5xQdkJskUKh/f8GLctDdqKaMAkxrkO1LhQ7qT+Y8tH/rS1xsleUnDgg1YrG2CRANYCrLZhBCH21DucZQmpFkfP0fCFCDGFoqKjOZmy3Dh/JQrXAyYm+5Ej18xJTdsILSk7sQF2xot46ohpoxh5aVSuQarmRp18mEuLSXX3N3sZW7IRYA9WE29huHT6Ox1U81Se6yPW0nHASFydKTvhAyYkDqparniEYt6xqkFqy5YSzTQGSAX13wlUI3edEiIFUw7tKpS9H6JZJbYxNmCy5ffXWEdX3JJSc8IKSEwek2uJhbPMpp+XE2I5rI6iWSi4XODlRq8j5SsoIMSfVk5JqI2NKtZ6wVEtmlUqZhHhMBrd1hPueasyrt6oQy6DkxEGo1idVKoFm9LN1FKZXcKaqEiAZ4I4r4VKtOIU+2yPEUKrdJvVpObHUT171ZKdKgBMSuZ4EhOKcf5ScOAD1sKqqVuh8ry7VAnTr8DW2hbNNPQNiVVVUC9tPToihqusx5kSVpcaGcFp2LNgqq3P7+gbEqrwn9NgYR0HJiQNSDXxjKym5yrKWTBpUi8VXC40q1W2qX5Gj+h4lJ8RWqMarseO4VG9NYKmTEnMlTyZvX677hES1POVVFPN8oOTEAak2mRpbSVXK+Wk5EWLgrapKPYkXt6KS81EcQuqNM6ajHs/WsdQYMDmnW4f/BKBSz4mG6gkdnZDwg5ITO2DsZX6cvmcjK6mK6kcHY0u2aKiWUYgmXn37WSGniorYnvq0mKqeIFRZKB6r6jFg1xxUY149OVJNXCrohIQXlJzYKe7VJtz3VAPf2EpKtUnTki0anMpQiIpKZT/VW0dUKydqOSFWTbU7RsfVMIZQPXBbqstFtXxCDIJXPdEoVzvp4LxHMc8LSk7slL4KpKoeZ1DcFgXLtRoIMQhWlWplVKZWGXHOoqjlhAjM0Et7q+rRJauarFuqy6VKx3g2vm7Jolq3lVeqnZBQzPOOkhM7oK2VVb3yUQ1w1TMUfWMrtFGtpIxd1hjqCQHfOBWVessJnUURK6L3jqWcx02YnmCo/s71jc2oD9WEQIgEQLVuU69/qLWUf5Sc2AFtYzI4z4YB0zmIs6zSuEBTXba4otqoZY1RUiF0cqJSUVWqN/EKW4kSokrfHUtVB7yrHnxLjY17ld+5pWJTtT4pLrdc3aKLvtZSajnhHyUndkBb14x6y4lqAqNaCZTUIzkpslAFwhhDSSX/lZPq9lUrR30VlXrzLyF8UO3KkYh1V+OqraSqcV9qRIKhUDBOa0lRRZXByxpDNWGy5ImPLkUq21SPa9X9r1YwutcJDyg5sQPa+o/Vr8JRTWA4yYmRlUBhueXPbsqrFLz1M2tTWinnfKaqyQljjJOg5ZdW8lo2QgDufYD0PSVXV9wbc/BXPwmxVNyrnpAIkZwUlD1KutRPSNRf3y+huLc0Sk7sgGEtJ49eq1Y2pUa2UDxQORhbqgJRrSSEoL591bOosio5Z2DhvaIK3spFSC3VllB9z3rRlZwYE/cPyrgHYnuN+0KV7au3jqiXLYfi3uIoObED2pITudpzKlTnySt+FFjGVjT5KmcMRRaqpHKLhQ189YRDdT8Ly7j7TJUUEYKhT8lVHXPCjXvDu3XySvhJTnKLhG2NUI971RaiwvIqvfMS86PkxA5o6/9UHUtSVlnNaTmRFZQr/19epTD4sl25giHrQZnydU5huZ65TZddYJn1GirjfinndU7Ro/Kon0Wm5ZbwUiZCVFVVqzykTqw7OVEdc3JHJa6M6c7NyOfGw10Lxb2l1mso9f1UPfEoKOUmJ6kU9xZHyYkd0HaTshLOuBI5Z0CXehBmG1gpyArKONuSFZRb5LK6W7nFZl+nMW7nqVXGKpX6nYfJWQNXCQDgenaRxS6tJESX0qpH8a1vfJbqiYvq79SYE4B0tXhIU3ttLjfv6Yp7fgagpeVxEw7VZClLLe6Tswp4KZMjo+TETqmOKymprOYmK2oj0TPvl8EQf2XWBGSroAZo4FITpOn55q+okrMKAQBPtwww+7oNcTEtHwDQIbQhACBD5fOp/ay6NPeDn4cUlXIFztzM5b2MxLGpdjno62bRNVY2877hcXv5Ydw/Ge4LwDKthaWV1bh1r2a9QsT9/ZJK3Hy4/Q5NvAFwW1Br435o+2AAwKmUXLpix8IoObFTqn2khWXVnIGsQM0ZQM8W/gCAa7JCg9Z5ODkbQM2BOSKoAQDgwsMDublUVMtxKuUeAGBi93BI9VwmaQm5xRU4cyMPAPB6z2YAgL/vFCi7vq7JigAAzf09MKxDCABgw4mbRj+jiJD6uFuoMn7kYaKiPvaMMQaJEzd+BrcLAlDTxWPIFSeF5VU4c6Mm+Z7QPRxATWuh+hiM+jr1by4q5Qo08XHD0HbBZl23IQ5cvgOg5sSr++M19eKVh0lZtVyBlLs1cf/KU2Hw85Ait7gCuy9m8l5ORyJ4crJ+/Xo0a9YMrq6uiI6OxunTp/XOf/LkSURHR8PV1RXNmzfHxo0beSqpdSpSqyRqK6jasxCgprn0+sPgqjUyugm6PVYThMf+yalzO6dT7uHgX3eUy/Zp1QgAsPtipsG3zzbExhO38KC0CkFerujxuD+6POZntnXXpaJajnfjrqBSrkCHJt4YHBmMBq4SlFcpkHD7PoBHyVinMB/E9GgGd6kY51Pz8cZ3CRrdZUQ3ivv6SVXpgqhNFNRbMdPzS3Ff7aRkcq/H0DLQEwBw4l/9ca9QMCw9eBVlVXK0aOSJQZFBeCzAA9UKhv2JWebYDQA1rSZrj6YAAIa0C0bviABOi4+bs8Rs29LmRk4x1vz2LwDgP0+EIuphi+nvN3KhUDBckxWhpFKOBi4StA72wn97PwYAWHggGV+fvkV3jLUQQZOTXbt2YdasWViwYAESExPRs2dPDBo0COnp6VrnT01NxeDBg9GzZ08kJibi3XffxYwZM7B3716eSy6c2vtsZBeU48yNXMyLu8J5/1L6ffyYlIXLmQ+U09YeTcHOCxnK108188Vbz7bEgLaBcBIBp1NylYmHqpKKapy5kYu3d1/G+G/OQ8GAEZ0aI7KxN16KbgJXZyckZTzA0p+v1WvcRbVcgYtp+Zi+IxGrH1YSbw+IgETshMm9mnPm/fuOeft6GWO4nVeCrefSMGjtafx69S6kYicseq4tnJxEGBRZc6YZezYNSRkPcCOnGFKxE55q5otQX3d8+lIHOItF+O3aXfRccRzD15/B0oNXEXcpE+dT83HnQRk1/6qhuDeeQsFQVF6FGznFOHD5Djaduql87x9ZEbIelGHdwwN8rQFrTilvbObj7oy3B0SgfZOGGBRZ0zKxOj4FsgJuly5jDLKCMuy+mIHh68/gh4etA+8PbQORSITx3cIBACsOX8fvKfXrziworcK+xEwM++x3XJMVwtdDikk9m6ORlyuGd2ysnO9K1gOzt9RUVteccCz+6W8M/ew07pdWoW2IF8Y8FYaeLQLQwEWCzPtl+O3aXexJqKk7uz3uB7GTCK91b4ah7YNRJWdY+vM1RH8Qj9e3XsQXx2/gcHI2krMK8KC0klpT60nEzHnaa6SnnnoKnTp1woYNG5TTWrdujRdeeAHLly/XmH/u3Lk4cOAArl27ppw2efJkXL58GefOnTNom4WFhfD29saKA5fg6u4JhpoBZQzs4b81E7RNr/2kGGom1Ezjvl87P2rfU5uuYDWX+VbLGaoVDNUP/y9XMFQpmNp7j16XVspRVF6F4opqg5/S2/1xP6TllioHc73YqQk+fak9RCqnJe/vT8Z3f9wGADzeyBPB3q6oqFLgblE50vNLOYPtXogKwUcvtoersxgAsP3PdLy7ryY58vd0weB2QXgi3BctAj0R7uehnI8xhvulVcgpKsfdwgrkFJYjp6gCt/NKkJJTjJS7xZx+87eeaYmZz7RQvt56Lg3/+/Fv5etWQQ3QKcwHLRp5oomPO0IausLHXYqG7s5wcxYr969arsCDsio8KK3E/dIq5JdU4kFpJbILKpBxvxTp+aW4da+Ec+myv6cUK0dFodfDfu+rdwox9LPTULCa+0nIFQwjOjbGqtFRymWSswrw8eF/8PuNXJ2DEz2kYni7OcPr4Z+bsxiuzk5wdRbDRVLzr6uzGK4SJ0glThA7OUHiJILYSQRnsYjzWiJ++K+TCBInJ4jFNf93EokgEqHmX9Q8c6XmKtOafznviwARRHByejS/SFQzX+2/Tg8/x9r1iPDo/ZrlgaKiIjQLCUBBQQG8vLz0/yAfssW4V495KKcbFvdyZTzX3D+j9nW1XKGcXhP3iofz1MxXXFGN4vJqFFdWa/y2RCLtg2FHdGqM/YlZUDDAzVmMtf+JQv+2Qcr3C8qqMHDNKcgKyiGVOCEyxAuers4oKK1E5v0yzqXDHlIxlg6PxPCOTQDUDLAdt/k8zt2q6frs2LQh+kQ0QsemDdHM3wMh3m7KZ/1UViuQW1yBuw/jPaeoAncLynHzXjFScoqRmluibOn195Tiq3Gd0bGpT833VV6FV7/+UznOzUXihM7hPujQpCHC/NwR6uOOQG9XeLs5w9vNGc4q3b9llXLcL63E/dJKPHgY9/dLK5F1vwzp+aXIuF+KGznFnCesd23uh8/GdIS/pwsA4KNf/sHGkzchcRIpr3T8LuZJ9GxRUy8oFAy7Lmbg82M3OFcwqnISAV4Py+ft5owGrhK4SB7GvUQMF07sO8FZrBLjTiKI1V5L1N9/GP+qMemkjOHaOH5YF9TGrHKe2vkfLgvudJGO+kIkAopNiHlTCJacVFZWwt3dHbt378bw4cOV02fOnImkpCScPHlSY5mnn34aHTt2xNq1a5XT9u3bh1GjRqG0tBTOzs4ay1RUVKCi4tHBp7CwEKGhoQid9QOcXNzNvFf8cRIBYX4eaBPihbFdwuAuFSPm24u4V1SBxg3d8HxUCKb3bYFqhQIX0+4jpKGbcpyIqiq5AssOXcPWc7e13i8lyMsVvSMCMDK6CTo/HBCn6uBfd7Dkp6ta7/fh6yGFs1iE/JLKOhMqbzdn9G3VCDE9miGysbfG+3cLy7H4p79x5O+7ep+k7CwWwVnshMpqhcFPXnUWi9CusTeGtg/Bi9FN4O3G/R2tO5qCVfE1LTp+HlL8PKMngrxdNdYjKyjD2Rt5SMp4gJv3ipF5v0zjCid7o6goRcaaUQZXVBT39eMuFaNFI090ae6HmB7NsPNCBtYeTQFjDB1CG2Jyr8cwoG0Qbt0rxu28UnQIbQhfD6nGelJzSzD7hyQkpj/QeE/sJEKroAYY2DYIo58MRaMG3N96aWU1PvrlH2z/M10jxqQSJ3i7OUOuYJx7IunSopEnhrYPwYRu4fB21/weT1zPwdKfr+FGjv4r+NycxWCouc2+oQ0WPu7O6PqYH16KDkWvlgGcByiWVcoxYsNZ5Xi8YR1C8NnLHTXWwRhDUsYDJNy+j78yC3A7vxRZ98sEv1eTJRkb86aybGeeHrm5uZDL5QgMDORMDwwMRHZ2ttZlsrOztc5fXV2N3NxcBAdrDqRavnw5Fi9erDF9RMfGcPXwfNi3+ehMUDVDrD2bhNr0miUeZacPV6G2HPc1Hs4n1pIJS8S1mbDTw7Pkmoy4JnsWwdnJCW5SMRq4StDAVQJPFwk8pBKNp5H+Ob8fyqrkcJc+aj0AxMrxIdo4i52wcFhbzOzXApfS7yO/pApuzmL4eUrxWIAnAhq46FwWAIa2D8GAtkE4/k8Ozt7MQ2L6faTmlqCwvFqjcvL1kKJRAxcENHBBowauaOLjhhaBnni8kSceD/DU+4yQQC9XrH8lGrnFFbiYlo+kjALczitB5v0y3HlQhgdlVSpnnNw+YC9XCXw9pGjoLoWPuzMCGrigqa87Qh/+tQn2UrbyaDO97+No6uuOv+8UYMxTYVoTEwAI9nbDi9FN8GJ0E+U0uYKhsKwKBWp/5VVylFcrUFElR0W1ouZ1lRzlVQpUVisgZ0zlbFuhvJGeamua+tl47Zm6ggGK2hY9pv117XzK1yrz4eG/+uYzldBx/2Knmrg3JOah9T3dMa9t/tq4Vz/zVbaGiUUq05w47zk7ieDpKkEDV2d4ukgennk7cco3o18LvPF0cziJRJBKHsVP8wBPNA/w1PU1oJm/B+L+2w0375XgenYRyqrkaOjmjEAvV7QI9NQbD+5SCZY8H4lpfR/HkeRs/JGaj2uyQmTkl6KyWsG5QZmzWIQATxcEeLmiUQMXBHq5oJl/TcxHBDbQGUu1ekc0Qq+WAbh+twgJt+/j6p1CZNwvQ2Z+Ke4VVShvkKh+e3mJkwgN3aXw9XBWxn2wtxua+rqjqa87mgV4oLm/B+ezVOUmFWPn613wzZlUuEvFysHA6kQiETo29VG2+NSqqJajoPRRvD8orWn1rqiuifHaWFe+rpZzW9EUDHK5SrwruPFe2+omV9S2yLOaGAe4r9mj10wlrqFSTygU3OVU/1WvT/gkWHJSS/3HwRjT+YPRNb+26bXmz5+P2bNnK1/XnkEteSHSolmfEJycRPBwMe0rbeguRd9WgXXPqIWz2An92wYpm45ru3HuFVWgSq6Ar4cU/p4unMrTVP6eLhgYGYyBkdwDEmM1XV8FZVWoljNIH3aPeLlK9CY9hhCJRHihY2O8oNIPbiixkwg+HlL4aDl7tWW13ZkFhYXwXWP88kLF/eLn7S/u9SUS+ohEopoTg0a6kxh9GjVwxdiu4RjbNRxATTeqrKAcReXVcHKqeb+hm7PGSZQp5WwV5IVWQZrfm/zhWJzCsmqIRDXdP25SMTxdJHp/T4bwdnfGW8+2NGlZF4kYjbzEaOSlP/myNYwxFBQUwmeN5bclWHLi7+8PsViscbaUk5OjcZZUKygoSOv8EokEfn7ar+pwcXGBi4v+s39iXiKRCL4eUq3NyZbcpoeLxOTkjBinto9b33NdtKG4t18SsRNCffntMhM/bCFp6G5fyb+1EolE9U42DSXY1TpSqRTR0dGIj4/nTI+Pj0e3bt20LtO1a1eN+X/99Vd07txZa78zIcS6UNwTQgzCBLRz507m7OzMNm/ezK5evcpmzZrFPDw8WFpaGmOMsXnz5rGxY8cq57916xZzd3dnb731Frt69SrbvHkzc3Z2Znv27DF4mwUFBQwAKygoMPv+EOJoTIknintCbBdfsSRoG/jo0aORl5eHJUuWQCaTITIyEocOHUJYWBgAQCaTce590KxZMxw6dAhvvfUWvvjiC4SEhGDdunV48cUXhdoFQoiRKO4JIXUR9D4nQqi934GlL4MixBHYSjzZSjkJsXZ8xZLgt68nhBBCCFFFyQkhhBBCrAolJ4QQQgixKg53U4jaITaFhYUCl4QQ21cbR9Y+dI3inhDz4CvmHS45ycureWBVaGiowCUhxH7k5eXB21vzmUjWguKeEPOydMw7XHLi61vz8Lr09HSrrkyNUXtr7oyMDLu5EoH2yTYUFBSgadOmyriyVhT3toH2yfrxFfMOl5w4OdUMs/H29raLH4oqLy8v2icbYI/7VBtX1ori3rbQPlk/S8e8ddcohBBCCHE4lJwQQgghxKo4XHLi4uKChQsX2tUTS2mfbAPtk3BspZzGoH2yDfa2T3ztj8Pdvp4QQggh1s3hWk4IIYQQYt0oOSGEEEKIVaHkhBBCCCFWhZITQgghhFgVu0xO1q9fj2bNmsHV1RXR0dE4ffq03vlPnjyJ6OhouLq6onnz5ti4cSNPJTWcMft04sQJiEQijb9//vmHxxLrd+rUKQwbNgwhISEQiUTYv39/nctY8/dk7P7Ywne0fPlyPPHEE2jQoAEaNWqEF154AdevX69zOT6+J0vE+N69e9GmTRu4uLigTZs22Ldvn9nLrY+59yk2Nlbrb6y8vNySu8FhzD7JZDKMGTMGERERcHJywqxZs7TOZ0vfkyH7ZGvfU1xcHJ599lkEBATAy8sLXbt2xZEjRzTmq/f3xOzMzp07mbOzM/vqq6/Y1atX2cyZM5mHhwe7ffu21vlv3brF3N3d2cyZM9nVq1fZV199xZydndmePXt4Lrluxu7T8ePHGQB2/fp1JpPJlH/V1dU8l1y3Q4cOsQULFrC9e/cyAGzfvn1657f278nY/bGF72jAgAFsy5YtLDk5mSUlJbEhQ4awpk2bsuLiYp3L8PE9WSLGz549y8RiMVu2bBm7du0aW7ZsGZNIJOyPP/4wW7n53qctW7YwLy8vzu9LJpPxsj+MGb9PqampbMaMGezbb79lUVFRbObMmRrz2Nr3ZMg+2dr3NHPmTPbxxx+z8+fPs3///ZfNnz+fOTs7s0uXLinnMcf3ZHfJyZNPPskmT57MmdaqVSs2b948rfO/8847rFWrVpxpb775JuvSpYvFymgsY/ep9sB3//59HkpXf4YczG3he6plTHJiK98RY4zl5OQwAOzkyZM65+Hje7JEjI8aNYoNHDiQM8+AAQPYf/7zHzOVWj9L7NOWLVuYt7e32ctqKGP3SVWvXr20Hsht7XtSpWufbPl7qtWmTRu2ePFi5WtzfE921a1TWVmJhIQE9O/fnzO9f//+OHv2rNZlzp07pzH/gAEDcPHiRVRVVVmsrIYyZZ9qdezYEcHBwejXrx+OHz9uyWJanLV/T6aype+ooKAAAPQ+8MvS35OlYlzXPHXFmDlYst4qLi5GWFgYmjRpgqFDhyIxMdH8O6BFfeotfWztezKULX9PCoUCRUVFnHrBHN+TXSUnubm5kMvlCAwM5EwPDAxEdna21mWys7O1zl9dXY3c3FyLldVQpuxTcHAwNm3ahL179yIuLg4RERHo168fTp06xUeRLcLavydj2dp3xBjD7Nmz0aNHD0RGRuqcz9Lfk6ViXNc8utZpTpbap1atWiE2NhYHDhzAjh074Orqiu7duyMlJcUyO6LClH0yhK19T4aw9e9p5cqVKCkpwahRo5TTzPE92eVTiUUiEec1Y0xjWl3za5suJGP2KSIiAhEREcrXXbt2RUZGBj799FM8/fTTFi2nJdnC92QoW/uOpk2bhr/++gu///57nfPy8T1ZIsaNXae5mXufunTpgi5duijf7969Ozp16oTPPvsM69atM1ex9bLEZ2pr31NdbPl72rFjBxYtWoQff/wRjRo1Mss6a9lVy4m/vz/EYrFGdpaTk6ORxdUKCgrSOr9EIoGfn5/FymooU/ZJmy5duvCSiVuKtX9P5mCt39H06dNx4MABHD9+HE2aNNE7r6W/J0vFuK55jIkxU/FVbzk5OeGJJ57g5TdmrnpLna19T6awle9p165diImJwQ8//IBnnnmG8545vie7Sk6kUimio6MRHx/PmR4fH49u3bppXaZr164a8//666/o3LkznJ2dLVZWQ5myT9okJiYiODjY3MXjjbV/T+Zgbd8RYwzTpk1DXFwcjh07hmbNmtW5jKW/J0vFuK55jIkxU/FVbzHGkJSUxMtvzFz1ljpb+55MYQvf044dOzBhwgRs374dQ4YM0XjfLN+TwUNnbUTtZVGbN29mV69eZbNmzWIeHh4sLS2NMcbYvHnz2NixY5Xz116S99Zbb7GrV6+yzZs3W9UlqowZv0+rV69m+/btY//++y9LTk5m8+bNYwDY3r17hdoFDUVFRSwxMZElJiYyAGzVqlUsMTFRefmarX1Pxu6PLXxH//3vf5m3tzc7ceIE5xLH0tJS5TxCfE+WiPEzZ84wsVjMPvroI3bt2jX20UcfCXKJqjn3adGiRezw4cPs5s2bLDExkb322mtMIpGwP//80yr3iTGmjKHo6Gg2ZswYlpiYyP7++2/l+7b2PRmyT7b2PW3fvp1JJBL2xRdfcOqFBw8eKOcxx/dkd8kJY4x98cUXLCwsjEmlUtapUyfOpY/jx49nvXr14sx/4sQJ1rFjRyaVSll4eDjbsGEDzyWumzH79PHHH7PHHnuMubq6Mh8fH9ajRw/2888/C1Bq3WovpVX/Gz9+PGPM9r4nY/fHFr4jbfsDgG3ZskU5j1DfkyVifPfu3SwiIoI5OzuzVq1a8Z4omnufZs2axZo2bcqkUikLCAhg/fv3Z2fPnuVjV5SM3Sdtv7ewsDDOPLb2PdW1T7b2PfXq1UtvXVervt+TiLGHo6gIIYQQQqyAXY05IYQQQojto+SEEEIIIVaFkhNCCCGEWBVKTgghhBBiVSg5IYQQQohVoeSEEEIIIVaFkhNCCCGEWBVKTgixY6dOncKwYcMQEhICkUiE/fv3G7X8okWLIBKJNP48PDwsU2BCCAElJ3aJMYY33ngDvr6+EIlESEpKErpIVmnChAnKg62xB+26nDhxQrnuF154wazrNkZJSQk6dOiAzz//3KTl58yZA5lMxvlr06YNXnrpJTOXlFha7W/ywYMHQhcFAIyOuwkTJlg8llST8TVr1hi0TO/evZXLUF1rPpSc2KHDhw8jNjYWBw8ehEwmQ2RkpNBFsloDBw6ETCbDoEGDlNN0VZrGVI7dunWDTCbDqFGjzFRS0wwaNAhLly7FiBEjtL5fWVmJd955B40bN4aHhweeeuopnDhxQvm+p6cngoKClH93797F1atXERMTw9MeEFP07t0bs2bN4kyr/U16e3sLUygb0bZtW8hkMrzxxhsGzR8XF4fz589buFSORyJ0AYj53bx5E8HBwXqfAFlZWQmpVMpjqayTi4sLgoKCzL5eqVSKoKAguLm5oaKiwuzrN5fXXnsNaWlp2LlzJ0JCQrBv3z4MHDgQV65cQYsWLTTm//rrr9GyZUv07NlTgNKS+qj9TRL9JBKJUZ+Tr68vCgsLLVgix0QtJ3ZmwoQJmD59OtLT0yESiRAeHg6g5kxq2rRpmD17Nvz9/fHss88CAK5evYrBgwfD09MTgYGBGDt2LHJzc5XrKykpwbhx4+Dp6Yng4GCsXLlS46xMW0tDw4YNERsbq3ydlZWF0aNHw8fHB35+fnj++eeRlpbGKfcLL7yATz/9FMHBwfDz88PUqVNRVVWlnKeiogLvvPMOQkND4eLighYtWmDz5s1gjOHxxx/Hp59+yilDcnIynJyccPPmzfp9qFqkpaVpHYvRu3dvs2/LUm7evIkdO3Zg9+7d6NmzJx577DHMmTMHPXr0wJYtWzTmr6iowLZt26jVxMpNmDABJ0+exNq1a5W/y7S0NI1undjYWDRs2BAHDx5EREQE3N3dMXLkSJSUlODbb79FeHg4fHx8MH36dMjlcuX662pt0yYlJQVPP/00XF1d0aZNG8THx2vMU1cdoe7w4cPo0aMHGjZsCD8/PwwdOpQT63379sW0adM4y+Tl5cHFxQXHjh2r+4NUsWjRIjRt2hQuLi4ICQnBjBkzjFqeGI+SEzuzdu1aLFmyBE2aNIFMJsOFCxeU73377beQSCQ4c+YMvvzyS8hkMvTq1QtRUVG4ePEiDh8+jLt373K6It5++20cP34c+/btw6+//ooTJ04gISHBqDKVlpaiT58+8PT0xKlTp/D777/D09MTAwcORGVlpXK+48eP4+bNmzh+/Di+/fZbxMbGchKccePGYefOnVi3bh2uXbuGjRs3wtPTEyKRCBMnTtQ4oH7zzTfKg665hYaGcsZhJCYmws/PD08//bTZt2Uply5dAmMMLVu2hKenp/Lv5MmTWhO6uLg4FBUVYdy4cQKUlhhq7dq16Nq1K15//XXl7zM0NFTrvKWlpVi3bh127tyJw4cP48SJExgxYgQOHTqEQ4cO4bvvvsOmTZuwZ88e5TKvvfYazpw5g507d+Kvv/7CSy+9hIEDByIlJUXrNhQKBUaMGAGxWIw//vgDGzduxNy5czXKYUgdoaqkpASzZ8/GhQsXcPToUTg5OWH48OFQKBQAgEmTJmH79u2clstt27YhJCQEffr0Mfjz3LNnD1avXo0vv/wSKSkp2L9/P9q1a2fw8sREJj5hmVix1atXazxmvFevXiwqKooz7f3332f9+/fnTMvIyGAA2PXr11lRURGTSqVs586dyvfz8vKYm5sbmzlzpnIaALZv3z7Oery9vdmWLVsYY4xt3ryZRUREMIVCoXy/oqKCubm5sSNHjjDGah7LHRYWxqqrq5XzvPTSS2z06NGMMcauX7/OALD4+Hit+3znzh0mFovZn3/+yRhjrLKykgUEBLDY2Fgdn1LNNp9//nmN6QCYq6sr8/Dw4PxJJBKt85eVlbGnnnqKDR06lMnlcoO2IQT172nnzp1MLBazf/75h6WkpHD+ZDKZxvJ9+/ZlL7zwAo8lJqbq1asXJ0YZY+z48eMMALt//z5jjLEtW7YwAOzGjRvKed58803m7u7OioqKlNMGDBjA3nzzTcYYYzdu3GAikYhlZWVx1t2vXz82f/58rWU5cuQIE4vFLCMjQzntl19+4fweDa0j9MVSTk4OA8CuXLnCGGOsvLyc+fr6sl27dinniYqKYosWLdK5joULF7IOHTpwpq1cuZK1bNmSVVZW6lwuNTWVAWCJiYk65yHGoTEnDqRz586c1wkJCTh+/Dg8PT015r158ybKyspQWVmJrl27Kqf7+voiIiLCqO0mJCTgxo0baNCgAWd6eXk55wy9bdu2EIvFytfBwcG4cuUKACApKQlisRi9evXSuo3g4GAMGTIE33zzDZ588kkcPHgQ5eXlJl9Vsnr1ajzzzDOcaXPnzuU0b9eKiYlBUVER4uPj4eRkO42RHTt2hFwuR05OTp1jSFJTU3H8+HEcOHCAp9IRPri7u3NaFgMDAxEeHs6pEwIDA5GTkwOA29qmqqKiAn5+flq3ce3aNTRt2hRNmjRRTlOtUwDD6whVN2/exPvvv48//vgDubm5yhaT9PR0REZGwsXFBa+++iq++eYbjBo1CklJSbh8+bLRV+a99NJLWLNmDZo3b46BAwdi8ODBGDZsGCQSOnxaEn26DkT93hQKhQLDhg3Dxx9/rDFvcHCwzmZadSKRCIwxzjTVsSIKhQLR0dHYtm2bxrIBAQHK/zs7O2ust7bCcXNzq7MckyZNwtixY7F69Wps2bIFo0ePhru7u0H7oC4oKAiPP/44Z1qDBg00LsNcunQpDh8+jPPnz2tUrNaguLgYN27cUL5OTU1FUlISfH190bJlS7zyyisYN24cVq5ciY4dOyI3NxfHjh1Du3btMHjwYOVy33zzDYKDgzlXNRHbpy3m9MWhQqGAWCxGQkIC50QCgNaTHAAadUPtOlUZWkeoGjZsGEJDQ/HVV18hJCQECoUCkZGRnG6gSZMmISoqCpmZmfjmm2/Qr18/hIWFaV2fLqGhobh+/Tri4+Px22+/YcqUKfjkk09w8uRJjc+KmA8lJw6sU6dO2Lt3L8LDw7WeBTz++ONwdnbGH3/8gaZNmwIA7t+/j3///ZfTghEQEACZTKZ8nZKSgtLSUs52du3ahUaNGsHLy8uksrZr1w4KhQInT57UaNGoNXjwYHh4eGDDhg345ZdfcOrUKZO2Zai9e/diyZIl+OWXXywyrsUcLl68yOlfnz17NgBg/PjxiI2NxZYtW7B06VL83//9H7KysuDn54euXbtyEhOFQoHY2FhMmDBB44BErJNUKtXayldfxrS21WrTpg3S09Nx584dhISEAADOnTvHmcfYOiIvLw/Xrl3Dl19+qSzH77//rjFfu3bt0LlzZ3z11VfYvn07PvvsM4PKrM7NzQ3PPfccnnvuOUydOhWtWrXClStX0KlTJ5PWR+pmO23QxOymTp2K/Px8vPzyyzh//jxu3bqFX3/9FRMnToRcLoenpydiYmLw9ttv4+jRo0hOTsaECRM0ui769u2Lzz//HJcuXcLFixcxefJkzhnFK6+8An9/fzz//PM4ffo0UlNTcfLkScycOROZmZkGlTU8PBzjx4/HxIkTsX//fqSmpuLEiRP44YcflPOIxWJMmDAB8+fPx+OPP67RdGxOycnJGDduHObOnYu2bdsiOzsb2dnZyM/Pt9g2TdG7d28wxjT+agcaOzs7Y/HixUhNTUVlZSVkMhni4uI4A/6cnJyQkZGBDz/8UKC9IMYKDw/Hn3/+ibS0NE6XR32ptrbFxcUhNTUVFy5cwMcff4xDhw5pXeaZZ55BREQExo0bh8uXL+P06dNYsGABZx5j64jaK3o2bdqEGzdu4NixY8rEW92kSZPw0UcfQS6XY/jw4Ubvc2xsLDZv3ozk5GTcunUL3333Hdzc3IxugSHGoeTEgYWEhODMmTOQy+UYMGAAIiMjMXPmTHh7eysTkE8++QRPP/00nnvuOTzzzDPo0aMHoqOjOetZuXIlQkND8fTTT2PMmDGYM2cOpzvF3d0dp06dQtOmTTFixAi0bt0aEydORFlZmVEtKRs2bMDIkSMxZcoUtGrVCq+//jpKSko488TExKCyshITJ06sxydTt4sXL6K0tBRLly5FcHCw8k/Xzc4I4dOcOXMgFovRpk0bBAQEID093Wzr3rJlC8aNG4f/+7//Q0REBJ577jn8+eefOq8IcnJywr59+1BRUYEnn3wSkyZN0kh0ja0jnJycsHPnTiQkJCAyMhJvvfUWPvnkE63bf/nllyGRSDBmzBi4uroavb8NGzbEV199he7du6N9+/Y4evQofvrpJ51jbIh5iJi2DkFC9OjduzeioqIMvr0zn86cOYPevXsjMzMTgYGBeuedMGECHjx4YPZb1/O9DUKIbhkZGQgPD8eFCxfq7IZZtGgR9u/fb/Rt6NPS0tCsWTMkJiYiKirK9MISJWo5IXahoqICN27cwPvvv49Ro0bVmZjUOnjwIDw9PXHw4EGzluf06dPw9PTUOsCPEGJ5VVVVSE9Px9y5c9GlSxeDx4dcuXIFnp6eWL9+vUHzDxo0CG3btq1PUYkW1HJCjGaNLSexsbGIiYlBVFQUDhw4gMaNG9e5TE5OjvK208HBwWZ90m5ZWRmysrIAPHo+DSGEPydOnECfPn3QsmVL7Nmzx6Abp+Xn5yvHjQUEBBj0HKKsrCyUlZUBAJo2bUqPBTETSk4IIYQQYlWoW4cQQgghVoWSE0IIIYRYFUpOCCGEEGJVKDkhhBBCiFWh5IQQQgghVoWSE0IIIYRYFUpOCCGEEGJVKDkhhBBCiFX5f9uvv1KMfKiSAAAAAElFTkSuQmCC", - "text/plain": [ - "
    " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "S, frequencies, dT = chirp_fft(t, chirp_2)\n", - "fig,ax = plt.subplots(1, 2, figsize = (6,3))\n", - "ax[0].set_title('as a function of frequency')\n", - "ax[0].plot(frequencies, np.abs(S))\n", - "ax[0].set_xlabel('frequency [Hz]')\n", - "ax[0].set_ylabel('amplitude')\n", - "ax[0].set_xlim(0, 0.2e8);\n", - "\n", - "ax[1].set_title('as a function of time delay')\n", - "ax[1].plot(dT, np.abs(S))\n", - "ax[1].set_xlabel('time delay [s]')\n", - "ax[1].set_ylabel('amplitude')\n", - "ax[1].set_xlim(0, 0.2);" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([0.05030683, 0.05530811, 0.0591932 , 0.06233049, 0.07625694,\n", - " 0.10054563, 0.10330119, 0.13084193, 0.13744466, 0.13759185])" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sorted_delays = np.sort(delays)\n", - "sorted_delays" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.6" - }, - "vscode": { - "interpreter": { - "hash": "f6e3e4fdd3e8b5cf0803f6688fb4cf910bea2d93a4911237a73f72af70e10228" - } - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} \ No newline at end of file diff --git a/src/_build/jupyter_execute/sections/radar/apres/coarse-range.ipynb b/src/_build/jupyter_execute/sections/radar/apres/coarse-range.ipynb deleted file mode 100644 index 387cc63..0000000 --- a/src/_build/jupyter_execute/sections/radar/apres/coarse-range.ipynb +++ /dev/null @@ -1,661 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "a1999246-c910-4ad8-9028-217aae0b7be9", - "metadata": { - "tags": [] - }, - "source": [ - "# Discrete fourier transforms and phase" - ] - }, - { - "cell_type": "markdown", - "id": "9e7908f2-df90-4e87-bdfc-f7c0b198fa25", - "metadata": {}, - "source": [ - "(under construction)" - ] - }, - { - "cell_type": "markdown", - "id": "e7290dbc-7320-45f8-80a2-1a377b0ef772", - "metadata": {}, - "source": [ - "This page demonstrates the use of a fourier transform to compute the range to reflectors in ApRES data. \n", - "\n", - "The idealized sinusoidal signals used in these demonstrations are intended to be simplified version of the signals recorded by ApRES. Specifically, they represent the signal obtained when the received signal is differenced with the transmitted signal. In general this results in a signal with a wide range of different frequencies. However, we will construct our synthetic signal with only two frequencies." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "id": "022c1a95-0a47-4289-b10a-aae791229a47", - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "from scipy.signal import argrelextrema" - ] - }, - { - "cell_type": "markdown", - "id": "3f775706-020b-4c97-8973-39c08bffd3a0", - "metadata": {}, - "source": [ - "## 1. Define some reflectors\n", - "Suppose that there are just two reflectors beneath you when you deploy ApRES. In reality there are hundreds, but we will assume there are just two.\n", - "\n", - "Let's use $R$ as the range, and define the range to the two reflectors as" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "5311190e-d5ae-4903-9026-985c27fd2dd5", - "metadata": {}, - "outputs": [], - "source": [ - "R1 = 50.0 # units [m]\n", - "R2 = 120.0 # units [m]" - ] - }, - { - "cell_type": "markdown", - "id": "828d016b-2d92-47e0-8d3f-9642380ce49b", - "metadata": {}, - "source": [ - "## 2. Compute the two-way travel time to the reflectors\n", - "The two-way radio-wave travel time in ice $\\tau$ is given by\n", - "\n", - "\n", - "```{math}\n", - ":label: eq:tau1\n", - "\\tau = 2R\\frac{\\sqrt\\epsilon}{c},\n", - "```\n", - "\n", - "where $c$ is the speed of light in a vacuum and $\\epsilon$ is the dielactric constant of ice.\n", - "\n", - "Next, let's use constants from {cite}`brennan_phase-sensitive_2014`, to compute $\\tau$ for our two reflectors:\n" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "e35a69dc-17cf-42c0-ba5c-f353be141887", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "tau1 is 5.873e-07 s.\n", - "tau2 is 1.410e-06 s.\n" - ] - } - ], - "source": [ - "ep = 3.1\n", - "c = 299792458\n", - "tau1 = 2*R1*np.sqrt(ep)/c\n", - "tau2 = 2*R2*np.sqrt(ep)/c\n", - "print(f'tau1 is {tau1:.3e} s.')\n", - "print(f'tau2 is {tau2:.3e} s.')" - ] - }, - { - "cell_type": "markdown", - "id": "c729fbdb-0082-4290-8b79-7cb3712d09c1", - "metadata": {}, - "source": [ - "## 3. Compute the beat frequencies we would receive from these reflectors\n", - "Equation 1 from Brennan et al. relates the difference in frequency between the transmitted and received signals (the beat frequency; $f_d$) to $\\tau$ using some configuration parameters related to how the frequency changes during each chirp:\n", - "\n", - "```{math}\n", - ":label: eq:f_d1\n", - "f_d = K\\tau = \\frac{2\\pi B \\tau}{T}, \n", - "```\n", - "\n", - "where $K$ is the rate of frequency increase in Hz s$^{-1}$, $B$ is the bandwidth (the difference between the lowest and highest frequency covered by each chirp), and $T$ is the chirp duration. \n", - "\n", - "Again using parameters from Brennan et al., let's compute the beat frequencies we expect to receive from our two reflectors:" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "dd8d55a5-8d77-4833-97d7-088c24b30f28", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "f1 = 117.46 Hz.\n", - "f2 = 281.90 Hz.\n" - ] - } - ], - "source": [ - "B = 200e6 # [Hz]\n", - "T = 1 # [s]\n", - "K = B/T # [Hz/s^2]\n", - "\n", - "f1 = K*tau1 # [Hz]\n", - "f2 = K*tau2 # [Hz]\n", - "\n", - "print(f'f1 = {f1:.2f} Hz.')\n", - "print(f'f2 = {f2:.2f} Hz.')" - ] - }, - { - "cell_type": "markdown", - "id": "d8c59352-e1d5-4ae7-bd79-6c900ef0c504", - "metadata": {}, - "source": [ - "## 4. Construct our signal\n", - "The signal ApRES recieves is the sum of two sinusoids. One has a frequency of `f1` and the other `f2`. \n", - "\n", - "Before computing the received signal, we need to define a sampling frequncy, which is controlled by the ApRES system (Brennan used 12 kHz)," - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "adb84c65-6c1c-4727-844d-d745fe2302fd", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "sampling_frequency = 12e3 # [Hz]" - ] - }, - { - "cell_type": "markdown", - "id": "fde69399-7158-4102-9960-5887dd3196ad", - "metadata": {}, - "source": [ - "and define a sampling vector," - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "1afaf96b-e463-49b9-bdfc-5359c118ce8b", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "samplingInterval = 1 / sampling_frequency; # [s]\n", - "t = np.arange(0,T,samplingInterval) # [s]" - ] - }, - { - "cell_type": "markdown", - "id": "8e20fc20-9e11-4cf4-8a91-79fe4dae7681", - "metadata": {}, - "source": [ - "Now we can define the signal ApRES receives" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "id": "b020b1d9-5980-4ff3-8ad3-8d42fbfaee32", - "metadata": {}, - "outputs": [], - "source": [ - "s = np.exp(1j*2*np.pi*f1*t) + np.exp(1j*(2*np.pi*f2*t)) " - ] - }, - { - "cell_type": "markdown", - "id": "e3801fa7-21c4-44fb-a970-855b10adbf4c", - "metadata": {}, - "source": [ - "Plot the signal to convince ourselves that this is an oscillatory signal.\n", - " \n", - "The code below plots a small section of the real and imaginary parts of `s` on the left and both components against each other in the complex plane (on an Argand diagram) on the right." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "id": "00c1945b-b1e9-4747-939d-759c7b250a3a", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABBoAAAFNCAYAAACubwy3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd5gb1fm2n6NdabWrLdq+ttf2uhuMC8aAMc10YxMggRAgPxKSAOmENGIIxXR/JCGUFEgBEiDUUGMwpncwBtvYxt1e29ubVtKql/n+ODPSSJrRzEijMutzX9deK2lGo6PRlHOe877PSziOA4PBYDAYDAaDwWAwGAyGHpgK3QAGg8FgMBgMBoPBYDAYowcmNDAYDAaDwWAwGAwGg8HQDSY0MBgMBoPBYDAYDAaDwdANJjQwGAwGg8FgMBgMBoPB0A0mNDAYDAaDwWAwGAwGg8HQDSY0MBgMBoPBYDAYDAaDwdANJjQwGDpDCNlCCFmcg+2+TQi5TON7JhBCRgghJXq3R+KzOELIVA3rjxBCJueyTXqTq9+WwWAwGAw1sD5GcUIIeZgQcmueP3MFIeTRfH4mg6GF0kI3gMEYbXAcN6vQbRDgOG4/gMpCt4MQ8jaARzmO+4fwGsdxBW+XVorpt2UwGAzGwUcx3YeKpY/BYDCKExbRwDgoIYQwkY2hGna8MBgMBkMt7J7BYDAYTGhgHEQQQtoJIb8hhHwBwEMIKSWELCSEfEgIGSaEbBSHIxJC6gghDxFCugghDkLI86JlZxFCNvDv+5AQMifpc04lhIwlhPgIIXWiZYcTQgYIIWb++XcJIVv57b9KCJkoWvc0Qsg2QoiTEPInACTNdzuKELKOEOIihPQSQu7iX2/jww1L+eeTCCHvEkLchJDXCSF/FsLuROt+mxCyn2/nb5M+4yP+O3cTQv5ECLGo2O+3ATgewJ/4EMs/8a/HwiD5kMO/EEJe4df5gBDSQgi5m9832wghh4u2OZYQ8l9CSD8hZC8h5Mo0n7+UEPIl/507CSG/0vA7Jh8v7YSQU/nlJkLIckLIbkLIICHkKeG3JoRYCSGP8q8PE0I+JYQ0K+0rBoPBYBgT1scoTB9Dxb68nBCyixAyRAh5kRAyVrSMI4T8iBCyk2/zLYSQKXw7XPx93cKvu5gQ0kEIuZZvezsh5Jtp2iT5GxJCvkEI2UMIqeafn0kI6SGENEpsQ9hnV/DfrZsQ8ss0n/k0vy0n/zvMEi17mP89VvHf9RNCyBTR8pmEkNf4/bSdEHKBmn3PYKSF4zj2x/4Oij8A7QA2ABgPoBzAOACDAJaCim6n8c8b+fVXAXgSQC0AM4AT+dfnA+gDcDSAEgDf5rddJvqcU/nHbwK4XNSG3wG4n398LoBdAA4BTWO6DsCH/LIGAC4A5/Of/XMAYQCXyXy3jwBcwj+uBLCQf9wGgANQKlrv9wAsAI7jP+PRpHX/zu+fuQACAA7hlx8BYCHf1jYAWwFcJWoDB2CqTPveTm67eH0ADwMY4D/Dyu+3vQC+xe/jWwG8xa9rAvAZgBv47zEZwB4AZ8h8djeA4/nHtQDma/gdN4A/XiR+26sAfAygFUAZgAcAPM4v+z6AlwBU8Ns+AkB1oc8B9sf+2B/7Y3+5+Uu+Z4D1MfLZx5DblyeD9i3m8/fp+wC8m7TNFwFUA5jFt+cN0H5FDYAvAXybX3cxv4/u4rd1IgAPgBn88ocB3KryN3yMX78eQBeAs2S+l7DPHgdgAzAbQL/o918h7F/++XcBVPHtuxvABtGyhwEMATiK38ePAXiCX2YDcADAd/hl8/n9NqvQ5xX7M/ZfwRvA/thfvv74i/x3Rc9/A+CRpHVe5W8IYwBEAdRKbOevAG5Jem276MbWLroJXAbgTf4x4S/kJ/DPXwHwPdE2TAC8ACaCDrA/Fi0jADog3wl4F8BNABqSXhduUqUAJvA3yQrR8keR2gloFS1fC+BCmc+8CsBzoufZCg1/Fy37KYCtouezAQzzj48GsD9pW9cAeEjms/eDDvyrk15X8zt+N2m5+LfdCuAU0bIxAEL8vv4ugA8BzCn0cc/+2B/7Y3/sL/d/rI9RmD6Gwr78J4A7Rc8r+ft0m2ibx4qWfwbgN6LnfwBwN/94Mf/9bKLlTwG4nn/8MOJCg9JvaAftm2wC8ECaY0rYZzNFr90J4J/84xUQCQ1J77Xz760Rte8fouVLAWzjH38DwHtJ738AwI2FPq/Yn7H/WOoE42DjgOjxRABf58Pahgkhw6AK/BjQGYkhjuMcEtuYCOCXSe8bD2CsxLrPADiGD9U7AfSi/55oO/eItjEEerMfx28r1laO47iktifzPQDTAWwjNEz/LIl1xvLfySt6TWqbPaLHXvBGT4SQ6YSQ//FheS4At4POiuhFr+ixT+K5YDg1EcDYpP1/LQC51ITzQG+o+wgh7xBCjhFtR+l3TLfPJwJ4TvTerQAifDseAe1QPsGHO94phLIyGAwGY9TC+hj572Ok25djAewTnnAcNwIaVTJOtI7avgcAODiO84ie74P075L2N+Q4bhjA0wAOAxUzlBDvR8nPJISUEEJWEprO6QIVpIDEfSi57/n2Hp3U3m8CaFHRNgZDFmZWwzjY4ESPD4DONlyevBIhZAyAOkKInb8hIOl9t3Ecd5vih3HcMCFkDYALQMMXH+dv6OLtPCbx+dNAb0rCcyJ+LvE5OwFcRAgxAfgagGcIIfVJq3Xz36lC1BGQ3aYEfwWwHsBFHMe5CSFXgYZdqoFTXkU1BwDs5ThumqoP5rhPAZzDD/R/AjoDMR7qfsd07T4AOnv1gczymwDcRAhpA/Ay6GzGP9W0mcFgMBiGhPUx8t/HOAD5fdkFOogGABBCbKDpCp0a2iWmlhBiE4kNEwBslmmT7G9ICJkHGvn4OIB7ASxR+NzxALaJPrNLYp2LAZwD4FRQkaEGgANpvDeS2vsOx3GnqViXwVANi2hgHMw8CuArhJAzeCXYypv9tHIc1w0advgXQkgtIcRMCDmBf9/fAfyAEHI0odgIIcsIIVUyn/Mf0DDF8/jHAvcDuEYw6yGE1BBCvs4vWwVgFiHka4SaLF2JNMoyIeT/CCGNHMdFAQzzL0fE63Actw/AOgArCCEWfmb/Kyr2k0AVaL7lCCFkJoAfanhvL2jOox6sBeAi1HSrnP/tDiOEHJm8Iv89v0kIqeE4LgTafmG/aP0dk7kfwG2EN9cihDQSQs7hH59ECJlNaG1xF2ioZkR+UwwGg8EYZbA+Rh76GAr78j8AvkMImUcIKQONkviE47h2De1K5ib++x0P4CzQyIRkZH9DQogV9Ni4FtQTYRwh5EcKn3k9IaSC/y2/A+pHkUwVqMfEIKg/1O0avtP/AEwnhFzC7z8zIeRIQsghGrbBYKTAhAbGQQvHcQdA1d9rQc11DgD4NeLnxSWgA8RtoKY+V/HvWwfgcgB/AlWLdwG4NM1HvQhgGoBejuM2ij7/OQD/DzS83gWqip/JLxsA8HUAK0FvGtMAyM2cA1QN30IIGQFwD2jOo19ivW8COIbf5q2gN6tAmu2K+RWoYu4GvYlK3ejkuAfA+YS6Qd+r4X0pcBwXAe28zAM1jBwA8A9Q9V6KSwC08/v4BwD+j9+O1t8xmXtAf9s1hBA3qDHk0fyyFtCQVhdoSsU7oB0LBoPBYBwEsD5GXvsYcvvyDQDXA/gvaMTFFAAXathuMj2gv0kXqJniDziO25a8ksJveAeADo7j/spxXAC0T3IrH2Uixzv8Nt4A8HuO49ZIrPNv0LSKTlATy4/VfimO49wATgfdN1389/x/oKaSDEbGkHiEFYPBONgghDwJagZ0Y6HbwmAwGAwGY/QwmvoYhJYmfZTjuNY8fmYb6ISKmeO4cL4+l8HQCxbRwGAcRPChcFMIISZCyBLQ2ZbnC9wsBoPBYDAYBof1MRgMhhhmBslgHFy0AHgW1AypA8APOY5bX9gmMRgMBoPBGAWwPgaDwYjBUicYDAaDwWAwGAwGg8Fg6AZLnWAwGAwGg8FgMBgMBoOhG0xoYDAYDAaDwWAwGAwGg6EbRe3R0NDQwLW1tRW6GQwGg8FgFBWfffbZAMdxjYVux8EA64swGAwGgyFNuv5IUQsNbW1tWLduXaGbwWAwGAxGUUEI2VfoNhwssL4Ig8FgMBjSpOuPsNQJBoPBYDAYDAaDwWAwGLrBhAYGg8FgMBgMBoPBYDAYusGEBgaDwWAwGAwGg8FgMBi6UdQeDVKEQiF0dHTA7/cXuimjBqvVitbWVpjN5kI3hcFgMBgMBoPBYDAYBsdwQkNHRweqqqrQ1tYGQkihm2N4OI7D4OAgOjo6MGnSpEI3h8FgMBgMBoPBYDAYBsdwqRN+vx/19fVMZNAJQgjq6+tZhAiDwWAwGAwGg8FgMHTBcEIDACYy6AzbnwwGg8EwOoSQ8YSQtwghWwkhWwghP5NYhxBC7iWE7CKEfEEImV+ItjIYDAaDMdrJWmhgN3ZttLW1YWBgoNDNYDAYDAZjtBEG8EuO4w4BsBDAjwkhhyatcyaAafzfFQD+mt8mMhgMBoNxcKBHRMNBe2PnOA7RaLTQzWAwGAwG46CH47hujuM+5x+7AWwFMC5ptXMA/JujfAzATggZk+emMhgMBoMx6snaDJLjuG4A3fxjNyFEuLF/KVotdmMH8DEhxE4IGcO/V5Yol23r9Ke9vR1nnnkmTjrpJHz00Uc499xz8b///Q+BQABf/epXcdNNNwEAzj33XBw4cAB+vx8/+9nPcMUVVxS45QwGg2FMRgJhbDwwjEVTmD8PQx2EkDYAhwP4JGnROAAHRM87+NfS9kcYDIZ6guEo9g958ea2Xvzrw33oHPbl7LOOmlSHrx0+Dgsn16O1thylJYbMCmcwRiW6Vp3Q48ZOCLkCNOoBlWMmIxrlYDIVV8dy+/bteOihh3DuuefimWeewdq1a8FxHM4++2y8++67OOGEE/Dggw+irq4OPp8PRx55JM477zzU19cXuukMBmO08ek/gU//AZz/ENA0s9Ct0R2XP4TT73oXPS4/bv/qbFx89IRCN4lR5BBCKgH8F8BVHMe5khdLvCVlWkPcF5kwgR1zjIOTSJTD61t78f1HPit0U2RZu3cIa/cOZfz+V352PGa2VDERm8HIAboJDXrc2AGA47i/AfgbAJSNmcat2+fAUZPqJD/zppe24Muu5I/KjkPHVuPGr8xKu87EiROxcOFC/OpXv8KaNWtw+OGHAwBGRkawc+dOnHDCCbj33nvx3HPPAQAOHDiAnTt3MqGBwWDoS+8WYNUvAGICnv428KOPgVHWWVr1RTd6XLQqzv9bvQ0XLGhlM1YMWQghZtC+yGMcxz0rsUoHgPGi560AupJXEvdFFixYUITxlQxGdkSiHB76YC9uXbW10E0pKGfe857iOs/9aBHmjbczMYLB0IguQoNeN/aU7QJYvblHVmgoFDabDQD1aLjmmmvw/e9/P2H522+/jddffx0fffQRKioqsHjxYlY+ksFg6M+W56jIsPha4K1bgb4vgeb0QqnReO7zTkxptOGXp8/Ajx77HJ/vHy66ewKjOCB0FPBPAFs5jrtLZrUXAfyEEPIEgKMBOJXSOBkMo+IPRTDz+tU52/5/f7gIR0yszdn29SAa5fDfzzvw62e+yHgbX/3Lh7LLfnHadPz05KlMhGAwJMhaaMjljb3SWoo3t/Xihq8ke0tSlCIPcs0ZZ5yB66+/Ht/85jdRWVmJzs5OmM1mOJ1O1NbWoqKiAtu2bcPHH39c0HYycoh3CPAOAvVTR91MMsMAbH0JmHgsMP9bwFu30eejSGjwhyL4fL8Dlx0/GcdNa0CJieDt7X1MaGDIcSyASwBsIoRs4F+7FsAEAOA47n4ALwNYCmAXAC+A7+S/mQyGvrj8IcxZsUaXbb161QmY0VKly7b0guM4bO504YYXN2P9/uFCNyeBu17bgbte25Hy+qWL2nDjVw5lAgTjoEaPiIac3dgrLKVoH/TC6QuhptysQ1P15fTTT8fWrVtxzDHHAAAqKyvx6KOPYsmSJbj//vsxZ84czJgxAwsXLixwSxk5IRoF/n020LMJOOk64MRfF7pFjIMJ7xDQvw2YeyFQ1Qy0zAb2jy5Rc0uXC+Eoh8Mn2FFtNWNOaw3W7XMUulmMIoXjuPchnaopXocD8OP8tIjB0J/Vm7vxg0c/z/j96647FQ2VZTq2KDM4jsPOvhGc/sd3C92UnPDwh+14+MN22eVHttXiwUuPRJW1+MY3DIZe6FF1Imc39nJzCQIAtnQ5sWhKQ4Yt1Je2tjZs3rw59vxnP/sZfvazn6Ws98orr0i+v729PVdNY+SbL5+jIgMAfHgfsPAHQFlxzQIwRjHdG+n/MfP4/3OBbasAjhs10TUbDwwDAOaNtwMADh1TjRc3doHjODZLxGAwRj2f7XPgvL/Kh+3LsfJrs3HhUYU3Md3W48KSu5U9EPSkuboMPzl5Gk4/tBlNVWVZ3StCkSg2dTrx6Mf78OznnTq2Evi03YHZClEoG288vSgnWhkMtehadUJvyi280NDpKhqhgXHwMOQJorKsFJZSGeO5rS8BVWOBrz8EPHgGsP0VYM4F+W1kHnD7Q/AGI2iutha6KQwxMaFhbvz/+kcAZwdgHy//PgOxqdOJ5uqy2LF3yJhqPPbJfnQO+9BaW1Hg1jEYDIZ+RKMcJl/7sqb3VJaVYvNNZ+SoReqIRDlc8MBH+EzHaLM/Xzwfy+aM0W17mWIuMWH+hFrMn1CLuy6Yl9E2hjxBzL/ltYzeO/cmaSHia4ePwx8umMsEd0bRU9RCQ6mJoKXaiq3d+laWYDCU+ONrO3DPGzuxZFYL7r/kiNQVOA7Y+x4w9VSg9UigrBrY9+GoExqC4Sgu+vvH2Nbtxh8umItz5o0rdJMYAt0bgZoJQAXvVzD28Pjro0Ro2NM/gmlN8SihQ8ZUAwC2druZ0MBgMAxNIBzBjOvUGzV+9fBx+OM35uWuQSpY9UU3fvyfzNM2AODz609Dnc2iU4uKnzqbBe0rlyW8FolymKJRVBLz7PpOPLs+NcLi7m/Mw7mHs34ao3goaqEBACY12LB30FPoZjAOIhyeIB54dzcAYPWWHqxrH8KCtiTzuf5tgHcAmHQ8YCoBJiykQsMo48lP92NzJxX67nptB86eO5Yp6MXCwA6gaWb8eeOM+OujAI7jsKffg6/Oj3eaBIOynX1unHZoc6GaxmAwGJrRGrGw946lBb3f/unNnfj9mszuJ7tvX4oSE+sryFFiIiniQ6ZpMmKuenIDrnpyQ8JrvzxtOn7CqmIwCkTRCw1tDTa8uqWn0M1gHES89EUX/KEonv/xsfjGAx/h5U09qUKDELbeeiT9P2EhsHMN4HMA5cVd6kkLr23tw+RGG3568lT8/MmN+GTvEBZOri90sxgcBwztAdqOj79WVgXYmujro4CBkSDcgTAmN9hir1WWlaKh0oL9g94CtozBYDDU8Yc123Hfm7sU1ztrzhj86eL5eWiRNMPeIObdrD28v9BiyGjiiIm1CeKD1ogXOf7w2g78Iakqxlu/WoxJonsrg5Eril9oqK/AkCdYtJUnDlq61gP2ifGw7VHEx3sGMc5ejnnj7VjQVosPdw+krtT3JVBiAeom0+fNh9H//dup6DAK8AbD+HjPIC5ZOBGnH9oCE9mID3cNMKGhGHB3AyEvUD8l8fW6ycDQ3sK0SWf29I8AACY1Via8PqGuAvuY0MBgMIqQUCSKab+VNgMXc/y0BjzyvaNz1g6O49Dj8uPv7+7Fgx/k7p4w6ZrMwv8bq8rwj28twGHjaljkgwxlpSUJwoMvGMEhNygLD3/95nx0Dvtw66qtsuuc9Pu3E56fO28s7r7w8IzbymDIUfxCA6+4tQ94MJd3HmcUmHd/D7x5C3W7/94aoLTwZZL0guM4rN07hBOmNQIAFk1pwO9e3Y6BkUBiOai+bUD9NKCEF78a+RD2vq2jRmjYeMCJYDiK46Y2wFZWipkt1fi8yOpXH7QM0tSemNAlUD8F2P1W/tuTA9r5lLnJSbMuE+ttWLt3qBBNYjAYjBS+7HJh6b3KlRWSQ+Uzoc/lx2l/fBdOXyjrbRWSfncA5/z5A9Xrv/6LEzG1qVJ5xVFMuSVReHh1Sw++/8hnKev98LG4h0ZTVRnW/vZUAMDl/16H177sldz28xu68PyGrtjzxTMa8fB3jtKr6YyDmKIXGoTQnvbB4hEaFi1ahA8/zG0+fj4+IyOCXuCDe+jj7g3ApqeBw/+voE3Sk32DXgyMBHHkJBqpMX8CTYP4ssuFE6Y3xlfs3xpPmwCAmvGA2Ua9G0YJggnrrLHUgO+IibV49vMORKIcm4EoNEJ6REpEwyRgw2P0PLUY2yyx0+GDiQBjahKrnUyoq8DzGzoRCEdQVlpSoNYxGIyDmZc2duGnj69Pu86qK4/DrLE1mrbrDYZx6h/eQZfTn03zNHPzObNw+qEtaK7OvBykLxjB5/sdeOyTfXh5k74pz6fe9U7a5VtvXoJyy8F1PzhjVkuC8NC2fFXKOn3uQMLraiMk3t7en/C+J65YyKJZGRlR9ELDOHs5AKBrOL8X3XTkQwDQ6zPC4TBKS3X8mbf9Dwi4gG//D3ju+7Sk4ygSGrb1uAEAh/Lu9tObqYK+o9cdFxqCXmB4P3D4JfE3mkzUjK9PPlTNaGztdqHeZkFjFY3kmDfejkc+3oe9AyOYKqoEwCgAw/sAUkIFLjG1k/jl+xONIg1Ix7APLdVWlJYklpedWF8BjgM6HD5MaTy4Z7gYDEb++HjPIC7828dp11HrWfDfzzrwy6c36tU0XLfsEBzZVqcqSmD1VcdjZku1bp8tUG4pwbFTG3Ds1MzL0a/dO4QLHvhI8/vkBsyvXnVCzER4tCMWEa749zqskYheEMQDIdJB/B6O42RTYZKP+z23L4WJTTgxVFD0QoOtrBTV1lJ0O32FbkqMyspKjIyM4O2338aNN96I5uZmbNiwAV/72tcwe/Zs3HPPPfD5fHj++ecxZcoUvPTSS7j11lsRDAZRX1+Pxx57DM3Nzejv78fFF1+MwcFBHHnkkVi9ejU+++wzNDQ0JHzGihUr0NDQgM2bN+OII47Ao48+CkIIbr75Zrz00kvw+XxYtGgRHnjgARBCsHjxYixatAgffPABTj75ZDz88MPYsWMHzGYzXC4X5syZg507d8JszsDzYu87QHkd0HYcMP0MYOOTQDgwatIndvRSoWEaLzDUV5ahobIM23kBAgDgPED/C4M6gYZpo6ryxLYeNw4ZUx3rNAn7ZFcfExoKjrMDqB5HK56IqWml/10dhhcauoZ9GFdbnvK6ID53D/uZ0MBgMHJKn9uPo257I+066VIiepx+LLwj/fuV+NslR+D0WS2Sy658fD1e3NiVNh//suMm4bqzDs2qDfniqEl1iikmu/rcOPWud1Vt74y7U9crNRHsvO3MUW1i+bdvLYg9fnrdAfz6mS8SlosjHW7/6mxcfPQEEJJYCSMYjmL6ddJ+I+LqKe/8ejEm1jNjSYY0RS80AMBYezm6hotHaBCzceNGbN26FXV1dZg8eTIuu+wyrF27Fvfccw/uu+8+3H333TjuuOPw8ccfgxCCf/zjH7jzzjvxhz/8ATfddBNOPvlkXHPNNVi9ejX+9re/SX7G+vXrsWXLFowdOxbHHnssPvjgAxx33HH4yU9+ghtuuAEAcMkll+B///sfvvKVrwAAhoeH8c47NNSsvb0dq1atwrnnnosnnngC5513XmYiAwAcWAuMPxogBJh0IrDuQWqMOHZ0mMjs6HVjfF05KizxU2NGSyV29I3EV3Lso//tExLfXNtGU0nCQaDU2DWio1EOO3rd+L+FE2OvCYO6XeJ9wSgMzk6gRqJWdvXY+HKD0znsi6UuiRlTw0e5FZH4zGAwRg/pZnYFpAbD2YgKWqoAnPHHd7G91512ndFcDWJqU5WsGLG504mz7ns/7fvD0dTfN9fmnIXk6wvG4+sLaPTjvz5sx40vbklYfu1zm3Dtc5sAABtvOB01FXR8YCk1JeznRz5qx/UvJL4XAE783dvxbS2diStOmJKyDuPgxRBCw5gaq3TqxCvLgZ5N+n5Yy2zgzJWqVz/yyCMxZswYAMCUKVNw+umnAwBmz56Nt96ipmwdHR34xje+ge7ubgSDQUyaRGfC33//fTz33HMAgCVLlqC2Vros4lFHHYXWVjpTOW/ePLS3t+O4447DW2+9hTvvvBNerxdDQ0OYNWtWTGj4xje+EXv/ZZddhjvvvBPnnnsuHnroIfz973/XskfieIeAgR3A3Ivo85bZ9H/PplElNExPmq2f1lSFp9cdAMdx9MY9zAsNtRMT32yfCHBRGvGQnDtvMPrcAQTCUbTVx/P8bWWlGFtjZUJDMeA8AIyXMGqqGgOAAC5jCw2RKIcepx9j7akRDc01NHqqJ885zAwGY3Rz0d8+xkd7BmWXJ4eZz16xBiOBsKbP+Pz601Bn0z4R8aunN+KZzzpkl5eYCHbfvlTzdkcbh42rkRQh1mzpwRUSxokC7+0cSPE4GI2+D99e1IZvL2oDQH0vkvtzc29eE3ucvB8vOaYNlxxD3ysnxt3+8jbc/jL1KvvWMRNx8zmH6dh6hhExhNAw1l6ODQeGC90MScrK4ikDJpMp9txkMiEcpjegn/70p/jFL36Bs88+O5YKAdATVetnlJSUIBwOw+/340c/+hHWrVuH8ePHY8WKFfD74x1vmy2ujB977LFob2/HO++8g0gkgsMOy/DE795A/487gv6vnQRYKoGezZltr8iIRjm0D3ixeEZTwuvj6yrgCUbg8IZoB2F4H1BqBSqbEzcgCA/D+wwvNOzjHf8nJIXDTW2uwq5+JjQUlGgUcHXR1IlkSsxAVYvhIxr63QGEIpyk0FBWWoKGSgu6mdDAYDCyxB+KYOb18iUDhVx0fygiabaXjmyrTHy2bwjn/VXer+DCI8dj5XlzsvqMg4XTk4wTAeDAkBfH3ylfpSnZ9+GLFaej2pphNHAR8vovTow9ljq2hdfeu/okjK9LNJdOTrOQev+/P9qHf39EJ+buPH8OLlgwPmUdxujHMEKDwxuCLxhJXKAh8qCQOJ1OjBtHBwX/+te/Yq8fd9xxeOqpp/Cb3/wGa9asgcPhUL1NQVRoaGjAyMgInnnmGZx//vmy63/rW9/CRRddhOuvvz7DbwGgfzv933QI/W8yAc2HAT1fyL/HQPS5AwhGopiQdEFt5fPEOxxeKjQ49lETvuSwxNo2+l9IrTAw+4e8AJCyLyY32PD5Pkc8uoORfzx9QDQU92NIpnoc9WgwML0uen1rqbZKLm+psaKHpU4wGIwMOftP7+OLDqfksvsuOhxnHtaCqb99JSEXPR07bj0TllKT8ooKhCNRTP2tdF48AJwxqxkPXLJAdjlDPePrKlLEh2X3voctXS7J9eesWJPwfDSlpwj7wekNJUQ1AEgQY+TEM/HrR972OvrdgYTlVz/zBa7mfSLWXnsKmmTu7YzRhyGEBqGz2eMy5gzWihUr8PWvfx3jxo3DwoULsXfvXgDAjTfeiIsuughPPvkkTjzxRIwZMwZVVepM9ux2Oy6//HLMnj0bbW1tOPLII9Ou/81vfhPXXXcdLrroosy/SP92oLwWsInKPDbNBL58MfNtFhFyg+vxtfT5gSEf5rTaqRGfXUKZrRoDmMzx1AoDs3/ICxOJG+8JtNaWYyQQhtMXgr3C2D4UhkWIVpATGmrGAb2peZRGQuikNFVJm8y2VJejw+HNZ5MYDIbBUfJeWDCxFuv2ORTLVk5ptOGNXy7WtW0zr38F/lBUdnm20REMday68viE5499sg+/fU46ald8LD3yvaNw/LRGyfWMRE2FOXaspYtySCeyfPrbU1PWF3PU7XEfk9Ek1jCkMYTQIJTXGxgJIMFjnOOAaJiGC+eRkREaOr548WIsXrw49vrbb78deyxeds455+Ccc85J2U5NTQ1effVVlJaW4qOPPsJbb70VS5OQ+4w//elPsce33norbr311pTtitsh8P777+P888+H3W5X+S0l6N8ONM5MnMmvnQT4hgC/E7BqqxddbMgKDXV0sH1AGNiM9MajOsSYSqgZn6srp+3MB/uHvBhrL0+ZoWkViS5MaCgQI3x98uTUHYGqMcBu+XBQI9A/QoWGBhmhYUyNFZ+2D6UuCHqo2GdwM1YGg6EfTl8Ic29ao7jeun3SUaXnzhuLuy/U34cqEI5gxnXyaRtMXCgMwXAUH+4ewC+e2oghT1DVey7559qctOXub8zDSTObUFOe/5QN4fiTqrwiiCxi88h02wCkRQdhO9ctOwSXHT856zYzig9DCA0NlbzQ4A6gUmhxNAIM7ATCPjrYLbcXrH2Zsn//flxwwQWIRqOwWCyZmzQq8NOf/hSvvPIKXn5ZXQigLP3bgEO+kvhaHV/icWgvMHZedtsvMMIsfnJeeJXVDHuFGQeGvDQ/fqQ3/SDP3Z2H1uaWTocvJZoBSBRdZrcaW1gyLCN99L/cMWhrBAIuIOQHzMYMTxzgIxoaKqUFg8aqMjh9IQTD0bgYduBT4MEz6H75/jtAZZPkexkMxsHBa1/24vJ/r8vovbkc5D/zWQd+9fRGyWXP/miRZLUdRnZEoxye/uwAfvNfnQ3kc8xVT25Qve7kRhue/eEi3SeBmqqsslEOQprFfy4/GoumNKTdjrCNUCSKaUnpQbeu2hor0cqiHEYXxhAaquhJMzASQJudf9HnoCIDQEPZrTWpOfNFzrRp07B+ffoQPT247777st+Ib5hGLtRPTXy9lhcaHMYXGg4MeTGmJnUWH6ApA53DPnrcRcNphIYWWu7T4HQ7/ThqUl3K6/GIBha2XjAEocEmE6YpDLA9faklWA1C/0gANeVmlJVKO34L4vOgJxArd4k3bgK4CODuAt79PbD0znw1l8FgFBFXPr4eL27UFln48TWnoKUmt8JsOjNJFr2QPX0uf0JYfj45Y1YzXt3Sq7jeqYc04fWtfTlpw55+D+bd/Jrs8oWT6/DI946GuSRzLxE5weHiv38CQF1kgrkkXjbz2uc24T+f7E9YLkQ5/PPbC3DKITJ9bYZhMITQUFdhASFA/0gQsPMvegeA0nKgqhlwtNOQ2bLKNFthZIVcSUdxRIPB6Xb6MNYuYz5XbUWHwxcPW69KIzTsfjNHLcwP0SiHPrcfzRJmPTXlZlRbS+NpJIz84+mjXily6QE2XmgY6Teu0OAOxFLmpBAiHQbcQSo0uLqA9veAU24A+rYCm54CltxB05kYDMZBweE3r4HDG1K9fj4G9+l8Ia45cya+f6KxK1QVgs/3O/C1v3yoy7Zqys34cPnJsJXpOxxavbkHP3g0tZymIDL8+owZ+PFJU1OWqyEa5XDji1vwyMfa/MA+3jOUEkkg8O6vT8KE+grJZVII585dr+3AvW/sjL0uRCZcdtwkXHfWoYrbuf2rs3H7V2cDSBUvvveveDQSE+KMiyGEhtISE+oqLLxBWCm4SAgk5AMqW4CyagCEegQwoSEjVJXZdLTT/0JlBYGyKqCigUY0GJxeVwCzxlZLLmuutuLz/cM0bQJIH9EQcAGBEcMej4OeIEIRDmNkZnfG2svRw0oLFo6R3riYIIUQ6eDJzaxJPhgYCcimTQBAvZBO5+Gdrfe+R/9PPRWwTwQ2PU3L8QqleBkMxqhFS9nJfA1YolFOtmLFztvOzGpW+WCB4zj87IkNmqNTxOhVDUQrSw6Ll9N8eVM3fvTY5wnLf/fqdvzuVVrJbfNNZ6BSg9BhMhHccu5huOXc9KXq5cQOKU74nbSv0+7bl6LEJB8t/ovTpuMXp01PKcX6j/f34h/v78WPFk/B1UtmqmqDsL++/eBavLOjP2GZGhNKRnFiCKEBoKGyAyMBWK2VGOztRj3HgZRV0hkriw0IugvdREPCcRwGBwdhtSqEDAolG+0TU5fVtBreAJHjOPQ4/Th5pvQArrnaiiFPECHnMMxAeo8GgA4GDSo0CCKCXBhpS40Vva6A5DJGHhjpT+8/UMkLDSPGFRr63QHMbrXLLm8U+fYAAPa+C1jtQPNsWt4ToJFFTGhgMEYtp971Dnb1jaRdZ0JdBd69+qQ8tYgaCU6/TnrWmM3Kpmd3/whO+cM7mt/3+fWn0dLjRcrS2WNiv/13HlqLt7YnDqIPu/HV2GM9jxGx2JHM29v7cOlDnypuY0qSWFZbYcbn15+WMtg/YmId2lcuw75BD0783dux1//y9m785e3dePg7R2LxDHW+Sf/67lEAAG8wjENveDVhmRAdtPXmJSi3sIhFI2AcoaHKgoGRAFpbW9Gx4U30hznAWQYQE/UPCLiB/qjhfBqU4LjcfyWr1YrWVplSeQKOdtqRlzLdrB5n+IgGdyAMXygSK6WajPC6Z7CLZu+ki2gAqCFkvTFDIoUysnIRDc1VVnwpU2eaoS+RKJc6mzDSC4ybL/8mIdrB0y+/TpHT7w7ExAQp6vloh0HBEbzrc2D80YDJBNgagIbpQGfu/W8KgcsfQpXOYb4MhpG4c/U2/OXt3WnXyfegXsrgrlBtMQoPfbAXN72k3tPqL9+cj6Wzx+SwRbnnoe8cFXucrnzklzefgQpL7q7zi2c0SR6Xa7b04IpH5KMgHN5QSirQJ9eeEku1nVhvQ/vKZdjTP4KTRaKRIGqsu+7UmMeSEhWWUllPiENuoNVa1l9/GmqLWGRi6CQ0EEIeBHAWgD6O41JieQghiwG8AEAYjT7LcdzNWj6jobIMn+93wGw2Y9KufwFDu4EfU/MRbHkOePFS4Iq3gbH6lyAqFE5vCGfc/S7CUQ7//u5ROFQmrD8vDO9L9WcQqB4L7Hs/v+3RmV5+Fr+pWvoC2MwPugOOLsBSKR+tIEQ0uHt0b2O+6HFSk1U50aW5mkYXhSNRlLLwz5zx2pe9+P4j63D0pHo88r2j4vva0y8vdAG00kRZtWGFBm8wDE8wEjMBlsJWVopycwmNaAgHgYEdwPQl8RVa5gAHPslDa/PLB7sG8O0H10oatTIo+eiPMArDm9t68d2H5atIFGJAn86DgQkMibyzox/fflBdGciDwb9COD4GRwI44tbXE5YJM/m3nDMLlxzTlrc2nT4rNQqi1+XH0WlMNpOXvXzl8Th0bDXaVy5LiZxYwH9PrSkQcoLD4bdQ88sPl5+cUjGOURzoJZc9DOBPAP6dZp33OI47K9MPaKwsw4Cbn73q3wY0z4ovHDOP/u/aMKqEhvve3BmbXf7dq9sSlNC84+qKV5hIpnos9cgwsC+BkAqgFNEQdvWkH+SJIxoMSq8rABOJ58En01RtRZSjs8lShpGM7AmGo7jxhc2IcsBHewbxvy+6ce7h46jpbXBEvuKEgK3RsKkTwnU+XUQDEI9yw9BuWgmmSWQ81TIb2PwM4B0CKkbHoDwa5XD1M18gHOXw4e7BQjenmHkYOe6PMPJLOg+GD5afLFmKOR/ItYsJDJR0PhXJbL91iWyVodFOfWWZ7ED6+he24PoXtgAo3HHVXG1N+ewVL27Bwx+2S66/9N73Ep5/fv1puObZLxKqcgjinNbvJLefFq2kJuxrrz0FTaxfWlToIjRwHPcuIaRNj23J0VBVBl8oAo/HA5tjL3DYefGFtW2ApWpUlBUU4DgOz2/owtLZLTikpRp/eG0HuoZ9hVPsXF3AxEXSy4ScaHc3UDYtf23SEUHQkfMlaOYjHUwjvUB1GqGhrBowVxg6omFgJID6yjJZAyBBXOh1SVemYGTPp+1D6HL6cf//zcfv1+zAfz7ZT4UGQTxIJ3YB1MPBoBEN/SP0XExXdQIA6m1lNHWibw99oemQ+MIxc+j/nk3A5BNz0cy880WnE53DPvzxG3PxwDt7oM1v/OAhH/0RRu5J53UAFHYwzwQGeQ4MeXH8ndLGgmJ23XYmi4iUQDiG/vtZB3759MaEZcJxVwzH2YqzZ2HF2fEJ3+RUCTHzb5Evudm2fBV+u/QQXH5C+pKYyQj7YOk97+HL7ngqr1DeNNepJwz15PNXOIYQshFAF4BfcRy3RcubhZweZ8dW2Lgo0DgjvpAQoGEqMLBT5t3GY2u3GwMjAZw0owlzWu34w2s78P7OAVxw5Pj8NybkA/zD8dn6ZKrH0v+uTqDBmEJDLy80yA2ca8rNKDURWPwD6fPjCaH7ycDmmNTxX36QJ4guzBAyd7yxtQ9lpSacOL0J6/cP46EP2uELRlAeExoUTJVsDUD/jtw3NAf08waPSnmcDZVl6HB4gf7t1KtHfO0RohsGdowaoeG1L3tQYiI4aUYTuob9eFX5LQx5suqPMHLH2r1DuOCBj2SXF3KQ9db2PnxHwkCvGAZ+hURNucnHL1+IY6bU56lFxue8I1px3hGtkt4fxSQ4CExurExoz9ZuF868570074hz28tbcdvLWxUrXEjx8s+OBwAsuftdbOuJFwUQUk8y2SZDX/IlNHwOYCLHcSOEkKUAngcgOSIlhFwB4AoAmDAhXgNeKHXm697KvzA98Y0N04H2D3RuduH4YNcAAOD4aY1ori5DU1UZ3t3ZXxihQUgDqBorvTwmNBh3cN3r8qOm3AyrWTp0jxCCOpsFtuCA8mxy1RhDRzT0u9OXFhRHNDByw7s7+7Fwcj3KLSVYOLkeD7y7B+v3O7AopFZoaALajemb0j9CUyeaFCIaGiot2NgxTI1qq1uBUtH6lc3US2UwvWGckVi7dwhzW2tgr7Bg4eTRkQ5SIFT1R+T6Iozc8JX73semTqfs8kIOqiJRLsV9Hzi4S+0lVxeQopgGwkbFXGKSTRcoRsFB4JAx1QntuuCBj7B271Da9wjnWCbfZ/VVJwBI3UfZbJOhD3kRGjiOc4kev0wI+QshpIHjuAGJdf8G4G8AsGDBAk54XZjdCg3yAaO1bYlvrJ8GfPEkzWG22HT/Dvlmc5cT4+zlsVD+hZPr8Wl7+pM0Z7h4oaFaxu1XGPQYNFQboCUd5fwZBMZURGF1elQIDS1A5+fp1yliBkaCmNIk77VRb7PARIA+JjTkBLc/hN39IzhnLhXwFrTVghDg03YHFtXwOY5qUid8DiASAkrMOW6xvvS7AyAEiuXKGirLMOQJgnPsA0k2qiUEqJsMDO7KYUvzRzTK4csuF84/glYHmpOm9CcjPWr7I3J9EYa+pPNfAIBttyyRnQDIB1LtE8zuDjaU0lkANqDLJUYUHASe+v4xscdSZSvFtC1fhT9fPB/L5mivMGLkfTRayYvQQAhpAdDLcRxHCDkKgAmAJjcrIV+XOPfTMovWpIt8w1T6f3AXMGZu1m0uNNu63ZjZUhV7fti4ary4sQtDnmD+6wUrRTRYKoFSq6GFhl6XX7bihMCkcg/ghPqIhnzUJtUZjuMUSwuWlpjQUFlW2NQJjgPa36P/R0lovMCWLhc4DjistQYAUGU1Y0JdBXb0uoGSfgAEqGhIvxHBLNIzIC8QFin97gDqbRbF/N36SgsiUQ7c0F6QaadJrDAV6BodJS7bBz3wBCOYNZYeE2aW25wxevRHGNmjJDBMbrDhzV8tzk9jJNjU4cRX/pQaFZbLgQrHcdjVN4KL//FJLIXMCLDBW34x+mBaXLYSkL4W/Pg/n+PH/6GP37v6JIyvq9D0Gen20UOXHomTZipEhTJ0Q6/ylo8DWAyggRDSAeBGAGYA4DjufgDnA/ghISQMwAfgQo7jNM0QCINrs7sDsEuEMdbxRiKOdsMLDYFwBLv7R3DqofET4dAxtIO5pcuJ46cpOM7rjZASITdgIYQObDwpASqGodcVwPTmqrTrTLSM0AdVKiIawj5aiaPcrk8D84TLH0YwElXMj2+utqLXXcCIhs//Dbx0JX18+VvpfTMMxqYOGj48e1xN7LVpTVVUaKjuBSrqgRKFS3csyqjPcELDwEgA9TblOtsNlWUoQxAmT6906d36qcCXzwPhQGJahQHZ0kUn4WeNO/hmUbWSj/4II3OUBAag8AMlqTZm26ZgOIorH1+P1VuMm1Yph3h/PfejRTh8Qm0BW3PwkG4w/f0TJ+OaMw+RelvRoSQ6iM1FtXoutK9cllKC9jsPU5+VPbcvhYn5N+QcvapOXKSw/E+g5aYyxlxiQm2FGTZfV2JpS4Ea3rtg+EA2H1MU7OobQTjKYWZLvFM5iw/T+7LLlX+hwd0NmG20ooIctgbDRjREohz6RwKyFScExpTyRjOKpQVFqSQGExoGRugsipLjf3N1GTqHCyQ0RMLAe7+n6VIjfcDbK4FvPlWYtuSArd0utFRbE8Se6c2VeHt7H6Jj+mBS8mcA4sfgiPHOyWFvELU25XSPhsoytBL++yWn0gFA3SSAiwLODqDe2PXYd/aNwESAqWlSmhiUfPRHGNpRIzA884NjsKCtcP4j7+3sxyX/XJvwmhYTw0A4gnk3vQZfKJKL5gEAFs9oxE1nz8LEen1ThDscXty1ZgeeXd+Z1Xa+msYUctOK01FlNVYqnxGQEhweeGcPHnhnDzbfdAYqy4xTfUFOPBEQe6WoFf8IIWhfuSzFtHQy82/IC8Y5+gA02CyoGekG7GemLiyvpYNhZ0f+G6Yze/o9ABI7lbU2C1qqrdguclXNG+5uOkufLg3A1giM9MovL2IGRwKIRDnF2rtNJhrRELDYkXYYbuM7JZ4Bw1XhGODDNevTmEECQFO1Fev3D+ehRRIc+AQY3g98/WFg/8fAuodGjTcLAOzuH8G05sQB5YyWKoSjHALDvSi3KaRNAFT4A2hEg8EY8gQxoyV9dBFAzSBbCR9FJRXlVkP9DEaD0LBv0IOx9vKDts48w7jMuO4VBMJRxfUK3dnXEsUQjXKYc9MajATCWX/uFytOR3URDL6P+3/yJSnl9sNn+4Zw3l/lK4QkM3vFmpTXvnfcJFx/1qGqt8GQp33lMji9Icy9Ob6fD7vx1dgyI9G+chn+90UXfvIf+fRH4Zz9cPnJGGsvV9zm/Am1aF+5TDIC5IPlJ2Ocim0wtGMooWF8eQBWtz8evSCGEMA+HnAaP6Jh/5AXADAhKSdpcqMNewY8+W+QqzteWUIOWyPQa8wKYYLXQLPCLH4dLzQ4uCrIFPqkCBEPXuOlkji81PFfyQekucqKQU8QwXAUltI854vveZuWM5xyMvVr+eR+YO+7wAwJAdJgcByH3f2emOmfwKQGKqJEvENAfavUWxMRhAav8VLPh70h2CuUfWgaKsvQTHiD3CqJ9BCx0GBw2ge9aNN5BpPByCWPfNSO619Q7hO88rPjcciYwqUEufwhzEkaAItzwuUqTqhl521nFq2nSnJIuZhnf7QI8xVSII6YWJd2AHvXmu249830hrz/fH8v/vn+3sTXvr0ApxyikKLKkKSmwoz2lctw+b/X4bUv45N/bctX4Stzx+K+iw4vYOu0cdacsThrzljFaKhFK9+MPVYjqEhFTRzLb8NogowRMJTQMNE8TB/IDXprxtOZToOzf9CLhkoLbEnhTpMabHhpYxc4jstvSSV3FzB+Yfp1hNQJAxogDnrUzeLXwA0fZ8FAoCS90CAY9RnQs8LhDQEAahUGei01VJTpc/vRWqvNpCdr9rwFjDsCsNYAExcBplLgwNpRITT0ugIYCYQxuTFxUDme38clfgeN3lKirJruF2+BKtVkSDTKYdgXQm2F8gxfTbkZY4iDPpESGqrH0f+jQGjYN+jBstnG8tpgHJz0ufw46vY3VK1b6E691ADmL9+cn5ATroZfnT4dPznZONGL0SgXCxtPRs/f5Benz8AvTp+R8vqf39qF3726XfZ93/vXuoTnS2a14P5LjtCtXQcDf//WAgCJx/hLG7vw0sYuw5VllYpCkENYT43/QvvKZXj4g71Y8dKXCe9//sfHYt54e8btZSRiKKGhtZSvSiXVqQToDFbnZ/lrUI7YP+RNiWYAgMmNlXD5w3B4Q/mrPMFxtIKCkqGcrRGIBIGAiw4ADcSQR5jFTx/RUBl1w4HK2Pqy2IwrNAjfTUloEPwDBkaC+RUawkGgawOw8If0eWkZ0HgI0L0xf23IIbv7adTMlMbE1Al7hRmVZSUoC7nUCQ2E0PV8xhIa3P4wIlFO8fgDAJOJYHzpMEZK7agslVi/tIxWiDF4lNuwN4hhb4hFNDCKGrnZ8TU/PwGn//HdhNeKIVxebuDyo8fSl6b+8uYzUGExVNc5RroIhnyKPj8+aSp+fNLUhNfe3t6HSx/6VHL91Vt6En6v+//vCCw5LO10D4OnfeUyhCJRTPttvCypcAwUWujTQvvKZZLlVffesRR97gCOThI3BSHt1atOSJuKeemxk3DpsZMSjq9z//xB7DMZ2WOoq2WLic5ecVXNkNSp7ONpx9rg+dr7h7w4si11MDGZD5/e0z+COlueDJO8Q1RAkCttKSAup2dYoSH94KYi7MQ+rioWASFLaRmdUTZg6sSwNwir2YRyS/pc8HpeaBgcyXMJrv6tQDSUWFlmzBxg5xpDRtMk0z5IU6PaGhKvX4QQTLcDJmcEqFB57pfXAj6Hzi3MLULqjhqhAQDGlQzDUdIAWYvEmlbDRzTEUunq8xw5xGCoRGrQvmRWC/5wwVzM4nPEBQrdeVeaTRez6srjYiVljY6csFLo30Ng8YymhLakE0V+8GjihCKrHpAec4lJ1pvASNENltLU7zHpmpfx6lUnyJpInnE3FTnPmTcW91wonzbSvnIZNhwYjokMwrbe/81J+Y/aHWUYSmhoBO00ey2NkJQRanhDsOEDQNPMvLVLT4LhKLqcPkyoG5eyTBh8tA968+fM7OZLW1YpqMexWfx+wxmvDXmCMJcQVFvTnw5loWE4uEoMjihENAC0BKEhIxpCqFMxyKvnRZlBpegOven+gv4XCw0tc4ANj6mLvClyOhw+lJoIWiSMSadXhwEn1EU0AEB5neFSJ2JCg4qqEwDQTIYwQBog4dpDqWkF+rbq07gC0TXsAwBmVMUoOjZ3OnHWfe+nvN6+chl++9ymohAZpGZB5TDSoEstxS4wyCFUChBIJzyI00DWX38aavMV8WswpAbjk655Gd8/YTKuWWqMUphAairFGXe/C0upCTtuPTP2HZfc/S62iczzX9jQhRc2dMXeL8W88faUbQsmqcV+vhQzhhIa6iKDGOIq4Q0S2KSUBjvf3XR2GFZo6HP7wXGQdFAdw5dfFDqeecHNm8nIpasIxCIajFdOb8gTRG2FRbGDUeJ3wIk65dQJgAovBo1oUGPEJ/hZqBJd9KRnE2CpBOpEYpZwrg/uNLzQ0OnwYYzdKlkneoqN7mvOapeO6Eqmos5wnjVaIxrqo0PYFp0O2XmKmvHAztcMHe3SxZeRHaNQfpfByCfpqjQkL/vR4im4ekn++mQf7h7AxX//RHG90SgsCKx4cQse/rA95XWjDpiShQc5kevwW16Lr2Ow0o75Inkw/cC7e/DAu3sMdWy0r1yGXX0jOPWudwBQQbFt+arYd1h91QkApI8T4bvLfd/2lcvw7Ocd+MVTGxPeM5qvF7nEUGdgVXgAvVwtIt4QWqUm9WIu48bqXIvpcdJOZYtEp9JqLkFjVRk6HXkUGgThQKmknoGFhkFPUJXnBfENwWuerG5wbWs03CAPAIa86vZFhaUU5eaSAqRObAMaZwAmkYu3IDoM7gYmnZDf9uhMh8OLVrt0mF6rlV4bPCU18qkCYsprDedd4fCoMyMFAERCqIkOoyuSJrS5ehwQ8tIUErUpJ0VGj8uPslJT/nx5GIw03PzSl3jwg8QqAff/33wsOYyKvMkiw+7bl0oKp3ojN7CWYjQPGPyhCGZevzrldSMNItVw2Lia2HeSi3Y4TBRRw9IrEpHybmhbvgq7bjsTpUVaJSWZqU2VKaKJWGwA4sdJIBzBjOsSz4t0gsPX5rfia/NbU6I/mD+IdgwlNNgC/djG1YLIzShXjaFO68PGNf/qdgqzV9JhsuPs5ejMZ0RDTGhoTL+egSstDKkRGqJRwOdA0GJXly5QUQ90pjeVKkaGvSHVIdr1lZb8p04M7QUmJFVAqR4HlJQBQ3vy25Yc0DnswwnTpM+1JjPN1R+IVKgXGoyaOqFGaOCvNR0heaOnuPh8wLBCQ9ewD2NqrKN2YMQwBnKDOaGTLlXJINeD298+twmPfaJN0B9tA24xUlEmRjavVEtytIPUfhCOzalNlXj9FyfmrW3FjJR3w9TfvoLfLj0El58wuYAt04aU2JAsJpaVlqB95TLJ61g6wSF524I/yGi+juiNMWQrnrLAAPphj3VGUzCV0NKXBjb/6nXJRzQAwLjaPAsN3gE6iCtL05kHgFILYLUbMqLBoUZoCDgBLoqI1Y4hJTNIgE+dGKQh2wZClejCU19Zll+hIRygA8a6pBugyQTUthleaAiEI+h1BTCuVlroqS+hRpHdQZW5+hV1QNgHhPJ4vciSYW8IJgJUKfilAIilJnWHK+EPRaTXiQkNxr0ndDv9ssIzg5EPfvnUxpTO+dabl8Q6213DvryJDKs30woEbctXSYoMzdVlaF+5DNtuWZKybLQODt7b2Z8yuD6yrRbtK5eNepFBivaVy9C+chn23rE0ZdmuvpHY8RMMRwvQuuKjfeUyHDu1Pvb8tpe3qi4nWSwkn9uTrnkZ0Whq/1sQpaSOjbblq/Ddh1Mrn7SvXIZPrj0lZV2GOoxzBeI4lPqHMMhVweoNya9XM97Q5cy6nX6Um0tkjQlb7eV47cteRKNcfsLAPAM0mkHNbJqt0ZBCw6AnGDM3lEWYGS6vx6BbZepENAT4nUC5Pes25oNwJAqXP6Q+P95miQljecGxDwCXKjQA9LWhvamvG4huPhdfzuG4FrT0ZWdAZa5+OT+D73MAZmMMVIe81C9F1bWNv9YMcdVw+kKwmiUqpdSIfHsMSvewDwun1CuvyGDkgHReDADw0sYu/PTx9bHnDZUWrLvuNF3b4A2GcegNr8ouP3F6I/713aNizwdHAjji1tcT1hmtIoPS73MwI450+GyfA+f99cOE5YJJ6B1fm42LjpqQ9/YVE49dtlAylcJIx1Jy9MHka1/GtluWSPYNhGMjORLrzW19aFu+Cs/+aBHmT4jn6DdXWyUjJ+S2z4hjHKEh6AEJ+zHEVaNcLqIBoOkTnevy1y6d6XH604bJjrWXIxiOYsATQFNVHszBPP2ATWUn19ZouNSJUCQKpy+k7FLMCw0mWx2GutWkTohSSQwiNDh9IXAcUFuhzvG/3mbBl12uHLdKhBCxICk0TAL2vmNo078OR/rqAraoGyOcFd1umdn7ZITqFN4hGullAKgZqbrjD55BAMAQquDwBtEsUakDtgYakWVAvxSAhqP3uQOSVUgYjFzyzo5+fPvBtQmv7bj1TFhK44Gwlz60Fm9vj08uPPydI7F4RpNubVCaNZQaBO3pH8HJf3gn9vzioyfg9q/O1q1NxcL2HnesdJ8AK8UnzxETa2XNSq95dhOueXYTgPyKNOFIFAMjQfS6/NgzMIKdvSPoGvbB4Q3B5Q+h3FyCOpsFTVVWTG60YU5rDcbZy2GvsOTE90QqlcJoJojtK5clVJyYef1qfLHidFRbpfsVJhMVHFz+EOasWBN7/Wt/oaJUspCQvH9mXr8af/3mfJw529hG5LnEOEIDHybrNdsRSBfRUNVCKyUYdMDR4/JLd5h5hEFIp8OXJ6FhQNmfQcDWAAzsyG17dEZIw1GMaPBRoaGksgHuQBihSBTmdIY5gjjjHQAwVYeW5h4Hf16pLQ1VX1mGIU8QHMeB7PsQ2PAf4PBvAhMX5aaB6YQGwfTPP6y+/GOR0eGgHgytMqkTpQEn3KQSvW6VUSSCJ4HPOD4NDo/6iBohomGAq4mZSKZACBVZ3N06tTC/OLxBhKMcmqrKCt0UxkGEmlny5HXSdea14PSGMPfmNbLL0w0Ev+xyYem978WeP3jpApw8sznrNhUbLIohO4R99eLGLlwpisYBlCsSSBGORPHAu3vwu1e369dInZk1thr/uXwhasqVz9HkwfSka15OERmLmdVXnYA7V2/DX97eDQCYs2INNtxwWtqKatVWM9pXLsPqzd34waNxfzXBWFV8PLSvXIafP7kBz63vBAD88LHPU9ZhxDGO0MDPXgXL6uBPG9HQQvOSDRSyLqbfHcDhE+yyy4X87c5hHw6fkIcBlWeAuvyroaLecKkTQqnKOptCR56PaLBUNQBwweULob4yzXsMaI6ptbRgQ6UFwUgUbpcD1f/9Hh3MbV8FXLkhN+fe0B7AWiNt6lczjv53dhpWaOgc9sFE5P1Z4BuCp6QaPU6VlT7EqRMGweENYnydyhk57wA4UgIXKjCsdE8QyvQajH6+qktjPkRlxkGPlKHj279ajLaGxHriyQNdPWY8z/nzB9h4YFhy2dprT0GTQlTPli4nlt0bL2P32s9PwLRmBW8pgyFlZLfm5ydg+ij7nvni7LljcfbcsQiGo7E0CoFkweGpdQdw9TNf5L2NerGly4W5N8kLeAASBuPJYsP0617BJ9eeknYitJi4eslMTKirwHI+UmXeza+pEkOXHDYm5bsD9HhorS3H+785GQDwx2/Mw4qzZyXsU6OlmuQL4wgNfERD1FoXm3mVpIoPXxnpNazQ0JhmABsTGvJV4tLTTwUENVTUAb5hQ0WTxIUGpdQJKnSVVVOhYVhJaBCiQLwGEhrU7gseYb3g+qepyLD098DLvwLWPQgc/wv9Gzi0m0YzSB1b1bzpn6sTaDlM/8/OAx0OH8bUlMtHyvgcCJTWoF9tRIM4dcIgOLxBzGlNU65SjGcA0fJ6cD5T+ntCZTPQu1mfBuaZfrcgNLCIBkZueeazDvzq6cRyuFKd5uQOeLYd63TpEWq33TnsSxAZRmMKweZOJ8667/2E19igRh8spSbZtIpsTf+e//GxmDfentU2tPD29j5c+lCqoaEa5t38WtrlR9/+Bt745YmY0qiq7lXBufCoCbCUmvCLp+h1bc6KNdh+6xKUlSp7KkgdDx0OH9qWr8KWm86ArawUNeVmxfKaDCMJDfzMMGdrTD97VcmHybm71c/EFwmeQBi+UAQNaTqV1VYzqqyl+ak8EfTQ6BC1qRNWO8BFgIAbsFbntGl6IQgN9ZUqUidICSqq6wDsgdOXZmAD0DQSwJARDWpz5AWhpXTXasA+ETjyMmDj48D2l3MkNOwBxh0hvSwW0WBc079Ohy99aVGfAyHLWPWVPgyWOsFxHBxeLakTAyCVDcAQ5CsRAVR83vWGPo3MM0xoYOQDtaH4eokMyaZzYlZfdTxmtqjvPzi9IRy78s3Y83d/PfpEBpYqkRvaBzxY/Pu3M3rvXRfMxdfmt+rbIB1YPKNJ1bExMBLAgiTDVDWcwvufHDu1Ho9dtlBh7cLztfmtcPlCWPHSlwCAGdetxp7bl6o2029fuQzhSBRTRderWTe+Glsm/GdigzzGERr4GeUSWz0cwwphsoAhQ2Vjncp0M+WgPg15iWgQ0iDUCg3CDKrPYTihQXFw4x0CymtjYWXOdDOoAFBaBliqDCY00O+kurylzQILQqjq/hA44ls00mD6EuCt24GRfqBS5XGjhnCQGvrN/rr08spmgJTQiAaD0jnsw1GTJNJCBLxDiNgOxVCvSqHBXA6UlhsmosEXiiAYjqr2CIF3ACZbI6xmU3rhr6oZCLqBwAhQZoyZGIE+JjQwckzyIHbjDaejRkJs1kNk6Br2YZFIFMh2e9Eol+Dn8PyPj8WE+tEtMhgpfL3YkIrayQSlfH8j0FBZJnvOuf0hzF6RPs3ig12DKcfmm788EZOLMNrh0mMn4ctuF55aRyeiJl/7sqbrTSlvkvmNBz7CJ3vj/am25avwv58eh8PG1RjeRDOXGEhoGABKLCivtGPYk2YwIQgNIz35aZeODPD5uOkiGgBeaMhHRIMwSBZm55UQhAb/MICJuWiR7gyOCEKDwiy+bwioqIsZ6Qz71JS4rDdc6oSl1IRylaV66istmEEOoCTiByYeS1+ccgrw1m3AvveBWV/Vr3HOAwAXBWonSS83ldCZa6cxhQZaXcAv78/AcVTAa6iFNxiBLxhBuUXF7ySkMxmAuOintupEPzD2cNjLLbG0H0kqhXtCr+GEhn53ABWWElSWGedWzTAGUnnpcp3vHz32mar15Nja7cKZ97wnuSybmT+xn8RNZ8/Ka4h6PtA7TeVgQ6rMqRzfPmYibjpHOu3SF4zgkBtWx54LKQaj9feo4o0Rk3lhQyd+9sQG2feJq70AwD0XzsM588bp3byMuPP8uTGhAcgs6uDJ7x8Te6+AkM7UvnKZpIkmExsAY1iIAtQMsqIBtbaymOu/JGVVgNkGuI0nNAgRDQ0KYfxj7Fb0ulTmaWdDLKJBo9BgMPM5e4UZpekqSAB0VriiXn1EA0C9LQwymwzQfVFXYVF9UayzWTDL1E6fjJlL/7fMBkosQOfnsu/LCOcB+t+eptZ19RhDCowA3fehCIdmOZEx4Aa4CEr4aiaDHrWGkLWGSZ0Y5s8p1TNF/D3BXmFW8O0R0umMd2z0uwMsmoGhO5s7napFhlc2dePlTT2K60mxu38EbctXpYgM05oqYx3zTBF36Bsqy/DtRW0Zb6sYYSJDZnznobVoW74KbctXpRUZdt52ZuwYbF+5TFZkAIBySwnaVy7DL06bnvB62/JV+ONrxqq0lg3nzBuHt361OOG1W86V328/e2JD7LdoW74K2/mSk4VCqXKOlu088r2jUrbV4fCmfMaka15GNMpl9DmjBeNMk3gHAFs9am38jLI3JN8Bq2oxZKdyYERdmGxTlRUObwiBcESVqUnGxCIaMkidMAiDnqC6VAGfA7BPQLWVnjLDSh4NgOGqcAx5Qqr9GQCgrLQEh5v3wV9SCWttG32x1AK0zAE6P0v7Xs24+PKE1WPl17E1AY52fT83T/S66LkvGxLLn1PmSl5oGAmqy0MurzWM2CWkP9hVlN9COAAEnICtEbUVFgXfHmNHuSmW3mUwNPCtB9fi3R3x+9IhY6rxys+Ol1y3x+mPlW4DaHUJNcjlf3//xMm45sxDNLY4leQBwrrrTs16m8WCVOUPJjKkR82AcdstS2BVGa0px5WnTMOVp0xL+Lx73tiJe97YedD8RpMabHjke0fhkn+uBQBc//zmhFl7fygSKwmZzBl3v5vwvBCz/Xr5KRw/rTFlW8f9v7ckP2PytQd3ZIOBIhoGaEQDP9uV3vzLmEJDvzsAQoA6hRm95moqRPS5VM5qauDt7X34yn3v47n1HfFBcsXojWgYGgmq68j7hoHyWpSWmFBVVhqbfU1LeV3MW8QIDHuD6o34eGab9uGAZUpiJYhx84Gu9UA0ol/jBO+FtEJDQ86EHY7jcN8bO3HOnz/Azl79VflevpKEbAk3PirBWk2FhiEthpAGOR+Fc0oqPzwF4bzixWfF+wFgSN+eIU9QufQug6GStuWrEkSGN355oqzIEI5EsfCOuInqFytOV+wohyNRtC1flSIy/PTkqWhfuUwXkWFJ0mBlNA3wmMignmuf2xSbKZdienNlQsRCtiKDmPaVy7DztjMTXmtbvgqPfNSu22cUM8dPa8TFR8ejS8UlV63mkoT9vvXmJbLbmXTNy7Hf0B/Ssb+oQPI59d/PMjcRb1+5DH+6+PCE19qWr8KupONj0jUvg+MOzsgG4wgN3gHA1hCbcU1v/tViyNmrQU8Q9nLlMH5hMNKntsydSpy+EH7yn/XY1OnEr57+AsMDXTQNxaLSXEkoJ2qQgQ1AO/KqBtd+J2ClZfdqKsxwqY1oMMhsMgC4/KGYB4UqOA4TuC60m8Ynvt4yGwh59Y0ucHVRIcucpipDZRO9TugpcPC8ua0Pf3htBzYeGMb3H/lM91C4Pj4VShARU+DPqUp7EwCorzxhoNQJ4Zqu6hgURVvZKyzphb/yWprOY8B7gsMbRJ1NwznJYMiQPCDbe8fStGXqxC7r//jWAsX6823LVyW8BwCOn9aA9pXL8MvT9akANuwNYpso/Ho0DcKTRYYjJtaOqu+nB75gJDYw/c8n+1OW//1bC2ID3DU/PzGnbTGXmFJ+n+tf2JJ1OUyjcPtXZyc8l/veQtqJ8PfbpdJi48zrV8d+W8Wqbjog/u1++fRGBMKZ9xvPmjM25ViY+ttXcNlxiZ5iYkHmYEIXoYEQ8iAhpI8QIlmsnFDuJYTsIoR8QQiZr/lD+HzcmBlf2rrpfESDwdSjYW9IleN6cxUvNOgc0fDE2v0YCYTxr+8eBY7j0NnZod6fAeBd7q2GEhoGPUHl0paRMHWt54UGe4VZZepEHRAcoWHeBsDp0yg0eIdQyY1gT6Q58fVG/kbSv02/xrm7gWoFUyFbIzWMzMHx9/ja/WisKsPvzp+DPQMefLBbX5NPIXVCNm1KEBrqaBrT4IgWjwaHIa6F8dQJFcKfKNqqlj8fZWcLCOHvCcaKaOA4Dg6PunsCI05e+iMGQyrfP110gnh9S6kJpx7anHZdufKLj3zv6AxaK49gwgeoT+MwAhyXKDIsmdWC//5wUQFbVFzMWfEq2pavSjBkFLjmzJmxQexpaY7TXNG+chl23Joa3RA5CPLyM/E8uPyEybHfK3m/Ccy9aU3suhIMy/jx6cAXK06PPZ5xnXS6hxaS98c/3t+bss7BIkSJ0Sui4WEA8vExwJkApvF/VwD4q6athwN0oGerj3VCFSMaQl5qoGYghjxBxbQJID7rqbch5OotPZg73o4Tpzfi2KkN8Di6tQkNQHxgYwA4juNnDBX2ecBF/wsRDeVmdYprBV+q0CBRDS5fGNXlGmxbhnYDALaHmxJfb+Rnr/q26tQy0NSJdGkTQNxLZKRPv88FMBII463t/fja/HE4e95Y1JSb8fz6Ll0/o9flR53NIu+5wh9DFdUNsJSa1KdOlNcC0TAQ9OjU0tzh9IVgKTHBalZxW4qlTjTAXm5BJMphJBCWX7+q2XARDd5gBMFIVNU9gZHAw8hlf8RgaDUVTF5fbjDwzo5+WYEhFzPx4s/60eIpoyrfWTzTObe1BvdfckQBW1M8CINNlz/12i4cZ98/cUoBWpaIpTQ1umHKtS/jyU9Toy5GG8nfe0//iOr3Cvst3TVj+nWvpE2RyYZqqznmuwboIwJIpdUkc7CJDboIDRzHvQsg3WjqHAD/5igfA7ATQsao/gAhTLaiIZa/m9b8K1bi0lgzWLQCgnKnsrbCAnMJQa9bv5nyYW8QGw8M48TpdLB28swm2EIO+C112jZUXmuYcnouXxiRKKecA+130v9WOwA645r2+BOooPn0RvBpCIaj8IUiiuGxCQxSoWGzryFxNtlaDVS36hvR4Oqi5SvTIQgNHn2Fhg37hxGJcjh2SgPKSkuwaEo9Pto9oGu+Xa8rgKZ0JrD8OUXK69Bgs2BgRKXQwB+ztORsceP0BVFdblY3gBBVxInfE9JFuTUbzrcnVu6TRTRoIuf9EQOhVWR4f2dipJbU+tEoh7blq/DtB9emrJurUP+HPkicGbx6ycycfE4hSP6NXvjJcQVqSXEQ4Y8vqcHY2mtPyelxli3tK5fh/CNaY89/899NB8WgUvx7JJe41LqddL+vcFz84709GX9GMl+sOCPh+WtfZj9ulEqrSeZgOC4E8uXRMA7AAdHzDv41dXiFfNwGVJWVghAVEQ0ADbc2EGrzcU0mgsbKMl0jGj7cPYgoB5w4nUYwzBtvRz1xoZ+r1rYhA0U0CCUCFfe5MEgTeTSoi2gwjtDg8msw4hMY2oMoTNgbaUydTW6cAfRv16dx4SAdWCqlTlTykRUefdMaPm0fgokAh0+wAwAWTW1Al9OP9kGvbp/R6/LLV5wA6DllqQRKLairtGBIdXlLe/z9RQ5N3VEZUeMZAEylgNUeS/dRvCcYTGgQDC5ZRIPuZNcfMQhaRQaO4/B///wk7fpty1elmBWu+fkJOR/43fTSl2nbZVRYCcs4gsAw5drUPHZh8ClrllxE/P7rcyWNIkc7T//gmNhjvSID2lcuw5c3n5Gy7NZVW2Oigx4TPuLz7vJ/r9NtEomJDZR8CQ1SU1SSvyQh5ApCyDpCyLr+fn7WShTRYDIR5dB1oZyZgXJyaRi/+nzcpmqrrh4NGw8Mw1JiwuxxdgDAoWOqUAcXDgRs2jZkoIgGYcZQfURDYuqE4sWonI8GMYAZn2BuqSmiYXgffOXNCKE0NZS/bjI1g9Tjgu1WUdoSyFnqxOf7HZjRUo0qft8cM5n+rp+26/e7UqEhXUSDI1bVpd5Wpi11AjDEOen0hVRFdAGg4p/VDhASK4epeE/wDwMhfdPNcgmLaMgZqvojkn0Rg5DJAFYcvv/OrxcnLHN4grJpEtObqzJrpErEn7v++tNy+ln5hIkMFI5TFhiMhtSM9mgfVB7Zlhj9fMv/vpRZUxsVllJRmszklOVC5Yovu1xZfY74mqenaWP7ymX4YPnJssufW595xQujoCEhOys6AIit6VsBSCY5cxz3NwB/A4AFCxbQm78wI8zPENvLzQphsvzMpoFSJ7zBCILhqOrygs3VZdg7oF/e9caOYRwypgqWUqo9lYVHABLBbo8VmiyJyu2GmD0F4s79iuUtk4QGe7kZoQgHbzACW1maU8hQEQ00IkGTR4OzAyHbWMBBB0UT60WiVN0k6m3hHQJs9Vk2jr9UVCtEN1vtdJZb5xKX23vcOIFPKQKAyQ2VsFlKsKXTCSwYn+ad6ghHohgYCShENAzFohPqbRbs6lOZBymkThjgnHT6QmiqUjljJaoCI4gTae8JVbxJ2EgvUDsxm2bmjVhEAxMa9EZVf0SyL2IAMhnAJr9HfC2XExjywYe7EqPTRovodmAoMRpObn+GI1G0D3rx+T4HXtncjbe2K9/bvjJ3LC5Y0IrZ42pQozYVrUDIDb6NKC5I0b5yWcJ3bFu+atR8NynE3/ef7+/F9Wcdquv2rznzkFiJ3ORjZ+m97wEAzCUEO2/TbhSb0H8F8OLGLpw9V2FySyXj7OUpx4LAz5/ciCWzxqDcol/51WIjX0LDiwB+Qgh5AsDRAJwcx6nPaxA6yby5Xk25guu/tQYoKdNfaHD3Ai/8CBgzF1h8LVCi3+7TGibbXG3Fx3v0mVGNRjls7nThq4eLokf5KJKdHo2hagZKnXB4VHbkk4UGISfcF1IQGoxjBqmptGDsTR2I1s8DOpA6w17Ll/Vx7M1eaHALQoNCdLPJRKMadPRocHpD6HMHMK0pXgbOZCKYNbYGmzqdunzGoCeIKIf0YaE+RyxCps5m0R7RYACPhmFvCNOaVM6OJggNwvmYZp8IUW4jffoKDbvfAt6+Azju58CM9AZQWhny0HOSpU7oTnb9kSImE5EhOe1NeI/LH8KcFWsSll15yjT84rTpWbZSPRf/I30qh9Hodflx9O1vpLyu52z3Sxu78NJG7WbFr//iRExtki93qiffenAt3t2RKpqMht84mYNNbNh685JYdZBcfldhu9/8x8f4YFd8Mi8U4WL7W+tni3+rKx9fr5vQILV9MYfcsHpUHxO6jJQJIY8DWAyggRDSAeBGAGYA4DjufgAvA1gKYBcAL4DvaPoAIew3liNvSR8mSwjvMq6z0PDcFcCet4FdrwP1U4F5F+u2aQffqbSrzJFvrrbC6QvBH4rAas5OCds35MVIIIzDxon8GHhfjL2+Crj8IfUh9VY7EPYBIR8td1nEDGoVGvgZ5VhOuDeEcfY037HEDJRVG0Jo0Jw6EY0Cri6UTP4KAAmhoY4XGob2Aq0LsmycIDSouOjbGoAR/SIadvXTyjXTmhM7YLPGVePxtfsRiXIoMWU3YyR4rbQoCQ1NdHagvrIMvlAE3mAYFRaFS3jMo2E4qzbmA03lVUVCgyqPhlxEubl7gccvote7Jy8Bfr457g+kAw5PECUmgiprvuYDRgc5748UKZmG4h9246sp7ylkFIOAuA0PGKgKw4Pv78XNOoWN55NT75I38Vt//Wm6RJNEopxsisRo5mASG5Jn5g8MeTG+riJnn/fYZQsB0Pvl4be8lrAsE8Fh9VXHY8nd78Xer/fvJCc2jOZjQpceDMdxFyks5wD8OOMP8A8Dlio6cAMNXd8/qJA2UKmz0NC/g4oMp94EbP4v8P7d+goNGsNkBYf6PlcAE+qzO4m399DB1IwWkdDAh58PcdXY0+/BvPF2dRsT54QXudAw5AmiwlKiLNT4hgFiomZ8AGr4EqtpZ1AFKuoMkTqhOaLB0wdEQyhrmABAKqKhjf53pNYR1oyrCzDbqGijhK1J19SJnb00RSF5pv2QMdXwh6LYP+TFpAaNPiZJ9PJeK2k9GrxDIo8GevwNjgRRUadwCbdUAqSk6KOMIlEObn9Ym9DAR7hYzSUoKzXBqVR1AtD3nrD+ESoyXPw08J8LgHUPAiddq9vmh7xB1FaYYcpSyDrYyHl/pAjJVGQQv2/W2GpwHJeSn5zvKAYpzpiln4CnF53DPhy78k1dtvX0D45JyXHPFU5vCHNvXqO8oojkARwAPHHFQiycrD5aUWpwtef2pQfN9e1gEhvE3/X4O9/Ky/estVlkhVLh+d47liqmEs1sSexnhiJRmEv0tTOUExuOueMNfHTNKbp+VjFgjKkSnyM+MwcVqRMA7Vjy5fd04Ysn6WBz7kV0AP3K1dTsThhQZYkgNKg1QxPyuXvd/qyFhl19/KytOGyOH6wNcNXY3TeSgdDgUM6pLzBDnqA6YUeYPeUvUELUSdqBjUBFvSGEBqHqRLXagZ6zEwBQVjcelhKCoeRyn+ZyWo5ySA+hoZNGM6jJNa1sAgZ2ZP+ZPHsGPLCUmlIiV6Y0UnFhT/+IDkIDjWiQ9WjgOHo+VcRTJwB6/CrOFBBCz8kiT51w+zUKXaKIBoCek2k9GmwNAIi+RqFfPAm0HQ9MPx2YdAKw9SVdhQaHJ6jas4dx8PLP9xOvsWo79aFINOH5RUdNSBEZCjUQEnfCd9+uPd9ab/yhCGZevzqj9774k2Mxp9UOIPF7FWrf1lSYFT/7ibX7sfzZTWnXufBvHyc8H1tjxYcSg6RolEupVLJwch2euOKYlHVHOweT2HDpojY8/GE7AODeN3biylOm5e2z5QQH4fqmJDiIf6dpv30lJ79R+8pluObZL/D42ngBpG6nH4FwBGWlo8uvwSBCw3Dc1Ay0U+nyhRCNcvJqaGUzsO9D/dqw6zVgwiKakjF5MX1t91vAAn2iLlX7BfA08bOfepS43NE7gnH28kS/Ad6jYZhUazOdFAsNRc6QJ6hsBAmkDGpUhWoLlNfFy7MWMS5fGJYSE8pKVSq3LuqUS2paUWfrx9CIRHRH7SSdIhq61aVNAHRA6emng3MdTLAODHnRWluecp2Z3EBFuT39HpxySHaf0efyw0TSmJIG3AAXiZ1bdZVxoUEVBjBoFUSCTIUGxUpEJWYq+ukV0eDspILWEZfS55NOAN68BfAMZu9JwjPEhAaGAoMjgQR3dy0d4mm/fSXh+XXPb054XiwDoGxT0zJhc6cTZ933vqb3KM3Oiwc96Vzoi4ELj5qAC4+akPL6/1u9DX99W3oCr8vpT/iOd543Bxs6hvGfT/YnrFcsx1WhOFjEhhVnz4oJDXe9tiOvQoOAkuCgdr8PjATQUKlQnS4D7vjaHJx+aAu+8/CnsddmXDf6/BqMITT4h1MiGqIc4A6kCbWtbKZO7eEgUJplZ83vBHo2ASdcTZ83TKezte3v6SY0DHlDIER9R7uZd2fXo8Tljl43pifloMMzAJTVoMFahc5hn/qNGUxoaKjULjSIzSAVqagHBrZn2sS84fSFUK3FodrdQ/9XjUGtzRmLyEmgbhKwK9X4SjOuLmDS8erWtTUBYT8dnFtVpFoocMDhxfja1KiBWpsFtRVm7BlQWf0hDb0uehMrlQvPE84l/txSVc5RjNVe9B4NmlJ3Qn76G4vPyXKLcipTZbN+EQ17+XzmSSfQ/23H0f/7PwQO+YouH+HwBrOOlmGMXjiOwxG3vh57LlVvXo7Vm3tkl229eUlBHdALMesvZXyZDq3tikYTi5ak9XYqYn6zZCZ+s2RmwmtyRpZX//eLhOdTGm1445eLc9U0Q5EsNnQO+wx7TKTjmR8cg/Pv/wgA8O+P2vGtY9oK0g6llAqp81n8Gy249fWcXYtOmtmEt361GCf9/u2Edo0mscEYQoPPATTE1TChM+pKZx4mlDPz9AE1rdl9/v6PAS4KtB1LnxMCjD2cig864fAEUVNuVq3e2yvMsJSY0OvOLqKB4zjsG/Ri0ZSGxAWefsDWgHGWcnQ6Rq/QoKoGuN+ZEFFTbi5BqYnEDBTTUlFvDDNIf0hbaUt3Dy0lWVGPepslZqyZQO0kYKQHCHoBS4bpPdEI4NYS0cCXofT06yM0DPlk04YmN1Zid3/2JWZ73X7l0pZAXGiIlXPUUHmiyKNqBKFBlRlugK+XLY5oqDCnlIxLobJJv4iGfR/QaKWmWfT52PmAyQx0fKqb0DDkCeGIiSyigSGNOM3h2qUzlY1hRfzg0c8kXx9NnVslLv/3Orz2pfL14L2rT8razE6cOjDa9nHy95ETHnb3ezKuBjAaEQ9kj1355qjcJwtEviM3vLClYEKDQDrB4Xfnz8HX05Qr73cH0Filf1QDAExqsGHddadigUg4fmFDJ86Zp1BpzSDo63CRK1JSJ1TUTdfT/KtjHfVnGCdyz28+DBjcRasr6IDDqy1MlhCCpuqyrCMaBkaC8IUiGF+XpKZ6+gFbI1pry9HhUOjAixEiT4o8JxwABj0B1NlUDGz8wwmDGkIIqsvNMV+DtFTUAsERIJx95Ekucfk0VBYB6HllawJMJtTaLLHUnwSEyhOO9swb5umnaQOahYbsB9YufwhOX0gyogEAJjfYsEcPocEVSG8EGYtooDftar4KgaqIGsAQqROaIhpi5WbtsZfsSqkTgL4RDV0bqNhs4m+hpRYa6da3VZfNcxyHYY33BMbBQ3JH+YoTpqh+7zl/kk4JKIaBzgUPfBR7nAtvhrblq2J/ciLDu78+Ce0rl8X+shUZAuFIVu83EuEk3w85hN/gufUdOW5RcfPfHy6KPdazxGkxccs5s2KP9Uj11gPh3Bbz62e+QNvyVQiGownrCRx52+vIJQ2VZVh//Wmx5z97YgM261RCvdAYQ2jwD8dnyhHvjKavm84LDW4dhIaeL2gnUjwr23IYjXLo06eMkYN3GNdCc7U16xP3AC8iTEi+mXoHaURDbTl6XP4U4yhZLFUACOB3ZdWuXOMNhuEPRVFnU6FQJqVOAHSw5/aHZd4gooLP1y7yqIa00UFSjPTGoobSRjQA2fk0uKjpJKpUCg0V+kXUCDPkch3NyY2VGBgJqBOc0tDn8qNJqbQlELsGlpaYUFVWqj51ory26FMnhjUJDRIRDaqEBj6igePSr6dEyEcFhbHzEl9vPlQ3ocEdCCMc5VR79jAOHu5/JzFHXqtAsLEjsfP66lUnFIXIAABr98bvk3p5M4jFBTnEwkK25trJzLgubiJZLPs5F/S7A5ia5Psh3q9rfn5Cynt+/uRGxd9mNHPExNqE53etKf40W61cIopiOPp2HVJpdaR95TK8d/VJCa9Nv+4V2eNR9TgoQ2ptloRy1mfd9756L64ipviFhpCP5uOKPBpirv9p66brGNHQswlomZP4WvNh9H/vluy3D8DhCWnuVDZXl2UvNMgNpvjUidbackQ5oMep8nNMJlqG0F/cSpxw8mZiBgkAVVaz+tQJoOgrT7j8YfUVJwAq4FXSkmO1FRa4/eHUi7CdN5MaPoCMcXXR/2ojGnRM3ekapsf8WJncycmxyhOZRzUEw1EMeoIxzxVJvImpEwBNFVBV9QSgM/9+JxDN7U0yG4RzSdUxKERLiVJj7BVmeIOR9LOHlc1AJJD9tal3C42yGTMv8fWmQwDnAV1EViFCiEU0MMREohxWvrIt9lzrwFWqDOaMFhXpg3nAE4gL93/8xtystqUkLjx5xcKEQXCu4LIVNQ3CvkFPwozv1UtmpOzX6c1Vsf391cNTQ8KF38udpXBvNMT76d43dxWwJQcn4+sq0L5yGazmxOFw2/JVePbzjoTfJ9lANxdsWpHotTP/ltcSoiyMSPELDcJMXFKYLKCQOiGEUGcrNHgG6azqmCShobaN5uTqVELT4Q2qLm0p0FRlRZ87u5D8Dt5/obVWNJiKRvmIhkaMs1ckrKcKa41hhAZFcSccBELehOMPAKrLS+FSE9HAh7sXu9Dg9IVQo8WjYaQnFtEgVEFISZ+wNQCl5XTwlSmubvq/WmWuWkxoyD6CpM8tlJ2UjnoRl7jMlP6RQNrPABC/BiZFdamPaLAD4IBA8Z6TTl8IVrMJVrMKE7pY6oTYo8ES244sMfE5y/SJHt7kLPme0HQo/d+/DdkiXJ9q1aR2MQ4apohy/T+77lTV7+M4TlJkKCZm3fhq7PFXD9fuq7Vv0JNWXPhw+cmxge7Rk/WpDKOE2Eej2Pa3XvQ4/Tjxd2/Hnq/5+Qn40eKpad/zx2/MkxV5Zq9Yg7blq7BvMPu0RKOw+ab44HI0RneIf+fFv3urgC2RZ9stZ6Ycj794amNBfo89SWlj06/LvcCRS4rfDFKYvRJ1sqvVuK6XWvQpZ9bHRyw0z0p83VQC1E4EhvZkt30ehzeoOaKhqboMbn8Y3mBYkxGUmP2DXjRUliW+3+egaSG2RrTU0AFQnxbTSWt13LCtSBmMdeQV9rkwqBFF1ABAtdWMfreKAaYQ0aDDwDdXcBynzaMhEqYeCHxEQx0/yBvyBhNTAAgB7OOB4X2ZN87VSQW9CpUdw7IaAESXiIY+VwCEQLas0YQ6G0pMRFv51ySEiKQmJY8GS2VC9Rx7hVmDR4MgvgwnXEeLCadXQ+qOlNAgMghukosOqRJFuTVOz7SpQP92wGwDapLKv9XxefJDe4HxR2W+fYjNMVlEA4OS3OGtV1luLRyJpoS0axEpip10A4HHLjsax05tkF3OyA5/KIKFd8TD4T+59pT0xsYSyBn0CeLF2t+eIn9NHyVUliX23zmOU18BzGC0D2rwfCsA7SuXoc/tx1G3Sad5LLn7Xay+KjUNSE+kyuQauRKFASIahPxke+wlq7kEVrMpP+Zf/XzOVOPM1GV1k7PLP+fxBSPwh6LqHNdFCOHWvVkYQh5weKWNIAGgoj42cNSUomGEiIYRlakTEoMaAKiylsLl0+LRULwRDb5QBOEopz51wtMPgAMqadSQIJAJ+zQB+4TsUyeqx8RN95QwmXQzP+xzB1BXYYFZpuykpdSE1tryrISGPpcQNaFQdSJJIKgpN6uvOiFE4xSxIeSwL5iV0KAqyk2vdLq+rUDjjNRj0j4BAMnO/JRHiJaqthb/XAAj93iDifcatR1OXzCSIjIA6kWKfCHOQ95525mK63sC4bTRC8JseSFFBnGE39ablxSsHblk5vVx/4k3f3miZpFBjPCbXXXqtITXj7rtDbQtX4VIdHSnoYjPaXEkzGhBrnpXMdJUZZW9xm7rceelDVKfb9RoFwMIDcP0f1JH215uUe5oVzbTMnzZ0L+deg5UjUldVjeZzl5lmYcXm70q1+rRQC/qfVn4NBxweFNd9QWhwdaIqrJSVFhKtIkZBhAaHPyxI4T9yyIjNFRbVVadEI7bIjaD1OT4D8RLJdqShAap87FmPDC8P/PGubvVp00IlNfpMqjud/sVyxnRqiyZV54Rzqv0QoMjJaKmptwCpxqhC4gfg0VcCcapxYzU76SlVc3x65Yg0qYXGprofz3EZynh2WylXiJ6CA2CZ4WWSjCMUcuhN8TTCvbeoa4aw8BIAIfcsDrl9YcuPVK3dunF/Fteiz2WE3YB4C9v70Lb8lUJaRYCu29fmnPPBS0cLvpO5RYVKWEGQzzoWfm12ZjcWKnLdq86dTraVy7DjxYnVlKZcu3Lhh1oZcJo8/d4/sfHxh6/uLGrgC1RT/vKZdhxa6rw+dm+/PTnqyQmGox4DhS/0BAz/rInvExn9PIR0bCNVpyQCmOqnURLFwoD8wwRzG+qteTII57X3ZuhT0M4EkXXsD+14oRIaCCEoLnaih7NEQ3FnzphLiGoKlPY57HjL0loKKfmc4rlnEotVKgqYqFBiMxQPagRojMq6GxRTGiQcse1T6Az8oEMfQxcndIiXzrKa3WLaEhbDQLA+NqKrISGPrcfpSYSSz+RxOeIe33w2CvMcPqC6jojgkhRxBENTl8YNWqFVsGcVXRNFkTatOkkVjtQYskuosHnoP4kjTOkl9e26RTRoMEckzGqOeT6RLFATUh1r8ufUJNdzEkzm3RpVz4RohfuXJ3qyi+IC3pVqWAokzzYufCoCTJrZs7VS2bKzuo+89noLIs52qMaBK58fH2hm6AaS6kp5Tg8768f5WXAn2wMKfDR7uKNkJai+IUGidQJgHddV0qdqGqmncJslMGBHek7lQDgyCIHHfFOZZXG2aumLCMaup1+RKJcauqEMJC00YFkc3WZts8wQtWJEeqJodhpi0U02BNeFpRGdSUu64o6dcKlVejy8BENfFqIMJssKzQAmRlCchyfOqGy4oRAea0uwk6vy48mFRENAyMB+EOZ1UrvdQXQWFUmmZMXw+eQTJ0IRTj41HxuLHViOKM25gNN5VUlqsDUqPHtISR78Vnw5GmYJr1cJ6HB7Q/DUmJCWWnx36IZuYPjEs9xNbP1XcO+hDJyf/nm/Jy0LRfcd9HhCc/l0iMevHRBUUUvpENs9DcaeOrTxHt5rn8Dqd/5V08XxqQv1yRPHGzqcGJThxMHhrwYGAmkr6rEyClyoleuI08ukhDxLvr7x4aKeCn+BFDfMADCm7zFsZebsX9IwVSkshmIBOmsdCYmaIEROvtVP0V6eQ3vjOzqAJB5OGJ8Rlnbz1FtLcVc8wEs2PgfoPY84LCvaXp/rLSlZOoEic2iNldbsX7/sPoNW2uoGWQ0qj63Ps8MeoLqSsfJRTTwopDLH1I2lKyoL2qhQSiTqD51gh/E80KUucSEamtpeqFh+AAt/6cFn4OWttWcOlFLBcIsiEQ5DIwEFYUGoSxsh8OLqU3ay8T1uvyKURPwpno0iD0JFI1gBZG2iFMnhr0aPRokPFMIAZyK6XRN2UU0DPGePLWTpJfbJwLuLiAcAEozz4N3+UL8d2KztAcz4lnNXSq8C4Y8QSxa+Wbs+X8uPxoX//2T2PNiHJh/ti8eafWVuVRUlhtEbr91CcpKiz8N4bZVX8YeJxv9GZ2r//tF7HE+j6f2lcvg9ocwe8Wa2Gtty1fh42tOQUtNcZpFvrqlB99/5LOM3/+VP72fdRv+c/nRWDSlOAxR773ocENFMyRz8dET8J9PElOBJ13zMh7+zpFYPCM3kWJ3fG02Hl+bmn486ZqXi/J6LkXxXwH9w7RTmTRgVZ06AdAZrEyEBsEtX4hcSKaGHwA5O7VvW0SmYbIkEsKfS/+I1oEe4Lk1NMWj5TDV7xeEmvFSqRMVdUAJPTyE1AnVTrjWGgAcEHSnDAiKhSFPAPVK/gxAWjNIQGVEQ3ld3NegCIkdf6pTJwZAhaj4OVVfWaYgNGQQ9ePi8/iqM0mdGNb+eSKGPEFEopyiuZVQFvaAw5eR0NDnCmBifYX8ChxHBZeKxNSJGpHQMNZeLvXOOOZyoNRatKkToUgUnmAkK6HBZCL0nqDGIDgbc1LB/Ld2ovRy4Z7g7pa/b6jA5Q+ztImDnF19ielmpWm8CwBaAUDsdfDo94pngJGO8/76YeyxnMCw946lhhLd/v5e9ibhxYj499lSgEiNKqsZ7SuXJbRDqHpRqEGXVFWXYkIsNCbz0k+Ow+zW/PXRz547NiY0RKNc+kjOIuT2r85OERoA4NKHPgWQu2PwkDHV2Nqdmo5ulEoUxS80SBihAUKOskqhwZ0mpzYdsdmrNunlVjstc+bKVmigg1Up44+0bH4GrVwP7qv5NX7qux/4+K/AuX9W/fYDDi9KTARjktVgz0As/x4AGivLEAxHMRIIq0vvsFbT/xIDgmLB4Q1hXHIkhxR+Jy2vaE4czFWLyukpUlEPDKTmlhYL2s0gB+lg3hSfWaqtMMcMNhOwNdG8+EwMIWNCg8aIhoo6IOCkZThLMrvECeVcFSMa+GOoQym6SoZetx9HTaqTXyHgBrhIaupEhYpUATE6iC+5whUr5ahBaJAQn+zlau4JTUDHOq1NjONop/cVi016uZDm4+zMTmjwhVjFiYOcU+96J/ZYqTPJcVxCBYDff30ujpvWkODU//dvLdC/kTnGaALDaGYkkDipYitgpEb7ymXY0uXEsnvjM/75GHRxHJe1d8K3jpmIm86elfa4Fgspar9TvzuAI2+T9mWRQypiYk5rDV748bE5P+/++s5u/PikqTn9jFyz4YbTMO/muLibq2PwlZ8dLyvCbjgwXPQVPYq/JyNT+91eYYEvFIE/FIHVLBNKJ45oyAQh11YuTJYQOoPlzM6YJmOH8e0vw1HaiGfDx+Kns7qBLc8DS38HWFQMoAEcGPJhrN2aOlPiGYhVFADiZn+DI0GVQgMvLhSxT8PgSEC5tCUgaTwHJKZOKFJRbwgzSNVCl2cgXraTp85Whg6HxGDbZKKVJzLxaHALQkMGHg0AjYayZTaj18cbrDZVpxcaGirLYCk1ZWQI6Q9FMOwNpRczfPxxI1F1BwCcPg0lLos0okGz0CUjYKqOcvMOANFIglCmmqF2+fsBAFQL6XTZuWq7/SHNnj2M0cP97+yOPZ41tlpxffHg57z5rTj/CHocTrk2/vpphzbr2EJ9cMvcP/fcvtRws52jncNElT6KYRZ11tialOiGXAz0tHpB/Oeyo7Eoy7Kqu29fmnDuqqGxqkzxu7cPeLD492+nXeeLDmeKmLLhhtNgV5NqrIHfvbrd8EKDvcIieQzmWiDde8fS2G907p8/KIrzMR3FLzT4h1OM+IDEGWVZoaFKEBoyLHHpaKfeEOnSLqp1EBr8IVhKTfLfQ4pwENj9NvbYT0ZvXwDcrPNA1j8K7PsAmHaaqk3sH5IobQnQ1InmWbGnQorBoCeItgaZmTwxMaGhOCtPhCJRuPxhlR4NTsmIGmFQ7lJlBllLq5NkmbedK1z+EGyWEsXQ3BjewZQBfJ3NjE2dMoNee4YlLl1dAEhcMFSLcL76HBkLDf182cmmqvSpEyYTQau9HAekRBalz3CrLG0J6BDRYC9a4W9YL6GhwqIidaIJ4KJULKvKYODlaAfajpNfLkRa6BDlVqx5x4zcs/KVbbHHq648Pu26yQOhP1wwNydt0hupAdwHy0/GOKVUMAOx8cbTC90EXRALQoqVuvKM3mKDllSIXA0oxRVU/vHeHlx2/GRdttvWYJPcN1u7XTjznvdk3yeetQeAbbcs0TZeGUUk+94AqcfgpGtexufXnxabpNUD8WdMuuZl/PPbC/C9f9HozGJPoSiuK4YUPkfcdFGEXeQyLmumVlZNc5MzNf9y7AXq2qRLWwrUtAJ9X8ovV4HbH9YeJtuzCQi6MdRyLLwdEYw0H4GqEgvQ/p5qoaHD4cWph0h0tj39CQO0ehsdHA+OqCyjWeQRDQ7eS6BOjUeDb1hyUKM5dQKgUQ1a/QbygFOL4z9AhYa6xBtfnY16NEj6eNgnANtT67kr4uqkIkOJxpldsdCQIULqRKNC6gQAtNZlVuIylp6RLmoiJjQklbcUeTSoorw2O2+CHCKIJao8CcJBIOxLMQcGeIPgQU/691eKxGetQkM4QI/JujQRDWVVtG1ZRjTQ1AkW0XAwcs2zm2KPlSpGJA/W5Tqb3z5GxlOkAMjNEBdzRzlTNN1XixixAeOmIqyika3YEI1ymKwQQWA1m7DtFmVDVr25ddVW3YQGOQ4ZU52yvx5fuz/hWiRGnKZ1ycKJuOVc9d5wRkfsezPsDcYiPZKPwfm3vJZTI85TksZuH+wawLFZRtLkiuIsCSDG75SMaBDyedPOYBFCZ7DcmQoN7cp5tlUtdGAezbzsTEadyu4NAABuDC0H1esrAcYtANrVudR6g2EMjARTjSAjIT7kPJ46IUQ0SJr9SVEm8mgoQoZ4LwFNqRNJVJVRl3t1EQ2C0FCclSdcvpA24znvoETqBC23mJzHCQComQB4+oCQxsF4JqUtAZ2EhgCqraWqVPvW2vJYBRct9Loyj2iosJSg1ESUZ/AFijh1QpNHQ4CPkpJJnVDt25NJOp1jHwBO+Z5QPVaHiAaN5yRj1CB2GF86W16YVhIZXtwYF7tuOqfwA4FgODoqSxIyioPk41/NsSaUT5UTGXbedmasvGYhRIZCctFRE2LfvX3lMjz9g2Mk13vk432x/Xiwnd/JkR7tK5fhzxfHxeGL//4Jbnhhs26f997VJ8Ue7+pzJxzz3/yHvOlnoTGI0CDdqQTipflkqWzJLKIhGqEdy3T5uADtuHLRrAaRLn8YVVo7ld0bgPJaVDVTpbPP5QcmHgN0bVA1oDswRNcRXPNjCN9DFNEQ82hQKzQIwlCgOFMnhkb4iIYshAaTiaDSUiqbY5qAMBtdrEKDlkENx8kIDXRWPm3lCa0pRq7u7ISGLHwx+lwB5bKTPONrK+DwhqRFljT0umhEQ1qhwSvt0UAIUWeIK1BeW7TlLTV5NMhUgQHiBsFRkQFeCpV8CapM7glKnj0C1WOyimgIhqPwh6JFF6LMyD3Pr48LVPf/3xGy623rSby3Ss3eFlMZubblqzD9usRw9L13LMWvTp9eoBYx1HLVE/HjqNijTtSIDRzHpR0U771jaWxwbVabTnoQcGRbXYLwIMfBKjoILJszBhtuiEeV//ujfZpNOuUQTwyfete7AIB7LpwXe61Y93lxn0UcB0SC8SoGIgQzNFU5uZnMXrm6gGhIefZKmPnP1HASNP9Nc+pE90ZgzFw083m8vW4/MPZw6lDfu0Xx7cIM7ITkiAbhe9jiNWGt5hJUlpVicESt0KBfRIM/FMHPnliP4+98E+v36zMjKwgm2UQ0ADTUWzBSTIswKPcVpyGk0xdWH1HjHwaiYUmPBkBOaBhP/2socfnixi64+/fhM0c5OC7NwFEKnVInlCpOCAhinaQZZhp6XQGYSwhq083kC5UiJHxiasrNykKrQLmd+oREVK6fR4T0D1XHoCCWyIjPUQ5wpxN8bNkIDXwVonSpE8JneDIvZ+vOsNwxw/hc9eSG2OMlh7VIrsNxHJbcHc+nLubBXyAcSen8Hje1Ae0rl4EQgrte21GgljHU8vyG7NLA8o2c2CAci1JVIz665uTYAJpVOVGHWHR48FLpijaC4PDG1gyjyg2KvcKCvXcsjT3vdwdyJgKcMy+xKls4Es3J52SDLkIDIWQJIWQ7IWQXIWS5xPLFhBAnIWQD/3eDqg1zfIcxTUTDsFRJPTFVLZmZQartVAozZJ7MhQbNqRPRKNC/HWiaFZt17XUFgDHz6PIu5ZkMwbwuJXVC+B6i1AmAzv4PelR6NJSYadlPHYSGRz/ehxc2dMEXjODKJ9brchIJg+Fa1UKDXXJRlbVUfdUJoHgjGnwhVJerFLqEGfZMIhpUegQMjARw838/QRW8eK2jBG9t13huWWsAkKyEhiFPEPWV6oQG4RzqGNKWGtLn8qOpypq+Y+NzAJZKoDT1WFWVKiAgHMNFWOLS6aNmpJZSFbejtBENdB+l9U2xVNDUroxSJ9rpdS3p2phCZSO9jmoVyHiEdCzV5yQjgZz1R3KM+Np5VJt8yVvxQOnZHy1S3O6KrxyaXcMypG35Ksy4LtGbp33lMjx62dGx5+mCjxiMTJESG5KPRWG99pXLMKam+AxIi8lXRYmTZzanTbH43r/WHXRRDoSQjNJ5lNh9e1zA2D9Ix3Hiz1FrZJpPshYaCCElAP4M4EwAhwK4iBAidWd7j+O4efzfzao2HuUHlRLGX1VWPkdeTU6uz0GNvLQQC5NtS79ebIYsC6HBH9bWqXR1AGE/0DAVlWWlqCwrpWHYNa00TJ/3b0jH/iEvys0lqbP6wkxcZVPCy/WVFvUeDQCNasgyVDsa5WjYUVstbj33MBwY8mHNl9kro4OeIAiBctWJkA+IBOQjGqxmlakT2Yfy5xKXFjNI4fioSIpoqEjj41E1BjCVqq488e8P21Eb7gcAuMua8dSnGlMuTCX0N8tCaHB4Q6hT4xmAeESD1soTfe6AYvlM+IZkq97UlJsxrLa8pbjkZ5Ex7NVw/KURGmrUGmRWNmUW0TC0l94PlGa8bI30+hxwa/8MZFHumJHb/kiOmX9LPN/3KZl86OSO6vwJ0tcGXzDuGXXpsQqTJTkguZ1nHtZS1JEXDGnE0YRG+/3StVcp/L8Y8IUy930rJOIUi3nj7YVuTk6442uzVa+rt9ggrkhywu/eklxne09mfY9coUdEw1EAdnEct4fjuCCAJwCco8N24waLEqkTJhPhO9oqOpWAdiFgaC8dHFWnVrxI3L5eqRMaOpWDu+j/+mkAqGt9nytAO8AthwF9WxU3cWDIhwl1FamzqbHUicSBZL3NggG1qRMAHQhkWd5yW48b+4e8uGDBeJx2aAuaqsqwalN3VtsEaNUJe7k54YSVJM2gBqAzjqpSJ0otdBa1CIWGSJSDO6AhdUKIyqhInHGrS2cYairhy8Cqi2hYvaUHJ7XQ7UyfNhNvbOvV7H+A8tqMhYZwJAqnL6S6bnS9zYJyc4nmyhO9Lj+aFcpnwueQLK8K0NB6txozUiC+jSI0hHT6QqhRW6NbwaMBgLL4UtmcYUTDXmXhGYiLz55+7Z8BxH7TKiY0ZELu+iMFZktXYoRguoHS3JvXyC7LJZs7nZImlX9N4zcxmvl4T3FGMarlsU8yKEtdBMjNnhtBYBB4ap3GCZYi5PkfH5t2nxs1yuHCI8drWj/5+x+78k09m5PyGWfc/a7u288GPYSGcQDEI4gO/rVkjiGEbCSEvEIImaVqy5wgNEgP9GrKzSpmr/g8R60dS0c7UDMeKFGINBBKaGaYOhEIR6jxlxaPhsHd9H/9VABAS7U1ZiyHxplA/w7FsN0Ohxfj6yTCxTz9QElZvHIET72tDENqUycAXmjILnXiI/4mfezUBpSYCBbPaMS7O/qzTp8Y8gTVG0ECaSMaVKVOAHRgXoSpEyOxQY3a1Ak+oiFJiLJZSmApMcUqeqRgn6AqomHfoAc7ekdwfDPdzswZhyAU4bT7c1TUZeyJIYiXamsgE0IyqjzR6/KjWTGiwZFS2lKg2mpWV14VEPlWDKtvYJ5w+oKoURvRlU5oyGVEA8fRe4JSKh0QF58zFBpcMY8GljqRAbnrj+QQccdTrlO+7N73FdcRCIbzn6fbtnwVzrovseqVUQZ1ueLCv31c6CZkxXXP6+eYnw+iUS7twDXCcnUKxmgSHDLx8RB/985hH1a8qOylJ8d/Lo+nn4mjjg4ZEx+3iasOFRo9hAapPZ58Nn8OYCLHcXMB3AfgedmNEXIFIWQdIWSdy8kPLspSIxoA2rFULmeWofmXY6+6TiUhdAZrJLvZK03GX4O7aN52FRVRmqut1AwSABqmA0E34Jaf+ec4DvuHvGitrUhd6Omnob9JJ1Idnzqh2pivrDp7oWH3ICbWV2CsnQoii2c0we0PY8OB4ay2O+gJaBMaZGaUq6ylGmaUi1NoEAY1qkPXYxENiUIDIQR1NkusokcK9gmqPBo+2k23P6vSDYDg0BnTYSLAp+0ahYYshC6HFg8Pntback0RDb5gBC5/WLmyhc8hmzohHH+qzknBo6EIUyecvlDM3FcRvxMgJYDFlrIoVolITTqdVuHZ3UPTIVRFNGQX5cZSJ7JCt/6IuC/S35/Z/V0tncPprx3iTri4fFqxkDxIeOfXiw96kYGRXxbd8UZKmcrkwe0UmTKWjOLAaIKDVsTH4sMftuPzDA3uF02J97/ve3NX7PErPzs+9riYqg7pITR0ABDHkbQCSJBSOI5zcRw3wj9+GYCZEJI4Uomv+zeO4xZwHLegupLvTMpFNFRYlFMnqoSIBo2GkI52dZ1KgM5gZZLziww7lUN7aYk1Xgxoqi5DrytABxyNM+g6/dvl3+4JwhuMpFacAKjQIMzIiai3WRCKcDGjMkWsNVmXt9zYMYwjJsYHWUfyBlmZnpwCQ54gGtQY/cVmT+2Si2noekjdQK+iviirTghCg+owbc8AUFpOTfWSqLVZ4EgX0eDuVvRKWbfPgTqbBbWhPqCyCVU2Gw4ZU4117Rr3XTZCAz8jXqc2nB/UEFKLR0MfLwwqVrbwyns0VJebEY5y6nI5izh1QrNHg7VG0iehWrXQ0ESvTUENEShqS1sCuqVOsKoTGaFbf0TcF2lsVDAAzQLxLKtUSO7W7sT76LI5Y3LWFq1IzSC3r1yGifWpQqAUvz5jRi6axTjIaFu+Cl1Of+z55EabrNCluYoVIyesuvI42SiH0Sw47LrtzNjjr/3lQ3i0pgUnkVy558cnTYk9fkWHVHM90CM281MA0wghkwB0ArgQwMXiFQghLQB6OY7jCCFHgQocytO7aTwaADqDtX/Qk34bmcwu+YZph1xNpxKgHUuV+efJuLWGrgP0s0QiSHOVFcEwn1fewN+4B3YAU06SfPsBfuY1peIEQPdTVWpHpp7PwR8cCagbFGSZOjEwEkC/O4BDRaFAjVVlGF9XnnVEw8BIEEdNUjGIFMLM06RORDnAE4ygUqnmfUU9MCAv/miC44AvnqRmc/O/LVmRQC2Cx4SmqhNJFScE6m2WWOnQFGrGA+AAZwdQP0V6HQCf73Ng/oRaEFcn9XUAMHtcDV7d0gOO49SHrGXhESL4TNhVmkECwPjaCrj9YTi9IdSoeF+fmwouzekiGjiOXocqpFMnhGuG2x9GhUXh9yvyqhOq93WacrNWcwnKzSXKlYgqm+n/kV51UWuA+ipEQDytKIvUCROh6UgMzeSuP5IjxLOsK8+bk7L8zHsyL2X5rRw617cPeLD4928nvqaxfd88egJ+96pO98Ui4sPlJ2ORTnnYXcM+3balhs03naHcnykipISuZNpXLoutN+malw0VbVOoqjG5QCzyzBobv48Lv0fybyk8N9LvpURpiQnvXX0Sjr+TGjnOuvFV7L1jqW5lVX99xkz8+S2aXv/Dxz4vin2X9dWE47gwIeQnAF4FUALgQY7jthBCfsAvvx/A+QB+SAgJA/ABuJBTIytyEYCYaJqABKpSJ0rMdGDk1hDRoLbihEBlE9D5mfrti3BprZnOcTQEvS0eItMsKnFpb26iHfE0EQ37h4TSllIeDQNAS2pnR1y+cLKayR1BaOA4ZZd2CQTXVHHOEQAcPr4Wa/dmHhkQjkTh8AZRb1MT0TBM/8sMbISBnssXUiE01OlnBrn+UeDFn9DH7h7glOsz3lTs+FMb0eB3yqaS1Nos6JCb1RdKXDoPyAoNTm8IewY8OH9BK7C5MxadM725Ck98egADI0E0KkUACGQV0UAHqmo9GoDEyhM1FdLHixjBUyWt0BBw02ugXEQD/5u5fKH02wGo14ylqugiGvyhCALhqPrrn98pKzwDVBxSvCfEoty0CA3t9F5Uo8IEqsRMf7MsUieqrGZWzz0DctofKQDijrcWp3OBG7+SG/uJP7+1K0EgmNJowxu/XKx5O2oNd42GkO4J0JD+D685Je36kShXNGH9h934quTr3U5fUZWBjEY5yVSJ0YDYVLsQVWNyhbg0rxTpBIc7z5+DCxZoM2EsVsbXVeB7x03CP9+nExiZiF8XHjkeT3wqPcF94vRGvLODTnRQLzCF/mGO0UW25MMPX0567X7R4z8B+JPmDUcjNNdfpsMldCqjUQ6mdBUEKlu0dfoEoUFtJ7SyiZrkRSPUYV8DsRll1QO9YerBYI+fcIKhXK/LjxktVUDDDBrRIINgWjc+2aOB49KmTgBQX3nCWg1Ew7REpESYvRJCuOjMlqqE1+e01uDFjV0YHAmgXk36QxIObwgcBzRU6mAGyQ+OXP4QxkLhBlxRBwRHaOpAqfZ2x4hGgDdvBcYvpMfAh/cCx14p20YlYmHaWoQGmc9KG9EgHK9pDCG/5H/zWWOqgQ86gSm0cza9mR4DO3rd6oWGsmpamjTkB8zaLrLCTV6x/KkIITqow+HFYeOUf4sep4rUCSHVJo1HAwD16UzltUXn0SCIAuojGlxpj3VVBsF8pAxcneo+E6DpatWt6qOHbE1ZRDRoLHfMSCBn/ZEc84MTEwXYaJJx3UVHTdC8TcXKShmQPAh4+crjcehYefFPLVu6nAmznKMFcUg/QGd1lQZcanj2R4tky5uqYVffCE696x3V6x9zR2JUhaXEhB2iMPB8IiXMKA3UNt5weqwai6boyAIgLnV7MNK+clnKeXL1M1/g6me+wO7bl+bkupZvrj/r0JjQANDrqhaxYeV5c2JCQzgSRWlJ3AnhX989KnadPvr2NwouwBV3b4aLpJ29qimnoevuQDh9OL9Wl3EhTNauMuzQ1gRwUTpjLTFIT4c7liOv8qcQDPVqxEIDHUj1xCpPTAd2yJe36nB4UW+zwJY8C+8fBqKheLqJiPp05QulEAYDfmdGQsPO3hHU2ywpYkJ80DmCYzIQGgb5yhl1qiIanNSPQEYYEAbnqgwhhXQD7xBQnUWO7d53qd/Imf8PqB4LbHoa2PEqMOeCjDYX8whR7fo/LHte1FZY4PaHEYpEYS5Jsn+pHkdnhNMYQsaEhjoAIQ9QQweE01toRNOOXjeOnSpp7ZKK+PjTKDQMe4MoN5egXEPouiDaHRhSZwjZNexHubkk/QBbiD6QqzohErpUUV5TdKkTgtCgyaOhYarsYlUlj6vH0v8uDa7Mjr1AXZv69SszFxo0lztmGJYfP/Z57PHyM2cmLBPP1ha6oyiQLDLo2elfdu/7RfM99eCUmU14Yxud4NKab37ruYfh/xbmLu0FAKY2Vabd30qCSDASTfheb/1qMSY1qPPmyAaOSxQZvn5EK3739bmK7xOnNP7k8fVFaarKiEMIQfvKZegc9iVU5RF++9FwrRCn9ADAb5/bhNu+qj1y7drnNuHO85XPgUKhhxlk7ohGFGevACiXeKtq0Sg0tNOBYRqRIwFBXMjAEFJz6oTgBSGKaGjiIxq6h4XKEzNouU2ZMOn9Q160Svoz8B1jwcxMhBBGPjiissSleKCXAe2DHsmb1oyW+Ox2JgzyERn1qiIahtMef+LUCUWEwWK2lSe+fIGGwE9fAoxbQP00tr6U8eYEkUR1TmaaiIY6fp86pMSoEjNQNTZ9REOXC41VZWiI8schP/PcWFmGmnIzdvWNqGsjIKqyoP34G/KENKVNALQTU2UtVW0I2TXsw7ja8vSzKjGhQTl1QhVWe9GlTgjRB5qqTqQ5J+0VKkp+llXTdDxNQkO7+lQ6gIq1GadOhLV59jAMyyoZs64BtfdZCZIjIfRCKhd+NMws5oKfPr4+JjIosfeOpTFTPOEv1yKDGoSBnoDQTjlO+v3bMRO/ZANTPRGLH5cualMlMiSz6oviMMmT4tGP98Ue7ypQxEguEB8Te+9Yqvp94+zlaF+5LMWzKNfHWTrCEf3KB4vPqcc+2Y9AWIW5dxJPretIu91CG2sWd28mGgHK0nUqaed02BvCeOlJP4oQ0aDWL0Co6qCWmMu49o6lyxfWZvzl5A8oUURDWWkJmqrK0DnMD3JilSd2ABOORjIHhnyYO96eum1hBk4iKqOstASVZaUxR35FhN8tw8oT+wa9krPXTVV00Jmp0CB04FSnTqQZ1GiaUY5FNGQpNLS/B7QdF5+lbzse2PtOxl4YLn8INktJQthVWtIJDfz5OOQNSpdttE9Ia5q6rcdFU2WcfEh7TSsA2uGZWF8R8xZRhTXz48/hDWoyghQYX1sRS0tSonPYl5DHK4mi0BA3g1RFeW3alKpCkFFEg0wVGGE7iqkThNCoBrWpEwE3vTZquic0ZmUGKVkRiHHQsODW12OPtc7chXMgNKgx3DvYUdOZN3KeuZBHnvzbS31vsYGpnkZ34s8qNRGsODs3HiSF5LrnN8ceq+6XGQDxMZHJ8bDl5iUAEo8BYZv5vh5d/8IWXbe387YzMe23rwAAZly3etRdX4v7KObURTQM+1S4jEeC6mfztM5exVzMtXcs3f4Qqss1GH+5uwGTGahIHISPqy2P1+Ku50OLh3anvD0ciaJr2IfxtVJGkLxQIpE6AQhhyRmkTmjEF4ygx+VHW31qZ5sQgunNldlHNKhNnUgnNGgZ6AlCQzYlLl3dwOAuKjQItC6gIpqWfHPxJn0h9dE00QgduMuYQQpRAENyPh72CbIRDRzHYe+AB1ObKgEXL6YJufQAJtRlKDRk4Ekw5AlqjmgAqLlqh0Nt6oQP45SEBm96jwbtqRP2IoxooMeKKqEhEqIpNWkjGizqrlHVY9VHNDj4GSZN94RGeq6E/MrrJqHpnGQYFrH/5GfXnRp7nO0sXUjH2TYg9yLDhhtO03V7+USYwVc7Y2hUkSEd4kgMKSZd8zLalq/Czgz7bAJHJPkW7Lpd/ay4URCX8b75nNEnouhB+8pleOknxyW81rZ8VVZRYFp5fK18ZG4mmEtMmCyK4NYrAuGJKxbGHjvVThLngOIWGqLpPRqEWUdFl3EtObmREI0aUGsECcQjADKJaPBrDJN1ddNUEFPiTzfOXo5OYZBjnwCQEmAwVWjodvoRjnLSpS09A/S/ROoEwJtvqj1YsxAahAHlRJl8v+nNVdje486oHvKgJ4ASE1E3sFEQGqq0hK5X6JA6sf8j+n/iovhr4xbQ/x3rMtqk2x/WZgQJyEc02OIRDZLYx9NzMJIqzPS5A/AGI/Ri6+ygx68g4AGYWF+BTodPfchaFsffsDeoyQhSoLW2Ah0On+Jx6QtGMOgJYpxdwTtC8FOQERrKSk0wlxBtEQ3F6tGgJoJEKFeqID77Q1H4Qwrhh9XjNAgNGkpbCsSi3DIRnzWckwzD8o/34kZgYi+ibMpZAvS6oBf5iGQQV5449IbVum9fb7b1uNKKC099/xjFwbeReOHHx8YeK6XlpPvep/3xXbQtX4U3t2lPMQaQYDQ9GvarFOff/1Hs8beOaStcQ3RGXMlES9qEHLNba1KOgQW3vl7wFIFsePNXixOeb+vJPi1k4eR4KXrBCLUQFLfQoBDRYBciGpQGv0KaQZqw7RjOA/RztcxelVUDptKMBpEun0bjL3d3vDybiHG15ega9tMbQYkZqJ0oGdEg5JCnVJwAaE4xMcUHxUnYK1QYrQlkMdBrH/QAACbKhA9Pb66Cyx9Gn1u7gjk4Qmer01YpEVAQGiylJljNJnWu/zGPhiwiGnq+oNEszYfFX2s5jB573Rsy2qTLH1IvdCkIDbU2ehzLGobaJ9BzSyL6Yk8//c0nNVTS1CX7eFqSkWdCXQXCUQ7dTpUzxFkcfxlHNNSWwxeKKFZm6XJSQXCcVFSRGJ+DegnIVDoghKDaqsKTQMBq5ytxqIu6yAdOXwiEAFVqPEIUys0CcfFZcZ9Uj6WlYSVErxSG+AGh1tQJQLP4HIlycAeYR8PBwG0vb015TRypN7c1swoMevkmFCJdwhvUnp+cLwRxYcnd76Use/oHcXHhqEmJ/aeNN5yesA2jIU6zTS4nmQ5hf1x2XOJ187sPr0Pb8lWxyktqEO83PQaqxYj4Oz506ZEFbIn+jATi91k9q320r1yWsq/alq/KaBKyGBBfY6WuM8l8+5jCe7moobiFhmiUDuJlEMJLFSMaYkJDqmFGCpl0KgmhA8kMBpGaZ6/cPdQAMIlWezmCkWg8fKh+Kg2zT6KDd8WXzAH29NEQf5kSnfZySyzUWREhEiWDgV73cPqBmFB5YnuP9lC8gZFgrFSnIr5h2TQBgSqrOVY5JC2lFnosZyU0bKb+G+KBZ2kZUDeF+nFkgMuvIUw7NtCzSy4WPBoG5QbaaQS/vQO80NBoozPISeffhDoa3bJvUGX6RIbHXzgShcsfzsyjgT+nlAwhhcijsUo1yX1DstEMAlXWUg0RDXZ+u8WTPuH0hVBTblYv/AEq0+lUCA1cRJ0Q4Ginx7zCtSCBSiGiYUD9ewCMCOVmWerEQcnpf3w39viFpPBgtejRkX/4g70Jz0frDLIS0SgnG71QVVYaG0wf2SZvEpYcrWXUQZCA1vZfd9ahaF+5DM+LIiMAYOEdb6gSXpKjGIu5LGWmJEeKnDRTOqrYiDwhSjN48SfHplkzM06a2ZRyfZp0zcvY06/BPDxDls5OnfTNlgcuOSL2WOn8WH7mIYrbE6fleQIq+4o6U9xCA7i0qRNWcwmsZpOy0GBrBEos6iIaHO30v5aIBoBGAWSQf69pRhmQFxqE8npC+kTdFGBwDzUJFNE+6EGpiWCMVNi2SzpaQqCmwqy8rwVKrXSfZyI0uPywlJhiA9dkpjfHyx1qZdATQIOaspgcpxjRAFCfBpdPQ+h6NqkTvZsToxkEGqcDA9sz2iQVuvSJaCgtMaHOZpHPlbPzdeAlfBr2DoygrNSEMdVWKvbVTU5Y3sqLTjHDUyXMFTTSQ+PxJwxQM/NoEEpcpm9jl4KQFsPnUBQaqsvNGjwa+G0VUfrEsDekzQgSUIhyixsEp0Xw/1CTPuHYqy1tAojva43CYqwKEYtoOOjIxG08Fwx5gljx0pex5/kQGcSz1Nc8uynnn6fESCCMtuWrJGfw99xOqy9suukM1dsT78N0JSOLFT3aP2+8He0rl+HO8+ckvN62fFVC+cJkpvImecntGE2Ij7PRFrGxXHQ+z2m15+xzko+Nk//wTs4jiO698HDdt3nGrMQxmGQVNx41JdjFaXmzRCks+aTIhQYoDvSoy7jCLLvJRB3sh1UKDSVlkoP5tJTXAV7tM4WajL+CHiDgBKpT2zYuNhATDCGnUOO0pJKbewc8mFBXAbOUm627m5YglMHOO7qrUrQJob9dBkJDr9OPpuoy2VnO+soy1Nks2J2BYjk4ElRX2jLoUUzdATQO9CrqMxcaPIP092mREBoaZtDBeVhltIkIly8U85pQRMVAr7GyTD6lha8iIXUe7h2g5UxNfgeNnEga2DVXW0EI0DWsMtwydvxpy3MTLuqZeDQIUUJKURedwz6YCP1OaVEhNGiKaBAiUYososGup9Cg1rdHuL6rMVF1tGuLcANEoo62fa253DHD8Ky/npohzrgu7k+g14CqQ2W5XQGO4zBfZLq37ZYlurRDCfEstd5Ga1oY9gbRtnxVQk65gBC9oCr6SoKZfGluwJgpFGIufWhtxu+9YMH4lOO7c9hn+H2SKeLv/Z1j20ZVxMZFf/s49vjBSxfk/PPaVy7DG788MeE1vY+rC0Q+GrmqCiI+Pw5PMkE1IsUvNKRJnQDoDJaqWfaaVnWpE4691N/ApHHXZBzRoCF1wt1D/1dKeDTwDvYxQ0hhRjgpfUIY0ElvP31Eg73CjHCUg0dtHmVZdUblBbudfoypST8Im9xgw24+r18LgyMB9RUnAEWhocpqVufRAFChIdOqE728KiwZ0TCDiiISnhzp4DiOHn/lKmdPY+aEdtlVGqvK0C8nNJTyAp5ERMMe4bgUjPeSBnaWUhMaKss05XVmInQJ/hKZRDRYzSUYZy+PpYHI0TnsQ0u1VVrsE6MmokGLR4Pwu2VQiSNXDGsRWrWkTiiJz2ojGiIhWnVCa0SD1U79bjSe70J0FPNoGN2IoxdqM7jWqOW4//eWpvXFs9V/+PpcWM0qy27rwOmHNiuvlCOC4Sjalq/CvJsTO/WVovSIbFl91QkJzz/anWWp6zwj3gdvb8+sdG/y9qRKZXqD8f7U61/2JqyvF5tWnK68Uh5IHgTf+JXRVWnioz3xY/zkmfk5v6c0VqoqwZopa9uzSH/WgDjy+t43dma1re+fOFl5pRxS/L0ZpYiGChV10wGaH75bPjwrxuCelLBtVZTXag6TjUQ5jGgx/hrh84mrUk9YW1kp7BXmeGi5UOJycHesHGI0yqF90IPjpjakvB+REHVIr04X0SCEJQdRqca8zVqTUZh2r8uP2QohVpMbbXhzm7abnS8YgScYURfRoFJoqLaWokNt2cWKuoxTHNDDCw0ts1OXiX/rJuWcLQFfKIJIlNOt6gQANFWVpR9o14wHhvclvBSORLF/0Isls1qAIb6GtMTAbmyNNWakqIoMhAYHfy3R7NEwvB/44F78X3ktVvefmHbVTocPY5VKWwL0eqKrR0PxpU64fCFpvxgphN8yjfhcozaioaKORq4pCQ2OfVTEE84xtZhMVGzIOHWCRTSMZp5YmxjVteLFeF32QoVOJ3fGzzuiNa+f/7dvLYi1oW35qryFyUsNQk6e2YQHc2DI175yWezzLvr7x9h7x1JDzWDvvO1MTONTGfT6jcT7BAAOveFV/O78Ofj6gvG47N+ZVdOSQvwZqqM4eTiOwwUPfIRP23MbDdi2fBW+WHH6qLj+i/f359fnv4Rt8nGVz2uKHqy77tRY++96bQeuPGVaxtu65sxD8MA7ewAAL2zoxDnzxim8Q18MIDSkj2ioKTcr5kTTFcfTiIBwUNbFHdEonRWecpL2dgoRDRxHw7ZVoNn4SyiVJjiaJ5FQ4rKmlXokiGa5e1x++ENRariXjBAtoeDRAND859b04x+KtUZzRAPH0coCpx2aPupgcmMlnlrXQc0MVV6UBz10pr1Bk9BgT7ua9tSJDNXQns00ksUmIRIJfiJJA3gl4rOnGoQGYqKVEGRorCpD/0gAHMdJd6DsE4COxLDLDocP4SiXFNHQlvLWMTXl2KUlXSYDoUGIDlDtGwDQc/6pbwFd6/FDAOthAccdK9uB7HL6MH+CwgnEcTSiQaYCjEC1VcPxV4SpE8PeIGrURtSoOP6qykpRYiLK4jMhVFRVSp0Qrp9ahQYgoyi3jI4/huG4USQsAMDDH7bHHhdi4HnXmkQB3Egd8kyREhhKTAS7b8+t0LP2t6fgqNveAEAjSIy0r80lJhwxsRaf7aP3ED3Fhje39eK7D1Nh4dfPfIHnN6hIa8sBgyMBHHHr6wX5bACYs0K6DOGOW8+ERcfStblkMMmnK5MIUT2QEhuyEffEaeOfXHtK1u1T4rWfn4DTeINgvc61nz2xgQkNKSgM9OzlZmxWmzoBjnYs5cJgXR1A2J9Zp7K8DogEaW5/mXxHOOHjtBp/qRAahNKQMJXQ8PPBuNDQLjj716cTGuQjGoS8ddWGkNYa9bXqeZy+EALhKFoUHPkn8+kfe/o9mCcqv5QOoRqCutSJYfpfMXWiVEPqRB0QHAHCAZpGoIXeLdL+DACdqbZU0dlXDcTzwdUO9Ibp/khzkW6sKkMwTCs3SA6WGqYBm/9LSyya6W8sREBMbrQB69uBymbAknqMjrFb8d7OfnkRI5myampwqoGMcuR3rgG61gPL7sLIG3fi/zwvYGDkSjRWpf7G4UgU3cN+jJ2jENEQcPMeIfa0q1VZzfAGIwhHosr5gmXVdKBeJKkT0SjHezSo7IQEXHwpYfnvSQhBTblK01r7eGXfHiH1LKN7Qq1mUUeIThkNM1oMdYg7r4XokEeiHO59M55iWciB7947lsbSN3I1A9nn9scG+mLy9b2bqqw4e+5YvLiR9o2MNtP63x8uyslM8ckzm7H79qWYwhsjfrArHnZ/30XZme6J27vj1jMTljk8wYzy4BdOrsN/Lluo2bMj0zD+6de9kvD8scuOxrFS0clFgFioKfSxnSw2TLrmZey+fWlGZYDFqWWKHls6MK25SnklA1D8QoOSR4Pa1Am7qMSlnNCQTadSmHn0DWkXGlRHNPCl0irqJRe31lbgvZ0D8YFY/ZQEoWGPuIRgMm5eEFDwaAAAh5YSlxpnlLv5HPwWhZN4ciPdx3v6R1QLDUI1BH1TJ8wIhqPwhyLK+azl/DHiHZI09JQlGgUGdwKTZULyCaG+IhojGoSynJoiGhQGvsLgut8dkBEapgPg6LnGp4HEjsuGSmBIPnVpTI0VnmBEXsRIJoOIGqcvBBMBKi0aLo1fvkg/a/630X/gAE744o9Yv3cbGufMTVk1Fr0hJfaJEUxDZc51AUEkcvvDyrneJhOfzlQcEQ0jwTCinIbZexVVYADeIFiV0DAR2KHgwjy4ix7zCpElkpTXUd8bDQj3hErm0XDQIO686hVi/NClR+I7D3+qat0pIsf7fJk/ypHraA6pQV4hBkL3XnR4TGgAjCc25CosvcREUrYNAF+ZKz8BphVLqQkf7hrAxf/4RHHd2eNq8NJPMyszK0Xy90q3z3zBCA65YbXs8m8mtX/7rUtQVpo/TxU5xN/xj99I7QMVgvaVyzD12pcR5suITrk2c7Eh32y7ZQlmXk+Pg+TzzCilcos/DkdF6oQvFFEuDVUjCA1pZrCEQXlDBrkw4kGkSjQbf3n66SxZiXTHfFKjDb5QBL0uPmypfgoNRY/SOsR7BzwoN5eguUpiEB+LaJAfANtjRmsaIho0Cg09Ll5oUDCDnFBXgRITUTTeEyPsF1VKpIbUCQDqwteFQaN3QHldMa5OPtJmivw69onaIxp8wuyphtB1hYFeY2VcaJCkYTr9P7Aj9tLegRHUlJtRW2HmzVilhUDhd5PddjIZpk5UWc3qZymiURrRMOUUoKQU1rnnAQDC26VnSPYOphH7xAjXEQWhQRCJNFWeKBKPBid/HUmuMy+LFqFBjRhaOxHw9AHBNKl3g7szE54BPnVCY9UJXxiVfPoHg5EpJ81sij2OROU7o8kDn3yaP8qx67b4jLNeJm47et0p2/rbJUcUdHCfS8O6fJDL9if7lGQzoEpuV9vyVbIiw+abzoiZVLavXKabyBAIRzSJDAAtXShuS/vKZdiSpqTqjOtWo235KrQtX6W+j6Qzyd/xq4fn1+clHbtuX4qFk+MTBlOufVnTcSVe978/XKRr29KR7pr8RYf6/q34nMq3QFHcQgMxKYaY16gN5xdcxtNVnhjYCc5Siae2BrWXThRHNKhEs/GXp182bQIQpRMM8G2vm0IHqHwecvuAB20NNulBlKsLMJnTDmyEQbWm1ImwT1PZRaGqgJLQYCk1YXxtOfZoqDzR4/KDEEiGtKcQExrSC13CIF3VQK+SN/EUTD3VoiZPvLaNRjRouIBojqhRIzQIEQ0jMje6+qkACDAQd9Hd008rTpCQl84Ay0QcCS68A3LbTsZqB0JeTcef0xfSlh/fv5UOVqfRmcimtlno4BpQ3fWu5OpC+lKbXhEN/PGn2qehvDbj1IlNHU48v75Tt5uUU6sfgUqhwV6hshKHvY3+TxcJNLgb3uo2PPnpfvX7WKC8LiMzSNXCH2NUMadV+djOBHHEgpjkyZlimVFPTgHL9nrTtnwVTv9j4vW4feUynD5LPnozX0gN1kORaIFaox2p9m/u1F7SPBlCCD665uTYc3HUjxZuemmL4jrigbwqk3ONtC1flVC6VvjMTLCJqqC0r1yGjTdIV8848rbXY6JDOE/H0xcdwwnPi+V6IuaJK47B8dPi6SZajivxukdMVGNSpx/iSLMzRNeyc/78geptiKPFXt+qcQySJUUuNCir68Isu1Nplt1sBWxNCp3KXdiHsbj62U04908fxAYFqsggokEYnKruaHsG0goNk0S+BQDiM+B8SggtbSnj8O7uoWkTafKfreYSlJtL1M0WAvFoAA3h6z1OKgY0qRADJjdWahKE+lx+1NvKlMsKAnRQY6mUjR4REEQiVQObSn6WSavQoCalp6aVDqo1zKAK3hKqI2p8w2lLWwJxoaHPJVOG0mylokjfl7GX9g54qEjWt42+IFM5Q5yWoQphUKrh+NNU7hOg3gwA0EodyktKTPjCMh+tzs9ikURi2gc8qCwrVTYkFQRLhZB9IaJBvdBgzyh14oNdA/jKn97HVU9uwP9bnWHllCQEocGut9CgNnVCMByViwQKegFXBx7cWorf/HcTfvjoZ4immR1OobwWCHmoJ4tK3H4N5T4NDiHESgg5nxByDyHkaULIvwkhVxNCRleNN5W8+BP9QrTVIB78FNugQNyeTAeZHMelzLC+8csTi/q7AsC0376Cv72rrVR1IUlu/1n3va9LdMOYJJ+uSddo2+ZFf/sYD33QLrlMPFjPFeFINGU/3HXBXF0/s6bCrPhdpv72FbQtX4VD06RhZEskyuHsP8UHvYWqnKOGR753NOpFaaZGiCQSRzVs73Vnvb3LdazmoobiFhpMykJDrG66mo5l3WRgaK/s4kDvdmz0NeDCI8cjEInin+/Lr5tCLKJBw0DPJ+TIa0idkKo6wNNSbUW5uSSeTlDHCw1DuxEIR7B/yIvJDTL+Ee7utGkTAqo9MYC4v4aG8PUepx8NlerEgMkNNrQPelR3/ntdfjRXqzRhFIwPFRDnyCsSi2joTb9eMoO7AXNF+t9H8NYQUmBUIBx/mspbKpWbLTfDUmKSj2gAqDdDDy1j6Q2G0e30U5Gsj599aDpU8m2KaRnJCG3VcPxpjmjoWk+NOOviaS0D9rmwRUeo30QSewY8aGuoUM5F1ujRIKTBKFJem1HqxD2v78SYGitOPaQZD36wV5fQzFhEg6bUCbviajR1Qo3QMJH+d8hc5/nfb0e4CV+bPw4f7BrEB7s1pD1VCOVEtdwTNJQ7NjCEkBUAPgBwDIBPADwA4CkA/5+9qwxz4zq7Z8TSSistk2HNjHGcOMxOvG3TpCmlTZuUvjKDwxxv25Sbtilj2pTStFmHmWMncWJmGZZJWjHO9+POjEbSwB3BriTrPM8+uyuNRlej0ei+5573nDiAboZhHmcYZvnUjbCy8cW/vjnVQ9AErRPjFw+MZBEU7u4uzGmi88+abLi7u/D996X62e/avKcsCiAe7u4uvHZ9ugt/58Ye7OzLX93Ag1bY8vLBUXRu7MHLh0bTbv/P504vOrnAo3NjD+Zen27e6O7uwuWri9tKoEQ6BKMJQeVQaOm8WDX1yrXnl3xk6+sZXjhqn7WzvvO08Hemmehk4V+fWSf8vdWdY3rdFKHsiQbeoFBV0QCQFWF+dTgTsTCM/l706Ttwy7uW4B3L2vDvN44jHFPxfuDBZ9Rr8Wjgjb9o5VoqrRM6HYNZjTU4MMSt8jvaSIE6egj7B/2IJ1ksapNpBfD1KxpB8qA2WgNEhZ6HbnuQ9oY2lbYJHrOb7AjHkujzhqi2H5yI0DvFhjxURIOmFWWzHTDW5KBoOEgKWaWLdy1nlqTBfG4iHIPJoKPvy6UgGhiGIRGXSoVo63LSDhLxwT1C+uNnN9mBwV3kfJXxaHBajTDoGA2tE9rPv4kQfVwqAKBvG9C+Mk0JlGxfDQCIHs02Y9s74MN8Gifh4ChRdFGYkQIpY09VWFyaFQ2Hhv14zT2Gj50+C9duWIhoPIl/vK6S1kABngygTp2g9WiwmTARjqkTkDVNhCQalV49TIyQ74ppc5bhrsuWodZiwD9fV2i9y0Quvj0a4nrLHFtYlj2JZdmvsSx7H8uyT7As+xDLst9nWfadAD4EYGoy0SoEYrlt5jxGbERYaiv8PMTjenwXPTnfubEnzSiv1mIo2dcoxuWrp2HvHelmnMUoCouFZocl6zh3/bgw6gYeSvviFSwf/NUrabf/5IOr4O7uojYNzwd8IS/Gp8+eMyXnH084vLTxvKz7Zl27GZ0bexT9W2ghfr03dC1SbXsuFWjxGDk6lvJxmqqI0ZNmptStV/zi5SkZQ64o7aUTqtYJMhehKn4b5gDb/gyEJ7J67xOjB6EHi5r2hbAY9XjHijb8+81evHF0HKfNoYiQ0RvJCr4WjwbO+Es1lg4AEnGybwWiAQAWtjpSq246HafiOIjd/UQ+vqhNpsjxDQBzsi9ImXDZjHSkDpDTivKAN4wZDTLtHRmY3ZRqFZlWp/6YwYkwVtB+2VAWNanWCcoVZXtzDoqGVEKDLARFAz3R4AvH6fvB4xHit0GxotyoSjRwr2VwJw57yKryrMYa4I0dRM0g076j0zFotKvsWwz+Mx6mb53QpGhIJkns6Jpr0m5unrMcgW1mhA68gsbVHxRuHw9EMeSLYGErJdFga1AmlyA6/2jNIK0ucm6zrOq+eTy3j8TqXrSkBTMbarC0oxZP7xnCZ8/hWnmCdG0emdDk0ZCIk2hYytYJliXnt6JagmGI8e/ofsm7j+/fhpkAVq06CRajHhuWteGht/uRSLJ0Zo05+vZQEVFlDpZls2Z1DMPoANhZlp1gWXYIwOQ2kk4hipHJLiaQF974iDCxFk+ot95wQcGft5DYddt6LL6JJMPQJBtkFgs7b12PmiL03RcLZoNeMo4PmBpCKBRN4KrfvIqtR/JLKuJfT7Few5o7HseIP7ul98LFLQVNrJCDXJFaCgRXu8sq+dkHUkqEXBMYxPtrdpjxiTOlE8NKFZmftU//6XX84qqT0rb5n4iU/fv/rUMV2lH2igahdYLGN4BPkxjLXsE6sud1AEDnwpUAgJM766HXMXj54GjWtrKw1mn0aIjRy2R5KbVC6wQALGqrxeBEBKP8qm/9bGD0AHb3+2Ax6jBTyoQu4id97BSKBpfVBE+I1qOBJxroC71hf4TOrBEi80sKn4ZoPInRQFRD6wQl0SC0TlCSL/YWbURDIgaMu5UTJwDArp1o0LR6Txn3CZAWB0UyoI2TiPa+jsOccWlnvYm0IbSvVN63w6zcliFGDkTXhJYe+YnjhHzhkzQ4LOmowy52JpL9b6fdvmeA9NYtaFU2GAWQIhpUwMcgUnmEAOQaxSaACH2f33P7RzCzwSZcO86Z34w3jnoIUXD4OeB7C4DvLwJ636DeJwB4QlGY9DpYjBRfQ7zPBmXqBL9/VTTOSzMmFSNw7G0cZZtxxuJOAMC6OQ3wR+ICaasKq/bWCV/4xGid4MEwzH0Mw9QyDFMDYBeAvQzDfGOqxzXZmIxMdiDbWJE32C1V2DJihpVWHaVc/cuJZBDD3d2F9Uta0m7r3NhDP8/QAF4JIPWz6KZH8iYZxMjc/94B5e8hqUI9M2msc2OPJMlw9Wmd+NVH1uQ3YAUkkqykggEgHgWlQDJkQq6tYs51mzUpT5LJbP+T164vbdJSDuLj8cjOAQQi6Ys2XxC1ma2dlUPMdQEhHqv4+L8ooVqRAo33XTFQ2kQDhaLBYTGAYSgn2ryZ3kh2+4Tn8JuIsXosWb6W268Ry6c5tRENtnrNq1eaEicAVUXD4nZSxOzu5y7gDXOAcTd29Y5hYWutNGvJpVIIyRwK0OTRYNHm0ZBIshgPRqknP00OM+xmA1XEJV+cUk/oKIkGq1EPg46hT+KwN2trnfAcJYWhWsSe0UKk2hNaWificGgx4gOoFA1NDrNye0NtGzHiO/ISDo0E0Oa0wDa+l6xYTz9Vcd+NdlPRPBoi8QTCsSS9ooGP6MwgGqbX2eBmZsA+cSCtsXTvAKcqolI0jFERDXodA7vZoC3eEqAuflmWxetHxrFudmosZ85rRCLJ4rVDI8D/vgwYrIDeDPzvS3Rj4DARisFpM9L1c/LtLyopMECqnY7qOtU4j1z/otnXkFrvPgxY5sBqIt9DJ3eSScZrhymv8RpbJ1iW1d66U/5YzLLsBIB3A9gMYAaAq6Z0RBWEJ792tvB3Ismm+RaUYiEkhcxxSi0saI0OLAfce9WarNex7JbH8m5F2N0/kVbs52q2WQis/+FzaWP54RP7VB9z7t3PAJA2++TxzNfPwS3vKo6nLD9WqTQXnmAodY8COcJBjjgRY9+gD7NFr73dmd0yU24Qm1cuuflR4e9fPZfy2brpHdLeYaWADpdVfSMAD37+9CKPRBoFoXsZhrkYwI8A6AH8mmXZ7oz7Ge7+DQCCAK5mWVZ9+UshASG1CUPvG1A/G9AZONO596bdZRjaiWP6aZjtSk1kV0xz4e9bj9FLZTXGmU2ENDjcB7jiVIVo4D0YdvR5cca8RlKgJuMYOb4fZ51yivSDPEfJb9cM1WE4beRYsyyrfjHVWOiNB6NgWag78nNgGAazm2pwiIJoGORSEFo1EQ0uqjE4LBoKPXsLWQWmBU3iBA9HmyYzSJ+WKD3eQFAldQIgRMNoIIpYIilv6jnzdGDvw3DbfaRt4ijXUztD5hwV7XsX7YqyxvOPb3+hPib8SnjTgrSbdToGQedc2CaeIAQhlzay7ZgHzQ4znWInOJpFYMih1mLQFm8JcIX7TNXNj4+H4A3FsEwUvbd8mgt6HYORXc8QddjlvyYE68PfJD4bLXRfyJ6ghjYVDYoawbeH5juBP8Yj+4D2VcLNoYAfbfHjONKaMo1qd1nR4bLijaPj+BikfUTSoLF1IhBNIMlCW+pJ+cPIMIwRhGj4KcuyMYZh8mocLtp8pAwhNj+Ui7ksBxzetEEoiM/73rNCYcOyrKTpYyXB3d2F3794GLf8L5XUpKUVQeoYKeHWdy3BR0/r1DxOGqy87TFFAviHT+zHD59IKczc3V145drzceqmJ9O2i8QTWZGRPA5v2lDwQl+t+C7Xc06upaJzYw9+e/UanLcwXVWz9OZH4Ret+N/Qtajs2iWkwDAMPrpuJv7wMkmg4tu07ty8W9jmY2dQfOdPAj52+iz89kUNQQUiZCa5TBbyntEwDKMHcA+ACwEcB7CFYZj/siy7S7TZJQDmcT+nAPg591tl53QmddQu4wYz0LRQcLznwbIsWkL7cdyZ3puzuL0WwWgCR0YDxKxODbZ6ybYMOfgiMTQ7KAvfAOe7oEI01NeYMLuxBlsOj+HTZ88R3PCnJfuwplMm+5WP/KQgGlxWE6LxJMKxpLDSJwuTHWB01IXeKCd/a6ihl/fMbqzBFrf66uyglxANzTStE8kkkWpTFDUAOf/oFQ0tpMiLR8j5qAaeaKhXaZ0ASOuLxtaJdtoLj4ZCr8NlAcsSv43p9TLeGZ1nANv+Akt4B2YtPwM48Dg5/5zTFfdN1BJRJJMsdGrkn8bzj38PqVsnRvaRwl1CeWCfvhTYCQR6d6BmAZG1bXGPY01nHd0kiLJ1AiDqK2pJLU8UUSoa+Ez0pe2p991q0mNhqwON7r8Q886FG0gU5CPXAjv/TU00aPLD0HD+ObX49rQsJb8HdqQRDYd2b8UShoVjxoq0zRe11QotMKow2ojSg5J81pwCUxm4F4AbwFsAnmMYZiYA+l67DBR1PlJBKLfCiGEYPPSFM/COn7wAgBQCYvKBR7m9LlpcffosXH36LMmCEMh+3ckkm7bqLIdXrzt/0tp2AGDbTRcBIGlTvPeGEuQKfDmSoVDvP41q5M0bL0RdDd2iWKlDinD42O+3yt4HkHSJcjF+pMGtly4ViAYg/fX+49Ol481w0zsX50w0TBUKsXSyFsABlmUPAQDDMH8DcClIvyWPSwH8kSUNgq8wDONiGKaNZVnlqojCowEg5l/UhV7LUuDQM2k3DfcfQwvGcKwl3XBvMacO2NU/QUc0WOuBoLYos7lNGhInAFWPBgA4ZXZ9yrSM6+3vZAZw0kw5ouEooDOm+vwVwBcG3lBMnWhgGFIYROjmjbyvRAOlogHJBFbZx/FfTwChaEJxPLyigepLNeoD2CQ10VBrNdKvKHOr2/APAS7lohoAccS3uOiM9mrbgKFd6ttx8IU1KGoE6br6MWnnZFy9npA80bDgErB6E86LPAuTcx2w/Sng1M+qGhQ22s1Ci02DWouNxvOPfw+piYaxw0QlJTHmGQtXAzuB3n1vYv6C8zDgDaPXE6JjxZNJ6tYJMl4DvRmp0Drhodp8R58XBh2DBRntHiumu7Bo22tgF54LxlQDmGqIv4b7RekdSWA8GKOW/GkjGvgkIgqPhrpZJHmi/y2IFfu+A8TVuW1JutRwUZsDT+8dQjiWUE9rYRiunY7uO4FXRTlOIKKBZdkfA/gx/z/DMEcBnJvHLos3HykSXi+yIaPYULGcsbQj/bN/opAMYiitQNPg+W+eK/+dPImwmVJJIFvdYwVz0ac9Dre+awmuOnUmdvVPCOQVDV7ceB79d1YZwt3dhWFfBCff+YRwm5wHRam3h+SCTHNIHnzbZBW5oRAeDR0AxFlnx7nbtG6TDUqioVZL5GLrUsA/APiHhZuGdj8PALDMTmet5rXYYdAx2NWnwfwr4iUO6RTQZDwXGCZtHxRy/lNmNcAXjpPVyJomBBkrVtWMyRfZnqOk6KVoVeELU+rC2lxLvaI8EiCFAVXrBMsC//siPrr1MvzVdAcODym/R4O+CIx6BvU2in1rKGoAUthQm/HZOSkahU9DLJFE/6EdGLPOAJWW2NFGjCaTdJGsE+EYfVGjgWjgv4h7xxViR6118HSciyv0z2H94W4gGQeWXq66b77tQMr8SRIazj9NKQgA4D0mq8BYOn8BJlgbxt3bAQDP7CXv9yk0ZkIRL/Hl0KJoiOTSOqGOvQN+dDbWZBXVa+qCmMYMwduyNnXjjHVA7+tErUOB8UAU9TW0518OZpA0KjedDmhbzhENKRgH3sQIXGhsT1cSLWh1IJFkUxHCarDWURMNKaKr8lsnGIb5MJcykQaWIM4wzByGYc7IYdfFm48UED/70Grhb1XCNE9kGiqWc0EuN/Zyfk25QK7HXgq8b4C7u6skSIZMrOmsF8Yn7pUvJm7+707Mvm4zFcnAj83d3VXRJAOPJodZ8dwqBw+KfLAlw9Ty4F2Tc07mit23Xay+0RSjEESD1BmXWRfRbEM2ZJhPMQyzlWGYrV6feu89ALhsJrrVKwDo4Nojjr8m3JR0v4wIa0T7onSiwWzQY2aDDYeG6cYhyJIpVlBZluXiBTUQDTVNVJF05y5ohsmgwwNv9mJgIoIDiVassCmYWnqOUrVNAOmKBipYnBpaJ0iBUk/TOuF+AXjzz4jaO3CKbg/ir/9BcfPBiTCaHRZ1uT2gmWiotWhpneAVDerJE995ZA8SowfxzEgt/v1Gr/q+Ha1EiREYVt2Ub3+h9iPQYAYpVjQo4bXZn4UZMbQcexhY/oE06bocmrhJuSZDSGqPBg3SdZYFvMcB5zTJu61mA4ats2AY3YtYIon/vd2HzgYblrTTJE7wcZGUigaLBkWDxtaJQyN+zJVQcy1PkN7F/ZblqRtnnAokIiQ9RAUsy2IsGKWXnmr4TJoMOtSY9PSfybYVwMB2IJ76Dmmd2A63dTGYDPKVjyalbp/Q4NtzgrVONAB4k2GY3zIM8zmGYd7HMMxHGIa5jWGYZwF8B4DGHGAABZyPiOciw8Pq11QtSLJU1HFREIrSEdFVlDZ4laYaptLsUStKcaybRH36VWQn11Qa7n50b9r/NGbzUwlF43UFJJKT9z4Wgmg4DkC8rDcNQF8O2wAAWJb9Jcuya1iWXeNsppCWQ2PrRMdJgMFCClX+8SNbsJuZg3pnthv8rEY7/YmmwdE9GE0gkWTpo8wCI4BNvW0CIIaNFy1uwT+2HsOn//w6jrCt6EgqFKpjhwGXujEckJoEe6mTJ7QQDVHoGPJ+qmLbXwCzE/HPvIodyU40H/iH4uaDE2E6fwZAO9FgNWBCixkkoEo0jPojuO/FfZjGjCDk6MR3Ht2DpNqFwcHlRU9IfrTS4NPaJhD2kn5zo3rricWoR6PdrKxoAPB2pBVXxG9D/LJfA+/8EdUwGjlFw7CfbpKVE9FAs6IcGAHiYUWCztq+GJ3sMXz0t6/hpYOjeNfKDkp/Bm1EgyaPBqMN0JuoWidiiSSOjgYxuyk7End6YDuCrBnboqKFYJ7EzVAHSCEYTSAaT9IpjADuPWRImwMFqA2CAWDmaSSm9PgWAEBi/Cg6kn3wNJ6UvWlDDfQ6Bm7a7wSrS3PrBNVnklK1VKpgWfZHAFYD+CuAJgDnc//3AriKZdn3sCwrnTuqjILNR8RzkaYmZW8krfj8fSkybtsxT0H3nQneZ4XHopuk+9vLAXLS+HyTGMoJ3mAMnRt7cMpdT2bd9xbngZAJcbJDKRWKmdGaxcbvrjkZh+7akKZSUFuxvve5QyV7/IoBtfdi1rWb8ebRwkWelhru33os7f8Lvv/sFI2EDmd+5+mcHkcVcFAgFEKjuQXAPIZhZoFMEj4A4MqMbf4L4PNcv+QpALyF7IfkzfioDOIMZmD62pTz/0Q/ZoT24JXaj2KlxOazm2rw3P5huuQJfrWQQpasuR88NA7YZDwWJPDlC+bj2X3D2HbMA9fsxTD2vwrEwtmFYnCMuKI3zqPaL69ooG6dsDgJkUGB0UAE9TVm9fcwHgV2/RdY9h7Yahx43ngGPuP7M+A5Jut70O8NY0ELXZEiFKYUCQsAeQ+piS7ezFOldeKht/sxjfuILFiyCoPPR7D1yLhyjq+D89igSJ6YEPrBNSgaKIkXAOios6oqGg4OBRCqXwTDinOo9yu0TvgoFUwWJzB2SH07pI4J1Yqyl0tqUTCvbJu7Esyhf2DvwUOYVt+KT51F6c4c5NRHNL4cSBFdVEkwDEMIUYri9+hYEPEkm+Zcz8M8sgtv6zqxd1hE+DjaSKvA4E7VfY9xbVKaFA2WWqr2LgBw2kz0MbydZxLT0ENPA52nw/tWD+oBRGZl984b9TpMq7Pi8KgGooGW6OKuqVSfScp9ljJYlk0AeJz7KRSmfD6iFe++58WiSv+l5OFUc6USw/ofpKc1ZfZT807xlQq59IgPrp2OTZenlGX8MfjPm7348v3bsrbP3Mfbt1w06SqqYpEKubz/eh2T9TilpI5yjIilwbGxoGTRyr/GM779FI5zi0eX/ewlOMwGbL91/aSOsdgQn5cfXDsdf32NkA5f+Oub+MkH1RW3VUgjb6KB66f8PIBHQeKkfsuy7E6GYT7N3f8LkHzsDQAOgMRJXZPv84rhshmRZAF/lLIVYd564LHrgaHdSB5+HjoAwx3STPCsxhpE40n0KRnb8eAVDRSTQJ+WogYghUEzfY7r3GY7HvjsaRjxR7E2EAH+9RtgZC+RCYshxCdqIxqK0Tox4o/S+TP0bwNiAWAuiZ471HguMPhnklyw5mNZmyeTLI6Ph3DBopas+yTBr/ZqaJ0grQgUBnEGE5FTqygaHt05gNPqPEAQWLJ0FcwvD2Hz9n5loqGWUzT41BUNmmXaIQ818QIA01xW1RjK/UM+zGumMFkVwWE2wGzQYZhWLmZxafJoMBt06u8hQNomANnWCQBgmhcCAH73DidmrD4DdjPl5VYj0eCwGJFIsgjFEln92JKwuqjIUL5lLEvRkEwCA9sxYDsH+8VeBQwDNC+hMiQd51rdNCkaNBBdLi2+KVYX0LEG2P0/4Nzrodv9II4km9Ewc6nk5p0NNfSKBouL2g+DHy8V0UCpkih1cITAFwB0QjQfYVn2XbnsrxTmI+WA2ddtLqsiaSwQxd7BVLsSP/YThWyQKsw/um4mbr1U+hoFAO9e1YF3ryKKM7kiEgCW3/KY5O0H79pQ0FVPpTFI4fUbLkCD3YwfPbEfP3hiX9p9cqZ9nRt78MBnT8OqGfSLclJgmHTyYcgXxto7sxUk/Bi23XQhXLTfZSUGOVIl0/DxhW+dB28whhW3kfPFF4lX1Oct83zadPlygWj431t9JUM0lKN6qyCuUyzLbgb58hbf9gvR3yyAzxXiuaSQchmP0RVOKz4APHEL8MwmJI+9jh3JWajvXCa56axGMsk+NBJQJxqE/meP6hA0TSoBMrG0art4zm12YG4zgBHutQ3uzCYaRjh1asNcqn3y4y0G0TAWiNIlTvBtLzNPAwBY2xZgdMCJ+qOvgJEgGkb8EUTjSUyrK7zDPZBSpUyEY3RFqr1FkWiIxpN44+g4PjbdAwQBa+t8rJ0VxyuHFHw2AM7DQ0elaNDscJ+DouHx3YOyK2fReBLu0SAuWdpGvU+ATAAa7WaMaPJooEyd0BK36OHkdUrJIRx5t9w6DGiZhAhEA61HQ4r8oyMa6qiuUUe4VfvOhgyiYfwwEPUh3LoEB9y+dCVFyxLS1pRMKqoPclM0aCAabEYcHKY0bASAk64GHvws8PiNcA2+jJ8nPohrGqVJsM4GG14/Mk6nILG4gFiQqLAMyq91IhyHxaiD2UBxDakQogHAfwD8BsD/ACQLscOpno+UEu579ajwd2ZxFojEUUNLfk4xVt+eEr1kFjaVTDbsHfBh/Q+fy7pd6+ubXm9Le8x3H92De55WjmKfQxGPWWhIva5MkkG8rVTRddnPXpLdV65odliE/Y0FomnnIwCsvI38/8P3rxTInXKA1PH7w8fW4uz50q1iTpuxIj9vme1r/Ot55drzceomQjBVwut8q8htenIohEfDlEOTyzhAIiJP/TSw60EYfMfRHf8g5rdKm7TNbCDkglq/OYDURLjQrRMsmxPRIKB+NvGlGNiRfd/oAZJmUUfn0WDQ62A3a4nTc5K4SIqe4lF/BA00RpBHXwEaFwhRn7Ob7NiSnI/kkVckNz82HgQATK+jdFzmiQYzhXEfRO0ktORLbZuij8L2Xi/CsSQWGodI5KjZgZNm1mHvoE+5ZUWnJz4eFGaQmh3uNRZ67U4LovEkRgPSLQ7u0QASSRbzWrQpGgCgvsYkrIirwlJLzj+KJBhvSEMKjPc48QtQMsd0TiO+FrxqiBbBUeKjYKI7Nvx76KP1CaFsnTg2FoTdbIDLlnFMuNYIY8dyBKIJ9HlF7RPNi4CoH5g4rrhvQdGgiWhw0W0LzqOB9vsAAJZdQcjWl36CCWMj/qlbjxYZT5fOxhr4I3G65BOhnY5G5UZJlAOVRDSEWZb9McuyT7Ms+yz/M9WDqhRc98D2tP/FE+UlN5dH5KW4qLn7vSskt8ksADo39iAYpbwelig6N/ZkkQxa0iaU8I31C9N8Cg5v2oCLFlMqPguEl689L20MUq9Lypdq7x0pl32lY1Gsld/6GpPseL98/zZ0buzBq2qLQlMIsS9GJtzdXbIkQ+Z2YpTjKrsY774nFcstTj5pdap7kk0VPntOKhGLTzVTw6Wi1zmZqAiigZcsUa+yA8AFtwHv/DH+uer3eCm5VLbgaXZYoNcx6FPpNwegKaOeL9SpXP+jfhL/lyvRoNOTAmBwe/Z9w3sIEaGn79FzavEk4ItTiiSOUT+loqH/LaAjFQ82q8mOrcn50HuPSHof8H1l0+s1KBrMtfTxqoLKg3JiU9uRkt5L4PUjxAywJd4LNJCLyZqZ9WBZ4M2jHuV91zQRo0IVaG6dCHs0FXodHKkj59Owf5CsNkv1/6uhrsaEMS1mpADV+TcR1qBo8B4jRILSirZOTz5bo8orR1kIjhA1A2WEFK9KoTaEtNZRkaHHxkm7WNaq/QhxZW6aRfqC94kkzfz5quaLMRYgYy1W64TTpsEMEiDePR9/HFh/F25u/TmaGhpk1QozOGXbcY7AVITQTudR3XQiFNemcKsM/IhhmJsZhlnHMMxq/meqBzXZeOBNZWKukJgralf7wePSq8Wlgid3pyv/rjhJvlUts/hZfNOjuOxnUzOxzgeJJJtVuD3z9XOKuprKMAx++ZE1WYU//7PvjkvwnSuWq+9IBeJ9tjnV52OzJVQVmYovd3cX3r5F3gSzmOBfy/2fOjXt9vf/8hV0buxBLFEQkVZB8MbRcXRu7JFsk8iFwKoUskE87qe/fk7W9/5bN6fOrY/9fsukjUsK4rF+8+KFwt9X/25qx6WGCiEaOEVDiHKVEyCy3pM+ipcjs9HsMMsWXHodg9ZaCx3RYLSSlUiKSaVPMP6iKGz4SWWuRANAogP7thFJsxj9bwOt2r5AHBYDPdHAqwJUVvTCsQR8kTga1FY4/cOAfwBoTbW6zG6swU62k/wzmK3a4ImGDpcGRYOGoqZWq0GmcxoQGALi0vL/XX0TaHNaYPQcIoUqgBXTyXi2H/co77umgUrR4Cu2GSQfcSmjBDow5AfD5EY01NuMGJdRSmRBUBmpryh7QzH6uE/PUeW2CR4Nc7QrGvxDqXQSCvBj1hRxSUGGHhsLYrpUu9HwXsA5HXOnkTHuFxMN9RzRoEKujAei0OsYbecfpcIIAFxWk+CbQg1bPbDuc3jLY8puFxGBnyD3i5UccuDPPxryOaxBUVM5RMMyAJ8E0A3ge9zP3VM6oinAV+5XT2rRCnEylHiV7omvni38/aMncwn2mDx8/A9bhb9pCiF3dxd+e/Ua4f83j3rKqgD6w0vurJYFd3cXOhvlr0eTAZNBh/etmS5LRPA/+++8RPLxhVJiLOuQnoPUWoyy+5+M9/+U2Q1wd3fhX585Le32edc/POXnH69euJxrKREj3/el3MkG8XjbnRahVV4M8eLTU3volANVpKMiiAbNrRMiHBkNqF7EO1xWHKchGgRHd4/qpppc/wtBNEw7mazqjohWMIJjROLcpo1ocFqN2lInANVCj+/ZbrCrtE7wqoyWlAlSh8uKQ7pO8o9Ee4h7JIAmhxlWE51CIReZNqCldYLr4ZNpn9jVP4GTm0EIg6YFAAghNb3eij0DPsnHCKBVNIRj0DFADU1PP8vm5NEAAL0e6VXf/UM+TK+z0b8nItTVmOiJBr44pVE0hOIaFA3HFRMnBDTMJakrFK0bAvyD2ogGzUkwLnI8FNqZWJYYqEr60gzvBZoWwGUzob7GhMMjovfY0QYYrOqKhmAUdTYjvfN9Dh4NgPbvhHgiiWNjQcXvBJ5EoyKftSQRhU7I1onLAMxmWfZslmXP5X7Om+pBVQJ40zYAWat0z3z9HOHvUi0OxON64VvnUj/uvIUtOJQRWdi5sQfxElpdlkLnxh7c/N9UYs/7ucK+XHDS7Y9j3vUPp91WKIKBx/++cIbi/XwbSCYmKz7zpJl1cHd3YcV0V9bzHxujUMAVCPc8fUD2NX/qrNkFfV8y9/O+e18uyH6Ljcxj89K158tu+4ePrRX+nsz3UYwNP3pe+HvP7RcrbFl6qCiiQVPrBAf3aBCzFFavAKDdRaloAKgd3Se0ONwXimgAhKx4AKm8e42Khlotju6URMMo1++sqmjgiQSRokGnY1DX2IoxfaNktN6hkQBma1kRCHu0KRosGokGJ0809GY/dSyBg8MBrHNyPX6NC4T7FrbWqhMNtkbq1gmHhbLQiwa41h2X+rYcnFYjai0GHBmVvigfGPJrTpzgUW8zwReJIxqnmDhqVTTQEA3RAImEVUicENAwF0jGUnGYNPAPAfZm6s15snKC1qOBv44oHJMRfxShWCJb0ZBMEgNZ7ryc2WDD0TFRAoNOB9TPolI01NG2TSTixGdDS+sETz5rUbmBqBRiCRazGuXVT7VWA2wmPfo8NIoGF/lNmUR0Aioa3gLgmupBnGjIJNKGac11JwmZkvNptP5KHHQSkYVzS2B1WQ6Z4zp01wZ8uwCtCpOFzo09aX5MV5w0reAkyT8+vY5qOz4x4oCEuoIvvl8/Utzr54OfOz3r9Z/5naeLev5t2rxbeH3ffXRv1v377rgE7u4uXLdhUcGfW/xaXzs8RtdWOIXIfB/UzlWxb4WW5JRCQpziRlU3lhAqgmiwGPWwmfTCqjgtiKFXBDMVJpUA0O6yYsAbRkLCmCZ7MC6qSeVELpPKfIiG+jkkVvGIqGfx+BYATHYShQqcORENyivKIwEy0VFVNIzuJ6v2GdF/s5tqsA8zJYmGg8N+zNFS1GpundCYxFHLFajebKLhwJAfiSSLJUYuOaJpvnDfolYHDg37leXgNU1AxCvblsHDF9bQD64xhYPH3GY7DojjDznEE0kcGg6k9QprAZ9U4KExhKQkGpJJFj5ajwbeX8M1Q31bPs2F1qchmcyhdUIj0SWk48hPtvq9hFhtc2UQDb4+IB4SvBhm1tvgHsmYVNTPpvBoiNIbQfJqFI3xlkC6fJwGh7nYypkK5DPDMGhzWoRjpAihdUJ9YjsRjtF/JoNjdNuVPloA7GEY5lGGYf7L/0z1oKYCk10EiyfXJ9/5xKQ+txrEK+P5Sru/ftH8tNs6N/aABI+UBqSKHmqlVwlAavxypp1acM3vXkv7/+ROurhnHga9DrtuWy9533t+/pKIdCjetdTd3YWeL6arMAr5OedfQ+fGHtz7XPZ37juWtwnqBZOhuOWeWElyxrenphingVaSoRTw3L5UO/QvPnxS3vv712foSLtCoSKIBgAk8s6vjZXns9CV+nEBQjTEkywd60/Z/5zTpDIfokGnA+acBxx4IuXTcPBpQjLYtF3AtZlB0nk0UCsaxg4LvgVizG60Y2e0BezogTQfirFAFJ5gTKOiQRvRYDboYTHq6FeUeUWD91jWXXyhMy1xlCSFiOT5C1prkWShHNvHJXEIEYkymNDicJ8H0SA1VvdoANFEEvNaHJr2x4MvUMeoiAb+/FMmuvzROJIspTmmr5/8dlBEcwpEA6VPQ2gMYBOaiAaLUQ+TQUffOsFfRxSuUwOc/0BrbYbr8rib/K6fBYAU5P3eECJxEfnlmknIGIXJ/HhQA9GQw/nn5FonxjUSDW4u0lOqV1OMdpe1oK0TLMtiIhQ/EVsnbgZpn7gLKY+G703piCoAYrd+pYn07e9OtSCWymr/4ASFUkgDPn/evKxjMOvazSXxesux6BGjWON/8+g4nt6bKq5y3S9N3PN7fv5yWsFeaBJqSbtT0stAKlFDCbxJqPhHCo32VCrGT6+cPF9dhmHw38+fLvxfCp+vTORzvoq3/eY/C++po4SP/DZFul28tFX4W+y3owbxHO2kmdpqvnxRMURDg92kmWjgZd18hKUcBGM7quQJZ/H6cfMhGgBg3kWk77/vDVJ4HX8NmEPf+8ij1mJEIJqgc9SlXFHmV6frVImGQ5JEw7wWOw4nW8DEQ6lCEKmivJiKBoAcE+oVZVMNUR54jmTdxZNfzoAbaJiXlnzRySlv5NoRAKSIBhVDyIlQXEO0pYf81uBbARCiYcQfzfJT2N5LzgU5Yyc18JJ7KgUT5fnHv3dUigY+2YSGDKhpJGOgJRr8nMu6htYJgBhCaoq3BBSLVX6y35YZ7zR2mPyu44kGG5JsynAVAGkpiQUU9z8WiKl/1nnkoGjgY3JHA1rJ5yCsRj2aHcrKqnanNT3WUw4GM/GsUDn/IvEkookk/WeyQogGcaTliRpvWYxYwRsflIiylsBVp6bHWj+4LVtlN9k45a4nhb8LWXi7u7swpymdQOzc2JO2WjiZqJIM0tjR68VlEsaFuSJzXGr+BDwJpVbQ5zuO2ddtRigqrU7d0evNGkOmSagYf/+/dcLr2nrDhQUZby5YPs2V9n8pkQ2FPF//vnXyUoJeEUWlbljWmnafFlXwghseKdiYtIJyVlP6aLSbNZt08KtXSjJZgKxeAcT866SZKsU+pRmk5n5cow0w5pnpOv8iwFgDbPk10LaS9N0vfIfm3Ti5ybAvHFdflaRMnRgPEhd6Rdf/WIj4GkgQDSumufB3lvsQjh0UVAO8pwG1H0AyQQobDX4EgEaVBwDUdaaKNhEOjwbQWmuBfnQfMG1N2n38ecqft5Ko4XrJ1IiGcEza6E8KeSgaAODAsB8n16QY1LePe2E16rMmfbQQFA00RAOlGaQQN0tT6Pm4thYaMoBhiKpBM9GgrfjQRHRRrLL3e8PQ65jsVqZxN8DoBX8K/pw8OhpMJYgIip3jkmoplmWJokFLtCWgjWjgYnJHfNra6dyjAcxskIj0zECby4JhXwSReCIrbi0LFqfqdwKvRjlRFA0Mw/gASC3pMQBYlmXpI0bKHL/8yBphEty5sacgBdtfXqX3hHF3dwnP/6W/bcOlKzvyfv5cIf4OpY6j1oAnv3YOgPSig18tPLxpg+rnvlCokgzS+PGT+/F9icjVW/+3Eze/c0nO+/35h1bjM395AwAp4pd2pKsMHnjzuGLyi1rBfP+nTsUpsxtUx+Hu7sLCGx9GOEYW6RbdlFvxd97CZvz26pNzemyxIb6eAERdNdWtQOX8efvAL18R/v7Zh/Jvm5gKVBDRYMKbR7VNvo6MkjQCu1n5MLS7SIFPLZUNe4l8XycvGJkIxwRnflWEPPmrGQCyj9UfAV79OfDWX4Hpp2YVszTgZcneUEydaNDpAZNDtdDzBGNwWY3KX/SCbDubaJjZYMOoiWszGD0IzDoLALDjuBd1NqOgSlFFDqunAGeQSStdB8iK8NFXsm52jwQwr0EP9B8FVn4o7T672YBGuxlHMnvixRCIBuXWCV9Yg0w7R6JhURupFXb0etP6K3f0erGkvRYGfW6CqroaThZPQzTw558K0cVPcKnIP/8gIf7MlK0fDXOBI5QrNIJaQpuiwWE1ajeDVChWBybCaHaYoc+cIIwfJrGeenKceDVYGvnFm2RO9Eom2kyE4kgkWXpFQw7nn1Gvg8tmzKmdbkGr+vvKk8+D3ghmqCjiaAyCeaKLup2uzIkGlmVz65uqEJgMOjoz20nCC986V+irLhTZkQtW3JpKynj+m8ULH3F3d2H/oA8X/uA54bZZ124W7ismbn9oV9ZYygnFKtoy9/vmjRdi1e2PAwB+96I7L6LhkmWpNsd3/OSFrDFftmoaLluVMnc+NOzHed+jF1a9/5fZc7lC4sCdl+Q8X5oKiMmG2ddtntJzvJDnq/h17eqbwOL24vLhn7/vDeHvT545q6jPVUxUENFgxlggikSSzZ4cy8A9EkSn2iQRJFrQYTHQEQ0WFwBWdVVccz9uIYgGADj3WlKw+/qAd/04p13w46b3aXBStE7EBAJDFryhngTRwDAMmqfNRvS4EaaxlPHe2xx7Tb1Swa88mrVdQGotBoz4Naye1nUCO/4JxKOAIVVwuUeDuHr2BAAWaJyX9bDOBpuyosHGseqqrRMxDTJtD/mtsXWizWlFS60Zbx3zCLeFYwm8fdyLD2dIdrUg1TpRuPNP04qyf5AQAbTnVMNc4O37gWgQMKlcb3JWNBg0GLS6yG+FVfbBiTBaM9smAHLtqOsU/m2oMaHGpE9v5+F9RbzS8kLeW6O+prhEl1bfnngiiWPjQaxf2qq6bbuTU7l5Q+pEA4VBsHD+0RBdySRVe14VpYvfX30yrvz1q8L/93/qVKFYGZoIoznTG6XIyEx1mEqyYbIwr8UBd3cXlt78KPyRFEnLFxLFeP2ReAK/eSGlZCy3Y/z8/vR5RbFIhqkurGc32SVf24EhHy74/nMSj8gft1+6BB8+deakqWomE/e9ehRXnkJhnl1gFFPJsOHHzxf98/vQ26k28Ou7Fhdkny9tnPz06IohGhpqTEiyRILfqJZcwME9GsBZotgSJXS4rOiliTMTy5KViIawlkKvgESDxQlc+be8dsH3sWtKnqBonVCNu+Od7Oulmb21sxvhPtqMzqH9MIEUtfsHfThvYTYxIYsc/TCcViMODisQAJmonwWwSWIIyTn4e0MxjAWiWCwkTizIetjMhhq8eEAhvtLiBHRGRaIhmWThj8bhKLKiASAtLdtERMObRz2IxJNYRyEzlINRr4PDYsA4jRkkQAwhKRUNdB4Ng4BdvRgVwL2/GDsEtC5V3tY3SNqbzNoSOWotRvoIXoOJPIdK68QCKbPOscPA4kuFfxmGwcyGGhwRk1+2RkBvljQ7BVItL9TxljkTDdp8e/o8JNqShnxu41Ru1MkTIt8YKfDXUiqiK+Il144qyhanZlz/xLLrtXc9OSUFaKbkebLJBvFzT+bz7rh1fdbzi/8v5FjEfdJil/5ywVW/SZnSFeK4PLitF1/627a028T7ffW68wXPDpZl8yrCxed3nyckqNK0YG6zo6Dnw6f/9Doe2Unmezc+uBNXress2L6nGuLjfd0D2yeVaNg36MNFP0gnhMqN1BNfjx798lkF21cu532+KB8tjgoaOfOuUcpV5WA0jiFfBDMp+9TbXVZKM0gX+a1Q2IRjCUTjSY2KBhfdtpMAvhgrtKKhTk3RMHaIRHTKkABnzGuCm21FeHA/AODVw2OIJ1ms0eKwyhMNGpM4NLdO8KqMkf3CTbwR5OzkEUBnSCUWiNDZYMPARFjWRAgMQwwIg/JkhC8SB8tC2Q9DjLAXMNkBvXZectWMOrhHgxjizAVfPjQKHQOsnZ2f6219jYk+zpZG0aCldcI3qK21QUvyhF/jvjnUWg30rRMAl46jYAbpDaMlc1U17CWpGCJFA0DaJ46I/XF0OuLTIKdoCPCKBi1EA6NZZUQUDfQqo8OjdClEgEjRQEs+qygQeCNPJw35XOZtE1UgrWd5L+cjVAy8ddNFmrbPnIxL9ctXKuRMAnkzPk0eTBIQT/avKsOVa/H4X742/1XRzo09iiQDgLTvIL61pRA4rfupgu0rH/ziqvSe+1IyTywEnvn6OcLfs6+dnNfWubEnjWRY3FZbUJLhrsuWFWxfckhkJJLQtHOWMiqGaOBdxmlXsHipbydl7GFLrQXDPg2KBgVZMj+ppC70CqloKABqNRMN6ivKnmAUTmtuiRM8lnU40a9vh9V/FEgm8fSeIZgNOqybo2H1PA9Fw0QoRh+N1LSQ/B7eLdzEt0S0BPYATYuIY30GZnLn61El49OaRiAgTzRoSlgAckrh4HHuQqIYenz3IFiWxSM7+rF6Rh09ySaDOptJg6KBjmhgGMCh4tcCgJABDg2KhnpO0UBNNGh3oddkBgkomtb6wjEEoonsxImMaEseMxtqcGwsmP7lWCtPNAxx19FmB6U8POwlJIOC540UGu1mjNBEEnPgVRk03wlWkx51NkoVicUFhOhaJ6hURlWioaKw/odkUiyeDBeq4FBtR5SAeKX9x0/uFyKXiwnxtePfnz2t6M+nBDnCYcWtj+WcQhCOpS8MiGNFywGZ85o2Z+6rolLHcPstF5XdinOhkPm6RzX6CpUyxN+lGtM8c3u+jPPqhW+di81fOrOgzyFWZvi0LC5qgDhhpByVT5moGKKhycG5jGskGtSiLXk0O8wYDUQRV4t0FBQNHtlNNPXjsmzJEQ1C6wTth4yqdYJG0XBYkWjQ6xjUTV8EIxvDUO9BPLJjAKfPbYTFqOIKL0aOREOtxYgki7ReT0VYXYCjDRjaI9x0eCQAhmFhG9slaaIHQJB1qyZPKLROeIJaiQaPZn8GHgtaHJjZYMNDb/Vje68X+wb9uGx1/q7mmhQN5lr11IlwHA6zQd0dORYmx0OL6sBsJ+/16EH1bf1DOSkaHBYDIvFkWlayIqx1steoAS62McujgScaJBQNsQSb3kbgnC5PNExESBiHXYOiwaLddKnRboIvEs+a5Mvh8EgANpN6tCWPVqdVOFaKsDjJ+ZeU/+4QUk+qREMVUwyGYbDrtvXC/+fe/Qz9dSVHiCfWq2eUxlxHKQaRL5Zpry0Lb0y1TJRjQS1WE+Q6fjmSxt3dpUiwFoOAKzWIX+NJdzwxhSMpPPjWJADofniPwpa5wx+JZ50bhzdtyPKeKTSW3fKY+kYaIX4dDrNBUfk0TLGQIo7vPXjX1JAWFUM0pBQNdMUHv3o1s55O0dDkMINlKfbPr/xSKRooJpWxIJCIlBTRYDboYNLrCtY6EY4lEIollF3o41HS861ANADAqlVEivaVn/8LAxNhfOIMjU6tuRINnORZk3y9aWG6omEkgOW1YTCBYaBVmmjgz9cjioaQyooG/n1zaemRz1HRwDAMPnzKTLx8aBTv+umLcFqNeMfy9pz2JUZ9jYkudQKgIrq8IQozUgAI8KkQGhQNAH3EZa6KBo408lEnT7hkC9YBrs0lq3WCj2OVIBoAEnEpwDmN+BIksq8RQ74I6m0mGGnNvnI8/3ivHlry2T0SwMyGGmpJc7PDjGGafVtdIAbB8ufgRDgGo56BxUhxTCjik6soT+y/8xLh71yLKmpVnQJsJgMe+0qqL3jBDY8UZL/lCJ5weFHCRG3hjY+oqhxeEnkqUadfVRCUCIZcSIv9g8VrNZpKXHvJQuHvRSJiqtwhTvX7xbMUiy0a0bmxB0tvfjTtNnd3V9m1JgHZ1+7tIpJGCv/3p62q++TjewFQByUUGhVDNDitRhh0DLXs6MhYEC6bkVpayK9yDam1T1Bk1PMSZ6oosxwL32KCYRjiSRCiLGr4FT2ZiQqVEZ+vHwCbis6TwfQ5RJI4Rz+Mq0/rxGlzG+nGyCM4RuIQ9dokp4JvRVCDlKp5MTC8D0iQ43hsPISzbVwx17Fa+nlsRtTZjHCPKrVONCkSDZ4QKdBdtLLasCdnogEArj69E+ctbEaTw4zvv28FvZJCAfU1JiG9QBUWJxCWP/8ALoWDhvjz5ZYKQUU0xCOcWiK31glAi0GrS7Zg5VfpJVsnrPVZ58JMztPAnUk0sElJE8RhXxhNlKoBAAUgGmjJZ7oUIh5NDjOGJii+byhSPnxhcv5RTY6qioaKwH2fOCXrNmryTQHhWGGMQue3OHD3e1cI/8+6dnPRyYYbuhYVdf/5oMNlpVI5dG7sSTtO4nQRKbKi1PGZP78u/E1LDPzquUOyBMPhTRs0Ewzi7S/MMPmrFPzf2XOEv0OUSplywbffk/I1KFSsL8uyWefXvVedVJaKIR5i5dC+Oy5R2JLgjaOeIo6mcKgYokGnY1BfQ+8yfnQ0KEyQacDHTalKVUx2gNErTio1tU4IREN+5nmFhtOqIU7PXEuKjqhf8m6+117RhX6ij/yubZPfBiASdZ0Bt55di1velUPucmgcsGkndYRCT0vPVsdqIB4ChnYCIE7Ia5g9gMEKtK2UfdiMehuOqXk0xAIkTlECmhIWANJfnocZqVGvw2+vPhlbrr8A5y/SXkRLoc5mQjiWlDfFFMNSC7AJICqvAvGGYvSJEwDgyIFoCI0RIktt3zm2TgAFUjR4ZRQN44clE1/aai0wGXQ4MiY6vjwhKNE+MeyLaIvvy5Vo4MgMGp+GeCKJo2NBas8egJDPI/4IkmrNp/zYFVQ1E6E4HfEMKJ9DVZQNxCS4OElo+y0pA8dcVA2FXMi74qRpuOb0TuH/YpAN4vjjT5ypISFqCsETDnvvuFjy/lnXbs4qtH965arJGl5B8fCOAartDg37hdd85+bdWffzxyzXlWax836ltlAUQtFUinj/ySlfg/k3PJz3/jo39mSZg7q7u7B+iUalaQlB/H7bTHqYDPmX5zf+Z4fw91S1TQAVRDQAQIPdTJ064R4NUCdOABBW4IbUJq0Mo+oyrql1ogQVDQAhSTS1TgCyE+3xANmPokfDRC/3xCr9/To9UNsORiZaTxU5+mHUao38BIDpa8nvY68hnkhicCKMBZEdwLQ1JIJQBu0uq7IJnY0zvwyOSt6t3aMh99aJYoE/V0YDNCvKFIVemFLR4OcmXbkoGgBlnwYvd46rqHakUKvVN8VaR0iuWPZ5NDARhstmzPY2GXdntU0AhOSdXmfFkZEMRQMgSTQM+SLUPggA8lA00Pv29HpCiCdZzNJAPjc5zIgnWXjUPvM0KrdwjI54Bsg1SmMCRxWljQ+JVr2pY4dlUGjRwc3vXIILFqXIz1nXbi7YqiQAXHrPiwXb12TDbNALBfQOFZnz5+97E50be3BgSHrBpRwhVnGc971ns+6/oWtRzi0Smch03q+kQpxHIRRNlQxPMJr1vs9ttk+6iqHQyqun9wyl/b/rNmkCUyv+9MoR4e+papsAKoxooM1Nj8aT6POEtMlkORkutVRWcfWqvFsnAC5lQYsZJCB7TLyclF+xjYWXYNdS9Pc7Z8ga0akiNJbTsdYc+QkQwzxHG3D0ZQz6IqhnvWgO7AU6z1B8GCEawvIrSypEgzcUg9mgozPJTCZJ20uJEQ28v4SHplWFH7uCISS9omEIYHSkPUULaCIu+XPWOV3bviFunaBUNPBEiX8o664hXwQtmYkQiRjgOQbUSXuedDbUpBuU8qkcvvTVsGSSJYoGTURDbuefFo8Gt0ZzYCCVmqHaTkfROkHdugOUXNxxFYXHgTxWNs0FWAnLxK8/ejLetyZFgM6/4WG6uO8TCHazQSiqlZziL/j+s2kFemarRSlBPC53d1fWuOXAH4dCK1QyC8pKJBu23nCB8HeawXKZQ6zWoDVRFaNzYw9W3vZ42m3u7i488dWz8x6bVnxcq/ebCq75/Rbh70KRJuLP7uoZroLsM1dUGNFAl5t+fDyIJAvM0LB6ZTLoUGczYthPGXGp0jqh1zGwmSgKvRImGgqmaAjyigaV1gmTnW4lzzmNFEW5IDSeU5tKqnVCgxkkwwCzzwX2P4H+EQ/W67eAAQssepfiwzpcVoRiCfkiW41oCMbo/RkiXgBszqkTxQKvaKAiGvhzRkW6zht6KsI3QMw2dRqSTACgbiZpqVIkGo6S307tqRw8aUlN/vHtGRLpJCP+CBodGZ9F73HSfiKhaACIT8PRsWDqy81cCxhtqXYQDuPBKOJJlt6jIQ+iy2LUw2E2UH0nuLkIv1kaWif416DaTicoGuTPP1+Y8vwDSi6FqIrc8euPrJG83ZCxsknjLs5DNTknR3znihW4VdSOeHr3U/jtC4eL8lzljsz2gC3XXyCzJYG41UL8o9qWVST0ekJZ8nSlon5hq0MgF4q9ulwIsmHT5cvUN5oi8AQ5AKzb9NQUjqSwEKs1Fmowu5Qitb733hVT6sVQSKNJ8Wt7XGTAqwU//mB2W5b4s/vvz56e034LBcqZTXmAVzSwLKt4Ihzh+tu1KBoAsoJFr2jwyN7tC8dRa1GOLRFQokRDrUUL0cAXetIrynQeDb1k9Z/mmLmmA74+sgqr0dQx10m8nS/0tCgaAGDZFcBb9wF7HsIH9E8h6poDU7OyLKudc67u9YSkkzoEokG6l9sTisJl1ZA4AZScooF/3eM0hpBC5Kx0oReNJxGKJegVDTmYNUJvJEW6mqLBWg+Y6ItdHqnUCY1EQwYRABCiIStibpwrKCQ8GgCgs9GGYDSR8l9gGHKcMswg+daz5kzFhBwiEyBEV27nXyNlMgQfbanFpFJop1P7ThCIVo/sJhPhGBxmLYqG0vo+qCI3XLA4dS3p3NiTNnnmV5AB4OQ7nygJk7OPntaJdXMacBFnyHfbQ7tw20O7CjK2t0XeFJWGJoc57RhF40mqXvXZ121W3QYA/u+s2fjsuXMVv8Mi8QT+vvV4Wt92Pji8acOUOfuLPxtA9mdHCs/sTan3Prh2hsKWVZQCfvncQdy1OTsOsxSug4VCJoEyr8Uhs6Uy3rFMxbtuipEX0cAwTD2A+wF0AnADeB/LslkOYwzDuAH4ACQAxFmWlabx80STw4xIPAlfJK4oQz3CrV7N0Eg0NDnM6h4NAJlY8pnzEpgIxej7MEPjgN4MGEsrFslpNWIiFFMldQCoFnreYAwmg0452m2ij65tAiDSczZJHlM3k+4xAFk9zXESr9cxcFgM2lonAGDW2UDDXKzZ+nVAB4TP/IUqmcJHZPV5QljaIVGAUbROaPJnAEqOaHAJigYaokGZ6NJkzhoYBuwa2yZ4NMxV8Wg4npM/AwDUmPTQMbm0TqQTDSzLYsQXTVtVAZC6nikoGgDSgiAYPTpaUykdHASioZayoM/z/Gu0m6jMII+Maou2BFJJRKpEBo1BMK2iBiDXqBxUL5WOUpuPFALvXtmO/2wjRsg0xVQmqL1nNGB+iwM7b12PJaJIuVzGBqTLews9zlKB1Oq5yaDLOl4sy+JDv34VLx2U/t5Wwr3PHcK9zx3KeYw0KLUCTyvZcPXvtsjeV2o4vGmDsCJNNccuE3S4rKotV28f9+BdP832bTl014aiqbWmApkkg9bP19o7nxD+zjwu4n2L2/CmCvm2TmwE8CTLsvMAPMn9L4dzWZZdWcwvdd4lfdCr3N5wZCxIVq8yJ9MqaHaY6SSMKmaQE7nIZEvsQuO0GpFkAX+EorBRbZ2Ios6mEu020a9uBMnDxfW4azWEjEwQgsKWW8JHrUWDbwUPvQF4/1/grlmOX+JyWFZ/QPUh7S5ynssaQlpdABhFM0jaWFehOCqxnnBekTGuxaNB5jOpKYUjMExaJ3IBH3GZlDFS8x7PyZ8BIFI+h5bzj/eYyPBoCEQTCMUS2Sv7Y4cBvQlwSJN9swSiQeTTYG9JmWdyGJog12Zqj4a8iQY6RYN7NIhZjdqI5xqzATaTXv07QTAIlr7+xRJEUUPv0ZCbj8wJgJKaj9BCqX/2hx9Il8Rq7eVffstjuQxJFTVmQ5YPQS4SdqrWtzLE60dSakLa1XOGYXDfJ09Na0EQez786eNrizVcAMA/P70u63lLHVJtFFvd5Z/KI54Lf/0fb0/hSAoLcbxr5rVs+3EvOjf2ZJEMr153PtzdXRVFMqy8Lf26nMtnjWrRG9lteFOBfFsnLgVwDvf3HwA8A+Bbee4zZ7Q5yUpvvzesKEE5MhrEjHqbZpawqZYQDaoMI59Rz7KSBIF246/Sm1TyRImXRp3B98hH5D0aFNsmkgkiwaZWNHBf7FoNIUPcF1SOx5tXeWhG80Lc3vR99JnC+BTFOVlfY4LZoEOfHKGm05PXoKBoWFrmigaTQQe72UDXOqHi0cC/Z1SfyeCodiNIHg1zSNKDry9bucCywPgRonDJEbVWA328pd5IlC8ZigZ+9V9S0eCaCeikv7TaXRYYdAyOZBpCHngybTvNrRN5nn8ttRY8t29Y8ZodTyRxbCyIS5Zqj8Zq1qJykyG6+PeMyhxYUF2VVtxxiaCk5iO0+PdnTxeKdKlV2T23Xyz0NM+6dnPJFIAMw0iuKr9100XURPb9W3P0UipxvOfnLxd0fwzD4Mx5TSXz3pcSMs/BK37xsnA7D/H95XYM//XGcXzvfSumehgFxxb3ONbOqsdvXziM2x7alXX/Lz58Ei7O4Tu51PHnV46kEayFPh/F5/obN15Y0H3ninypjhaWZfsBgPstFwDPAniMYZjXGYb5VJ7PKYtWTtEwMKGiaBgNaHIX59HssCCaSKrL460uYpwWlY4x8oW1ZKaXJtHgFOIcKQobgwkwWBVbJxRXk/1D5HjWUvYh8bJirYaQgh9GjooGq4Feup6BPm8Y7U664othGCJBG1eJuAxJM/veUAyuMicaAM6QlGZFzGgh7UcyqRP851m1dSIWIp/pmgatQyVonEd+S/k0+AeBWICQETmi1qKR6KppzlI08AkNfDSkgHG3rD8DQFjz6fU2uMURl45WIOoDoinyYdgXgcNsgJXGCBdInX85xjm2uywIRBPwKSiv+GjLTg3mwDyaHGYMq6VOACnyWQITtOcfQI4nmyzJ74QSQEnNRwqFzHSgUnPaz5wor7jtMeoxdj+c3YNdRRVa4e7uSktrAMjn5H9v9U3RiKpQw/vufRmdG3uySIa7OaPHSiQZ9g74cIPII+XgXfLpNLS496qTZO+rl/JwmwKoEg0MwzzBMMwOiZ9LNTzP6SzLrgZwCYDPMQwja63JMMynGIbZyjDM1uHhbEd0JfB9vwMKrROJJItjY6GcJ5UAhWRFxZNAU99kaDxnKX8xwY9fU/KEYuuESuIEQN86YbSSVWfexZ8WeRpvakriyECfJySYPNKgXa3XzdYgqWiIxBMIRhP0qRMlTDTU1RjpFA2A4vnHJ4U41dqZAiPkd86KBoWIS967QaGYV4PDYtDWumNXIhpEigaWJUSDjD8Dj5kNtozWieyIy2FfRJPhYr7nXyunclP6TjjMefZ0akic4NHssNApGhTa6QSPEJrvhBI1B54sTOZ8JJ+5iFZ8/aL5wt/xRHZrVWYxH4lrj4crJtzdXfjLJ05Ju63UCJEqKhuNdnPW5+QLf32zrNUMJxIe+OxpcHd34YqTcvOpKnWM+iNY/8PnhP/fuuki6HNsB7nlvzuFv9cvSREy4nP9tevOz2nfxYAq0cCy7AUsyy6V+HkQwCDDMG0AwP3ODmUn++jjfg8BeACAbLMZy7K/ZFl2Dcuya5qatE3oLUY96mtMioqGgYkwoomkZiNIQGT+RRtnprCCRbV6BZRsZjo/furCRpFoiKGuRuF4+HiigbJ1AiC97loVDcH8JvF1NhN94SuCPxKHNxTTSDRY5D0aAI5oyFY0aPIjAEhxxOgAU25uuMUEOd75n39e2tYJPgoyV48GRxuJfJQyhBzjjLzq81M0ULdOAJyHQnrrxDAXBZlGBoTGiRqkTpkE6WyowZFRUcSlgzOcFBENQ77wpBINbZxKqF+BaHALRIP274QmWt8ehfOPf8+ovhNOcKJhMucj+cxFtOLz580T/p57vXQagXj1a8ENyvFw752CyfrpcxslfRv2DfomfSylgsxV9nLD5i+eOdVD0Ax3d1fJSMbzgcNcOaGAv3vxsGRMJQDsuHU93N1dWJWZdFXCkCKDlTARjuGkO1LmjU989Sx6nzQJ/P4lt+o2gil3CSDf1on/Avgo9/dHATyYuQHDMDUMwzj4vwFcBKAw+ToSaK21KJpB8j3EuSgamgVFg4pUVlA0eLLuiieSCES1GH+VdutEvooGlmXhDUXhVIpb1KpoAIghpFYzSH4Sn6OCxMURDVoNu/o5woA3eaRBu8uKIV9EfmXLVi+paOBl2k4lBYkYYS+Rrcv05k8lXDYTXeoEQJIn5FInaKXr/PGsyZFoYBjSGjGyP/u+sYOAzpizGSRAxq+pdYJXNIjOV96jIU1yN8ZFW6ooGjobbPBH4hgNcO8Jr2gQGUL2e8NopWwRApB364RANCiQcodHAqjJwRwYIESDLxxHOKaywkzROkHVTneCEw0qKLn5SCGh1zFYvyQ9DlMOd16WnXQwGeB9G8S46AfPnbDqhiyvmzLD4vbUdVfrvGYqUV9jyiK9AMgWu6WID55S3hGciSQrHO9b/5ftwQAQUshehoTKl+7fRr2tJxhNM+X988dPwdzmwi/cic/rfXdMfdKEGPlWD90ALmQYZj+AC7n/wTBMO8MwfABwC4AXGIZ5C8BrAHpYllWm4/NAu8uiKCk/NEyIhlw8Gho5omHEp1Lc8KtvEhNLPqWBalIZCxHzuBKcVAqKBtrCxupKTZJFCEQTiCVY1CmxexO9xPHepqE33jmdmEFq+XLkPQ14okgj6muMiCVYBKLaZK28qaPW1gkAGPTKrKbyrRMZr583odEUb1mCbRMAUGczFkTRMBHi41VVfAN4RUOuRAMANC0CBndm3z6ynxTy+ty/dEnrhEZFQzwERFIrjiP+COpsRhjFTsXjHNGg0tYxk2s94BUCcPCtE0Q1EU8k0e8NY1qdhqjesJeoaXI8Li21FjCMsqJh/5Afc1scOUWINWlRuYU9ktcjTfGqwfwMayscJTcf0YJDIsWCXDF071XpIRlr7nhccjuTIfX5vfJXrxRgdNrg7u5CzxfPSLutc2MP+r3K0XZVlC74uMVygdJ4+QL40LC0j1opYM9AeSqB+GM757rs4/+tixdOwYgKj563+6m2OzIawMrbUtfon3xwFc6Yl8f8EalWTwDYfdvFALLT/8TX/1JAXlQSy7KjALIaQThp4gbu70MAJs0ydVqdDa8eGpN1Gd8/6EONSY8ODUUdD4fZALNBpx6Xxrc6SCgaeLNAOpks9/gSnFQ6zAYwjBaioR4YzjZ+GudWP1U9Ghxt2iI+XTOAeJj01dspZa+hcbJymmNR4+Jew3ggqoml7RMUDfTnJH/+9npC0m1AtgYgESXmheYUe8orUKjNIEOekmzdAcjxngjHkEiy6r1uFqdsCslEWMWMlAfv0ZBr6wQAtK8Ctv+dtBM4Ur11GNgOdKzOfb8grRP+SJzueABE0QAQAsVCVq5G/BIeCjzR4JqpuLvZHNFwcNiPNZ315LqlNwmKhoGJMBJJFtPqNJC8Ya8wtlxg1OvQZDcrthkdGPLjrPm5SePFvj3T6xVel8UJJONALAiY0tV0wneCFkVDCfr2TDVKcT6iBbTxbWKX/RF/FAMqKqGXDkqnDxUbS9qdWYkA6zY9BSDVK9+h5jVURRU5QHzOrV/SIhB0mQTeed97Vvi71PwbnttXXF+YQoFlWVUSSnxsv/3IiWEA+/D2fnzmL28I///umpNx7gI5f2J6nHv3M8LfvKn20psfFW4rtfMYyF/RUHKYVmeFj+t5l0I+q1cMw6DRbhbkxbJQMINMGX+Vt0xWp2NQa9FgfmitS3kgiCB4BigqGvq1tU0AqfhALYaQebap1PNEg0afhj5PCDoGaNHQu57qPZeZpPHqj4z2CV7RoMkMsoQVDSxL2b5jrlX0aKD6PAaGSXqFOQ/ZG08m9L2Zui3sBTxHgJalue8XKfLST6tq4IkGkU/DiD8qHW1pbwVMygTB9DobLEYd9g1yq0QMQx7HKRr4lBRtigZPzgojYVz1NhwbD0re5w3GMOSLYF6zPad98+0WI2rkM/8aJFRuvnAMOgaoMdF8J3jS91dFReHla1M581Irgjz23nGx8Pepm56U3a4UIGcUec/TB/CN9QumaFRV0OLnH8qPAJ9sZJIJYhWQu7sL7u4uXLi4JfNhwkr8O37yfNHHWO54Zu+QcLzkSIY9t18sHO8TDZf97MU0kuF/nz+jICSDFMTn+9wc5zHFRvk1x6iAXy07NhYSVpjF2Dfox7kLcjd2anSY1RUN5loAjOSkkicaHBXgMF5rNdATDbZ6Es2WiAH61Gvni3JlRUMv0CEf4SIJvtfdc4z+sYERbe0ZGeANLccC2oiGXk8ILbUWGPT0vF8b56YvKwkXEw2i3nqPZjNIL9A4l3pckwmeLPEEo+oxPoqtE3G64xEcJW0TOZCUAlqXAYweOL4VWMD10fGtFK359VXz7VgT4Rid0ZCdm2ylEQ0RrJjmSt9uzK3qzwAQ8nF+iyPd/M3RIigajnNEgyY1WciT9/VvRr0Nrx2Wjno9MEzGOq8lty/oBi4GVJVoEKvcnOmkqTcUg91soFvRDo0DJjuJDK6i4sBf1wHS4ywHs0GPX3z4JHz6z68DIJPNzAn9fz9/Ot710xeLM1CNOH1uY5a64buP7p3CEVVBi0uWpWLFpc6zUkImySA31l99hJAP0XgS829IN1/d0TtRTarIQCiawKKb1DvM9tx+sXoLagVhzczsuUnmOfj6DRegoUBeLb98LmUkLiabeTzx1bML8jyFRsUpGqbXky9qqRWs8UAUI/4I5rfkviLZZDdhxK9SSOp0XGHjybor1TpR3ooGgBSr1D3h/GvI8Gnge+xlPRpYlrRO1LZJ3y8HF0c0yMjlJREYSq3y5gCe2PLQ+gZw6PeENbVNAEQyVWczykvCBaIhvcDyhmJgGEqiCyjIinKxILSq0BxvSy1ppYlnF4Re2hSYwHB+/gwAkc23rwIOp2KOBHVD6/K8dq05clYgGlLm/MO+SLaiYewQdezm/BYH9op7S+0tQuoETzRoOtfDnrxbd2bU29DnDSEaz3aKPjBE1Bdzm3L7TmioIcdqVO07gVcFSarc4vQO1CVqDlxF4SB2+lcyrsvMmc/cdrmIMCwVAzx3dxe23VT+iQBVlB5oSQYxTAadsOp+l4yBKr9y37mxB79+/lBBxlrqeFqkWOjc2KNIMhzetEE4hicSyQAAf1aJ9D1w5yUFIxkA4K7NqbYTs0Gf9nx7bs8mHkoFFado4Ptkj41lEw38Sluuq1cA6cnddkx6ZTQNFqeiooEuM720jb80t04AZKIsKua9nKJBdqIdHAMSEe2tExYXMZHTkjwRGAHacm/fzbl1whtKmxTSos1pVVA0cD3cGa0T3mAUDrOBPr+3pFsneGKH4ngL7UwTWZ4dE+EYZjdRpNAERvLzZ+Ax+xzghR+kju2hZ4CGudrJtAzw5CV1xKW1nqgrOCIgGI0jGE2g0SFaLY/4SbxsA52qZUGLA/98/TjGA1HU1ZiID4X7BQDAkbEAWmrN2iYjIU/eRNeMehtYliiHZjWmv8/7B/2wGHXo0NLOIYLJoIPTasyrdcIbovQIAUo27riKwkHs9K+GTJVAqa84A4Qgdnd3Ye51mxEXqTb411Hq49eCI6MBzMwh4azUcHjTBkEiX4rnWC4kQyauPGUGruSSHp7YNYhP/HFr1jZ39OzGUiZPSwAAcG1JREFUHT270247vGlDTq3YtPj9NScXbd8AsNU9hit+8TL19g994Qws7SjNOeFk4K7NqfdfPJcpxDlIi1mNNVnPV8okT8URDbUWI+psRrhHJYgGbvVqXh6Khka7GWOBiLrhGu8yngHqKD2gLBQN+4coXXv515Cxws6vRrvk4i19fLRlu7bBMQxRNXgoPRqSSW7FOndFQ63VCIZJGVzSPS2Lfk8YFy/Rnnnb7rIIq8RZkPFoGAvGSAFIg3iUmNeVqKKBV8HQKRpEK8oZRAPxaKA0g2ycr3WY2ZhzHvD83cCBJ4CF7wTcLwIrP5j3bvnXwJOZqtDpyOeKi4/l03TSFA1jnFSPkmiY30qurfsGfThldgNRNIQ9QDyCQ8MBzGnSSPIWQtHAmaUeGQ1kEw1DfsxpstMTbxJotJu0tU5kgPr8Awj5XKLfB1UUDq9ce77gvaBW2CmRDaVstniAS9nInDB3buzBxUta8YurNLZLliDO/u4zJVeU54JiFtL5wBOMprn6A4Up8C5Y3CLsJ5lkMVvBL0XKo2BhqwOPfPmsnJ9f/Jk9p0C9/R/+9at44cCI5sc99bWzMVvr93YF45fPpatafOEYloniK4HikAzi6+RjXzkL865PtfyU+jWm4ogGgBhiHJQogA8M+mA3G9CuJcc9A412M5IsWbVWzEi2uCRlsoJ0nSaVIDQO6IykJ7cE4bQa6VMn+BX2rNYJktAgG8fCFUFwaCQaAJI84aFUNIQ9xBW+Jnf/Dr2OgcuqIXIRwGggimgiKZg7akGb04ot7myDTQCksGb02URDIIIGWqKBP39LdAXVpUXRYOZWCSPpn0mWZTFBu6IcHMm/dQIAZpwKOGcAr/+BtAbFAsC8i/LerUA00H4mAWKayrUX8d4zaakTowfIbw2KBkBMNJBJEusfwsFhPy5dqeFzXCCii48yPjQcwDkZ3nMHhvw4uTO/wp0YBKu1TrjIbxlFA7UZZWgcaF6saXxVlB+UUiSkIEc2vLjxPOH2Vbc9hjdvyv86Mxl4ZOcAOjf24HPnzsE31ldGJF65o9RUDVLtQMUYk07HpO1XjXgASDQlTbvS7645GefMb8oick7vfopqbIFIHNc9sB0Pbuuj2l4Na2fV4+//t64g+1LD74qs1JgMnHv3M2lxk8DkFP1ikkHKq6HUUKFEgwOP7MjOOd036MfcZnte7GyjyGVckWiwuoCh7BgXfvWK2vjLWpef+VwRUWvNpXUiwzMgqFLkTfRyT5Yj0XCEUhIW4KKE8vBoAIicf0xD6wSfGqHVowEA2lwWeEMxBKNx2DId6xmGqBoyiIZRf5Q+XpAnGkq0daLWQlpAqFpVZHrkA9EEkiyFZ0o0QIreQhANOj2w5hrgyVuBw88CjQuAufn3LWtunQAI0XDsNQApQ8Mm8XVtlFc0zKHaXUutGbUWA/byhpCcD4RnuBe+cFybooFf/c+T6Gqym1FnM2L/UHouuS8cQ68nhCtbZuS1/0aHGbv7JpQ3UvJo0Nw6UVU0nAg4eNcGIXmCprBTa6PQQoBPFd666SKsuC21OnjP0wdxz9MHccVJ03D3e0sylfSEQea8+SdP7scXzp83JWPJLOJ7vngGlrRPzjwlk3gACPmw5s4nNBuBX/O7LarbFMtfpZAmhbngnBwjpUsJYpLh3qtOwvolrQpb5w65c6BreRvMhtJtmeBRoUSDHePBGEb9EeGDxLIsdg9MYP3i/E6ERs5lfNgXwUKlXcmaQVbOpNJpNSISTyIcS6j3B1nlFQ18WoMkJvoARpcyrtM0wOlkBTvkUS9WeEO8PBQNAElCoFph58CbOeZCNLRzDuV9nrB0rI0E0TAWiGanCsihxIkGhtGgIJEp9Ly0KRwBTnJYCI8GAFj3eaDvDUJGvvNHpI0hT9jNqdQJajinATv/AyQTAtGQRqCO7CefIyPd+ckwDBa0igwhOeJusO8ogBptREOBohwZhsk2qQSwvZecC/n2mzbZzXhOrXVCp+ciVj1Zd1F7NLBsyX8nVFE4ZLbzvHF0HKtnKL/34lVngExQL1vVgQfe7C3KGAuBV687H6fcRdpEnDYj3N1dODoaxFnffVrY5p+vH8c/XyfKq6leSafBPz69Du/V0PdeLhCTWd97fN+kEw1zrtuclcZSCueDTsfgjRulFwui8SS+8vdt6Hk7e/GzmPjRB1biHcvb82oLLDSuf2C78HeptuMoQa7gP3DnJZpS4wqFe64sj+jZiiQaeBnqvkE/1nGTZvdoEJ5gDKtmuPLaNy8rpjL/KojxV+lOKnmfiYlwTJ1oMDsAnUHSo0E52rIfsLcC+hxOVRe3Uuk9pk408IqGPImG+hoTej0yBo0S6OO2za11wsLtI6RANKSON8uyGA9GUW+nbZ3gSKES9WgAyMTUS5s6ARAzSBEEzxS1HnmeaMjz/BBgMAHv/3Nh9sXvUq9DjUkvJNtQwTkNSMYA/5Ag/28Qnx+jB6jVDDwWt9XiH68fRzyRhIEjCEcHjgJYpC3xp0CKBgBY0OrAA2/0gmVZYYLzFmfquzxPoqGhxgRfOI5IPKG8uiBhEByOJRCJJ+k8e6J+0t5Vwt8JVRQW4sLu8p+9pFpUMQyTRTaISYZSkLxnoqU29d33+fvewE+vXI0ZDTa4u7twZDSAs7/7TNr25WAaeXJnvfD3ywdHsW5O7rHZpYbtt1wk9KRP1vkUiSew4Ibs5INSPgd4mAw63HPlatxzJd32lRyt+ZdXKT3TygjFfo/kyI1yOjcqLt4SSLk2b+/1CLe9eZQUTatUVgTU0MgTDWo9uVYXSUuIpRsxVRTRYOFWUGnaJxiGvJYMRYPq8Zjozd2NnycaaAwhC9Q64bKZNCka+r0hmA061NP6JojAqyD49oss2OrTFA0T4ThiCVa7R0OJKhoA0qqST+sEtaIhyBMNBVI0FAm1VqNGRUMqBnbEH4HLZoSRZ+ZZlrRONGhbtTqpsx7BaAJ7BnwCMeMd7kWzw6yt9zxUOKJrfosDvkg8zTz17eMezGyw0ZujyoD/TlCPuHRlnX+VZA5cRXHwnfekYm9pZNQ82VCOeChj1XdmQw3c3V3Yfku2twQfvReJJyZreDnhg796ZaqHUFBkRmMXOzq1c2NPFsnARypWUcVkIfM8f9+aaVN2DpaDL4MYFUk0NNrNmNlgw+tHUkXtG0fHUWPSS6/8aoCDMy6kjjOTKGzoiQZPSU8q+dfhpV1BtdZneTSMB6Mqioa+3PwZAMA1k/ymJRoYXd7Hu77GpKlPr88bRpvTkpOMrKXWAoZJqSKykNE6Mcqds9SkRlkQDZStEyY7eX8jMooG1dYJXvFS4kSDxQifFqKBJ+PG3dm+M4Fh0npEaQTJY81M8hna6h4DDGbAWoeotx8rprs07UdY/S+AooFXsvHfCckkiy3uMazSOiYJiH17FCGRRMSTQnRmpKUdd1xFcfC+k6en/S9LLIugRDZc8fOXCjKuyYTDQloqpF7TghseQefGHsy/4WGJR1ZRDGQWWMUgG3giSYzPnjMH7u6uspTd06CS1QxivHLt+VM9BGp86NevZJ2HhzdtwHeuKL5njNTn6tZ3LSkLXwYxKpJoAIDVM+rwxlEPWJYFy7J4Zu8w1s1pyLtfiWEYNNnNgkO7LPjJcYZU1huK061eASWvaOAnx9Qu9xmKhkSShTcUE2IKJTHRB9R25DZAWz1grKFLnvAPkf57XX4fYJeN+FaEonSrLP2eENqc2v0ZACLJa7KbFRQNXOtEMgkAAgFCbQBUBkQDtYKEYbge+RLxaCgSHBaDttaJuk4ADDB2EMO+iOBBA0Bz4gSPdpcVHS4rXjhASK6ErRnm8AhWTNN4HgmtE/lfAxe21sJhMeDVw6RY39U/gRF/FGfOy78Vhj9m6uRzdusE9fkHpK6dtnrl7aqoOIgL7HWb6BzpGSbbtA4Ath4Zl9h6anHwrtTr29GbbZjKg39NUq8rGk8KxSlVO12Rsf/OS4S/3zrmmbqBFAmZ78Gymx8tyH6lCAb++b55ceUmkLAsq75RGUP8nmpN1ZkqdG7swYsHRrNun0qi66OndU7Zc+eKiiUa1s6qx7Avgl39E9g/5Mfx8RDOW5iDoaAEGh1mDPsoJpVA2gqWpii9eJT05JYw0VArKBo0RFwGU5McXzgGlgWccoqG8AQQ9eWuaGAYwDUd8BxR3zYwUpD+e16dQSXnB9DvDaPNlftFt81lRb9XQdHAJoRIx1GeaKBVNIQ8gN5EbQQ4FSCKBkoFicWZLV3nEhrUPRqGAYMVMNXkMsxJg+bWCaOV+DSMHsSIP4Imh+hcHN5LfjdqIxoA4MLFLXh+/zACkThG4EIT48UZWot6wQwyf6JLr2Nwcmc9Xjo4ApZl8ew+olA5c37+xJGgaKBpp8tQNORENJTwd0IVxQHDMLj93UuF/7WsIEsV5X97rbR6pcULQO/4yQtUj+EJh6e+dnbWfStue0y2YJ0sGEXmcJfe8+KUjaOYEJ9bvkgcJ9/5RE77YVlWkWCo5NV9HmJflRPh9ZYylK4dv5+kWM7Jim+dDFQs0XDxklYYdAwe3NaH+7ccg17H4PxF+fXf82iymzCi2o/Lxzl6hJvCsSSiiaTGSaUrpzFOBpwiM0gqZCgaeMm7rKLBx/VrOnIkGgAiDadqnRgC7IUjGmjaJ+KJJAYnwujIIXGCR7vTIiRXZMHGGVBxkmt+TJpaJyzOko1XBYiiIRwjySeqsNRmmUF6QzEwDFECKCIwQtomSvhYAMQ3RVO8JUDMHkcPYMQfTVc0DO4gKhCn9vjHi5e2IhJPYvP2fhwK1aBN581N0WCyA3pKBZjamJa04shoEK8cGsNfXzuKtZ31aHbkv7LCEw2qKjcJg2CvYEZKYXZbJRpOaFx16sy0/7/xj7eoH5s5Qd347+0Vs4I6u8muWIzyRcNUkg6VDLHaZtgX0XSc7332IDo39qQV2TxOFIIBAL7/+L6pHsKk4dcfWTPVQ5CFPxJXPX/PWVCYOlIJO/uyVV3l/FmoWKKhrsaECxa14JfPHcJvXjiMd6/sSHM3zgeNdjNdPy6QtoJaaTJZfhWYWqZorUvzaOBXomU9GiY4t+xcFQ0APdHgHwJq8r+A8KSJh+KYDPkiSLLIuXUCII/t94alJ40C0UCkXzkTDSUMTQoSGTM+u9kAnVpLVXCk5P0ZANLLrEnRAAD1c8COHYQ/Ekv3aBjYAbQsySl6c21nPZZ1OPGNf76NHRMWNOu80EzRhDwFTTx554p2OCwGfOGvb+D4eAgfO6OzIPu1mvSoMekpvhPqgHgozSCYv3Zq+k4o4RSYKooL8WTzH68f10QWZE5UZ127GS8dHCnY2PKFuGBdddtjOe2DL07FbQtiiEmHySBaxMe8UokOKT8QpdcqVi9senhP1v0nEsHA48dP7hf+rsTXLj4fLlhcGGV5odG5sQdLM9p/Dt01NaajXT9OV3WV+zlRsUQDANz+7qVY2OrA2ln1+Mb6BQXbb6PdjLFANCvPNw2CGaRHuKnSZLImgw5Wo56+dcJaB8SCQIxI/YVJtpyiYaKP/M6XaAh7slays1Cg1gm+iB8NqBQdSJl65dM60e6yIBhNSPfl8yQVRzSM+qOoMenVo0h5hD0lX9S4uHNnPEATcSnROkHbyhQYLnl/BgCotRowEYppm0Q3zgMT9qIJ3pSiIZkEBncCLUuVHysDnY7BpsuXYVFbLWrq22FMhkkrmBaEPQVVdFlNevzoAyvBssDHTp+Fixa3FmzfjQ6zeuqEhG+P0LpD+51gtAHG8uhvraI42HbThcLfUivBSsicsF75q1dLpgAW9z1TGfwqwKjXCQXr1hsukNxm1rWbhYL35YPZfdhV0EPKDyTzvOKPtdQ5+9MrV52QBAOQfpzevPFChS2rKAak1E5fPG8u3N1d0OmYtPsmI80ncyyV8Jmg0GuWL5ocZjzy5bMKvt9GuwmJJIvxYDR9BVAMfiVYNKkUZLLWypHJOrX0hPOFb9gDGFspFA1860SO8ZaAKL7vGGBZIr1NNADEAgVpnWjiou5UPTyQSotoz1PRAAB93lA2YZOlaIig3q4hyi/sLRuiwROiUDSYa7NTJ8IxdX8GAAiMAs0y508JodZiRJIFAtEE7GbKy3vrMgDAEp0bjXZuUj5+mPijcPflgqUdTjz8pTOBt3qBB35NVENmB/0OCqxoAIDzFrZg6w0XFNzMiU7lxl3Lwx4hstcbiqHGpE/r55ZFiZsDVzE5cNlMWNJei5195FrWubFH02T0Tx9fi6t+81rabVr3USz86iNr8Mk/bgUAuEcC6GzM3xOn0W4WXtuIP4I1d2T7CGRGUB68a0PexuE83N1dQvFQKse5WBC/VkBdxVHJx4IG869PT0rJN2q5FLH4plQ06b47pJVGU4E/vezGjQ/uzLpd6ZwstgnklRnXoUN3FZ/YmAxUNNFQLPCGaVlxcGLoDaS/uIIVDQAhTTQpGgDiGeBoVfdomOglxXI+K3jiiMsWmUJRiC7Mn2hwWo0wGXSUREP+igb+sf3eEBa11abfmUE0jAaiaKihTJwACNHgmqm+3RSCJ6loWlWkFA1UcbMsS86RmoZchzlp4DPO+ZYQKnBkwmLGnbqeHeW+8KavzX9Qdq4lyT9I/CBoEfYA9bPzf/4MFGOy0Gg34fBIQHkj/von8qnxhmIaU4hKt5WuislDzxfPzCroaIs2uaSVzo09OHTXBvU2siLiQpGs+py7nyl4ISomHViWlVWEzLku/fY9t19MrwRUAcuyFRvPeN73nlHdZvstFwnfUycyvMEYoomk8H+lki5BUQKbyTD1Ivqjo0Gc9d2ns26XuvaJr7EHi1z0X/WbV/GSSFm1946Lp/RaXEhUiYYcIMSZ+aKAkvo2w/yrEokGp9VIH6fHT5I5nwZvMMoZ8Sm0TuTTNgGQ1glA2afBN0h+2/PvHePjT4coiIZ+bxh2s4FuRV0GvBqCV0ekwVQD6M1prRNtWmKFQp6SNiMFtHo0OImiIZkQYkwnQnF0NtqUHxf1A4lIQYioYoNXeHhDMbTTmoxanPDZZmCpz41GB080vEyuX40FaDnjP1f+QW2PK4KioVhotJuxxa0SG8i/lozvBKrvA4AjGly5DK+KCkTm6vEfXnJTR5/tuHV9Vj8yAMy+bjMuWtyCX06hYZvTahTmSt5gTL61Mk9kyv3fODqOy3/2kuS2C298JO3/dqcFL117PvVzid+rWddurpiiUmvbTaW87kJghciHZDIk+VOBd4vSVp74anY6zGRiIhzD8luyvV+e+OrZmNtsV318oRROUji9+yn0ikzd13bWw2woDLFZCqgSDTmAn4xTGULmYwbJ6Incu4ThtBqli1wp8GZ6nIJgPEgm2bIf4Ik+wNmR3wBrGkksoRLRIJhO5vlcHJprzRjyqR+TPk9IW+EvgSaHGQYdI/g9pIFhiKpBZAa5pJ3yfGLZsjCDdGkw3xReS2RCIPC8IYrWiQIqXooNF3dtoY785NBvX4Q1gVdRy0/qj7wETD8lJyPILAhEw5C2xxXYo6GYaLSbMR6MIp5IwiDXBiGhaJjQqmhonJ/nSKuoJBzetEFYlb/5vzvxrhXtVPLrTLXTvGY79g8RD5XHdg1OqcT/rZsvEgrYFbc9NmnjWD2jLu25/vbaUWz893bJbfu8Yckim3a1/s6eXbi+a3Hug50CXPWbV/H8fnrzUHd3F0LRBBaJpPOdG3vw4sbz8kraqgSkEYQfW1uxCpdtxzzC3zTFfDEgRzB85YL5+NIF82QfJ36PitnCIHUd+fun1xXt+aYCVaIhBwi56TRxZhKtE1SyMX71qsQvQLUWI3aHfHQb86kOfp5oiMr7MwCEAJieZ2Ytw6gnTxQi3UKEZocZh4ZVZNQgioa2PL9w9ToGLbUW9MuRPbYGIDgGlmUxFojSezREA0AyVvKKGotRD6tRj3GKONG0Qk9ENLjUVswC3OSqHIgG7vNEnQTDYaf1ZFzGPAqM7AAMZmDsIHDqZwozKGs9IU21KBriUWIcWzaKBhNYlpB5zXLpRkISkUe4yRuKYXq9iqKGR9WjoYoMMAyD12+4ACdxvgOrbn8chzdtoCpcxKvs+4f82HfHJZh/Q6pnvHNjD16+9ry8UpFyxbQ6K46PE/L89SNjOGnm5LcMfWDtDHxgbSradywQxerbH1d8zDKJggYgr0dMCv3q+cMlSTQkkyxmX6fNYJSH1HlnNemzlDendz8F4MRVN2QWlmfPL/15RS4Qv86XNp436c9/ZDSAs7/7TNbt62Y34K+fOlXxsZlx6cVqYZAiGSpR3VIlGnJArcVA14dvcQLjbuHfiVAMDouBToJTJpPKWq1mkIweCJCVTUXZcCxMWiwcBSj+XdOViQZvL/HTKNDqfbPDglcOjalu1+8NYWlH/oqVNqclTXaVBls9EByFPxJHNJFEA3W0pYf8LoNCr85mpHMpz1hRjsQTCMUSQnEuC0HRUPqpE3U1vKJBG9Hwqn41LgUD3Z6HuFsYYNG7CjMonY74NGghGvjzr4wUDQAw4lcgGsxOAEy2ooGGeGbZsvlOqGJy0WA34+73rsDX//EWAG3S/I+dPgu/ffEwAGD+DQ9nFYXrNk1NUfjCt84TxvGen79cEkVpfY0paxxDvjDW3vmk6mOPj4ey/CCkioxGuwmbv3Qmmh2FTZZJJln89sXDuKNnd0H296/PrNNE/ri7u7DtmCdNSt+5sQeXrmzHjz6wqiBjKgdUYqIADajbOAuAP7zkxs3/zTZ5XNpRi4e+cCbVPsStUsV6j6Q+/w994YyKVLfkRTQwDPNeALcAWARgLcuyW2W2uxjAjwDoAfyaZdnufJ53qsH34Q/TtE70e4R/tffjlv6k0mk1wheOI5Fk1QkUnZ4Ua1zBMR6MoknOTNNXgGhLHq4ZQO/r8vdP9JLnKdAHvMlhhjcUQySekO2zisQTGPFHC7Ja1Oay4i2RRC0NtgZg4G0heo/aDLJMPEIAwGkzwUPTKpBBNKRSYCqpdYIzx6RJ4RDBHbZhq/lUrH3uu+SGBV2Ao4B51/Zmba0TZXT+AZTtdDodITNz8WiIBoBEtGyOx1TgRJ2PAMAVJ03Dvc8eFNofaFsfbnrnYoFoAIDxQBTu7i48tnMAn/pT6juzc2MP3rr5Ivr5SwHwg/evwFfuf0t4/lIsypodFslxHRsL4szvZBvOqWHEH6UiLiYTB+68RL4dTANWTndlEVkPbuvDg9v6TgiDyBOJZBC/1gN3Tk7ShJxfyBUnTcPd711BvR9ecQMAM2jVhhohN9alHaXdqpwr8lU07ABwOYB75TZgGEYP4B4AFwI4DmALwzD/ZVl2V57PPaVotJswopabLmEGSU80jBXEnLDY4Is0XzimvjIMkPYJvnUiEMP8Zpm4u4kCEg31s0nhEhxLRWymPVdvwfwZANI6AZCIy2l10heqAS9pdcjXowEgxlSP7ggjmWSzJV6cR8PgBHm+FrnV1kzw520ZrCjX2Yzw0CSfCESDB0CqvcBFSzTYSl/RYDXpYTbo6DwrRBjxR/G/1s9hrW8QYHTAJd8u7MDsLdoUDZyviOTntQRB3U5nrRNIlHgiiUA0oc0cuEyOxxThhJ2PAMDjXz07pyQKsaR/1e2Pw93dhYuWtGYVhStuJW0Bk1UgXbZqmkA0lBum19tkj5NS2sVU4A8fW4uz5jVO2kqqlHcD33JC2/ZTbjiRSIZ/v3E87f9CkFRKkCvaf/Hhk3DxUiW3fmmI1cHPffPcnMclB7nxVvI5kRfRwLLsbkA1LmwtgAMsyx7itv0bgEsBlPUXe6PdjH6viuGf1QXEAkAiBuiN2hUNTYvyHmexwb+eiVCcjmiwN6W3TshGW/JEQwEIgIa55PfYIRmioQ+YU7hj3VxLio4hBaKBN9AshKSszWlBNJHEaCCKJkeGYsHWAIQ8GPISz4iW2spTNNTZTNg9MKG+YYaiwUNrzhoYIaas+cSsTiJcNiOdZ4UIo/4I2NmdwDVvFmdQ9mZgQNpYTRIC0VD65A4gSiKiIRq4tpCJMEnrqbVSfA2X0edxqnAiz0d4ZJIDNGQDwzD40vnz8KMn92c9xt3dhT++7MZNorz5zo09+PPHT8EZ84r/2dx7x8VYcMMjWeMqZzAMk0buAJVdZEiB9264a/Nu/PK5Q8Lt/DGppONxIpEMAPDVv6fIwWK91u89thc/eeqA5H35qGPE79W2my7MaR9yODDkwwXff07yvko/JyYj1LQDwDHR/8e528oajTStE3x/O5c8oY1o8JTFpLLWQibJXpoVZUBQNETjSfgjcXkzSIFoaMt/kDzRMCpxYYpHAN8A8XEoEPj+yqEJ+fPj2FgQADBdhojQAt5QUjJ5wtYAgIV3jJA7sv3jmSgjjwaXzUi3gs9/noJ8vGpMeLwiAsNl4c/Ao85molN4cIglkhgPxoRV+aLA3kJaJ5JJ9W2BlAGnraF4Yyog7GYDzAadusrN6hJIAz4ZpJ7GN6VKNBQKFTkfESNz0koTQfiVC9PTTC77WaqX/iPrOrP2+eHfvKo52jAXZLYe3vO0dHFRbmAYBveLDOkm41iWIq7bsEiyyOrc2IPOjT2IJyi/L0oQoWjihCMZxK/3+QKrAViWFc4LKZLB3d0Fd3dXziTDZ/6c3l5NtXBKic6NPbIkw+7bLi7Y85QqVIkGhmGeYBhmh8TPpZTPIbW8wCo836cYhtnKMMzW4eFhyqeYfDQ5zBgLRJFMyr6UlLkgL9WmJRoSsbQIvlKGoGigNYTkTOE8QVKE1ykpGkwOwCzTWqEFrplEDj56MPu+8SMAWKBuVv7PwyHVOiGveDkyFoBBx6Ddlf8qOU9WHBuTIhqIgsM/PgSLUScQQ6ooo8KmjvNoUPwsAoDeQJQJmhUNw2Xhz8CDEC/0ioYxTv1QdKKBTZCWMBoIiobyIBoYhkGj3YwRNYNgUesErzpRTN7hUUafx2JiMucj5TIXkUIuZIP4MW8e9WQ5r7u7u9DzxTOy9lvsIlk8ru8+ureozzWZOGV2+rXtRCUbgFSRmIm51z9M0k8Ojk7BqHLH1//xVlprCFD5JMOq29ITV6jTlFTAX2Ok2o1u6Foke+5oxcM7BoS/C/leKX2uf3v1GlhN0j5ulQRVooFl2QtYll0q8fMg5XMcByBeLp4GoE/h+X7JsuwalmXXNDWV7uS+0W5CIskq59WL4sxYloUnGKXKuOYVEOUwqeRbH6gVDfZmIBGBzzPGPV7meHiPFU5lYDARsmF0f/Z9Y5xsr75wREOD3QwdQ1on5HBkNIiOOmtB+tdmNpALuntUIlKTK9TC3mG01Fro+x9DHkBnAEw1eY+v2HDZjEiygI+ToitCtKLMn7O8gaIsAiPlRTRYTZo8Gvj0nOISDXy0LaVPQ3CUJMGUSbsKQL4TqFRuHPE8ViUaNGMy5yPlMheRQy5kw57bU6trYud1HkvanbIr0I/v0uDBohGvXHt+2nNVCnJ5jyoZckXjB3/1yqSQWoVA58Ye/PP1lE/Bzz+0uuJJhkAknpZ0le/rvVLl/T68aQPc3V34xJmz83oeHuLneeumiwqyT16BIQebSY/zFpa+D18hMBmtE1sAzGMYZhbDMCYAHwDw30l43qIi5TKuQDQIrRMe+CNxxBIs6itsUslHs2lqnQAQGOsHAPnj4TkGOAvXzoCmBcDQnuzbxznH7QIqGvQ6BvU1ZsX406NjwYI52taYDWhymHFEgWiI+4fRoiUyKzROzt8yMGbiCzVF0o+HaEXZG4yCYQCHmsojMFJerRM1lHGfHHhfgSZH4aSCWeCNbbUQDWVmfNhoNwvpLrLgPRqSSYEM4iNJFcErQcrgO6HEUZHzETloLWQtRj0+f+5c1e3d3V04dFd63vsn/7gVnRt7EI0XXu7emmGaXA4FJy2qZEM2eMLhyxfMy7qPL0APcAkrpYTM9+7gXRtwybICtP+WOJbc/Kjw98GM6wItrv7da8J7+5KEguXZb5wjnBeFNAzNfM9kfeM0YNPm3aqGr7tOgJYJHnkRDQzDXMYwzHEA6wD0MAzzKHd7O8MwmwGAZdk4gM8DeBTAbgB/Z1k2O+S0zMCv/ikVk4KiIeTBeICfVFYW0ZAyg6RVNJCVodA4kSnJ9sd7jxbUNwHNi4miIZ5RCIwdJiunBS4kmx1mVUUDr0QoBDobbHCPBrPv4Io1NjgmmFRSIewpi/MPSJ1DmomGUAy1FmN2UocYySQQLC9Fg9NqgjcUBcuqtJJw0Bx9mgsEooEy4jIwUjZGkDwa7WYKM0gXwCaBqA9jWjwagmOAwQoYJy+PvNxwIs9HlCBVyIaiCZmtga+vX5C1vRR0Ogbu7i48+LnT026ff8PDRSmWM1/Hrj4KA+AyQZVskMaXL5gPd3eXZB/7Bd9/VihMab/rioWP/vY1ST8G1cj3CoD4df/w/Ss1vWb+/evc2INn9ma3p33mnDkCuTCzofDq2u6H0xcfC6E86dzYg3tFBqeL2mqztql0hUsm8iIaWJZ9gGXZaSzLmlmWbWFZdj13ex/LshtE221mWXY+y7JzWJa9M99BlwKo4sxEiobUpJKCLQuWz+qVzaSHQcdoVjTEJjhFg9QkO+wlP4VUNLQsAZLx7PaJsUNEzVDglfvmWjOGZDwavMEYvKEYZtYX7sI5s6FGWtFgJUQDExzTlnARGi+LaEsgZdpDHXHJrQ57aDxTQuOkMCwjoqHOZkQswSKgUEyIwV/DGjMTSwqJXFonysSfgUejw4RRNd8eUfLJeCAKk0EHq5GiRzM0XnYKj8nGiTwfUYO7uyutNWrRTY/ghf0jituLoVT4rpjuyto//5hCF8yHN6VWSzf8+PmC7nuqUSUb5MGnVMgVaLOu3TxlpEPnxh48uy9VJDc5zCdMIZl5jr57lbKv7rAvkkYuSOGs+U3Ce/2tixcWbKyZiMQT+MWzKd+2fN8zfySe9Zp23bYeu/vTCdET5dwQI694yxMZTQ4aoiFlBjkW4M0PaRQNHNFQBhNLhmFQazVq8GggK5tJ3xCAdunj4eFMwV0zCjNIAGjm4isHdxHSgcfQLmDm6dKPyQNtTgu2H/dK3ndkjBACMwqsaPjn6xGEool0cxmTDazBitr4BCx1WogGT6o4LHHwhqJUBojW+jRFA1XiBFBWrRMu0fGwm9Uv8SP+CCxGHWqKaUpksgNGG72iITia+syWCRrtZiSSLDyhmLxKQSAaPBgLMKi3mehkoMFRgTSsoopcsPWGC/D7Fw/jlv+RJM8P/+ZV2Ex6WQlvZlTmzQ/uwK2XLlXcP5BdfPD/F2KCzTAMHv7SmbjkR88L+66kiXsu8aQnGvjjkUyymH1dtjxdLFl/5uvnoLOxOD5TH/v9Fjy1J/377MCdlxTEd6scQJuoQUOYdV++DB9YW8D5PgX42Fwg/yhLqdeY+VnmbzsRUSUackStxQCTXqds/mW0AAYLUTRwrRNU8mTBcb08JpZOq1HIhFeFrR5gdNAFSAqCpOOqtwhEQ8M8QG8G+rcBy99LbguOARO9QKv85ClXTKuzYTQQRSASR01GsXeEa3EoZOsELys7OhbEgtb0pI6ouR71ER/qtCoaGuerb1cCEDwaArSKhnGhR54qcQIoK0WDoPAIxjCNQhQ14o+i0W4uaN9jFhhGSJyhQjkqGkQqN1migVe5hcYxHnTQtdIB5FpVJt8HVZQurj59Fi5c0orTu58CAAS5CD65CfDhTRuEwu0PLx9B1/J2rJ2lfB7y+yoW4ZApRa60YrxKNtCBb90BSETzvOsfztrmnLufSfu/EMeRZVnJ/vsT6T2SK6Dljo0Udt928ZQlLojH/431C3KOskwkWczJILs2XrIQnz57TpVkEKFKNOQIEmdmwohPzfyrHgiOY9zCOYzTtk7ouCi+MoAmRYNOD9gaoQ+NKhtBAoVtnTCYgPaVwPEtqdsGudZcscKhQJjGqQeOj4eyCv+jY4RoKJQZJAB0ckSDezSQ9XwhoxN18GFanYbnKyOPhlqrEQxDq2ioE3rkJ0Ix4X2SRRkSDZrMMUEK46ImTvCwt9ARDdEgEAuWHdHQYCfHfcQXwfwWmVhe/jMV9mA8aJaP981EaAxwLivAKKs40dHhsuLgXRvSJshyxSzDMNhx63os5cze3nfvy3jl2vOzzBmlUEzCodKL8Up/fYWGUa+jKnYzz8XDmzZoItilVq733XEJTIYTQ8UAABf/8Lms22hUC1++YB6+fMHUL15ljvVzIvPbfPYDpM6nKsmQjhPn01EENDrM6nFmtnogNIaxYBRGPUMlZUZojExIy8DxHyDqDmqiAQDszbBGRuRX87xHifqg0MXdtJOBvm0pQ8iB7eR3S+EVDXyG8LGxbING90gATQ4zbKbC8Xx8G4aUT8MEU4t6xocO2taJZIJ4ZJSJR4Nex8BppUxaEPXIU3k0BLg+5jIiGlKtE3SfSaJoKGLiBA97M13rhKDoKi+ioYlXNAQoIo85jwZNioZq60QVBYJetBrMo3NjDwKRbGWi3WzAM18/R/j/1E1PYiJM/30v11vP92mHY3ReMlL7zdxfJUHq9Y0pXVuqAEDIMf6cc3d34RsZ5qZiiL0dOjf2ZJkD8pDyFHBYDHB3d50wJMOfXjmCzo092DPgo9p+Rr0t7X0oRZIhFwJgPBDN2s+Z8xqFNIwqyZCNqqIhDzTZzej3Shv+CbDWAcExjJuiqKPuxx0rq0m202pE73iI/gH2ZtSMHkddg1K05TRAV+AL+PS1wMs/BXpfB2auA9zPA66ZgKO1sM8DYDqnHjg2nk00HBkLYmYB1QwAeQ/qa0ySyRNjrAMNusN0JBdASAagbBQNAFnFp06dAMAGx+k9GhhdWR0LlxbPChBFw4ppzmIOicDeAhymMHAL8uRO+fhiAKLWCcUkohTRNRaM0sUdJ5NEYVRtnaiiwMhcOV9y86OYXm/F8988L227zsYa/OFja/HR374GAFh+y2PYfstFcFjoo+DkFA4LbyS90nddtgxXnqKtXbLSV/4zX9/q2x9Hm9OCl689fwpHVV743Llz01at33/vy3j18Jjktr949mCaQaAcKukcy8TLB0fxwV+9ovlxv/rIGly4uKUIIyoMCkEAKKkYCvUclYgq0ZAHGu1mbO+VNvwTYKsHhnZjzBilizEDym71SlPrBADUdqAu8aaCouFYYaMtecw6G9AZgb09wLQ1pOhZ9p7CPw+ARrsJVqMex8ayCZiDQ36cv6jwRosz6m1wj2QrGgbiNZjLaMic5uNV+X7yMoDTaqRbwecKvdDEMBJJls6jwdZAWn7KBC5ryqNBDckki7FAdHJaJ2rbScEcDQImBaKtTBUNTqsRBh2jbBBstAJ6M5JBD7yhGJ2iIewh7T5l9J1QRfnA3d2Ff2w9hm/8820AwLGxkGTBfvb8Jvzw/Svx5fu3AQCW3fIY3rjxQvp5jej5gOxJ+XUPbMd1D2xP24Z2f+J9XXrPi1mRm+UMd3cXtrjH8N5fvAwA6PeGK45QmUzc/3/r0v5/+7gH7/rpi5r2IT7f3rzxQnplWgkgkWSx8rbH4KP1VZPA5as68L33rSiur1MBkS8B8Ik/bMETu9PVmLdfugRXresEIN2uU/18plAlGvKAOM5MJ5cda60nigZDlC5xAiCtE/WzCzfQIoOYQcbAsizdhcc5HY3sOBotMjFEnqPAfGkn7LxgdQGzzwZ2PUiSJqI+YM55qg/LBQzDYGaDDYdH0gv8YV8Eo4EoFrQW3n9jXrMdT+/NlqYfCVlwMRsAEjFAT7ECFfaQ32W0il9nM6q3MQEposE7AsApFOWyCAwDtvJaWTcZSIIETSvJeDCKRJKdnNaJWi76ytcPNMyR3y7AEw3lddx1OgYNdpMy0QAA1jpE/aNgWdB5NPDEX1XRUEWR8N4103Hpyg7MvyFlqNe5sSer//zdqzoQSyQFUmL17Y/jia+ehbnNMp4kCuAn4uIkDPFzA8CW6y8QEr6UIDatfOuYB5f/7EX8+7OVQzac3FmPQ3dtSEtZkHp/qtCO5dNcwrn42xcO47aHdqk8Ih2rbn+cetuffWg1LlnaWtACPZlk8fCOAXzuvjcKtk8lHLprg3y9U4LIh2QIxxKC4kpuH72ekGCum8tznAioEg15gI8zGw9G0SC3ImgjcXqjuggWtVHKk4NjQMdJhRtokeG0GhFLsAjFElS+AwlHO/QAphs82XfGQqS4c80s+DgBACddA9z/IeCvHyCpFsUgNDjMb3Hg9SPjabftGyT9bQtbtU/M1LCorRb/eP04hnxhNDuIWZcvHMOxsBUwgpxXDgppG1/YlIlHA0BaJ/YNUqg2uGIt4hsF4EQtjUdDmUn4AZI8QdM6MeIn28hevwqJ2nbye6JXmWgos9QdMRrtZuGYysJah3iAfMaoVoODnMy3qmiooogwGXRZ6gCeeBBPnN+7Zjpaai34CNdGccH3n8MP378S717VkdPzXn36LFx9+izJSf3Jdz4h/K00eWcYJq0Qf+OoBwtvfBh7br8kpzGVIviUBbX3pwrtkPP3uO8Tp+C0uanv/7FAFKs1EAuZ+OxfJocM0Ir/O2s2Nl6yMIsAydc8c6qRD8kgdU7suHV9Wgvy5/7yBnq29wv/nzanAfd98tQcRlrZqBINeSAVZ6ZANFjrATaBWMCDehpDOZYlioYymmTXcn2a3lCMimjwW1rhBNDOjGbf6TlKfhcy2lKMhV3A6o8CR18GLu4GDMUrsOY12/Hft/rSIi55Ix1ZV/o8sLCN7HNPv08gGg4NBzDGcs8VHKUkGjzkdxkpGmgLa74dJO4fBTCbzqOhbUXe45tsNNpNyqaEHIZ8xGOmpVbdRT5v8IqGiT7l7YIjAKMvq9YdHg12M4WiwYUkRx5QqdxCHNFQRt8JVZQv3N1duPvRvfjp0weE2zKl+mfNb0LPF89A149fAAB8+f5t+OPL7rxUBBajXratQnzbDV2L8IkzsxWfOh2DA3degrlczGE4lqzIFgN3dxf+9MoR3PifHcJtlfg6JwNyBMO/PnMaTpqZPf+przEpHudYIom7H92Le587VLAx5otPnjkLXzx/niY/FaD8/QakSJJcHgcAXcvbcM+VqxW3+/dnT8PqGeUzZ55MVImGPMBL+kb8ESyATOHITQ6Z8DhdH1fUDySiZdWfzPe5T4TioBFteIzNcAJoTg5n3znKTW4ac4ucUQXDAO/6cXH2nYF5HJmwf8iPldNdAICdvV402s1UclCtWMS1Y+zun8BZ8wmpdWDIj3GIiAYalKFHQ53NiEA0gWg8qSwlNZgAkx2JACneqFInyihxgkcjjVEtgMEJUhS31E6CosHRRn5P9CpvFxwl181Cm8FOAhrtJhwcUlHWWOsAL5mIUhENgqKhOompYnLw9fUL8NUL52dJ9a85vRM3v5PEQS9pd+KNGy8UVnjfOOopWMHL72M8EM2Spt/Rsxt39OwGAGy94YI0fxmDXpfWRsGPu9yKJDVcdepMfPiUGVmvEyi/gnCysXfAh/USEY1A/n4LRr0O125YhGs3LMp5H1ONeCIpkHU8yu2cyoUkmX/Dw4jGk1m3yyXmiLHn9othMZaPj9dko/xmciWElKJByWWcEA0u+FFP049bhjJZvlijNYQcYkjhVh8fzL6TJxrqFaTVZYIFrbzCYEK47Y2j41g9w1WU56urMWF6vRVvHvUIt7113IOQgXs+aqKBe3wZtU64angDRApVg60BDJdsoEg0xCNAxFuWREMTTfQugMGJSVQ0mGykWFZTNARGys6fgUeTnRx3lpXxnwEAiwv6iAcAUFdD49FQVTRUMfnQSURg/u5Fd9oku77GhL13pLcfFjJmso5bQXZ3d+ECCQPlNXc8IUQPhqIkJpNhmKzVy0qLvgRSMY41pvQCp3Njj2TBdKKDP0+kSIbDmzbA3d1VVqaOxcDdj+494UiGr//jLcnPDH9OiBGIxCX3XyUZlFFVNOQBPjd9WCnOjJsc1jF+uotYGU4qa63kNKIlGsaiOgyyLjjDEgXH6AFSZJRRkSuHzgYb6mtM2OIexwfWzsCIPwL3aFBzhJcWrO1swNN7hwRjzjeOjmNGewcwAHqiITgCmBxFbSspNHhTvfFgDM1qRXNNE3Qc0aDYI88frzL0aGi0mzEWIEaPegXjpgFvGE6rcfK+KGs71IkG/yBgL3wqy2SgudaCaDzJRafKnFvWOhhjhHyk9mhgdIB5EiJIq6giA+7uLvjCMSy75THhts6NPVg7qx5//791MBv0k6Ii+PVHTwYg7fAOAItuSvk7vLTxvIqPvuSx87aLs45J1buBYP0PnsNezhcrE7Mba/DU18+Z3AGVMDIL6JvfuRjXnD5rikaTG7SQDJse3o17n81ucZGL7Z19bQ+SGesHJ/rnixZVoiEP1FoNMOl1yiuHgqLBV7HGX1oVDeOBKA6zbVjld2ffOXoQaChS28Qkg2EYnNxZhy1u8p6+eoj8lur9KxROmVWPf71xHPuH/JhWZ8Xufh/OO3MmRzRIZ0dnITAC1JRP6w6QinQcp1E02JthHtsHm0mvXGAHuNaeMlU08Ea1StGVgxNhtE6GmoGHo029dcI3CMxcp7xNiYI/lv3esALR4IIpEUSNIQkrDcETGiNKkDJsJamiMuCwGLMK99cOj6FzY49gECdV2BfDoZ5/LoA47ovbO3icluECX+wxTTX4Y7LxX2/jb1uOCbd3buxBa60Fr1x3/hSObnJx/QPb8ZdXj8rev/eOi2E2VFegxcgs0MvtGGmJl/zS397Eg9uyFzte3HgeOlxWycdkHp/vvGc53nfy9BxHe+KhSjTkAYZhiOmaT6G4ESsatPTjlpFHA6/UGKcwnwPIqnMy2YpTPNvT72BZYHgvsKB4SRCTjbWzGvDozkEcGQ1g8/Z+NNrNWDm9eETD6fPI6vsjOwYwv8WORJLFyXNbgG212hQNZSZd500dPRSRjqhphDX6ijrx5y9fokHc1qVGNDRPhj8Dj9p2oH+b/P0sC/gHADuFaWkJotVJiIaBiTAWtclE2HJeCzOsUToH7+BYWRHPVVQu3N1dWekQ/ASfb3EQT8pnX7cZt797Ka46tTgpUuL2DjmlQyZmX7cZP/vQamxY1laUMU0lut+zHN3vWZ72HgxMhNG5sUfW4LASoNYa850rluN9a6qFYSau/fd2/PW1dFKm3Fbp3z7uwbt++mLabTS+Cjwe+fKZWCgTN9/vDWHdpnTS8uBdGxRVolVko0o05IlGh4rLuMUJFgzqGD8aaLLqy7B1wmE2wKhnMEpNNEQxwbSDCT5NjAd5kzP/EClyW5YWcbSTi65lbdi0eTc2bd6DZ/YN4f1rphf1ItXhsuK0OQ34+9ZjaHda0VJrxmlzGsn5REs0BEYBZ25RZVOFOi0eDTXNsCc8aLCpXP58XGyRozXP0U0+eLPRYV8ECxWGPzgRKUoCiixqO4hSJB6Rbs0JjRMzXEd5FgFtPNGgZMTJXe9m2dQ9NACUXQpRFZUNPh0ic+LeubEHP/7gKri7u/CJP2zFE7uJB9ON/9mBG/+zo+gFjFjpwI9HDuKYwXIrrGjg7u5CLJHEPFG//Xt+/hIAYOet64UUrHKFnJJFjFUzXHggjxSUSofU56PcPguZr0EqXlLuOvDU187G7CY79b6B8js+pYLyvtqUABrtZsFQTRI6PSKGWrjiPm2KhjJy/GcYBvU1JowF6CbOY4EoGPN0IA5g9BAw7SRyxyCncKggoqHVacG7VrTj32/2wmzQ4epJ6Hn75Jmzcc3vt+D4eAjfWL+AEBu2Bg2KhtGyi3QUezSooqYJOiQxw6qSyuAbIL/LkGho5EhNJf+YRJLFsD8yOUaQPGrbyW9fP1DXmX2/cMzLU9HQ5DCDYaCc+MF5fsywBul2GhwHnNMKMLoqqigc3N1dWSqCL/71TXzxr2/i8KYN8IZiWHlbKjFisj0SxM+1s88rRHFmotxj/ORg1Ovg7u7CK4dG8YFfviLcvuTmRwEAB+68BAZ9+bRj0Rh6fuz0WbjpnYsnYTTli4fe7sPn73sz7bZ9d1yinNZVgsg8H579xjmY2VAjez+P12+4AA0KKk8pEuu3V6/BeQvLc05SCqgSDXmi0W7Cjl6v4jZ+fS2aDUE6w7XQGGBxAvryemvqa4j5HA08wShY2yxgAsDQThHRsJP8bllSnEFOEe68bBlWzazDghYHZjXWqD8gT5y7sBm/+egajPgjKbmgrYEoRtTAskRVUmYeDVajHiaDjk7RYCetENNMAeXtfP3kuJWRKSYPcfSuHEb9ESSSLFqcU0A0TPRJEw1+jmiwlx+5A5DJfZPdjEElooFrS5pmVDn/eITGgLblBRhdFVUUFryKYN+gDxf9IOXmL26nyPRt+M1H1+D8RZM7aV/S7qRWO2Tep9S7XQ44dXYD3N1d+L8/bcWjO1NJX3y6QKkWmbRJIeX+/kwmKmGVXqpFivdd2d0/gUt+9Lzk42h8J6SOD+9BU0XuKK9qtgTRWmvBiD+CWCIJoww7PAEHmvWUk8rgaFn5M/BoqDFRt04M+6Nw1s4EIk6g701g9UfIHf1vEWl1hcmErSZ90XpU5ZA1kbM1AEN71B8Y8RHpepl5NDAMgzqbkc4MsoYkGnQYpN2oBfj6y1bCbzcbYDboFBUNA3y0pWMyPRq4lhy55AkfNxEuQxUJj1anBf0KKreEtQF6AK1Gv/rOWJbzaKjM3uoqKgPzWxyy7RSZ+PgftgKY2gJHaqxyOF3CWPLNGy8suyjEe69aAwCYdW0PxOm7fELFVBbsT+4eFM4LGpRbcTzV+OQft+LxXelx8q9dd756QleJ4eYHd+APLx9Ju03ts0xzriSSLOZkqBjWzKzDPz9zWm4DrSINVaIhT7S7rEiypCd3er1Ncpsx1o4GHaXjf5kaf9XXmHB0jE4KPOKLYHZjPWBcAfRyvZIsC7hfBDqrPXVFAW3rBBf7WI6RjnU2E8YC6q0TYVM9LACa9TREQ3kWvAzDoMlhxohfnnjhfQRap0LR4D0mfX8Z+2LwaK214Mio/LVwHA40AmhkVM4/AIj6gXioLA1JqzjxwE/qpSb+nQ02uEWfi86NPVMq33d3d0mugB7etAE3/GeHYnLBqtsfz7qtXNIdDm+Sfo94QuXjZ8zCje8oXvvB5/7yBnq292t6THVVOTfIeVmUI1GTeb6aDDpE40nJa82itlo8/KUzc9ovUD3fCo0q0ZAnOuoIA9znCckSDcMJG2YzRyTvy0JwtCxXUYlHg/pqMsuynBO+CahfDbx8DxALkRVO/wAws0o0FAW2eiAWIMfaqLBqEeDIiDJTNADEL2WUwidkXOdCG4BGKLc8wTdQ1m08jXazoqJhkLtvUj0aLLWESB2XuR56j5H7TcVvMSoW2pwWvHJIntQbDiZhYGtQx6qcf0AqYtXeXKDRVVFF8eHu7kI8kRTk+QDSSAYe/P1TVfgsaqvNWhEVt33wyHwtUuDTHaTwu6tPxrkLS+szzL++j/9+C57ck2qr/M0Lh/GbFw6nbaMV0XhSUEpoxY8+sBKXriwvM+pShNS5uPu2i2E1lU9sJUA83VZLEHvReDLrNjX/BTG2H/finT9N921Z1uHE/75wRm4DrUIWVaIhT/BSs15PSPJ+lmUxELOhRk2mzSMwXJb9uA01JvgjcUTiCcU+KLJNkkTuTTsbePGHwIEngYleskEnHQtZhUbw7TjBMeVECUHRUH7tO412E9xH1FuURuI2NLE6uFiP/EbJBOAfLEvSj0eTw4xjCiqjQW8YOgaK8ZdFQd1MwCNHNBwve+PDFqcFE+E4gtE4bKbsr9hhXwQmthZ1SQqioYwjVqs4sWHgzAhH/BGsueMJxW07N/ZM6Sqiu7sLV/7qFbx0MEUQisfEvxYxWJbFdQ9sx19fk1FniXDN77eobjNV7Ri/ufpkAMAW9xje+4uX0+7ji9VXrzs/jZDeMzCBi38o3QuvBV88fx6+euH8vPdTRQpSBMOMehue++a5UzCa/EDb3qSVEKsEr4pyQpVoyBPtrpSiQQq+SBwjCTvMuiAQjwIGhS+SZJIQDTWlxXzToJ5zuR8LRNHmlF8x56XcjXYz0HkWWb3c/ndg5ABJOmicNynjPeEgEA0q0ZWBkfTtywhNXNQsy7KKE9axUByjqEVtYlx+Z4FhgE2WNdHQaDfjjSPyr3FwIowmh3nyM6HrOokfixQ8x4CGOZM6nEJDHHEpFZ815IvACgfaYx71nQWqREMV5Y1Guxnu7i7JvHsxpJQEk4n7PnlqltGc0pgYhsGmy5dj0+XpC0Msy2LTw3vwy+cOaXp+qXYMWkyvt+Ijp3bizPmN6GyokTUejyWSODYWxBb3GO577RjeOuah2v8pdz2Z89gAQMcA++/cMPnfNScQ/v3GcXz179nfq+VYQEfiCSy44RHFbXKJaZUiGP7wsbU4e371+7WYyItoYBjmvQBuAbAIwFqWZSXdXBiGcQPwAUgAiLMsuyaf5y0lWIx6NNpNsoqGoYkIxsDl1AdHUj3KUgh7gGS8LGWyDRwTP+pXIxqIXLvRYSbJGquvAl78Ebnz0nuAal9UcSAmGpTAKxrKtHUiHEvCH4nDYTHKbjcWiGCEdaIzpuCbIngFlC/R0OQwYywYRTyRlOyDHpgIo3UqzKDqOoHd/yOqEZ1oQsyypHVi9tmTP6YCgl/5kyMaBrwhONhamKMUvj0BTtJcJRpUUZ2PlDaWT3PB3d2FN46O4/KfvSS7XefGHrx180VwWuWv4cUCn6JxznefzvKTeGnjecLCkto+rtuwCNdtWCR5/9HRIM767tMFGzMAHBsL4c7Nu4HsdvxJw+fOnYOvXbgAuiqZMKk4NOzHed97Nuv2Uk0TUcIze4dw9e/k1T93XbYMV54yQ/N+73n6AL776N6s28uRhClH5Kto2AHgcgD3Umx7LsuyI3k+X0mi3WXF8XFpomHAG8YI6yT/+IeUiQZ/+U4q62uI/FrNp2GE6wtv5BQQOO9GIB4hxceKK4s5xBMbtERDYAQwWMqyRz4V6RhVIRpiGGVrsSCiUOhNlL8pYZPdBJYln0kpd+leTwgLWx2TP7C6TkKoTvQCLtGkIewh5ofO6ZM/pgKCJ1oHZJIn+rxhtBtc0AXlzeYE8AqjMvxOmAJU5yNlgNUz6uDu7sKOXi/e8ZMXJLdZcetjAKauEHjmG+dmqRtO48wS8x3TjAYb1T4mwjH87bWjuGszRVpUEfGD96/ABYtasOyWx2S3+ddn1uGkmeVnYl7OGPKFsfbObKXJ4185C/NapuB7PUfc2bMLv3r+sOI2uX7mxgNRSaUQH4dZxeQgL6KBZdndAE54d84OlxX7BqU9GPq8oXSiQQn86lUZKhrqa1KtE0rgFQ1NfF+43ghc8u2ijq0KpAoVtXMwOErUDGX4mea9BoZ9EcxqlCdKxgIRjMIFfdAtv7OKUDQQcmFwIpJFNLAsi97xEC6Y5Dx7AEDdLPJ79GA60eDhep3L3KOBV4n0e6WJhgFvGFEzlwKTTAI6hVWnwDBgcSq33FUBoDofKTcs7XDC3d2FAW8Yp26SluZ3buzB0o5aPPSFyfdu4tUND7x5HF+5PyVJ5+XXxSZBai1GfOqsOfjUWaXRSsa/3rsf3YufPn0g7b73/Dzl7fCbj67JjteuomA4NhbEmd/JVsTcdukSfGRd5+QPKAfQeC/k8/nKJAl5PP/Nc2VN+6soHibLo4EF8BjDMCyAe1mW/eUkPe+koMNlxdN7hyR7w/s8IQzDRf4JqBR5gqKh/IgGoXVChWgY9kfBMClioopJgrWOKBV8fcrbBUbK0ggSECsalJMnxgIx+A11YAJbiVxfqjDxDQCMrqxXksVGtcumOdPuG/ZHEIknMa1uCnLTmxaQ3yP7gDkig6pRbvJa5h4NVpMe9TXy7XR9nhBYWwMQThAVh01hJdA/VJbfByWOip6PlBtanRa4u7tkkwp29E6gc2MP3rjxwimZN1y2ahouWzUtqzjq3NiDW965GFefPmvSxzSV+Pr6Bfj6enINlyoYP/6HVMdSo92MrTdcMGljq2Q8vmsQn/xjdjfY+9ZMw3euWDEFI6LHa4fH8L57X1bfEMCvPrIGFy7OnaiSOic/dMoM3HnZspz3WUV+UCUaGIZ5AoCUfvh6lmUfpHye01mW7WMYphnA4wzD7GFZ9jmZ5/sUgE8BwIwZ2ntxpgLtLivCsSTGg7GsL8I+D5eBHgdxsVdCGUeZOa1G6HUMxlTiBUf8EdTZTFOWnX3CgmFIG4BvQHm74EhZ+jMAKUWDOtEQQdhcD4RDRKpvlpAZ+vpJgacvX79cPnpXquDlW72mhGiwtwBmJzCc0TPJEw315U00AMD0epts4sfARBj66Y3AGAixp0Q0BEbKmuwqNCZzPlKOc5FyhslAkh3kViP5iLupaqdwd3chmWQx+7rU2G753y7c8r9deO3689HsmAK/mymG+L2QKvBG/JG028vRN2Cqcca3n5Jszb7m9E7c/M7SjN/ONd40n8+2nEqi6sMw9VCdRbMsmzcdybJsH/d7iGGYBwCsBSBJNHCrC78EgDVr1rD5PvdkQJjQj4eyiIZ+bxgNdS5gojYVVSYH/xCgMwAWV3EGWkTodAzqbEYqjwbBn6GKyYWjPeU9IIfAKNBYnnFT9TUm6BjSOqGE8UAMEUsTEAYhXiSJhgGgtnzbJgCgzmaE1ahHr8QkJUU0TIGMkGGApvlE0SDGyH7iz2Aqf2njjHqbpKN7KJqAJxiDuZZbsQmOAFD4vAWGgGZpU7kTEZM5HynHuUglgG9ZAIDTNj2JvowWJL6g2H7LRYpePMWATkfGlmnoyPfKH7jzkhN2EUVc0H3yj1vx+K7shbXM4rNaBMpDrnD+yQdX4Z0rFLzepgA0KRFKyIeAqhIMpY+iL9cxDFMDQMeyrI/7+yIAtxX7eScTShJlwXAt0UShaBgiq1dKPbsljPoaE0b96h4N/MpzFZMMRyvQv015G96joQyh1zGorzGrKhpGAxHEatsBDwDvcelI1Yk+oG5mUcY5WWAYBh11VvR6slfW+dX2DgoX9aKgaQGwL8NcbHQ/0DB3asZTYMyot2Lz9v6sxA9eXWKv5xblAyp+hIFhoKa8UzhKCSfCfKSS8NK15wMgUbyZEYtic8LJLip4Q8fvPbYXP3kq5Vcw93pSSB/etOGE9gr51UdSQS5S7x2PzCLxRD9u/d4Q1m16SvK+UvIX6Hm7H5+77w2qbe/75Ck4bU6jJCGw6fJl+ODa3NRiVYKhfJBvvOVlAH4CoAlAD8Mw21iWXc8wTDuAX7MsuwFAC4AHuIuHAcB9LMvmTn2VIPjJ+vHx9Al9MsmizxPCuQuagUhLqjVCDv7hspbJ1teYKMwgo1g53TU5A6oiHbXtwL5H5H0JIn4gFgBqypNoAIhPg5qiYSwQRXJaO9ALknyQCZYFPEeBWWcVZ5CTiA6XVbJ14vBIAE0Os+Yc6oKhZSnw5p+Jwqa2jZgijuwHVlZG8syMehsSSRb93nDa5PDoWAAA0NTKGV4qfSckYkBovKy/EyYT1flI5aKl1qLYVsEXHZ89Zw6+efHCSRvX1y5agK9dtCCr6OHHWHW3T713PD7++y14co+0X1nme/ud9yzH+04u7xQiGiiZI071OdTrCeH0bmnyQwo3dC3CJ86cLfxfSEJASTlRJRhKF/mmTjwA4AGJ2/sAbOD+PgSgtJ1K8oTLZoTLZsShkUDa7YO+MMKxJDoba4BgEzC0W3lHgaGy9Gfg0VBjxu7+CcVtqoqGKYSjDYgFgbAXsLqy7+cVN0oRrCWORrsJwwqqmmiceKmY6zrJDV4JoiE0DkR96YkIZYppdVa8ddyTdfuhYT9mKyRzFB0d3IpX7+tA7TuImiHqB9pWTt2YCgieXHCPBtKIBvcIpyRp7yA3KMXN8moHe5VooEF1PlL54Nsq4omkoB4Q42fPHMTPnjkIAHjiq2djbrN9UsbFFzmZRRXv57D7tothNeknZSyljt9cfXLa/ytufQzeUExy22/+6218819vp932jfUL8Llzy1/59vz+YVz1m9dk75+Kwvk7j+wRPj+0+Oen12FNZ7bPUCEJhqf2DOJjv882wsx1f1VMLsrX6ayEwDAM5jTZcXDIn3b7YY54mN1YA4w2A/5nlXfkHwaayrcflxR58qvJwWgcwWgCjY6qR8OUwMHJtX390kQDH+loL99oqiaHGYeGA7L38+dng8tBzB4njmdv5DlCflcA0TCrsQaeYAxjgWiaf8yhkQAuWTqFHhStywCdEejdCix6B3B8C7l92hrlx5UJ5jaRAufgkB9nzksRBUdGA3CYDaivtRNDTKXWCT6lqKpoqKKKNBj0xDjSG4xhxW2PSW5zwfdT863Xb7gADZOwwCFHOCy6iazC/vuzp2H1jLqij6Oc8NbNF6X9//LBUXzwV6/Ibv/dR/fiu4/uzbqdl+iXMuQIMh6T5Tvy5b+9if9sU0kgk0Cj3Ywt15+v2N4iRzDk0hajpPSoEgzlgyrRUCDMbbLjyT3pHgw80TCrsQbobSFRZvEIYJD4wmNZTtFQvpPK5loLfOE4QtGEJHs/4iMrzVVFwxSBVyr4+qUN5vhECkf5miA22c0Y9kcko2YBYGiCGIs1O8yAs0Na0eA5Sn5XANEwh1vROzTsR30NWXUYC0ThCcYwp2kKFQ1GCyEbjrxE/j++lRTeDRJ+GWWIJocZTqsR+zLIZ/doEDMbbeTcrGlUbp3g76vGW1ZRhSScNiPc3V0Y8Uew5o4nZLc7SXTf018/h8zJigg5wuHyn5HrXX2NCW/ceGFRx1CuWDenIauI/P7j+/DjJ/crPu7KX70qe9+3Ll6Iz5wzNWlGcu0+PGY31eCpr51T0OdUIuBocea8RvzhmrXUbRtypMDBuzZAr6H1Q+l4fe3C+fjC+ZUxRziRUCUaCoQ5zTW4f2sUnmAULhtZOTw8HIDFqENrrSVFIASGAee07B2EvUAiWtaTymYHIRCGfGHMbMj+IudXk5uqRMPUgCcQ5JInBKJBKj2uPNDkMCMaT2IiHIfTmr0yMMT5NzQ7LEBtB/EFyMR45Sga5jRyK+vDfkHeeHCYFL+zp5JoAID5FwPPbCJkz/7HgJnrytYINxMMw2B+ix37B31pt7tHA1jazhkGO1qVDYL5lKIy9kypoorJQKPdTEU4AMC5dz8j/P2Zc+bgW0X0dOAL5tsf2oXfvHBYuH0sEBUKs+rKrDq+euF8fPXC9HSeY2NBnPmdp2UekY5vP7IH335kj+p2j33lLMxvkUih0gg1cgHIbYV/1B/BBd9/FuNB6VaTXLHz1vU5+zXJEQxaE1juefqApFIFAF697ny01J548bGVgirRUCDMayYXp70DPpwyuwEAkSd3NtQQRpCXo/sHpYkGfvWqjD0a+AvB4EREkmgY5FaTqxeMKYLQOiEjmfP1AwYrYHFK318G4NUyI/6IMtFQawbqOoEDTxAjQnGBO+4mx0CqvaTM0FFnhcmgw0FRO8nOXi8AYFFb7VQNi2DJu4Fn7gLuez8x5Vx/59SOp8CY2+zA5u39gromEInj6FgQl6/irv+OVqDvTfkdVFsnqqhCE3jCIRxLYOGN6h6fP3/mIH4u6kkvVtF/4zsW48Z3LJYsjvlC7f5PnSrMHatQx/R6m+T7lUyy+MY/38a/3pBoi1TBRT/ISrktGtSIiELjL584BafPLQxpnUyygv9IJrQQDGqEzImeQlIpqBINBcLSDlKcbe/14pTZDWBZFtt7vTiT/2DzSgW/jFTWX/6TSp5AGPKFJe/v5/Kw25xVomFKYLQC1rqUciETvgHA0SKdSFEm4FU1g94w5jRlG4ENT4TBMEBDjQlomAPEw6TIdYmcrUf2AY3zsx5bjtDrGMxurMHegdTK+vbeCTTaTURpNZVoWgAsuQzY+QAhfRZsmNrxFBiL2hz462tH0ecNo8Nlxe7+CbAssKSdI3gcbYDvYfkUGN8AYKwBzPmvsFVRxYkEi1GvmFIhB/Hq7PvXTMe3r1he0HHxxbHUuN7/y5QvQVXlkDt0Ogbfe98KfO990p6v8UQSf3j5CG5/aNckj6x4WDXDhd989OQ0H6Zi4Om9Q7jmd1sk79NCCsy+tgdJVvq+zNSKKsofVaKhQGhymNHhsmLbMQ8AYGAijGFfBMuncavDfOuEnFTWzxV/ZWzE11LLFXkT0oaQA94QzAYdXLbim91UIQNHu3LrRBn7MwBAGxc12+eVJruGfBE01JgJ417P9WyOHcwgGvYDc88v9lAnDSunu/DwjgEkkyx0OgY7er1Y2uEsjZWCS38GzD4XWPwuae+aMgZv+vbGkXF0uKzY2UcSeZZ08ERDK0mBiUxIq4gmeomvSim8T1VUUYbgUyoAZWM5Kdy/9Rju33pM+P/315yMcxYURnEqHteHf/0qXjiQbgrLj/Vz587BN9ZPXlzniQCDXoePnzELHz9jFtX28UQS+4f8eHBbH37xrLZEhlzwvjXT8JF1nVjQ6oBRQ+tBMVEIU8bHdg7gU396Xfb+qY7xrKJ4qBINBcTK6S6BaHjrGJEnr5juInfyioaAdH6wYErn7CjeAIsMp9UIk0EnGO5lot8bRrvLWhoFzokKR6t864T3KDD9lMkdT4HBq2X6PSHJ+wcnwgIhhnqONR89CMw+h/wdniCkX2PlGA6tnlmHv205hkMjATQ5zDgw7Mf6JSVCaJpswEkfnepRFAULWx2wGvV4/cg43rmiHdt7vaivESlJeFLPNyBDNPSXddRsFVWUEviC6P4tR/Gtf22X3OZfnzkN7/n5S5L3XZ2xknvdhoX41Fn5Gwz++RPkOzcaT2L+DemJBPc8fRD3PE2K2y3XX4AmR2WRsaWO4+NBnPFtdR+I2Y01eOrr5xR/QJOIiXAMy2+RNpR8z+ppsooRMdR8NH53zck4t0DkXRWliyrRUECcMrsePdv7cWDIh5cOjsBs0KX6oI0WMpn0ySgaJvoAkx0wT3HfdB5gGAbNDjMGZIiGAW946uXaJzpq24DBHdm3J+LkHCxzA0SLUY+GGpOsoqHPE8aMBhv5p7YDMFiAsUOpDUY5c8gKaZ0AUivrW9xjqDEbkEiyOHtB+bZolQsMeh1WzXDhpYMjSCRZPLN3COvmNKSIVnHcbNOC7B1M9AGzzpy8AVdRxQmA9588A+8/eYZkYS8mGdTiM+/avAd3bU43GMxnVdZk0AlkyPce24ufPHUg7f6T70yZXO674xKYDKWx2l1JuPvRvfjp0wfUNwSw49b1sOdooFjKUFIv0MRvqpELDAMc3lRtDTqRUHmfkinExUtacfN/d+I/b/ah5+1+XLCoBRajKOaxtoNMKqUwcZzcX+ar/e0uK/o98oqGU2bVT/KIqkiDq5O070SDZDWZh68fSMYB53TZh5YL2lwW9HulFQ19nhDWzeEMt3Q6olwY3JnagP+7qXLkqnOaajCrsQb/fuM4mh0W1NeYsHJ6Nct9MnDJsjbc+J8d+NPLboz4o7hosUhJYueIBqlWpmSCfCarioYqqigKxIX93Os2I57RNM4XXI12E7beQKIoxwNRrLr9cdl9Shnk5WJo97WLFuBrFy1IG4cYYoJkz+0Xp88zq6DCoWE/zvves9Tb/+dzp2Mlr1CuMDyxaxCf+ONW2fvV2iOe3jOEa34v7d3Ao2rseOKiSjQUEM21Fpw5r0lgRC9bldEG4ZwGeI5KP9jbW9ZtEzymuax45dBo1u2JJEtk61UjyKlFPdeX6DkCNC9K3e7lelFdFUA0OK04OhrMun0iHIMvEke7S3QOtq0E9jyUMuTrfZ0oj+ro+jfLAQzD4INrpwurb/931mxNudZV5I53rWjHHQ/twi3/24VaiwHnLhTJRHkSYaI3+4H+IYBNlL1nShVVlAMO3EWMaKVUDiP+VBTld65YnlZ0Kbnv85Ayo/z3Z08TlGZq4J8vnkhi7vUPZ90vTteo5GI4H9z77EFselg93lKMF751LqbV2dQ3LFOoJbO8fO15aHNaZe9feOPDCMeSis9R9V2oAqgSDQXH3Vcsx2f+8gbOnNeI8xdl9B45pwHHZVjDiT6gZXHxB1hkdNRZMTARRiyRTDOyGZgII55kMb2CL9xlAb6AHjucTjR4eKJh5uSPqcBod1rwysFssotX2qR9ebavAt78EyEA62YSoqF9dXrcZQXgqlM7cXgkiAFvCF+5sHLaQkodTqsRP//watz96D5cu2EhasWyU5MNsDWkSD4xeB+VqqKhiiomDWKVw79eP46v/eOttPu/+c+38c1/vg0AuO8Tp+C0uY1Zq72DE2GccteTis9z+c+kfSA2XrIQnz5b2vfBoNepkg7vvufFtP9PtPSKHz2xHz94Yp/mx505rxF//Njail9xV0thMRl02HfHJZL3+SNxLL35UdXnqCoXqshElWgoMJprLfjXZ06TvtM5DQiNAdEAYKpJ3Z6IETl77bTJGWQRMa3OiiRL/Bim16dIBX6FeWZDlWiYUvCKhvHD6bd7OaWNs/zPwen1NvgicXiCUbhsqbinPs4gst0lJhpWkt+9rwM1jcDgLuCMr0ziaCcHVpMemy5fNtXDOCFx3sIWnLdQxnzTNUNa5cbfVuaeKVVUUa54z0nT8J6TyPehVPvClb9+Vfj7e+9dIWzbUmvJKvB94RiWyRjridH98B50K6y8v33LRai1GNNIB6XiUTzuFzeehw6X/Ap1OUCOYNGC8xc249cfXXPCFMOJJIs5KqobOXKAJqnltDkNuO+Tp+Y8vioqH1WiYTLB9797e4Em0aqi9xgAtiJk6x0uQiT0ekJpRMOxMUI0zKivEg1TCmsdMRwdd6ffPnKAeIQYy3siAgAzGwiJ5x4NYqWIaDguEA2i1onW5eSY7HsEAEvk6nwCRRVVFBvO6cDQ7uzb+c9nBSiMqqii3CEmDqSKr6/94y1B/TCj3obnvnlu2v0Oi1FSXaBmnJcJuRQAGpze/VTa//vvvKRk4hNZlsWfXz2KG/8jYVSdB1677nw0n4AG5DRpGVLeHrQRsJXeVlJFYVElGiYT/Gqx91g60cC73ldAX3hHHSlUj4+nm/EdHQtCr2OE+MEqpggMAzTMAUYy5IUjeysmaYFXzRwZDaT1qx4dDcBs0KHFIToH9UZg4TuAnf8hMYP2VmCmjCKpiioKDdcMYP9jKY8QHuNu0lZhKd8UoiqqqESoKQmOjgXTCjYlKfn0epskAcGyLB54sxdf/ftbEo8qDOblqQwoFfz8Q6tx8dLWE0ahIIdL73kRbx3zKG7DK2IA4i9CSyycs6AJv79mbb5DrOIERZVomEzwMtjM1eQxTsZeXwFEg8uK/2/vzqPkKss8jn+f7k4nIZ2FJN1Zyb6RNBhCThJ2CEEChkUHBpRVHBEddDg6SJRRccQF8SAqehTBI7KIeJRhlV3AGQiBhARIQjbIZgKdpAnZl+5+5o9bTW9VXdWpW7fqVv8+59TpqlvvrXre971dde9T731vaYmxZsuuFsvX1u5mSJ/ulBVIBr1Tq5oUHNw0coctK2HyRfmLKUSNo2bWbGk5IeQ7m3cxsn+PtpMTHX05LL4f3n0BZn4LSjSDt0Sk92FQtxd2bYaKZnP6fLAGDh2Rr6hEJA0za5EkmPOLf/DWP7e3Kdc8GTF70kB+fcnRGb32p6YM5VNTUp/KuG7rbi6+8xXW1bad+LiYPHL18VQP6dXpEwmt7dlfz+HfTj2ZY6NV3z+DstISfvHsyg6NiNFcCxIWJRqi1HMwlHWHratbLv9gDZR1a7rcWYyVl5UwvO8hrN68s8XyNVt2aX6GQjFgIiy6B3ZuhorKYCLS/TtbjrKJsW5dShnUuxtra1smu97dsovxA3u2XWHoVLj4L8EQ9ulfiChKEZqSCbXvtko0rA0mKhWRWHj0yyd8dH/hug+STvj4xJL3WvyK/NtLp3LaxBTzt6QxrF/bUzRScXfe2bKLvy7cwC//vjr9CjlyRvVAvnTyGCYO7qUrHx2ETEcgzD1jwkdzfWQyp8Wg3t14ae5MJRYkJ5RoiFJJSTBsfeuqlstr3w12OItkpvvRVRWsqmlKNNQ3OCve38ElM3S+cUEYMCn4W7MEKk5uOke8//i8hRS2kf17sLrZNnigvoF1tbuZXZ0imTfqpOAmEqX+Y4O/W1fCsOnB/foDwel1kz6Zv7hE5KBNGXboR6Md2rsE5uf/0PIqZDecNZHLjwt/ZKuZMbqygmtPn8C1p09IWa5m+16mpbliRjKNv5pLeNJdIaI97U0oCh27vKpItpRoiFq/0fBeqwlvaldD31H5iScHRldW8PzyGurqGygrLWHt1l3sq2tgXLJfkyV6A6qDvxsXBRMfbpgPVtJ0BYYiMGFgL+59Ze1H2+D62t3UNTijKivyHZpIkz7DobQcNi9vWrZ1NTTUQWXqAwIRiYeSkpanWGzduY+jb3wmadkbHlnKDY8sbbEsyktUViW5YsbdL6/hWw8taXe9VL+aP/PVkxhTpe/cTKyq2cGsW14M/XUvP3YE3zlrokYrSN4o0RC1fmNh2aPBr1alXeDA3uD8+Alz8h1ZaEZX9uBAvbO2djejKytY/t4OACYo0VAYevQPRi+8+yIcfw2sezlIPnQtnv6ZOLgX++oaWLN1F2OqerJ0U3Du7PgBxVNHKQKlZdBvTPAd0KgmcaBRdXh+YhKRnOlX0bXFwfx7H+5lxg9TjyJoPVz+8mNHcMPZk3IWX2uXHDOCS44Z0WLZc2+/zxW/fy35Cs3MuuWFlM8dNawPf/3isZ3yADiMy3Qm8+iXj6d6SO/QX1ckG0o0RK1yfHAJvS0rgiHsm5cFjwdW5zuy0Bw5tA8Ar6/bxujKCpZt2o4ZjK3SQV7BGHUyLPwD7N0OGxbAUcUxEWSjiYOC2fqXbtrBmKqeLFq3jfKyEiYM0jYoBab/OHjvjabHNcvASovmKjAiktrA3i1HEeyrq2f8f6We5O/3L63h9y+tabM8ysn7Zk4Y0Gbkg7tz3/x1XP9gZpeofH3dtoxODbh4xjBuOGtSLE/NWPn+Dk77afijFO6/cgYzRvUL/XVFckGJhqgNnhL8/eeCINHQeBrFgCPyF1PIxlZV0KtbGQvW1nLe0UOZ904t1YN7071cs/kXjLGnwfzfwF1z4MAuOPysfEcUqjFVFXQtK2Hh2g84+2ODWbxhG9WDexXMdcNFPjKgGpY+BHu2Qfc+wYiGfqOhiy4FLNLZdC0rbXMQ/+gbG7n6vtfbXS/ZQXt5WQkrbjwj1PhSMTMumj6ci6a3nYtrX109Nz66jLvnre3w694zbx33zFsXRoht9Cgvpd6dvQcacvL62fj+J6v5zLRhnXLEhxQXJRqi1ncUdOsdJBqmXAqbFkOXQ4ri0paNSkqMKcMP5dU1H7B7fx2vr/+AK44vnvoVhdGnBkmvjQth4JEw4oT068RIeVkJx4zux/PLa9i1bzxvbPgw6Q6QSN4dNg1w2PAqjJkF6+cHI45ERIA5Rw5mzpGDWyx74q1NXHXPwnbX21/XkPJKBZfMGM73zo1mJG3XslK+d251yvdzd15cuYXLfjc/knga7dpfH+n7NTpxXCW3XjCZvj3K8/L+IlHKKtFgZjcDZwH7gdXAZ919W5Jys4GfAaXAHe7+o2zeN9ZKSoIDvPWvBo9XPwfDj4OS4vq1/6RxlXz3kaXc8tQKDtQ7x4/pn++QpLmSEviXO2DVMzDxHCjCrPkp46v4zvIl/OzZleyra+DMI+J/+VgpQkOnBqdKrH8Feg2BXTW6AspB0P6IdCazqwe1GflwoL6B6T94ltpd+9Ouf/e8tWlHGLz8jZkM6t09qzgzYWacNK4y44kvGxqc1Zt38sgbm/j5syvTr5AH/33OJC6ZMVwjEqTTM3c/+JXNPg485+51ZnYTgLtf16pMKbACOA3YALwKfNrdl7Z+vdamTp3qr72WfsKZ2HnpNnjqevj0n+CPF8AZN8P0K/MdVai27z3AMT94ll3765kwsCePfeUEXTdZIlWzYy8zf/ICO/fVMbJ/D5772kn60pfC9NtToW4vfOxCeOq/4Jo3oc+wdlcxswXuPjWiCAteLvdHinZfRDoFd+ehRRu55k+Lcvo+d142lZkTqgrie3Z/XQO3PrOCXz2/Oqfv8+K1pzCs3yE5fQ+RQtfe/khWIxrc/almD+cB5yUpNg1Y5e7vJIK5HzgHSJtoKFpHnA9PfytIMlgJjDs93xGFrle3Ltz2mSn8ecF6/u2EUUoySOSqenbj1gsmc9/8dXx99viC2PkRSeroy+DhLwdJhqHT0iYZpC3tj4gkZ2ace9QQzj1qSNLna7bvZdoPUl/5IlOfu6v4knGfP2Ek182eEMvJKEUKQZhzNFwB/CnJ8iHA+maPNwDTQ3zf+Ok5AE68Fl74MZw0Fw4tznPHT5lQxSkTqvIdhnRisyYOYNbEAfkOQ6R9R5wPC+6CTYvg4zfmO5pioP0RkQxV9eqW9rQFd2fppu184e4FbPhgT0SR5c5Rw/pwy79OZmT/HvkORaSopU00mNkzQLKTm69394cSZa4H6oB7k71EkmUpz9cwsyuBKwGGDSviX3VO+SZMvwq6H5rvSEREJJ+6dIfPPwt1+6Csa76jKVhR7o90mn0RkQyYGZMG9+Z/r5t5UOu7O3sO1LN5xz7e376PlTU7WLZpO2/+czvvbN7Jjr117a4/pE93Jh/Wh+ohvTl8UE8OH9SLfj3KNdJApMClTTS4+6z2njezy4A5wKmefMKHDcBhzR4PBTa28363A7dDcF5kuvhi7ZC++Y5AREQKhZIM7Ypyf6RT7YuI5JiZcUh5GcP7lTG8Xw+mjdT+r0hnkFUqMDF783XA2e6+O0WxV4GxZjbSzMqBC4GHs3lfERERkUbaHxERESks2Y45ug3oCTxtZovM7NcAZjbYzB4HcPc64GrgSWAZ8IC7L8nyfUVEREQaaX9ERESkgGR71YkxKZZvBM5s9vhx4PFs3ktEREQkGe2PiIiIFBbNoiIiIiIiIiIioVGiQURERERERERCo0SDiIiIiIiIiIRGiQYRERERERERCY0SDSIiIiIiIiISGiUaRERERERERCQ0SjSIiIiIiIiISGjM3fMdQ0pmtgNYnu84Oon+wJZ8B9FJqK2jpfaOjto6OuPdvWe+g+gMzGwzsDaElyq2/49iqw8UX51Un8JWbPWB4quT6pPecHevTPZEWchvFLbl7j4130F0Bmb2mto6GmrraKm9o6O2jo6ZvZbvGDqLVDtQHVVs/x/FVh8ovjqpPoWt2OoDxVcn1Sc7OnVCREREREREREKjRIOIiIiIiIiIhKbQEw235zuATkRtHR21dbTU3tFRW0dHbR0/xdZnxVYfKL46qT6FrdjqA8VXJ9UnCwU9GaSIiIiIiIiIxEuhj2gQERERERERkRjJS6LBzGab2XIzW2Vmc5M8b2b288Tzb5jZlEzXlZaybOvfmVmNmb0VbdTxdbDtbWaHmdnfzWyZmS0xs/+IPvp4yaKtu5nZfDNbnGjr70Yffbxk8zmSeL7UzF43s0ejizq+svzcXmNmb5rZIl2ZIr/M7GYzezvRRw+aWZ8U5WKxX2Nm5yc+MxvMLOWs5XHaBjtQp7j0UV8ze9rMVib+HpqiXEH3UbbfOYUmg/qcbGYfJvpjkZl9Ox9xZird8UEM+yddfeLWP2mPKSLrI3eP9AaUAquBUUA5sBiY2KrMmcDfAANmAK9kuq5u4bR14rkTgSnAW/muSxxuWW7bg4Apifs9gRXatnPW1gZUJO53AV4BZuS7ToV6y/ZzJPH8V4H7gEfzXZ9Cv4Xwub0G6J/veujmAB8HyhL3bwJuOpj+LpQbcDgwHngemNpOudhsg5nUKWZ99GNgbuL+3GTbXKH3URjfOYV0y7A+J8fp+5E0xwdx6p8M6xO3/kl7TBFVH+VjRMM0YJW7v+Pu+4H7gXNalTkH+IMH5gF9zGxQhutKk2zaGnd/EaiNNOJ4O+j2dvdN7r4QwN13AMuAIVEGHzPZtLW7+85EmS6JmyarSS2rzxEzGwp8ArgjyqBjLKv2lsLh7k+5e13i4TxgaJJisdmvcfdl7r4833GEKcM6xaaPCOK6K3H/LuDc/IVy0IrtMzBO209GMjg+iFP/FN3xTobHFJH0UT4SDUOA9c0eb6Bt5VOVyWRdaZJNW0vHhdLeZjYCOIrgl3ZJLqu2TgzlXwTUAE+7u9o6tWy361uBrwMNOYqv2GTb3g48ZWYLzOzKnEUpHXUFwa9HrRXjd3CxbYNx6qMB7r4JgoMNoCpFuULuo2Lbd8001mMsOKXzb2Y2KZrQciZO/ZOpWPZPO8cUkfRRWdgvmAFLsqz1r4mpymSyrjTJpq2l47JubzOrAP4CXOPu20OMrdhk1dbuXg9MTpwz/aCZVbu75iJJ7qDb2szmADXuvsDMTg47sCKV7efIce6+0cyqgKfN7O3ErzWSA2b2DDAwyVPXu/tDiTLXA3XAvcleIsmyvH0HZ1KfDBTUNhhCnWLTRx14mYLqo1aKbd81k1gXAsPdfaeZnQn8DzA214HlUJz6JxOx7J80xxSR9FE+Eg0bgMOaPR4KbMywTHkG60qTbNpaOi6r9jazLgQfCPe6+19zGGcxCGXbdvdtZvY8MBtQoiG5bNr6PODsxBdzN6CXmd3j7hfnMN64y2rbdvfGvzVm9iDBsN1COYAoOu4+q73nzewyYA5wqrsn24krqO/gdPXJ8DUKahsMoU6x6SMze7/xdMzEMOiaFK9RUH3USrHtu2ayL7K92f3HzexXZtbf3bdEFGPY4tQ/acWxfzI4poikj/Jx6sSrwFgzG2lm5cCFwMOtyjwMXJqYEXMG8GFiCFgm60qTbNpaOu6g29vMDLgTWObut0Qbdixl09aViZEMmFl3YBbwdoSxx81Bt7W7f8Pdh7r7iMR6zynJkFY223YPM+sJYGY9CCYjVAItT8xsNnAdcLa7705RrKj2a4p0G4xTHz0MXJa4fxnQZsRGDPqo2PZd09bHzAYm9gMxs2kEx2dbI480PHHqn7Ti1j8ZHlNE0keRj2hw9zozuxp4kmAm1t+5+xIzuyrx/K+Bxwlmw1wF7AY+2966UdchLrJpawAz+yPBTKv9zWwD8B13vzPaWsRHlu19HHAJ8KYFcwcAfNPdH4+wCrGRZVsPAu4ys1KCL4sH3F2XXUwh288R6Zgs23sAwalAEHy/3+fuT0RcBWlyG9CVYGg6wDx3v8rMBgN3uPuZcdqvMbNPAr8AKoHHzGyRu5/evD7EbBvMpE5x6iPgR8ADZvY5YB1wPkCc+qjYvnMyrM95wBfNrA7YA1yYYgRUQUh2fEAwsXbs+gcyqk+s+ocUxxTAMIi2j6yw20lERERERERE4iQfp06IiIiIiIiISJFSokFEREREREREQqNEg4iIiIiIiIiERokGEREREREREQmNEg0iIiIiIiIiEholGkREREREREQkNEo0iHRyZtbHzL6U4rkRZran2XV4U73GvWZWa2bn5SRIERERKUpmVm9mi8zsLTN7xMz6ZLDONWZ2aTvPzzGz74YaqIh0iBINItIHSJpoSFjt7pPbewF3vwh4OMSYREREpHPY4+6T3b0aqAX+vb3CZlYGXAHc106xx4CzzeyQ8MIUkY5QokFEfgSMTvyacHN7Bc2sh5k9ZmaLE788XBBRjCIiIlL8XgaGAJjZaDN7wswWmNk/zGxCosxMYKG71yXKfcXMlprZG2Z2P4C7O/A8MCf6KogIQFm+AxCRvJsLVKcbtZAwG9jo7p8AMLPeuQxMREREOgczKwVOBe5MLLoduMrdV5rZdOBXBEmG44AFzVadC4x0932tTrt4DTgBeCDXsYtIWxrRICId8SYwy8xuMrMT3P3DfAckIiIisdY9MRfUVqAv8LSZVQDHAn9OPPcbYFCi/CBgc7P13wDuNbOLgbpmy2uAwbkNXURSUaJBRDLm7iuAowkSDj80s2/nOSQRERGJtz2JUZXDgXKCORpKgG2JuRsab4c3lge6NVv/E8AvCfZPFiTmcCBRZk8UFRCRtpRoEJEdQM9MCprZYGC3u98D/ASYksvAREREpHNIjJL8CvCfBAmCd83sfAALfCxRdBkwJrG8BDjM3f8OfJ1gguuKRLlxwFuRVUBEWlCiQaSTc/etwP8lJndsdzJI4AhgfmIY4/XAjbmOT0RERDoHd38dWAxcCFwEfM7MFgNLgHMSxf4GnJi4XwrcY2ZvAq8DP3X3bYnnTiG4+oSI5IEmgxQR3P0zGZZ7Engyx+GIiIhIJ+HuFa0en9Xs4ewk5dea2VYzG+vuK4HjW5cxswFAd3d/M/SARSQjGtEgIu2pB3onRjCkZGb3AicBe6MISkRERDq1uTRNDpnMMOBrEcUiIklYcJlZEREREREREZHsaUSDiIiIiIiIiIRGiQYRERERERERCY0SDSIiIiIiIiISGiUaRERERERERCQ0SjSIiIiIiIiISGj+HxMRZlugc8n7AAAAAElFTkSuQmCC", - "text/plain": [ - "
    " - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "f, (ax1, ax2) = plt.subplots(1, 2, figsize=(18,5))\n", - "\n", - "# the real and imaginary components of the signal in the plot on the left\n", - "ax1.plot(t,s.real,label='real')\n", - "ax1.set_title('received signal time series')\n", - "ax1.set_xlabel('t [s]')\n", - "ax1.set_xlim(0, 0.05)\n", - "ax1.plot(t,s.imag,label='imaginary')\n", - "ax1.legend()\n", - "\n", - "# The Argand diagram on the right\n", - "ax2.plot(s.real,s.imag)\n", - "ax2.set_title('received signal complex plane')\n", - "ax2.set_ylabel('Im(s)');\n", - "ax2.set_xlabel('Re(s)');" - ] - }, - { - "cell_type": "markdown", - "id": "1ebabdd3-1284-4086-9885-08aa320732e9", - "metadata": {}, - "source": [ - "## 5. Compute frequencies with a fourier transform\n", - "The signal recieved by ApRES is a combination of signals from every reflector. The frequencies of these signals is directly proportional \n", - "to the range to the reflectors. The frequencies that make up a signal can be extracted using a fourier transform. [This video](https://www.youtube.com/watch?v=spUNpyF58B) is an incredibly clear explanation of how fourier transforms achieve this. " - ] - }, - { - "cell_type": "markdown", - "id": "dbc96d8d-dbe3-47d3-9d9b-7fd36f24d41a", - "metadata": {}, - "source": [ - "The cell below computes the discrete fourier transform of `s` and the frequency bins. By default `np.fft.fft` produces as many freqency bins as there are time-domain samples (`=len(s)`), evenly distributed between 0 Hz and the sampling frequency (12x10$^3$). Therefore the value of the frequencies is computed by multiplying the indexes by `sampling_frequency/no_of_samples`, which is equal to $1/T = 1$s. Note also that the frequency spectrum is normalized by the number of samples. " - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "id": "c0458e90-d02a-4226-bb9e-1ee33fdb6d08", - "metadata": {}, - "outputs": [], - "source": [ - "no_of_samples = len(s)\n", - "S = np.fft.fft(s)/no_of_samples \n", - "indexes = np.arange(no_of_samples) \n", - "frequencies = indexes * sampling_frequency/no_of_samples" - ] - }, - { - "cell_type": "markdown", - "id": "d5d8c9e4-e391-4a0c-9651-1aa89af17c81", - "metadata": {}, - "source": [ - "Next we compute the absolute value of the complex numbers in `S` and plot them against the frequencies yielding the usual depiction of frequency domain." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "id": "c26caebd-e11c-4ff5-a25b-7dd1b9850e0d", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABCkAAADgCAYAAAAuXjwIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAun0lEQVR4nO3deZykZX3v/c+vqrtnX4AZYBhAQBFFFNBhyWYgRANGxTznJMElUR4TQo64JBqj58miJp6X54kniUYNIYTgFo0bBg0qJnGJQYFhUwYEgQFmGJZZmH3rrvqdP+qunnt6eqme6bvXz/vlvKruta7uq1q6vn39risyE0mSJEmSpIlWm+gGSJIkSZIkgSGFJEmSJEmaJAwpJEmSJEnSpGBIIUmSJEmSJgVDCkmSJEmSNCkYUkiSJEmSpEnBkEKSpCkiIk6JiDsiYltEvGWi2zPRIuI9EfGpCXjdKyPij8f7dSVJmgm6JroBkiSpY+8Evp2ZZ050Q2ayzLx8otsgSdJ05UgKSZKmjmcAq4Y6GBH1cWyLJEnSmDOkkCRpCoiI/wDOBz4SEdsj4tkRcW1E/G1E3BARO4DzI+KYiPhiRKyPiNXlspCImFNc83RE3BMRfxARa0vHMyKeVdq+NiL+vLT98oi4MyI2R8RNEfGC0rGHI+IdEfHDiNgSEf8cEbNLxy8urt0aEQ9GxIUR8asRcduAr/PtEfHlIb4HJ0bEd4pyl28CSwYcf2VErCra9+2IeO6A9v1B0b4dEfEPEXFURHytuN+/RcRhpfM/HxFPFF/LdyPieYN9XyLivIhYW7T7qYh4PCIuHaE7JUnSEAwpJEmaAjLzF4D/BK7IzPmZeX9x6DXA+4EFwE3AV4C7gOXABcDbIuKXinP/FHhm8e+XgNd3+voR8ULgGuB3gCOAvwOuj4hZpdN+DbgQOBF4AfCG4tqzgU8AfwAsBl4MPAxcD5xYDhOA1wGfHKIZ/wTcRiuc+LNy+yPi2cBngLcBS4EbgK9ERE/p+v8GvAR4NvAK4GvA/yzuVwPK83x8DTgZOBK4Hfj0EG0COBpYROt7/kbgo+XAQ5Ikdc6QQpKkqe1fMvO/MrMJPB9Ympnvy8y9mfkQ8PfAJcW5vwa8PzM3ZeYa4MOjeJ3fBv4uM2/OzEZmfhzYA5xbOufDmbkuMzfRCkvOKPa/EbgmM7+Zmc3MfCwzf5yZe4B/phVMUIxWOAH46sAXj4jjgbOAP87MPZn53eI12n4d+NfiNXqBDwJzgJ8unfM3mflkZj5GK/C5OTPvKNpxHdA/10dmXpOZ24pj7wFOj4hFQ3xveoH3ZWZvZt4AbAdOGfpbKUmShmJIIUnS1Lam9PwZwDFFucPmiNhMa6TAUcXxYwac/8goXucZwNsH3Pu44p5tT5Se7wTmF8+PAx4c4r4fB14TEQH8BvC5IhgY6Bjg6czcMUT7jylvF6HNGlqjG9qeLD3fNcj2fGjN7RERHyjKUrbSGvUBA8pLSjZmZl9pu/y1S5KkUXB1D0mSprYsPV8DrM7Mk4c493FagUF78s3jBxzfCcwtbR8NtOesWENrFMb7D6KNa2iVmBwgM38QEXuBn6NVuvKaIe7xOHBYRMwrBRXHs+/rX0drJAkARehxHPDYQbT3NcDFwC/SCigWAU8DcRD3kiRJo+BICkmSpo9bgK0R8YfFJJn1iDgtIs4qjn8OeHdEHBYRxwJvHnD9nbRGNdQj4kLg50vH/h64PCLOiZZ5EfHLEbGgg3b9A3BpRFwQEbWIWB4Rzykd/wTwEaAvM7832A0y8xFgJfDeiOiJiJ+lNa9E2+eAXy5eoxt4O61ylJs6aN9AC4prN9IKbf7XQdxDkiQdBEMKSZKmicxs0PrgfgawGtgAXE1rJADAe2mVRKwGbuTACSrfWly/GXgt8OXSvVfSmpfiI7RGFTxAMTFmB+26BbgU+CtgC/AdWuUjbZ8EThukPQO9BjgH2ERrEtBPlF7jPlpzW/wNra/7FcArMnNvJ20c4BO0vk+PAfcAPziIe0iSpIMQmTnyWZIkadqJiPOAT2XmsRPcjjnAU8ALM/MnE9kWSZI0sRxJIUmSJtrvArcaUEiSJCfOlCRJEyYiHqY1IeWrJrYlkiRpMrDcQ5IkSZIkTQqWe0iSJEmSpEnBkEKSJEmSJE0KU25OiiVLluQJJ5ww0c2QJEmSJEkD3HbbbRsyc+nBXl9ZSBER1wAvB57KzNMGOR7Ah4CXATuBN2Tm7SPd94QTTmDlypVj3VxJkiRJknSIIuKRQ7m+ynKPa4ELhzl+EXBy8e8y4G8rbIskSZIkSZrkKgspMvO7wKZhTrkY+ES2/ABYHBHLqmqPJEmSJEma3CZy4szlwJrS9tpinyRJkiRJmoEmMqSIQfbloCdGXBYRKyNi5fr16ytuliRJkiRJmggTGVKsBY4rbR8LrBvsxMy8KjNXZOaKpUsPepJQSdIhWr1hB5/6wSHNhSRJkiQNaSJDiuuB34yWc4Etmfn4BLZHkjSC6+54jD/68t1kDjrwTZIkSTokVS5B+hngPGBJRKwF/hToBsjMK4EbaC0/+gCtJUgvraotkqSx0Wy2wolmQn2woj1JkiTpEFQWUmTmq0c4nsCbqnp9SdLYa2b2P9YHnVpIkiRJOngTWe4hSZpiGkVI0Wha7iFJkqSxZ0ghSepYeyoKp6SQJElSFQwpJEkdazT3lXtIkiRJY82QQpLUsXY40TCkkCRJUgUMKSRJHWuv7pHNCW6IJEmSpiVDCklSx9rzZTqSQpIkSVUwpJAkday8BKkkSZI01gwpJEkdM6SQJElSlQwpJEkdazb3f5QkSZLGkiGFJKljDUdSSJIkqUKGFJKkjlnuIUmSpCoZUkiSOtZegtRyD0mSJFXBkEKS1LH2EqSOpJAkSVIVDCkkSR1rhxMNQwpJkiRVwJBCktSxdkiRhhSSJEmqgCGFJKlj/UuQmlFIkiSpAoYUkqSOtcs8GqYUkiRJqoAhhSSpY+kSpJIkSaqQIYUkqWPtARRmFJIkSaqCIYUkqWPtMg/LPSRJklQFQwpJUsealntIkiSpQoYUkqSOGVJIkiSpSpWGFBFxYUTcFxEPRMS7Bjm+KCK+EhF3RcSqiLi0yvZIkg6NS5BKkiSpSpWFFBFRBz4KXAScCrw6Ik4dcNqbgHsy83TgPOD/RERPVW2SJB2a9hKkTVMKSZIkVaDKkRRnAw9k5kOZuRf4LHDxgHMSWBARAcwHNgF9FbZJknQI2kuQNiz3kCRJUgWqDCmWA2tK22uLfWUfAZ4LrAN+BLw1M5sDbxQRl0XEyohYuX79+qraK0kagUuQSpIkqUpVhhQxyL6Bv9b+EnAncAxwBvCRiFh4wEWZV2XmisxcsXTp0rFupySpQ+2lR504U5IkSVWoMqRYCxxX2j6W1oiJskuBL2XLA8Bq4DkVtkmSdAj6yz2ck0KSJEkVqDKkuBU4OSJOLCbDvAS4fsA5jwIXAETEUcApwEMVtkmSdAjac1E4kEKSJElV6KrqxpnZFxFXAN8A6sA1mbkqIi4vjl8J/BlwbUT8iFZ5yB9m5oaq2iRJOjTtJUgdSSFJkqQqVBZSAGTmDcANA/ZdWXq+DnhplW2QJI2d9lwUzkkhSZKkKlRZ7iFJmmb2hRQT3BBJkiRNS4YUkqSOtcMJR1JIkiSpCoYUkqSONV2CVJIkSRUypJAkdcxyD0mSJFXJkEKS1LH2EqRNUwpJkiRVwJBCktSx9hKklntIkiSpCoYUkqSOZRFONBxJIUmSpAoYUkiSOtYu93AghSRJkqpgSCFJ6phLkEqSJKlKhhSSpI61J8xsGFJIkiSpAoYUmpFuemADX7p97UQ3Q5pyXIJUkiRJVTKk0Iz06Zsf5f/ceP9EN0OactoTZqYjKSRJklQBQwrNSL2NJht37JnoZkhTTjubcHUPSZIkVcGQQjNSXzPZ3dtk596+iW6KNKVY7iFJkqQqGVJoRuorPmFt3L53glsiTS3tCTObphSSJEmqgCGFZqS+RhOATTsMKaTRcAlSSZIkVcmQQjNSeySFIYU0Ou0RFA6kkCRJUhUMKTQjtUdSbDSkkEZl35wUphSSJEkaex2FFBHx7Ij494i4u9h+QUT8UbVNk6rT6B9J4QofUqcyc1+5h0MpJEmSVIFOR1L8PfBuoBcgM38IXFJVo6Sq9TaKiTMdSSF1rDx4woxCkiRJVeg0pJibmbcM2OfajZqy+prFxJmu7iF1rFzi0bDcQ5IkSRXoNKTYEBHPBBIgIv478PhIF0XEhRFxX0Q8EBHvGuKc8yLizohYFRHf6bjl0iFw4kxp9MrBRBpSSJIkqQJdHZ73JuAq4DkR8RiwGnjdcBdERB34KPASYC1wa0Rcn5n3lM5ZDHwMuDAzH42II0f/JUij12e5hzRq5VyiYb2HJEmSKtBRSJGZDwG/GBHzgFpmbuvgsrOBB4priYjPAhcD95TOeQ3wpcx8tHidp0bTeOlgNRxJIY1aOZgwo5AkSVIVhg0pIuL3h9gPQGb+5TCXLwfWlLbXAucMOOfZQHdEfBtYAHwoMz8xyOtdBlwGcPzxxw/XZKkjvcUSpIYUUuealntIkiSpYiONpFhQPJ4CnAVcX2y/AvjuCNfGIPsG/lbbBbwIuACYA3w/In6Qmffvd1HmVbTKTVixYoW/GeuQtf8ivH1PH3v6Gszqqk9wi6TJr2m5hyRJkio2bEiRme8FiIgbgRe2yzwi4j3A50e491rguNL2scC6Qc7ZkJk7gB0R8V3gdOB+pAr1Npr01GvsbTTZsrOXIxcaUkgjaVruIUmSpIp1urrH8UB5XPxe4IQRrrkVODkiToyIHuAS9o3EaPsX4Ocioisi5tIqB7m3wzZJB63RTObOagUTe4vSD0nDK5d7NC33kCRJUgU6Xd3jk8AtEXEdrZKNXwEOmDuiLDP7IuIK4BtAHbgmM1dFxOXF8Ssz896I+DrwQ6AJXJ2Zdx/k1yJ1rLeZLOyus5leeht+2JI60TCkkCRJUsU6Xd3j/RHxNeDnil2XZuYdHVx3A3DDgH1XDtj+C+AvOmuuNDYazWROd2skRZ8jKaSOlHMJQwpJkiRVoaOQIiKOBzYA15X3tZcOlaaSzKTRTGZ3W+4hjUZ5skx/bCRJklSFTss9/pV9K3PMAU4E7gOeV0WjpCr1FR+05vS0QgrLPaTOuASpJEmSqtZpucfzy9sR8ULgdyppkVSxviKUmNtjuYc0GpZ7SJIkqWqdru6xn8y8HThrjNsijYveZiuUsNxDGh3LPSRJklS1Tuek+P3SZg14IbC+khZJFWsUIyn2TZzpX4SlTljuIUmSpKp1OifFgtLzPlpzVHxx7JsjVa89kqIdUvT6J2GpI02XIJUkSVLFOg0p7snMz5d3RMSvAp8f4nxp0mocMHGmIYXUiVK1Bw5AkiRJUhU6nZPi3R3ukya9dnnH7G5X95BGozwnhSMpJEmSVIVhR1JExEXAy4DlEfHh0qGFtMo+pCmnfwlSyz2kUdmv3KNpSCFJkqSxN1K5xzpgJfBK4LbS/m3A71XVKKlK7SVH51ruIY2KS5BKkiSpasOGFJl5F3BXRHw6Mx05oWmhPZJido/lHtJo7F/uMYENkSRJ0rQ1UrnH5zLz14A7IuKAX0kz8wWVtUyqSF/Dcg/pYFjuIUmSpKqNVO7x1uLx5VU3RBovfS5BKh0UlyCVJElS1UYq93i8eHxkfJojVa9/4sye1uI2lntInWnm4M8lSZKksTJSucc2oPyraBTbAWRmLqywbVIlDlyC1JEUUidcglSSJElVG2kkxYLxaog0XtrlHj31GvVa9IcWkoZnuYckSZKqNtKcFP0i4oXAz9IaSfG9zLyjslZJFWqHEl31Gt31cCSF1KF2LhGx/6gKSZIkaazUOjkpIv4E+DhwBLAEuDYi/qjKhklVac9J0VULuus19hpSSB1pBxPdtZpzUkiSJKkSnY6keDVwZmbuBoiIDwC3A39eVcOkqvQVoURXvRVSWO4hdaZd4lGvBWm5hyRJkirQ0UgK4GFgdml7FvDgmLdGGgf7j6Sw3EPqVDuk6KqH5R6SJEmqRKcjKfYAqyLim7TmpHgJ8L2I+DBAZr6lovZJY649cWZXrUZXzXIPqVPFjw7ddcs9JEmSVI1OQ4rrin9t3+7kooi4EPgQUAeuzswPDHHeWcAPgF/PzC902CbpoLTLO+q1oKfLcg+pU/0jKSz3kCRJUkU6Ciky8+OjvXFE1IGP0hp1sRa4NSKuz8x7BjnvfwPfGO1rSAejXe7R7eoe0qi0Q4rueo2GIYUkSZIq0OnqHi+PiDsiYlNEbI2IbRGxdYTLzgYeyMyHMnMv8Fng4kHOezPwReCpUbVcOkjtkKJeC7pqNUMKqUPtEo96LfpLPyRJkqSx1OnEmX8NvB44IjMXZuaCzFw4wjXLgTWl7bXFvn4RsRz4FeDK4W4UEZdFxMqIWLl+/foOmywNrr26R3c96O6q0Wu5h9SR9mSZXfXoH1UhSZIkjaVOQ4o1wN05uiLkGGTfwOv/GvjDzGwMd6PMvCozV2TmiqVLl46iCdKBGqWRFN01yz2kTvWXe9RqhhSSJEmqRKcTZ74TuCEivkNrpQ8AMvMvh7lmLXBcaftYYN2Ac1YAn40IgCXAyyKiLzO/3GG7pFFrj5xozUnhxJlSp9rBRL0W7PXnRpIkSRXoNKR4P7AdmA30dHjNrcDJEXEi8BhwCfCa8gmZeWL7eURcC3zVgEJVa5d7dNVa5R67dvVOcIukqWHfEqTB7l5DCkmSJI29TkOKwzPzpaO5cWb2RcQVtFbtqAPXZOaqiLi8OD7sPBRSVfos95AOSv8SpHXLPSRJklSNTkOKf4uIl2bmjaO5eWbeANwwYN+g4URmvmE095YOVl+zSVctiAjLPaRR6A8patG/0ockSZI0ljqdOPNNwNcjYtcoliCVJqW+ZlKvteZ1ba3u4UgKqRPtYKK7XuufgFaSJEkaSx2NpMjMBRFxOHAyrXkppCmrr5F011v5XHct2GtIIXWkvDLO6BZ7kiRJkjrTUUgREb8FvJXWCh13AucCNwEXVNYyqSKN8kgKyz2kjrWDie560DCkkCRJUgU6Lfd4K3AW8Ehmng+cCWyorFVShXobTbrrrZCiq+7EmVKn2iMpumo156SQJElSJToNKXZn5m6AiJiVmT8GTqmuWVJ1Bo6ksNxD6kw7mOiqW+4hSZKkanS6usfaiFgMfBn4ZkQ8DayrqlFSlXobSVetlc/1dFnuIXWq2V/u4cSZkiRJqkanE2f+SvH0PRHxLWAR8PXKWiVVqNFs0tUu96hZ7iF1qh1S1F2CVJIkSRXpdCRFv8z8ThUNkcZLbzPpKk+c2Uwyk4iY4JZJk9u+JUijP7CQJEmSxlKnc1JI00ajVO7RnkCz15IPaUT7TZzpUApJkiRVwJBCM05fqdyju976EbDkQxpZe7LMrrrlHpIkSaqGIYVmnN5G0lVvj6RoPTp5pjSyfeUeNRqWe0iSJKkChhSacRr7zUnRenQZUmlk7XKPes0lSCVJklQNQwrNOL2N5n4TZ7b3SRpea4JZqIflHpIkSaqGIYVmnEYzD5iTwnIPaWSNTGoR1GrRP6pCkiRJGkuGFJpxWkuQtt76XZZ7SB1rZmsURTEQyZIPSZIkjTlDCs04jea+co8eyz2kjjWbrXKPWrR+fhxMIUmSpLFmSKEZp6+xr9yjy3IPqWPNTOq1oF6EfJZ8SJIkaawZUmjG6SuVe7i6h9S5ZrZGURQDKWha7iFJkqQxZkihGaev0ewfSdHTP5LCkEIaSaO5b3UPMKSQJEnS2DOk0IzT18z+4epd/XNS+GFLGkkW5R7OSSFJkqSqGFJoxulrJN0Dyj2cOFMaWXsJUss9JEmSVJVKQ4qIuDAi7ouIByLiXYMcf21E/LD4d1NEnF5leySAvmaTehFOdLu6h9Sx9pwU7ZFITYdSSJIkaYxVFlJERB34KHARcCrw6og4dcBpq4Gfz8wXAH8GXFVVeyRofajasquXRXO6gXJI4YctaSTNZlJzCVJJkiRVqMqRFGcDD2TmQ5m5F/gscHH5hMy8KTOfLjZ/ABxbYXsktuzqpbeRHLlgFgA9Xa0fgd29jYlsljQlNItyj1rNiTMlSZJUjSpDiuXAmtL22mLfUN4IfG2wAxFxWUSsjIiV69evH8MmaqZ5atseAJYWIcWS+T0AbNi+Z8LaJE0VzaSYOLPYdiiFJEmSxliVIUUMsm/Q32gj4nxaIcUfDnY8M6/KzBWZuWLp0qVj2ETNNOvbIcX8Vkgxf1YXc3vqPLnVkEIaSbNYgtRyD0mSJFWlq8J7rwWOK20fC6wbeFJEvAC4GrgoMzdW2B6J9dt3A3DkwtkARARHL5zNk1t3T2SzpCmhWSxBWi9CioblHpIkSRpjVY6kuBU4OSJOjIge4BLg+vIJEXE88CXgNzLz/grbIgGlkRRFuQfAkQtnGVJIHWgUq3uE5R6SJEmqSGUjKTKzLyKuAL4B1IFrMnNVRFxeHL8S+BPgCOBj0fqtty8zV1TVJumprXuY011nXk+9f9/RC2dz26NPD3OVJGhPnEn/EqQOpJAkSdJYq7Lcg8y8AbhhwL4rS89/C/itKtsgla3fvoelC2YRsW/KlKMWzubJrXvIzP32S9pftlf3sNxDkiRJFamy3EOadNZv29O//GjbkQtns7evyeadvRPUKmlqaDRz/3IPQwpJkiSNMUMKzShPbduz33wU0Cr3AHjCeSmkYTUTarUolXsYUkiSJGlsGVJoRlk/SEhx1MLWtpNnSsNrNltzUvSXezQnuEGSJEmadgwpNGPs6WuwZVfvAeUeRxUjKQwppOG1lyCtWe4hSZKkihhSaMYYbPlRaC1BCvDk1j3j3iZpKmkkRHniTJcglSRJ0hgzpNCM8ZOntgNw/OHz9ts/q6vO4fN6WLd510Q0S5oyMvcv93AghSRJksaaIYVmjNsfeZp6LTj9uEUHHHveMQu5c83m8W+UNIU0M6nHvokzLfeQJEnSWDOk0Ixx2yNP89xlC5jb03XAsbNOOJz7ntzGFpchlYY0cAnShiGFJEmSxpghhWaEvkaTu9Zs5oXHHzbo8RUnHEYm3PbopnFumTR1NJpJrVYu9zCkkCRJ0tgypNCMcN+T29ixt8GLnjF4SHHmcYfRXQ9uWf30OLdMmjoee3oXRy+cXSr3mOAGSZIkadoxpNCM8P0HNwIMOZJiTk+d05Yv4ubVG8ezWdKUsXNvH+u27OakpfP3lXuYUkiSJGmMGVJo2stM/vnWNbzg2EUcd/jcIc+74DlHcsejm3lw/fZxbJ00NazesAOAk5bO65/XZesu53CRJEnS2DKk0LR3y+pN/OSp7bzunGcMe96vn3U83fXgk99/ZJxaJk0dD60vQool83n2UfOpBaxat3WCWyVJkqTpxpBC097f/+dDLJjdxStOP2bY85YumMUvP38ZX7htLZt37h2n1klTQzukOHFJayTFs46cz48e2zLBrZIkSdJ0Y0ihae3rdz/Ov937FL973jOZ01Mf8fzLz3smu3sbvO8r94xD66Sp46EN21m+eE7/z9Hzly/mh2u3uMKHJEmSxpQhhaathzfs4P+77m5OXbaQ3/65kzq65jlHL+R/nP8svnTHY1x3x9qKWyhNHQ+t38FJS+f1b7/g2EVs2L6HJ7bunsBWSZIkaboxpNC09OD67bzuH24mgQ+/+ky6652/1a84/1mce9LhvOPzP+Qrd62rrpHSFNFoJqs37OCkJftCiucfuwiAH6615EOSJEljx5BC00qzmXzu1jVc/JH/YufeBh+/9GyedeT8Ud2jp6vG1a8/izOPW8ybP3MH77l+Fdt2u4qBZq5//dHjbN/Tx08984j+facuW0hPvca/3/vkBLZMkiRJ040hhaaFXXsb/Mudj/Hyv/ke7/ziD3nusgV89c0/2//X3tGaP6uLf/rtc3nDT5/AtTc9zPkf/A5//W/385RD2zXDNJvJR/7jJ5x85HxeeurR/ftnd9d57bnH84Xb1nLv467yIUmSpLERU23SsxUrVuTKlSsnuhmaBJ7cupsfPLSRb9+3nhtXPcGOvQ1OWjKPK37hWbzqjOXUajEmr3Pnms381Tfv5zv3r6erFrz42Us5/5Sl/Pyzj+S4w+cQMTavI002mckHb7yPj37rQT50yRlcfMby/Y5v2dnLeR/8FssWzeETbzybJfNnTVBLJUmSNFlExG2ZueKgrzek0GTWbCYbduzh8c27eXjjDu57Yhv3P7mNHz+xjbVP7wJg4ewuXvb8ZbzyjGM458QjqI9RODHQ6g07+KebH+Ebq57k0U07AVg8t5vTjlnE85Yv5DlHL+D4w+dx/OFzWTK/x/BCU9oTW3bzga/dy5fvXMerzz6O97/q+YMGf9+67yl+91O3ccS8Wbz7Zc/hotOWVfYzKEmSpMlvUocUEXEh8CGgDlydmR8YcDyK4y8DdgJvyMzbh7unIcXU1Gwmu/sa7NzbYNfe1uOWXb1s3rmXzbt62bKzl8279rJ5Zy+bd/WyfuseHt+6iye27Ka3se892lULTlo6j5OPWsCZxy3mnBOP4LnLFtA1iokxD1VmaxLBmx7cyKp1W7j7sa3c98Q29jaa/efM6a6zbNFsjpjfwxHzZrUe589iyfweDpvbw4LZXSyY3cX8Wd3Mn93F/J4u5s2qj+vXIZXt6Wtw3xPbuGX1Jr7/4Ea+c/96ahFcft4zedsFJw87MunONZt55xfu4v4nt3Pkglmcd8pSXvSMw3jBsYs5/vC5zJvVNY5fiSRJkibSpA0pIqIO3A+8BFgL3Aq8OjPvKZ3zMuDNtEKKc4APZeY5w913uoQUmUkmZPs50Cz2tY63thuZNJtJo5k02/v6t8uPHLBvsP373691fN+5SV8z6W006e1r0ttI9jaare1Gsd23b7tvv+Ot6/b0Ndm1t8Gu3kb/4869fezubQ737QCgXgsWz+lm0dxulsybxbLFs1m2aA7HLJ7N0Qtn84wj5nHiknn0dE2+D/J7+5o8umkHazbt4tFNO3l0006e3Lqbjdv3snHHHjZu38umnXsZ6cdtTnedOT11ZnfVmNVdZ1bxOHvQxxo99Trd9aCrHtRrNbprQVe91tpXC+r1gftq1GtRXNM6Vi/+1WpBLYJ6BBG0nteCWnDgsVrr+QHHaux3Xr04VgscWVKBLP3ctn++e/ua7OptsLu3we7e5n4/i7t7G2ze2cvGHXt5ekfrPblx+x7WbNrFui27+t+fxx8+l4tOO5rXnvMMjj9ibkdtaTSTb97zBF++Yx03r97I0zv3TTZ7+Lwejj1sDkcumM2iOd2lf13Mn93N7O4as7rqQz521/e9T9vv4fZ70/eVJEnS5HKoIUWVf946G3ggMx8CiIjPAhcD95TOuRj4RLaSkh9ExOKIWJaZjw910wfXb+dXPvZf/R/wGfABf78P/gnJgWFA67zSc5Jm8Rn6gP3FPSndZ99rZdGGAfsHvuYgrz/VdNVaH4S76zV66jW66zW6uwZsF8eXzO9hTk+dOd1dzOmpMbenq//D99yeOnO668zt6WLRnG4Wz+3uf5w/q2vKfuDo6arxrCMX8KwjFwx5Tl+jydM7e3l651627+lj++6+/sdt7cfdvezua3243NPXZHdvo/9xy65enipt7+lr9odG7Q+pk1k7+KgFBEHxP6LYjv7tIKB0/MBjUZwQw9yj/ZrD3b9Wul/7HMrnUPz/DK2f37L+QLE4Y9/2/uf3XzXC8YH3axYBYl+zFSz2BxHNdjDR5FC6fPHcbg6f28Ph83o464TDeMYRx/KsI+dz1gmHc/Si2aO+X70WXHjaMi48bRmZyUMbdrBq3VbWPr2TtU/vYs2mnax9eif3rOtly65eduxtHHzjS7qKgK2rP8TYP9BovwfafV2Lfe+9WimQg1a/10rvmVrx5qiV3ju18vupfV6tvK/8nqL/vlDeLn8Fsd++wc6JgefE/vvLF3bymkOdw3CvOYp2lW801PUxyDlDGem/Cof6341OLo8RWnHoX8NIx0d4/RHu38lJE/01jkcbRrpBJ9/Hkdswud8r42W8mjHS93vMXmccXma8es6+mbzG6+d3KnzLqgwplgNrSttraY2WGOmc5cB+IUVEXAZcBjB/2UnML4YOt38ZbP81rfzhpfyL5gEfVAb8Ernvl9b9P/S0f4Etfxhq7xv4QWi/Dzv9z4f4EDXIB6PyXwTLvyC3/xK97y/dtP6CXfwlu72/9bz81+99+2s1Bjk3DvhLeXv/rK52CFEED7XamE1COZN11WssXTCLpQuqmVwwiw+0fY2kt9ka6dLXfiz2NYqRMu1jvcWx9miaZrYCu0Ymma2QrjwyZ7Bj7b/mt0f6NA841g7wipE8uS8EZNAwb1/Q1/66Bu7fF/aVw8kD77Hf/fv3l7eHvr71bPgPaiN+eOzwg+NQx7sGjCCoRezbF6UP5fV92931GnO668wuAsHZ3cV28W/x3G4Wz+mutLQoInjm0vk8c+nQy//2Npps3dXLjj0N9vQHc4M/tt/H7dCmUbzPG5k0ms0Dgpz2dm8j9+vrZilQphRQDwykm7n/+QND73Yg3bq2STaKfdAKjtoBNkOHWfsfa28fmDqNFIaVrxspENt/38jtGvL+Hbdr/1cdru1DGSmHGyn0P9T7d3LSyG2s+Gvs4KsY+R4j3eDQ2tDJH2cm+vsoSZo8qgwpBvtUO/A/EZ2cQ2ZeBVwFrXKPT75x2IoQaUaKiGI0C8yhPtHNkYbVXa9xxPxZHDF0jiFJk8qIQckkD7Ra96g+rZlugdB4fD3j0S8wfn0zXm+B8VgAYvy+lvF6ofF4ieSw/31o96gypFgLHFfaPhZYdxDnSJIkSRNqxLKbQx506qhVSQKocgbCW4GTI+LEiOgBLgGuH3DO9cBvRsu5wJbh5qOQJEmSJEnTV2UjKTKzLyKuAL5BawnSazJzVURcXhy/EriB1soeD9BagvTSqtojSZIkSZImt0oXr8/MG2gFEeV9V5aeJ/CmKtsgSZIkSZKmhirLPSRJkiRJkjpmSCFJkiRJkiaFGI+lW8ZSRGwD7pvodmjcLQE2THQjNK7s85nJfp957POZyX6fmez3mcc+n5lOycwFB3txpXNSVOS+zFwx0Y3Q+IqIlfb7zGKfz0z2+8xjn89M9vvMZL/PPPb5zBQRKw/less9JEmSJEnSpGBIIUmSJEmSJoWpGFJcNdEN0ISw32ce+3xmst9nHvt8ZrLfZyb7feaxz2emQ+r3KTdxpiRJkiRJmp6m4kgKSZIkSZI0DU2pkCIiLoyI+yLigYh410S3R2MjIq6JiKci4u7SvsMj4psR8ZPi8bDSsXcX74H7IuKXJqbVOhQRcVxEfCsi7o2IVRHx1mK//T6NRcTsiLglIu4q+v29xX77fZqLiHpE3BERXy227fNpLiIejogfRcSd7Vne7ffpLyIWR8QXIuLHxX/jf8p+n74i4pTiZ7z9b2tEvM0+n/4i4veK3+XujojPFL/jjVm/T5mQIiLqwEeBi4BTgVdHxKkT2yqNkWuBCwfsexfw75l5MvDvxTZFn18CPK+45mPFe0NTSx/w9sx8LnAu8Kaib+336W0P8AuZeTpwBnBhRJyL/T4TvBW4t7Rtn88M52fmGaXlB+336e9DwNcz8znA6bR+7u33aSoz7yt+xs8AXgTsBK7DPp/WImI58BZgRWaeBtRp9euY9fuUCSmAs4EHMvOhzNwLfBa4eILbpDGQmd8FNg3YfTHw8eL5x4FXlfZ/NjP3ZOZq4AFa7w1NIZn5eGbeXjzfRuuXmOXY79NatmwvNruLf4n9Pq1FxLHALwNXl3bb5zOT/T6NRcRC4MXAPwBk5t7M3Iz9PlNcADyYmY9gn88EXcCciOgC5gLrGMN+n0ohxXJgTWl7bbFP09NRmfk4tD7QAkcW+30fTDMRcQJwJnAz9vu0Vwz7vxN4CvhmZtrv099fA+8EmqV99vn0l8CNEXFbRFxW7LPfp7eTgPXAPxblXVdHxDzs95niEuAzxXP7fBrLzMeADwKPAo8DWzLzRsaw36dSSBGD7HNpkpnH98E0EhHzgS8Cb8vMrcOdOsg++30KysxGMSz0WODsiDhtmNPt9ykuIl4OPJWZt3V6ySD77POp6Wcy84W0ynTfFBEvHuZc+3166AJeCPxtZp4J7KAY7j0E+32aiIge4JXA50c6dZB99vkUU8w1cTFwInAMMC8iXjfcJYPsG7bfp1JIsRY4rrR9LK1hJZqenoyIZQDF41PFft8H00REdNMKKD6dmV8qdtvvM0QxBPjbtGoT7ffp62eAV0bEw7TKNH8hIj6FfT7tZea64vEpWjXqZ2O/T3drgbXFCDmAL9AKLez36e8i4PbMfLLYts+nt18EVmfm+szsBb4E/DRj2O9TKaS4FTg5Ik4s0rpLgOsnuE2qzvXA64vnrwf+pbT/koiYFREnAicDt0xA+3QIIiJo1azem5l/WTpkv09jEbE0IhYXz+fQ+o/cj7Hfp63MfHdmHpuZJ9D67/Z/ZObrsM+ntYiYFxEL2s+BlwJ3Y79Pa5n5BLAmIk4pdl0A3IP9PhO8mn2lHmCfT3ePAudGxNzid/oLaM0vN2b93lVJsyuQmX0RcQXwDVoziF6TmasmuFkaAxHxGeA8YElErAX+FPgA8LmIeCOtH4RfBcjMVRHxOVr/0esD3pSZjQlpuA7FzwC/AfyomJ8A4H9iv093y4CPFzM614DPZeZXI+L72O8zjT/r09tRwHWt313pAv4pM78eEbdiv093bwY+XfxB8SHgUor/v7ffp6eImAu8BPid0m7/P34ay8ybI+ILwO20+vEO4CpgPmPU75FpGZAkSZIkSZp4U6ncQ5IkSZIkTWOGFJIkSZIkaVIwpJAkSZIkSZOCIYUkSZIkSZoUDCkkSZIkSdKkYEghSdIMEhFviYh7I+LTE92WsRIR346I+yLilcX2tRHx3wecs32Y6+dExJ0RsTcillTdXkmSNLSuiW6AJEkaV/8DuCgzV5d3RkRXZvZNUJvGwmszc+XBXJiZu4AzIuLhsW2SJEkaLUdSSJI0Q0TElcBJwPUR8XsR8Z6IuCoibgQ+ERFLI+KLEXFr8e9niuuOiIgbI+KOiPi7iHgkIpZExAkRcXfp/u+IiPcUz58ZEV+PiNsi4j8j4jnF/msj4sMRcVNEPFQe8RAR74yIH0XEXRHxgeIet5eOnxwRtx3i9+B9xaiJOyPisYj4x0O5nyRJGluGFJIkzRCZeTmwDjg/M/+q2P0i4OLMfA3wIeCvMvMs4L8BVxfn/Cnwvcw8E7geOL6Dl7sKeHNmvgh4B/Cx0rFlwM8CLwc+ABARFwGvAs7JzNOB/z8zHwS2RMQZxXWXAtd2+OX+RSmMuLP0PfiTzDwD+HlgI/CRDu8nSZLGgeUekiTNbNcX5Q4AvwicGhHtYwsjYgHwYuD/AcjMf42Ip4e7YUTMB34a+HzpXrNKp3w5M5vAPRFxVOm1/zEzdxavs6nYfzVwaUT8PvDrwNkdfl1/kJlfKLVpe+l5AJ+mFcgc0sgMSZI0tgwpJEma2XaUnteAnyqFFgAUQUMOcm0f+4/KnF26z+ZixMJg9pRvX3oc7DW+SGskx38At2XmxiHuORrvAdZmpqUekiRNMpZ7SJKkthuBK9obpTKL7wKvLfZdBBxW7H8SOLKYs2IWrfINMnMrsDoifrW4JiLi9A5e+/+NiLnFNYcX99oNfAP4W+CQQ4WIeDnwEuAth3ovSZI09gwpJElS21uAFRHxw4i4B7i82P9e4MXFJJYvBR4FyMxe4H3AzcBXgR+X7vVa4I0RcRewCrh4uBfOzK/Tmu9iZTGHxDtKhz9Na5TFjYf01bW8HTgGuKWYr+J9Y3BPSZI0RiJzsJGVkiRJgyuW6lyRmRvG6fXeASzKzD8e4vi3gXcc7BKkpfs8zDh+XZIk6UCOpJAkSZNWRFwH/CatlUeGsgm4NiJeeZCvMacYvdENNA/mHpIkaWw4kkKSJEmSJE0KjqSQJEmSJEmTgiGFJEmSJEmaFAwpJEmSJEnSpGBIIUmSJEmSJgVDCkmSJEmSNCkYUkiSJEmSpEnh/wKP/HWewH639gAAAABJRU5ErkJggg==", - "text/plain": [ - "
    " - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig,ax = plt.subplots(figsize=(18,3))\n", - "ax.set_title('frequency domain')\n", - "ax.plot(frequencies, np.abs(S))\n", - "ax.set_xlabel('frequency [Hz]')\n", - "ax.set_ylabel('amplitude')\n", - "ax.set_xlim(0, 800);" - ] - }, - { - "cell_type": "markdown", - "id": "7bb6d103-bdf3-4ad8-a175-53eb3affae40", - "metadata": {}, - "source": [ - "The plot displays two peaks in spectral energy at " - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "id": "b71fbb6e-0f2b-4c1c-8015-8d67bea296a7", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " first peak detected at 117.000 Hz.\n", - "second peak detected at 282.000 Hz.\n" - ] - } - ], - "source": [ - "peaks = argrelextrema(np.abs(S), np.greater) # this function finds local maxima \n", - "print(f' first peak detected at {frequencies[peaks[0][0]]:.3f} Hz.')\n", - "print(f'second peak detected at {frequencies[peaks[0][1]]:.3f} Hz.')" - ] - }, - { - "cell_type": "markdown", - "id": "db5dd9df-03a9-48e9-8581-9895f8ed8eb7", - "metadata": {}, - "source": [ - "Notice how the frequencies are close to the frequencies we computed above (`f1` and `f2`) but because `frequencies` is quantized and (in our case) increases in 1 Hz increments, the retrieved spectral peaks are restricted to be an integer number of Hz. This is why Brennan et al. call this the coarse range measurment. " - ] - }, - { - "cell_type": "markdown", - "id": "f99826e6-89e5-4fc0-ab6d-587b13b507fe", - "metadata": {}, - "source": [ - "## 6. Convert frequency to range" - ] - }, - { - "cell_type": "markdown", - "id": "dd06f597-962e-4a08-a4aa-c2f592ee0f45", - "metadata": {}, - "source": [ - "Next we convert `frequencies` to depths using a combination of {eq}`eq:tau1` and {eq}`eq:f_d1`,\n", - "\n", - "$\n", - "f_d = 2KR\\frac{\\sqrt\\epsilon}{c},\n", - "$\n", - "\n", - "Rearranging this expression for $R$ gives" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "id": "d290f163-3675-47ec-ac50-059fb860ec55", - "metadata": {}, - "outputs": [], - "source": [ - "range = frequencies * c /(2*K*np.sqrt(ep))" - ] - }, - { - "cell_type": "markdown", - "id": "d7266a63-b918-40c7-b70a-3ba446b59313", - "metadata": {}, - "source": [ - "which allows us to produce the amplitude-range plot:" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "id": "4cdc92e8-d972-4c87-9ccb-696c07cb26fc", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABB8AAADgCAYAAABLs853AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAA4/ElEQVR4nO3deZxkd1no/89T1dvsk8lMtklCFkJCwGDCAAH0gqLskgsuBFGWn4BRULwXLsIVFdfr1auCFxAiIiibgIC5GnYwyJ49ZCEw2SfrTDLJrD1dy/P745zqrq6p7q5Opqa6Mp/369WvqrM/deY7VXWe+j7fE5mJJEmSJElSv1QGHYAkSZIkSXp4M/kgSZIkSZL6yuSDJEmSJEnqK5MPkiRJkiSpr0w+SJIkSZKkvjL5IEmSJEmS+srkgyRpaERERsQjy+fviYjfPYD7/kBE/PGB2t+wiIibI+Kn+nyMp0fElj4f439GxPv6eYxDTUT8cURsi4i7IuKE8v/fyKDjkiQNJ5MPkqShlJnnZeYfwcG5uD3ULfVznJl/mpmvGnQci7VUz2tEHAe8ATg9M486gPvte7JLkrQ0mXyQJOkA89dhdbOU2kUPsTwCuDcz7zkY8fRiKZ0/SdLimXyQJD0kEfHmiLghInZGxLUR8cK2Za+IiG9ExF9HxP0RcWNEPKWcf1tE3BMRL29b/wNlOcUXy/1dFBGPmOO4Hyi7ha8APgscExG7yr9jOssoOn9hjogzI+Ky8jj/DEx07P/5EXFFGfc3I+KMec7B2yLikxHxoYjYAbwiIp4YEd8qt78zIt4ZEWNt22REnBcRP4yI7RHxroiIclk1Iv6y7PJ+U0S8rr3Le0SsiYi/L/d7e3keqgvE9s/la70sIh43x7rjEfH2iLij/Ht7Oa/rOe6y/XPLNrCzjOuNHcvfUP6b3xkRr2ybvyYi/jEitkbELRHx1oiolMtuiYjHl89/qTwPp5fTr4qIz7S9zg+Vz1slAi+PiFvL8/g7bcdbFhEfLM/7dRHxppin90HZZi+OiAfKx6e0LZv1S/4ccfxKRNwKfKVjv3O13b0Rsb5c560RUY+I1eX0H0fE2xc6b11eQ7c22rUdla/ni21xfaDL/uZtgxHx6vLctt4XzoqIfwKOB/5fud83leu+ICKuieL/yn9ExKM7zu9vR8RVwO6IGCmnby/3fX1EPGOufztJ0tJh8kGS9FDdAPw4sAb4A+BDEXF02/InAVcBhwMfAT4GPAF4JPBLwDsjYmXb+i8F/ghYD1wBfHi+g2fmbuA5wB2ZubL8u2O+baJIAnwG+CdgHfAJ4Gfblp8FvB/41TLu9wIXRMT4PLs9B/gksLaMuQH8t/J1PBl4BvDrHds8n+JcPA74BeBZ5fxXl6/pR4GzgP/asd0HgTrFOTwTeCYwX8nBOeVrXEfxb/CZiBjtst7vAGeXx30c8ETgrYs4x38P/GpmrgIey+yL7aMo2shG4FeAd0XEYeWy/1suOwl4GvAyoJWcuAh4evn8vwA3luu0pi+a53X/GHAqxbn/vbaL2t8HTiiP99MU7bCriFgH/DvwNxRt4a+Af4+Iw+c5bqenAY9m5t8XmLftXtzxGm8Bnto23XrN8523bjrbaNd2lJlf6ojrFV32NWcbjIifB95WxrMaeAFFL4pfBm4Ffqbc759HxKOAjwK/BWwALqRIToy1HeslwPPKuE8GXgc8oWxnzwJunuc1S5KWCJMPkqSHJDM/kZl3ZGYzM/8Z+CHFRWvLTZn5D5nZAP4ZOA74w8zcl5lfAKYoLmBa/j0zv5aZ+yguhp8cRf35gXQ2MAq8PTNrmflJigu+llcD783M72RmIzM/COwrt5vLtzLzM+V52JuZl2bmtzOznpk3UyQwntaxzZ9l5v2ZeSvwVYqLfigSEe/IzC2ZuR34s9YGEXEkxYXhb2Xm7rJb/F8D584T26WZ+cnMrFFcPE/M8VpeSvFvc09mbqVIJv3yPPvtVANOj4jVmbk9My/rWPaH5fm+ENgFnFr+Wv5i4C2ZubM8V3/ZdtyLmDlvPw78r7bppzF/8uEPyn+LK4ErKRIqUJzfPy1j3EKRWJjL84AfZuY/lf+WHwW+D/zMAuei3dvKf6u9Pa5/EfC0KHq6nFHG97SImKBIVv1nD+etm+k2SpEUWGw7Anpqg68C/jwzL87C5sy8ZY7dvZji//wXy/b5f4BlwFPa1vmbzLytPH8NYJyinY1m5s2ZecNCMUuSBs/kgyTpIYmIl8VMecL9FL94r29b5e6253sBMrNzXnvPh9taTzJzF3AfsF8X/4foGOD2zMy2ee0XR48A3tB6TeXrOo6iG/pL27rIf7Zb3AAR8aiI+Lco7hSwA/hTZp8XgLvanu9h5jwc07G/9uePoEic3NkW23uBI+Z5ve3ntAlsofs5PYbZ5+GWOdaby88CzwVuiaJk5slty+7NzHrbdOv1rgfGuhx3Y/n8IuDHI+IooEqRwHpqRJxA8av/FfPE82DOb6fOc9IZXy/m2383rd4eZwHfoyiBeBpFwmhzZm5j4fO2UBwPph31uu1xFD2iejHr/Jbt8zZmv4729ruZopfE24B7IuJj0aUESJK09Jh8kCQ9aFGMx/B3FN2gD8/MtcDVQDyE3U73cijLMdYB85ZRANll3m5gedt0+4j9dwIbI6I9zuPbnt8G/Elmrm37W56ZH83MD7d1kX/OPDH8LcUv5Kdk5mrgf9L7ebkTOLZtur3nx20UvTDWt8W2OjMfM8/+2s9ppdx3t3N6B8WFZcvxbet1O8ezlL90n0NxEfoZ4OMLbQNso+gV0Xnc28t9bqZIHPwm8LXM3EmRVHgN8PXyYnWx5ju/nTrPyaz4mL+dtcx37rot+yZFucgLgYsy89rymM9jpqfHvOeth2M9mHbU67a3UZRHLBQDdJzf8v/kcR2vY9Y2mfmRzPyxcrsE/ncPMUuSBszkgyTpoVhB8eV/K0AUgwg+9iHu87kR8WNlzfcfAd/JzIV+Ob4bODwi1rTNu6Lc17ryV/Pfalv2LYp69d8sB7B7EbNLRf4OOC8inhSFFRHxvIhYtYjXsQrYAeyKiNOAX1vEth8HXh8RGyNiLfDbrQWZeSfwBeAvI2J1RFQi4uSI6CzpaPf4iHhR2Y3/tyguHL/dZb2PAm+NiA1RDHj4e8CHymXdzvG0iBgre4WsKbvP76DoIj+vshzn48CfRMSqMqH139uOC8UF9+uYufD+j47pxfo48JaIOCwiNpb7msuFwKMi4hfLtvJi4HTg38rlVwDnRsRoRGwCfm6Rsex3XjNzD3Ap8FpmXuM3KcYguahcp5fzNqcH2Y563fZ9wBsj4vHl/59HxszAsXdTjFHR8nHgeRHxjHIckjdQtM9vdjt2RJwaET9Zjr8ySdFzasF2JkkaPJMPkqQHrfxF9i8pLubvBn4E+MZD3O1HKAYEvA94PMU4BAvF8X2KC+cby27gx1AMJnklxWB0X6Dort9afwp4EfAKYDtF3fmn2pZfQjHuwzvL5ZvLdRfjjcAvAjspkhn/PP/qs/xdGfNVwOUUF8B1Zi6yXkbR5f7aMr5PAkfvv5tp/0rxGrdTjAnwojJB0OmPgUvK434PuKycN9c57vTLwM1lmcl5zDOQY4ffoOhBcCPwdYo28P625RdRJHO+Nsf0Yv0hRenJTcCXKM7fvm4rZua9FAODvgG4F3gT8Pyy9AHgdyl+5d9OMUbGRxYTyDzn9SKK0obvtk13vuaFzttCFtuOeto2Mz8B/EkZz06KXjDryu3+F0WC6/6IeGNmXk/RTv4vRW+On6EYkHJqjuOOU4yBso2iB8wRFL2KJElLXMwud5UkaXCiuKXflsx866BjWUoi4jnAezKz621HF9j2bcAjM7PXRMAhJyJ+DTg3Mxf81V+SJD049nyQJGmJiYhlEfHcspv/RoqeIJ8edFwPFxFxdEQ8tSwXOJWiV4PnV5KkPjL5IEnS0hMUXfi3U5RdXEcx/oIOjDGKuzPsBL5CUZby7oFGJEnSw5xlF5IkSZIkqa/s+SBJkiRJkvrK5IMkSZIkSeqrkUEHsFjr16/PE044YdBhSJIkSZKkDpdeeum2zNzQOb9vyYeIeD/FfbHvyczHdlkewDuA5wJ7gFdk5mUL7feEE07gkksuOdDhSpIkSZKkhygibuk2v59lFx8Anj3P8ucAp5R/rwH+to+xSJIkSZKkAelb8iEzvwbcN88q5wD/mIVvA2sj4uh+xSNJkiRJkgZjkANObgRua5veUs6TJEmSJEkPI4NMPkSXedl1xYjXRMQlEXHJ1q1b+xyWJEmSJEk6kAaZfNgCHNc2fSxwR7cVM/P8zNyUmZs2bNhv0ExJkiRJOiRM1hq840s/ZKreHHQo0qIMMvlwAfCyKJwNPJCZdw4wHkmSJEla0r5703389Zd+wBW33T/oUKRF6eetNj8KPB1YHxFbgN8HRgEy8z3AhRS32dxMcavNV/YrFkmSJEl6OGj1eKg17Pmg4dK35ENmvmSB5Qm8tl/HlyRJkqSHm3qzSDpMmXzQkBlk2YUkSZIkaRGmGsUY/TXHfNCQMfkgSZIkSUOilXSoN7veKFBaskw+SJIkSdKQaJVdOOaDho3JB0mSJEkaEq2yC2+1qWFj8kGSJEmShoRlFxpWJh8kSZIkaUi0yi0su9CwMfkgSZIkSUOi1eOh1rDng4aLyQdJkiRJGhKtsR7s+aBhY/JBkiRJkobEdNmFA05qyJh8kCRJkqQhMZ18cMBJDRmTD5IkSZI0JFpjPVh2oWFj8kGSJEmShoRlFxpWJh8kSZIkaUi0kg91yy40ZEw+SJIkSdKQqJdlF1OWXWjImHyQJEmSpCHRSjrUTT5oyJh8kCRJkqQhMT3mQ8OyCw0Xkw+SJEmSNCRqll1oSJl8kCRJkqQhUbPsQkPK5IMkSZIkDQnLLjSsTD5IkiRJ0pBoJR1q9nzQkDH5IEmSJElDYqbng8kHDReTD5IkSZI0JGZ6Plh2oeHS1+RDRDw7Iq6PiM0R8eYuy9dExP+LiCsj4pqIeGU/45EkSZKkYeaAkxpWfUs+REQVeBfwHOB04CURcXrHaq8Frs3MxwFPB/4yIsb6FZMkSZIkDbNW8mHKng8aMv3s+fBEYHNm3piZU8DHgHM61klgVUQEsBK4D6j3MSZJkiRJGlq1umM+aDj1M/mwEbitbXpLOa/dO4FHA3cA3wNen5n7/S+KiNdExCURccnWrVv7Fa8kSZIkLWm1ZtHjwbILDZt+Jh+iy7zOvkHPAq4AjgF+FHhnRKzeb6PM8zNzU2Zu2rBhw4GOU5IkSZKGwszdLiy70HDpZ/JhC3Bc2/SxFD0c2r0S+FQWNgM3Aaf1MSZJkiRJGlqWXWhY9TP5cDFwSkScWA4ieS5wQcc6twLPAIiII4FTgRv7GJMkSZIkDa1W2YXJBw2bkX7tODPrEfE64PNAFXh/Zl4TEeeVy98D/BHwgYj4HkWZxm9n5rZ+xSRJkiRJwyozLbvQ0Opb8gEgMy8ELuyY956253cAz+xnDJIkSZL0cNBoJlnmHOz5oGHTz7ILSZIkSdIB0urtMFoNkw8aOiYfJEmSJGkI1JpFwmHZaJVmFj0hpGFh8kGSJEmShkDrThcrxovqeXs/aJiYfJAkSZKkIdAqu1g2Vi2nTT5oeJh8kCRJkqQh0Eo2LC+TD3XveKEhYvJBkiRJkobAdPJh1LILDR+TD5IkSZI0BFplF8vHi54PUyYfNERMPkiSJEnSEGj1dFgxVvR8sOxCw8TkgyRJkiQNgVbywQEnNYxMPkiSJEnSEJguu5hOPtjzQcPD5IMkaZZ6o8n/+ux1bNu1b9ChSJKkNjN3u3DASQ0fkw+SpFl+cPcu3nvRjfzblXcMOhRJktRmquNWmyYfNExMPkiSZtlbqwNw9R07BhyJJElqV7fsQkPM5IMkaZY9Uw0ArjH5IEnSkuKAkxpmJh8kSbO0kg8/vHsnk7XGgKORJEktnbfaNPmgYWLyQZI0y94y+VBvJj+4e+eAo5EkSS1T9c6eD5ZdaHiYfJAkzbK3rbeDpReSJC0d9WbnmA/2fNDwMPkgSZqlVXYxVq1w9e0PDDgaSZLU0nmrzXrT5IOGR0/Jh4h4VER8OSKuLqfPiIi39jc0SdIg7J0q7nZxxrFr7PkgSdIS0iq7mO75ULfsQsOj154Pfwe8BagBZOZVwLn9CkqSNDh7phqMVIIfPW4t1925g7pdOiVJWhI6yy6m/IzWEOk1+bA8M7/bMa9+oIORJA3e3lqDZaNVHrtxDfvqTW7YunvQIUmSJKBW7yi7MPmgIdJr8mFbRJwMJEBE/Bxw50IbRcSzI+L6iNgcEW+eY52nR8QVEXFNRFzUc+SSpL7YO9Vg2ViVxxyzGoBr7nDcB0mSloJao0kETIxWymnLLjQ8Rnpc77XA+cBpEXE7cBPwS/NtEBFV4F3ATwNbgIsj4oLMvLZtnbXAu4FnZ+atEXHE4l+CJOlA2jPVYPlYlZM2rGRitMLVt+/gRWcNOipJkjTVSEYrFUarlXLang8aHj0lHzLzRuCnImIFUMnMXm78/kRgc7ktEfEx4Bzg2rZ1fhH4VGbeWh7nnsUEL0k68PZMNVg2NkK1Ejz66NX2fJAkaYmoN5qMVmM6+VC354OGyLzJh4j473PMByAz/2qezTcCt7VNbwGe1LHOo4DRiPgPYBXwjsz8xy7Hew3wGoDjjz9+vpAlSQ/RZK3BsrI752OPWcNnLr+dZjOpVGLAkUmSdGirNZqMjlSoVoJKzNx6UxoGC435sKr82wT8GkVCYSNwHnD6Att2+5bamZobAR4PPA94FvC7EfGo/TbKPD8zN2Xmpg0bNixwWEnSQ7Fnqj49kNVjN65m5746t963Z8BRSZKkqUZO93oYrVaoNU0+aHjM2/MhM/8AICK+AJzVKreIiLcBn1hg31uA49qmjwXu6LLOtszcDeyOiK8BjwN+0OsLkCQdWHumGhy+chyAU48qBp3cfM8uTli/YpBhSZJ0yKs1moyWPRFHqxVqdcsuNDx6vdvF8cBU2/QUcMIC21wMnBIRJ0bEGHAucEHHOv8K/HhEjETEcoqyjOt6jEmS1Ad7a43p+4evWTYKwM59tUGGJEmSKMd8GGn1fAjLLjRUer3bxT8B342IT1OUTrwQ2G9shnaZWY+I1wGfB6rA+zPzmog4r1z+nsy8LiI+B1wFNIH3ZebVD/K1SJIOgL1TDZaNFsmHlePFx8SufY1BhiRJkihurdledlG37EJDpNe7XfxJRHwW+PFy1isz8/IetrsQuLBj3ns6pv8C+IvewpUk9dveqQbLxmYnH3bvqw8yJEmSRHFrzfbkw5RlFxoiPSUfIuJ4YBvw6fZ5rVtkSpIeHjKTPW1lFxOjFSoBuyZNPkiSNGitW21CUXZhzwcNk17LLv6dmTtVLANOBK4HHtOPoCRJgzHVaNJo5vTdLiKCleMj7LLngyRJA9dZduGYDxomvZZd/Ej7dEScBfxqXyKSJA3M5FTxJWaiHPMBitILyy4kSRq8qbaeDyOWXWjI9Hq3i1ky8zLgCQc4FknSgO2pFUmGVtkFwAp7PkiStCTU2sZ8GLPsQkOm1zEf/nvbZAU4C9jal4gkSQOzZ6q4q4XJB0mSlp56W9nFiGUXGjK9jvmwqu15nWIMiH858OFIkgZpb5l8WNZWdrFqwrILSZKWglrHgJM1yy40RHpNPlybmZ9onxERPw98Yo71JUlDaG+tTD6093wYG+HuHZODCkmSJJU6b7W5q+6PAxoevY758JYe50mShthcZRe79zUGFZIkSSrVOpIPll1omMzb8yEingM8F9gYEX/Ttmg1RfmFJOlhZO9U8da+bHTm42HVhGM+SJK0FBRjPsyUXdQbll1oeCxUdnEHcAnwAuDStvk7gf/Wr6AkSYPRvedDlV376mQmETGo0CRJOuR19nyYsueDhsi8yYfMvBK4MiI+nJn+7CVJD3Ndx3wYH6HRTPbVm0y0DUQpSZIOrqm6ZRcaXguVXXw8M38BuDwi9uvTk5ln9C0ySdJBN323i7bkw8rx4qNi1766yQdJkgaoZtmFhthCZRevLx+f3+9AJEmDN112Mdol+TBZZ/3K8YHEJUmSoN6c6fkwYs8HDZmFyi7uLB9vOTjhSJIGac9Ug7FqhZHqzM2QVrT1fJAkSYORmWXPh+IzeqxaYapu8kHDY6Gyi51Ae1+eKKcDyMxc3cfYJEkH2WStwcTo7Lswt3o+7Db5IEnSwNTKEouxkdaYD0G9admFhsdCPR9WHaxAJEmDt2eqzvKx2R8N08mHKZMPkiQNSr1Z9HIYqRRjPlh2oWGz0JgP0yLiLODHKHo+fD0zL+9bVJKkgdgz1Zh1m02YKbvYOWnyQZKkQanVi14Os+92kd4KW0OjsvAqEBG/B3wQOBxYD3wgIt7az8AkSQff3qnGrDtdQHvZRWMQIUmSJGCq7OUw2iq7KHtAWHqhYdFrz4eXAGdm5iRARPwZcBnwx/0KTJJ08O2tNVjWcTvNlROO+SBJ0qC1SixaSYdWEqLWmLkDhrSU9dpKbwYm2qbHgRsOeDSSpIHa06XnQ+u2mztNPkiSNDD1xv5lFzAzEKW01PXa82EfcE1EfJFizIefBr4eEX8DkJm/2af4JEkH0d6pBkeuHp81r1IJVoxV7fkgSdIA7Vd2US16QDjopIZFr8mHT5d/Lf/Ry0YR8WzgHUAVeF9m/tkc6z0B+Dbw4sz8ZI8xSZIOsD21/e92AcWgkyYfJEkanFaSYaxMOrR6PtTt+aAh0VPyITM/uNgdR0QVeBdFL4ktwMURcUFmXttlvf8NfH6xx5AkHVh7pxpMdIz5AMW4D5ZdSJI0OK3kw0ils+zCng8aDr3e7eL5EXF5RNwXETsiYmdE7FhgsycCmzPzxsycAj4GnNNlvd8A/gW4Z1GRS5IOuL1dbrUJxR0v7PkgSdLgtMZ26Cy7mDL5oCHR64CTbwdeDhyemaszc1Vmrl5gm43AbW3TW8p50yJiI/BC4D3z7SgiXhMRl0TEJVu3bu0xZEnSYmQme2rdkw8rxkw+SJI0SNN3u7DsQkOq1+TDbcDVmbmYlh1d5nVu/3bgtzNz3pvHZ+b5mbkpMzdt2LBhESFIknq1r94kk/3udgFl2cWkyQdJkgZlZsyH4hJupOKAkxouvQ44+Sbgwoi4iOLOFwBk5l/Ns80W4Li26WOBOzrW2QR8LCIA1gPPjYh6Zn6mx7gkSQfInqkiD7ys25gP4yPsnjL5IEnSoLR6OIy0brVZll9YdqFh0Wvy4U+AXcAEMNbjNhcDp0TEicDtwLnAL7avkJkntp5HxAeAfzPxIEmDsbdWJB+6ll2MV9m9b95OapIkqY+mOsouxiy70JDpNfmwLjOfuZgdZ2Y9Il5HcReLKvD+zLwmIs4rl887zoMk6eDaW/ZsWDbHrTZ3WXYhSdLAWHahYddr8uFLEfHMzPzCYnaemRcCF3bM65p0yMxXLGbfkqQDq1V2sbxL2cWq8RGmGk2m6k3GRnodLkiSJB0o07fa7Ci7MPmgYdHrN8jXAp+LiL2LuNWmJGmITI/50LXsoshVe8cLSZIGY/pWmx1lFzXLLjQkeur5kJmrImIdcArFuA+SpIeZ1pgP8yUfdu2rc9iKXof+kSRJB8p+ZRdVyy40XHpKPkTEq4DXU9yx4grgbOCbwDP6Fpkk6aDaOzX3gJOr2pIPkiTp4KvVWwNOVmY9mnzQsOi17OL1wBOAWzLzJ4AzgW19i0qSdNDNjPnQfcBJsOxCkqRBqU3farPo8TBasexCw6XX5MNkZk4CRMR4Zn4fOLV/YUmSDrbW3S4mxvb/aFhhzwdJkgaq1uzo+TBi2YWGS693u9gSEWuBzwBfjIjtwB39CkqSdPC1xnxY3uVWm6smTD5IkjRItXprwMnZZRd1kw8aEr0OOPnC8unbIuKrwBrgc32LSpJ00E3f7aLLrTYtu5AkabBqjSbVSlCtzC67mLLsQkOi154P0zLzon4EIkkarL1TDcZHKtNfatqtHGv1fGgc7LAkSRJF2cVI22d0q+zCng8aFr2O+SBJepjbM9XoeptNgBXjxfxdk/Z8kCRpEGr1nL7NJsBIxbtdaLiYfJAkAcWYD8u7lFwAjFQrTIxW2D1l8kGSpEGoNZqMjsxcvo2Wd72w7ELDwuSDJAkoyi7m6vkAsHJ8xAEnJUkakFpjdtlFRDBaDcsuNDRMPkiSANgzVe96p4uWFeMjll1IkjQgtUZO3+GiZaRSsexCQ8PkgyQJKMd8mKPsAoqeD97tQpKkwag1moyNzL58G60GNcsuNCRMPkiSAJiszV92scKyC0mSBqbWaE6P89AyNmLPBw0Pkw+SJKDo+bDcMR8kSVqSijEfLLvQ8DL5IEkC5r/VJhQ9Hyy7kCRpMGqNnHW3C4DRkaBu2YWGhMkHSRJQ3GpzoTEfdu1rHMSIJElSS63RZKyj7GK0UmHKng8aEiYfJElAcavN+csuquzaVzuIEUmSpJZizIfOASctu9DwMPkgSaLZzKLnwwK32pysNb2fuCRJA1BrJCOdyQfLLjRETD5IkpisF+UUCw04CbB7ytILSZIOtm5lFyOWXWiImHyQJLGnTCgsNOYD4B0vJEkagG5lF2PVij0fNDT6mnyIiGdHxPURsTki3txl+Usj4qry75sR8bh+xiNJ6m5POZDkQne7ALzjhSRJAzBX2YVjPmhY9C35EBFV4F3Ac4DTgZdExOkdq90EPC0zzwD+CDi/X/FIkub2/bt2AHDi+hVzrrNywp4PkiQNStHzYf+yC5MPGhb97PnwRGBzZt6YmVPAx4Bz2lfIzG9m5vZy8tvAsX2MR5I0h8tuvZ+RSvAjG9fMuc7qiVEA7ts1dbDCkiRJpWLMh253u7DsQsOhn8mHjcBtbdNbynlz+RXgs90WRMRrIuKSiLhk69atBzBESRLAZbdu5zEb1zAxz5gPjz56FSOV4LJbt8+5jiRJ6o9aI7vcatOyCw2PfiYfosu8rmm5iPgJiuTDb3dbnpnnZ+amzNy0YcOGAxiiJKnWaHLVlvs56/i18663fGyEx25cw3duuu/gBCZJkqbV6k1GOsouip4PJh80HPqZfNgCHNc2fSxwR+dKEXEG8D7gnMy8t4/xSJK6uO7OHUzWmjz+EYctuO6TTlrHVVvuZ6+325Qk6aCqNS270HDrZ/LhYuCUiDgxIsaAc4EL2leIiOOBTwG/nJk/6GMskqQ5XHpLUUZx1vE9JB9OXEetkVxu6YUkSQeVZRcadn1LPmRmHXgd8HngOuDjmXlNRJwXEeeVq/0ecDjw7oi4IiIu6Vc8kqTuLrv1fo5eM8Exa5ctuO6mE9ZRCSy9kCTpIGo2k0azW/KhQr1pzwcNh5F+7jwzLwQu7Jj3nrbnrwJe1c8YJEnzu+yW7T31eoDijhenH7Oa79xklZwkSQdLrVn0bug65kPdng8aDv0su5AkLXF375jk9vv3cuYCg022e+IJh3P5rfezr+64D5IkHQytcR32H/MhmLLsQkPC5IMkHcIuK8d76GWwyZYnnbSOffUmV215oF9hSZKkNq3eDaNdej5YdqFhYfJBkg5hl96ynbGRCo85Zk3P2zzhhHUAfNdxHyRJOihag0qOjsy+fBupBo1m0jQBoSFg8kGSDmGX3bqdMzauYWyk94+DdSvGOPXIVXz7Rsd9kCTpYKiVyYXRyv4DThbLLb3Q0mfyQZIOUZO1BlffvoOzFlFy0fLEE9dx6S3bqVtnKklS302XXYzMLrtojQHRGhNCWspMPkjSIeoj37mVqUaTnzj1iEVv+6ST1rFnquEtNyVJOgimyy6q+5ddAN7xQkPB5IMkHYJ2TtZ451c382OPXM+TTz580ds/47QjOWr1BH/+ue9bZypJUp+17mgxYtmFhpjJB0k6BL3vP2/ivt1T/I9nnfqgtl82VuV/POtUrtzyABdceccBjk6SJLWrt261OdJ5t4uy54NlFxoCJh8k6RCzbdc+3vefN/LcHzmKxx239kHv54VnbuSxG1fz55/7PpO1xoELUJIkzbJ7Xx3Yv+xiuueDZRcaAiYfJOkQ886vbGay3uQNz3xwvR5aKpXgrc87nTsemOTvv37TAYpOkiR1+vL372GsWuGMjWtnzW8lH+qWXWgImHyQpEPINzZv48PfuYWff/yxnLxh5UPe39knHc4zTz+Sd391Mzdv230AIpQkSe3qjSb/esUd/MRpG1izfHTWslbZxVTdsgstfSYfJOkQcfHN9/GqD17CyRtW8ubnnHbA9vs7z3s0YyMVzj3/2yYgJEk6wL5xw71s27WPF565cb9la5ePAXD93TsOdljSopl8kKRDwBW33c8r/+Fijl47wT/9ypOmv6wcCI84fAUfefXZTDWavPj8b3GTCQhJkg6Yz1x+O6snRviJ0/a/NfYTT1jHKUes5D3/caN3n9KSZ/JBkh7GMpOPX3Ibv/y+77BuxRgfedXZbFg1fsCP8+ijV/ORVz+JWiN58Xu/xTc2bzvgx5Ak6VCze1+dz119F8874xjGR6r7La9Ugl//iZO5/u6dfOm6uwcQodQ7kw+S9DC1ZfseXvb+7/KmT17Fo49ezUdfczZHrZno2/FOO2o1H3312Swfq/LS932HN37iSrbvnurb8SRJerj74rV3s7fW6Fpy0fIzZxzD8euW866vbibT3g9aukw+SNLDzE3bdvPWz3yPn/qri7j0lu384TmP4WOvOZuNa5f1/dinHrWKz/3Wf+HXn34yn7n8dp7xVxfxji/9kG279vX92JIkPdx8+vLb2bh2GZsecdic64xUK5z3tJO5cssDfN2eh1rCRgYdgCTpodu1r85Xvn8PF1xxB1/+/t2MViq88MyNvO4nH8lx65Yf1FgmRqu86dmn8fwzjuEvPv99/vpLP+Bd/7GZcx53DC/40WM4+6TD97tPuSRJmu36u3bynz/cyq89/WQqlZh33Z99/Eb+5ss/5J1f2cyPn7LhIEUoLU4MW9ecTZs25SWXXDLoMCRpoJrN5Pq7d/KtG+7lmzfcy3/+cCv76k2OWDXOz286lpc/5QSOWNW/EovF2HzPLv7hGzfx6ctvZ89UgzXLRnnGo4/gKSev5+yT1nHsYQc3OSJJ0lL3zc3b+NUPXcr4SJXPvPYpPX1Wvv/rN/GH/3YtL33S8fzu809nYnT/MSKkgyEiLs3MTfvNN/kgSUvbzskaN2/bw43bdnHtnTu4+vYH+N6WB9gxWQfg+HXL+cnTjuC5P3I0mx5x2IK/jgzKZK3B136wlc9efRdfvf4e7t9TA+CYNROcfsxqTj1qFacdtZrTjlrFietXMGLvCEnSISYz+ZfLbuctn7qKEw5fwftf8YSeezDWG03+/PPXc/7XbuS0o1bxzl88k0cesarPEUv7M/kgSUtQZrJjss49Oya5a8ckd+/Yx907Jrn13j3ctG03N927m607Z8ZLGKtWOPWoVTx24xo2PeIwzj758IMylsOB1uq58Z0b7+XSW+/n+rt2cMPW3TTK24SNVSuctGEFG9cuY+Nhy9i4dhnHHracjYct4+g1Exy2fIyxEZMTkqSHh8lagwuuvIN//NbNXH37Dp76yMN590sfz5plo4ve11evv4c3fPxKdu2r8+zHHMXPbzqWp5y8nuoS/XFCDz8mHySpTzKTyVqT3VN1du+rs3tfgz1TdXZO1tm+Z4r799S4f88U9++tsb18/sDeGtv3TLFt5xR7a4399rl+5Rgnrl9R/q1se77iYXvRva/e4IZ7dvP9u3Zw/V072XzPLm6/fy+3b9/Lzn31/dZfNTHC4SvGWLdijHUrxovnK8c4fMUYa5ePsWpihFXjI6ycGGHVxCgrx0dYNTHC+EiFCL+ASZIGZ7LW4Id37+K7N9/Ht2+8l2/feC87J+s86siVvOzJJ/DiJxz3kMZHunvHJO/8ymb+9Yrb2TFZ58jV4zzxxMPZ9IjD+NHj1vLII1ayYtzh/9QfA0k+RMSzgXcAVeB9mflnHcujXP5cYA/wisy8bL59mnyQ1K7RTOrNJvVGUm8m9UaTRjOpNZNGI6mVy6bqTfbVG+Vj629memrOeTPTk7UGu6eKxMKefQ127auzZ6rB7qk6C72VRsCaZaOsXTbK2uVjrF0+ymHLiwvlo9ZMcMTqCY5aPcGRq8c5cvWEdZodHthb4/bte7n9/r3ctWOS+3ZNcd/ufdy7e4r7yr97d0+xffcU9eb8/xij1WDl+AjLx0ZYNlZl2WiVidEKE6PF82VjVSZGysfRmeXjIxVGRyqMVSuMlY+j1fZ5wWi5bLQ6s95otcJoNYrnlcqSLYuRJD10rR8kdkzW2LpzH/fsnOnVePeOfdz1wF5u3LabW+/bM/3d4RGHL+fsEw/nv565kbNPWndAE+STtQZfuu5uPnv1XVx683bu2jE5veyo1ROcsH45R6ya4IhV4xyxepwNq8Y5YtUEh68cY+X4CCvHR1gxPuJA0VqUg558iIgq8APgp4EtwMXASzLz2rZ1ngv8BkXy4UnAOzLzSfPt1+TDw1erLbaaZHbOn55uLZ+9Pl2WZxbbZSbNLHbSPr+ZrefFjGbuv10m0+tklttMH6fYb/vy1jqtWHJ6nZntuj1vlgdtzZ85TnaJpe01dX09bet3xJUJjUyamTSbSaNZ7KdZzms0mV7WLNfN7FivmeV8yvmt/c3ed9fty/Ub5WtvNGf+6h2JhEYzqbWSCY2k0Z5kaDapN3PBi/4HY7QajFUrjI9WGR8pLiDHRyqMj1RZMV5lxdgIy8dHWDFWZfnYCCvGi8eV4x3TEyMctnyMtctGWb1s1O6OB0FmsmNvnfv3TrFrX9H7ZNdkvXi+r87OyRq7Jov5e6YaTNYa7K3NPO6d6nzeZKrRPKAxVitBNYJqJRipBNVq+diaXw1GKpWZ5eVjZdb07OXVtvWqlcr0+tUKVCKoRBBRPK9WZp5Xyscon1ej2K7b8mpQLpuZP/MYVCqz9zU9v/W8QrmsmBcUxwmAjulKJQiKpB1t8yOK+a3XQ7nO9Lbl80rMvW3rtU1v2za/cz/dtg2CqMwxvy2myvSytnXscSMtWub+3+c6v9vUp79HNGk2od5sTn+vaDSTeqP8rpEz3yXal89at1n8+DBZb7Kv1ih+mKg1mCx/hNhXazJZn3mcrDXYva/BjskaOyeLz5lao/uXk/Urx9iwaoKT1q/gkUes5JQjV3LW8YdxzEEsn7zj/r1cteV+bti6mxu27uLWe/dwT5kkmazN/Xk3PlJh1USRiGglJJaPtb4nVacT7uPlXytJPz7aSsZXGa22f15VqFag2v7Y+mysFp8VnZ9xsz4/q8Xz9s+c6ff0tvfgmfnd5vme3C9zJR/62dfmicDmzLyxDOBjwDnAtW3rnAP8YxZXl9+OiLURcXRm3jnXTm/YuosXvfsbQLeL0dkzFrpYnesil4W261h/5rjzL18oDha7Xcdyeoxz5rgHKP79tl9cHFr6Zi4e2i5Q2qcrrYuT8gOgErMucuZef2a/YyMVlleLi6aR8kNlpLyIGqkWF1StD63RanHhNdq60Kq2tqm0bVtuX+6nPYkwViYSpj8kRyuMV6vTH5D+Mj28IoI1y0dZs3zxNbJzaTSTvbWiB0ytUXwpnWrMPC8es5jXmp5elkzVG8VjOa/1JbeZrS/EzbYvvZ0JuS5foLOIp5g38yW69cW6/Ut1tpKBOTup2EpENtuW6+CaTlRMT0fHdGt5x4rzrLPQPjt3Nb18/0PMGQ9zHqu3WNq1J2sOyOvotu+OfR5IvXyPSeZfqbd99BLLwmv19N+8x3i6JQHaf0zJ8ged1g8k7T/ctH5s6ZxXrj79vLWfpaLVQ258ZP/HVqnkqokRVi8bLcr+JkbZsHJ8ukfj+pXjS6Js8pi1y7omOzKTXfvqZW+Nfdy7a4rd+4rk/a59RVnpzvKxldS/d9fU9GfiTK/RImEz1WguqX+/uVSilRifnYCeTtwzkzyudDy2JzIqne+n0f09rdv7Wbf3svnew7qu17b+fu/pEV3eq7u/z3d+5swVSy/xddPP5MNG4La26S0UvRsWWmcjMCv5EBGvAV4DsPLok1g+NrLfh8jcH9rzL1/0h+gcXwYW/vLQfTlzHafHOA7Ul4CF1z/A8XccuPe4Fx//rF+w2t5EprOe5Qadv8TNXr98g6nM/k89s4+OX8janrd+gYvy3WXWG1nbm9x8v/pVOmLvtl0l5o99+o20LYEQUVzMz0oYxMwvmNWYOW/SoapaKco0GB90JP3V6pXUNTnRnJ2oaF14NMqERmciIzPLZd0THdO9tNp7gZVdvzovRrLtomS/nlzM9ELLtm3be5zRNm/6Ion23mb7b7tfbLPi7NKzrGNbaLs461hvOiAezI8MbRezcyX459h27t6CHT9ELCqejuUH8nXsF8sc8XYcs9d4evlU6+WjL3rY00L7OVDHOUCr9PSZX9nvO0/ru0jxvFIpjtY+r/0Crf07S+s7T/t3pNnfaWaOMf2dqmPeSLVCNaBa/ggxu+fYzC/r+y2b/oW9Mmt6+oeJkaLsbqz68B8rKCJYNTHKqolRTtqw8iHvL7NIgk/Vm7MSFK2eKs0uPU9mkvIzvVQaTWYl6Tt7zE4nvZqthNjMe3RnIqv9fbn9M6Y9Ydb+GdDt82rWul2OU7z47u9Z3d7Pur2XdXsP6/5+uv97W7f30M5YOvc9vV63ea11W5+1XWPJrsfrpp/Jh27/Qztj6WUdMvN84Hwoyi4+9Kp5KzMkSdIiVSpBpadLE0mS5hcRjFaL3qorHubJe+0vXtd9fj/7/mwBjmubPha440GsI0mSJEmShlg/kw8XA6dExIkRMQacC1zQsc4FwMuicDbwwHzjPUiSJEmSpOHTt7KLzKxHxOuAz1PcavP9mXlNRJxXLn8PcCHFnS42U9xq85X9ikeSJEmSJA1GP8d8IDMvpEgwtM97T9vzBF7bzxgkSZIkSdJgDf5+L5IkSZIk6WHN5IMkSZIkSeqraL/f5zCIiJ3A9YOOQ0NjPbBt0EFoKNhWtBi2F/XKtqLFsL2oV7YVLcbBbi+PyMwNnTP7OuZDn1yfmZsGHYSGQ0RcYntRL2wrWgzbi3plW9Fi2F7UK9uKFmOptBfLLiRJkiRJUl+ZfJAkSZIkSX01jMmH8wcdgIaK7UW9sq1oMWwv6pVtRYthe1GvbCtajCXRXoZuwElJkiRJkjRchrHngyRJkiRJGiJDlXyIiGdHxPURsTki3jzoeLR0RMRxEfHViLguIq6JiNeX89dFxBcj4ofl42GDjlVLQ0RUI+LyiPi3ctq2oq4iYm1EfDIivl++xzzZ9qJuIuK/lZ9BV0fERyNiwrailoh4f0TcExFXt82bs31ExFvK77zXR8SzBhO1BmWO9vIX5WfRVRHx6YhY27bM9nKI6tZW2pa9MSIyIta3zRtYWxma5ENEVIF3Ac8BTgdeEhGnDzYqLSF14A2Z+WjgbOC1Zft4M/DlzDwF+HI5LQG8Hriubdq2orm8A/hcZp4GPI6i3dheNEtEbAR+E9iUmY8FqsC52FY04wPAszvmdW0f5XeYc4HHlNu8u/wurEPHB9i/vXwReGxmngH8AHgL2F7Uta0QEccBPw3c2jZvoG1laJIPwBOBzZl5Y2ZOAR8DzhlwTFoiMvPOzLysfL6T4uJgI0Ub+WC52geB/zqQALWkRMSxwPOA97XNtq1oPxGxGvgvwN8DZOZUZt6P7UXdjQDLImIEWA7cgW1Fpcz8GnBfx+y52sc5wMcyc19m3gRspvgurENEt/aSmV/IzHo5+W3g2PK57eUQNsd7C8BfA28C2gd5HGhbGabkw0bgtrbpLeU8aZaIOAE4E/gOcGRm3glFggI4YoChael4O8WbcbNtnm1F3ZwEbAX+oSzTeV9ErMD2og6ZeTvwfyh+YboTeCAzv4BtRfObq334vVcL+f+Az5bPbS+aJSJeANyemVd2LBpoWxmm5EN0meetOjRLRKwE/gX4rczcMeh4tPRExPOBezLz0kHHoqEwApwF/G1mngnsxm7z6qKs1T8HOBE4BlgREb802Kg0xPzeqzlFxO9QlBx/uDWry2q2l0NURCwHfgf4vW6Lu8w7aG1lmJIPW4Dj2qaPpejOKAEQEaMUiYcPZ+anytl3R8TR5fKjgXsGFZ+WjKcCL4iImynKt34yIj6EbUXdbQG2ZOZ3yulPUiQjbC/q9FPATZm5NTNrwKeAp2Bb0fzmah9+71VXEfFy4PnASzOzddFoe1G7kykS4VeW33ePBS6LiKMYcFsZpuTDxcApEXFiRIxRDJRxwYBj0hIREUFRk31dZv5V26ILgJeXz18O/OvBjk1LS2a+JTOPzcwTKN5HvpKZv4RtRV1k5l3AbRFxajnrGcC12F60v1uBsyNiefmZ9AyK8YdsK5rPXO3jAuDciBiPiBOBU4DvDiA+LSER8Wzgt4EXZOaetkW2F03LzO9l5hGZeUL5fXcLcFb5nWagbWXkYB3oocrMekS8Dvg8xQjS78/MawYclpaOpwK/DHwvIq4o5/1P4M+Aj0fEr1B8Mfz5wYSnIWBb0Vx+A/hwmfi+EXglRfLe9qJpmfmdiPgkcBlFd+jLgfOBldhWBETER4GnA+sjYgvw+8zx2ZOZ10TExymSnXXgtZnZGEjgGog52stbgHHgi0WOk29n5nm2l0Nbt7aSmX/fbd1Bt5WY6a0jSZIkSZJ04A1T2YUkSZIkSRpCJh8kSZIkSVJfmXyQJEmSJEl9ZfJBkiRJkiT1lckHSZIkSZLUVyYfJEnSkhYRN0fE9yJi0yK2OTkiroiIXf2MTZIk9cZbbUqSpJ5EcWP5yMzmQT7uzcCmzNz2ILbdlZkrD3xUkiRpMez5IEmS5hQRJ0TEdRHxbuAy4LiI+NuIuCQiromIP2hb9+aI+IOIuKzsqXBaOX9DRHyxnP/eiLglItaXy34pIr5b9lJ4b0RUe4jp5oj404j4VhnHWRHx+Yi4ISLO69e5kCRJD57JB0mStJBTgX/MzDMz8xbgdzJzE3AG8LSIOKNt3W2ZeRbwt8Aby3m/D3ylnP9p4HiAiHg08GLgqZn5o0ADeGmPMd2WmU8G/hP4APBzwNnAHz7oVylJkvpmZNABSJKkJe+WzPx22/QvRMRrKL5HHA2cDlxVLvtU+Xgp8KLy+Y8BLwTIzM9FxPZy/jOAxwMXFxUdLAPu6TGmC8rH7wErM3MnsDMiJiNibWbev4jXJ0mS+szkgyRJWsju1pOIOJGiR8MTMnN7RHwAmGhbd1/52GDme0bMsd8APpiZb3kQMbWO02x73pr2+40kSUuMZReSJGkxVlMkIx6IiCOB5/SwzdeBXwCIiGcCh5Xzvwz8XEQcUS5bFxGPOPAhS5KkQfOXAUmS1LPMvDIiLgeuAW4EvtHDZn8AfDQiXgxcBNwJ7MzMbRHxVuALEVEBasBrgVv6E70kSRoUb7UpSZL6KiLGgUZm1iPiycDflgNM9rr9zXirTUmShpplF5Ikqd+OpxhU8krgb4BXL3L7rcCXI2JTrxtExMkRcQVw9yKPJUmS+sCeD5IkSZIkqa/s+SBJkiRJkvrK5IMkSZIkSeorkw+SJEmSJKmvTD5IkiRJkqS+MvkgSZIkSZL6yuSDJEmSJEnqq/8fP4Vvor9TLL4AAAAASUVORK5CYII=", - "text/plain": [ - "
    " - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig,ax = plt.subplots(figsize=(18,3))\n", - "ax.set_title('amplitude-range plot showing our two reflectors')\n", - "ax.plot(range, np.abs(S))\n", - "ax.set_xlabel('range [m]')\n", - "ax.set_ylabel('amplitude')\n", - "ax.set_xlim(0, R2*1.2);" - ] - }, - { - "cell_type": "markdown", - "id": "1c5b4399-f460-485d-ae1c-b96d83c4b99f", - "metadata": {}, - "source": [ - "...and compute the range of the reflectors:" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "id": "3fc18c3a-019f-4f0b-8d22-49d815d4810f", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " first reflector detected at 49.804 m.\n", - "second reflector detected at 120.041 m.\n" - ] - } - ], - "source": [ - "print(f' first reflector detected at {range[peaks[0][0]]:.3f} m.')\n", - "print(f'second reflector detected at {range[peaks[0][1]]:.3f} m.')" - ] - }, - { - "cell_type": "markdown", - "id": "a43ce3e0-c734-418f-866f-7e0cf960f2a0", - "metadata": {}, - "source": [ - "The retrieved ranges to the two reflectors are close to the prescribed values:" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "id": "ca1534ea-3592-402d-85c7-f2d4117ba459", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "50.0\n", - "120.0\n" - ] - } - ], - "source": [ - "print(R1) \n", - "print(R2)" - ] - }, - { - "cell_type": "markdown", - "id": "b19e7ab1-a3d0-409d-87dc-40f9048c2ee7", - "metadata": {}, - "source": [ - "but, again, they are a coarse measurement due to the resolution of the frequency spectrum, which in turn derives from the bandwidth, $B$ and the rate of increase in frequencies $K$. " - ] - }, - { - "cell_type": "markdown", - "id": "a7618192-3812-4abb-908e-ba3a84fe97aa", - "metadata": {}, - "source": [ - "## below this is scrap" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "id": "fa894e8a-92a6-4ee3-8511-6eb6c9c1faa2", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " first reflector detected at 1.446 rad.\n", - "second reflector detected at -0.303 rad.\n" - ] - } - ], - "source": [ - "phase = np.angle(S)\n", - "print(f' first reflector detected at {phase[peaks[0][0]]:.3f} rad.')\n", - "print(f'second reflector detected at {phase[peaks[0][1]]:.3f} rad.')" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "id": "d095c0fc-dd7f-426b-8498-8d8abccd5a20", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABB4AAADgCAYAAACkcaVJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAA6y0lEQVR4nO3deZxkd13v//en9up9Zrpnn8lk3yALGREEb5QgskkUUUFZ9KqRe+Ei/uAnRlBwgavXDbkgEgWDshMBEUQIoEF2Jstkh0wyW2cmmSU9PdN7nTqf+8c5VV3dXd1TPdM1dWrq9XykH1Vn/9aZb6W73vVdzN0FAAAAAADQDKlWFwAAAAAAAJy9CB4AAAAAAEDTEDwAAAAAAICmIXgAAAAAAABNQ/AAAAAAAACahuABAAAAAAA0DcEDACDxzMzN7IL4+d+a2e+t4LlvNrM/XqnztQsz22Nmz27yNX7MzIabfI3fNbO/b+Y1Oo2Z/bGZHTGzx8xsW/z+y7S6XACA9kXwAABoK+7+anf/I+nMfLDtdEm/x+7+Dnf/tVaXY7mSel/NbIukN0i6zN3Xr+B5mx50AQCSi+ABAIAVwrfCqCdJ9aKBspwj6ai7HzoT5WlEku4fAODUEDwAAE6Jmf2OmT1sZifM7H4z+5mabb9sZt8ws78ys2Nm9oiZ/Ui8fr+ZHTKzV9Xsf3PcheLW+Hy3mdk5i1z35rgpeLekL0jaaGZj8c/G+V0n5n+zbGZXm9kd8XU+Lqkw7/wvNLO74nJ/08yuWOIevM3MbjGzD5nZcUm/bGZPNbNvxccfNLN3m1mu5hg3s1eb2UNmNmJm7zEzi7elzewv4mbuu83stbXN3M2s38zeH5/30fg+pE9Sto/Hr/UOM7tykX3zZvZOMzsQ/7wzXlf3Htc5/vlxHTgRl+uN87a/If43P2hmv1Kzvt/M/tHMDpvZXjN7i5ml4m17zeya+PnL4/twWbz8a2b2mZrX+aH4eaVbwKvMbF98H99cc72imX0wvu8PmNlv2xKtDuI6+z0zG40ff6Rm25xv8Bcpx6+a2T5JX5133sXq7qSZDcb7vMXMAjPri5f/2MzeebL7Vuc11KujdetR/HpurSnXzXXOt2QdNLNfj+9t5f8LTzGzf5K0VdK/xuf97XjfF5nZfRa9V/7TzC6dd3/fZGZ3Sxo3s0y8/Gh87u+b2XWL/dsBAJKF4AEAcKoelvSjkvol/YGkD5nZhprtPyzpbklrJH1E0sck/ZCkCyS9XNK7zaynZv9fkvRHkgYl3SXpw0td3N3HJT1P0gF374l/Dix1jEUBwGck/ZOk1ZI+Kelna7Y/RdIHJP1GXO73SfqsmeWXOO31km6RNBCXuSzpt+LX8XRJ10n6n/OOeaGie3GlpJ+X9JPx+l+PX9NVkp4i6afnHfdBSYGie3i1pOdIWqqbwfXxa1yt6N/gM2aWrbPfmyU9Lb7ulZKeKukty7jH75f0G+7eK+lJmvtBe72iOrJJ0q9Keo+ZrYq3/d9423mSrpX0SkmVYOI2ST8WP/9vkh6J96ks37bE636mpIsV3fvfr/lA+1ZJ2+Lr/YSieliXma2W9HlJ71JUF/5S0ufNbM0S153vWkmXavbfV9KSdfd7817jXknPqFmuvOal7ls98+to3Xrk7l+eV65frnOuReugmf2cpLfF5emT9CJFrSdeIWmfpJ+Kz/t/zOwiSR+V9HpJQ5L+TVEwkau51sskvSAu9/mSXivph+J69pOS9izxmgEACULwAAA4Je7+SXc/4O6hu39c0kOKPrBW7Hb3f3D3sqSPS9oi6Q/dfdrdvyRpRtGHl4rPu/vX3H1a0Qfhp1vU33wlPU1SVtI73b3k7rco+rBX8euS3ufu33H3srt/UNJ0fNxivuXun4nvw6S73+7u33b3wN33KAovrp13zJ+4+zF33yfpPxR94JeiEOKv3X3Y3Uck/UnlADNbp+hD4evdfTxuCv9Xkl66RNlud/db3L2k6INzYZHX8kuK/m0OufthRUHSK5Y473wlSZeZWZ+7j7j7HfO2/WF8v/9N0piki+NvyX9B0o3ufiK+V39Rc93bNHvfflTS/65ZvlZLBw9/EP9b7JS0U1GYIkX39x1xGYcVhQqLeYGkh9z9n+J/y49KelDST53kXtR6W/xvNdng/rdJutaiFi5XxOW71swKioKq/2rgvtVTraOKAoHl1iNJDdXBX5P0f9z9ex7Z5e57FzndLyh6z98a188/l1SU9CM1+7zL3ffH968sKa+onmXdfY+7P3yyMgMAkoHgAQBwSszslTbbJeGYom+6B2t2ebzm+aQkufv8dbUtHvZXnrj7mKQnJC1o1n+aNkp61N29Zl3tB6NzJL2h8pri17VFUdPzX6ppFv+FeuWWJDO7yMw+Z9GMAMclvUNz74skPVbzfEKz92HjvPPVPj9HUWhysKZs75O0donXW3tPQ0nDqn9PN2rufdi7yH6L+VlJz5e016JuMk+v2XbU3YOa5crrHZSUq3PdTfHz2yT9qJmtl5RWFF49w8y2Kfq2/64lynMq93e++fdkfvkasdT566m08niKpHsUdXu4VlFYtMvdj+jk9+1k5TiVetTosVsUtYRqxJz7G9fP/Zr7Omrr7y5FrSPeJumQmX3M6nT7AQAkE8EDAGDZLBp/4e8UNX1e4+4Dku6VZKdx2mrrhrgLxmpJS3adkOR11o1L6qpZrh2Z/6CkTWZWW86tNc/3S3q7uw/U/HS5+0fd/cM1zeKft0QZ3qvom/EL3b1P0u+q8ftyUNLmmuXaFh/7FbW+GKwpW5+7X77E+WrvaSo+d717ekDRh8qKrTX71bvHc8TfcF+v6APoZyR94mTHSDqiqDXE/Os+Gp9zl6LQ4HWSvubuJxQFCjdI+nr8QXW5lrq/882/J3PKp6XrWcVS967etm8q6iLyM5Juc/f742u+QLMtPJa8bw1c61TqUaPH7lfUJeJkZZDm3d/4Pbll3uuYc4y7f8Tdnxkf55L+tIEyAwASgOABAHAquhX94X9YkiwaMPBJp3nO55vZM+M+3n8k6TvufrJvjB+XtMbM+mvW3RWfa3X8bfnra7Z9S1H/9NfFg9W9WHO7h/ydpFeb2Q9bpNvMXmBmvct4Hb2SjksaM7NLJP2PZRz7CUm/aWabzGxA0psqG9z9oKQvSfoLM+szs5SZnW9m87tx1LrGzF4cN91/vaIPjd+us99HJb3FzIYsGtzw9yV9KN5W7x5XmVkubg3SHzeZP66oWfyS4i44n5D0djPrjcOs/6/mulL0Yfu1mv3Q/Z/zlpfrE5JuNLNVZrYpPtdi/k3SRWb2i3Fd+QVJl0n6XLz9LkkvNbOsmW2X9JJllmXBfXX3CUm3S3qNZl/jNxWNOXJbvE8j921Rp1iPGj327yW90cyuid8/F9jsILGPKxqTouITkl5gZtfF4468QVH9/Ga9a5vZxWb2rHi8lSlFLaZOWs8AAMlA8AAAWLb4m9i/UPRB/nFJT5b0jdM87UcUDf73hKRrFI07cLJyPKjoQ/MjcdPvjYoGjtypaOC5Lylqol/Zf0bSiyX9sqQRRf3MP1WzfYeicR7eHW/fFe+7HG+U9IuSTigKMj6+9O5z/F1c5rsl3anow2+g2Q9Yr1TUzP7+uHy3SNqw8DRV/6LoNY4oGgPgxXE4MN8fS9oRX/ceSXfE6xa7x/O9QtKeuGvJq7XEoI3z/C9FLQcekfR1RXXgAzXbb1MU5HxtkeXl+kNF3U12S/qyovs3XW9Hdz+qaBDQN0g6Kum3Jb0w7u4gSb+n6Nv9EUVjYnxkOQVZ4r7epqg7w3drlue/5pPdt5NZbj1q6Fh3/6Skt8flOaGo9cvq+Lj/rSjcOmZmb3T37yuqJ/9XUSuOn1I0+OTMItfNKxrz5Iiili9rFbUmAgC0AZvbzRUAgDPPomn7ht39La0uS5KY2fMk/a27151a9CTHvk3SBe7eaAjQcczsf0h6qbuf9Nt+AABw6mjxAABAQphZ0cyeHzft36SoBcinW12us4WZbTCzZ8RdBC5W1JqB+wsAQJMRPAAAkBymqNn+iKKuFg8oGm8BKyOnaBaGE5K+qqgryt+0tEQAAHQAuloAAAAAAICmocUDAAAAAABoGoIHAAAAAADQNJlWXdjMCoqmhsrH5bjF3d+61DGDg4O+bdu2M1A6AAAAAJ2oVA714GMn5qwrZNIq5qKfrmxahWxaZi0qIJBQt99++xF3H6q3rWXBg6J5s5/l7mNmlpX0dTP7grt/e7EDtm3bph07dpy5EgIAAADoKHuOjOvH/vw/9ZYXXKpzB7u1c3hU9wwf093Dozo6PqNxSTNp0yXr+/Tkzf26cnO/nrxpQBet61EmTYNydC4z27vYtpYFDx6NajkWL2bjH0a6BAAAANAyQRhKktb2FXTdpet03aXrJEnurgOjU7p7/zHd/eio7hke1ed2HtBHvrNPkpTPpHT5xj5dsXlAl2/s02Ub+3Th2l7lMoQRQCtbPMjM0pJul3SBpPe4+3fq7HODpBskaevWrWe2gAAAAAA6SqkcfReaTc3tS2Fm2jRQ1KaBop735A2SojBi79EJ7Rw+pnuGR3X38Kg+sWO/JmbKkqRcOqUL1/Xosg19unxjny7f1K9L1veqt5A9sy8KaLGWBg/uXpZ0lZkNSPq0mT3J3e+dt89Nkm6SpO3bt9MiAgAAAEDTlMPoI0c6dfJBHMxM2wa7tW2wW9dftal6/J6j47r/wHHdd+C47jswqq8+eEifvH24ety2NV26fGO/LotbRly+sU9rewvNeUFAArQ0eKhw92Nm9p+Snivp3pPsDgAAAABNUSpHXS2ypzheQzplOn+oR+cP9einrtwoKWoZcejEtO47MKr7Ho0CiXseHdXn7zlYPW6wJ6/LN/bpkvW9umRDry5e16fz13Yrn0mf/osCWqyVs1oMSSrFoUNR0rMl/WmrygMAAAAAQdziIZNeuWkrzEzr+gpa11fQsy5ZV10/OlnSAwePV1tH3H/wuL718FHNxOFHJmU6b6hb1140pDe/4LIVKw9wprWyxcMGSR+Mx3lISfqEu3+uheUBAAAA0OGCcuNdLU5XfzGrp523Rk87b011XakcaveRcT342Ak9ePC4vvrgIf3df+3WG55zsQpZWj+gPbVyVou7JV3dqusDAAAAwHyVWS1OtavF6cqmU7poXa8uWterF125UWt68vqjz92v6VJI8IC2xdwuAAAAABCrtHjInIEWD40oxmHDZKnc4pIAp47gAQAAAABi1TEeUsn4qFTIRuWYInhAG0vGuwkAAAAAEiCoDOy4goNLno5K94qpgOAB7YvgAQAAAABipbjFQzYxwUOlxUPY4pIAp47gAQAAAABi5XhwyXRiulrEYzzM0OIB7SsZ7yYAAAAASIBSwgaXpKsFzgYEDwAAAAAQq8xq0arpNOcrZKLgYZrBJdHGkvFuAgAAAIAEmO1qkYwWD8Vc3OKBMR7QxggeAAAAACBWKidzcMlJWjygjRE8AAAAAEAsCCvTaSbjo1Klq8UUwQPaWDLeTQAAAACQAEGY0MEl6WqBNkbwAAAAAACxIGGzWuQz0Uc2WjygnRE8AAAAAEAsKCdrcMlUypTPpAge0NYIHgAAAAAgFoSuTMpklozgQYq6WxA8oJ0RPAAAAABALAhdmYTMaFFRyKYY4wFtjeABAAAAAGKlcqhsKlkfk4rZtKYCWjygfSXrHQUAAAAALRSUk9jiIa3JGYIHtK+WBQ9mtsXM/sPMHjCz+8zsN1tVFgAAAACQoq4W6YS1eMhn05oK6GqB9pVp4bUDSW9w9zvMrFfS7WZ2q7vf38IyAQAAAOhgQTlUNmktHpjVAm2uZVGeux909zvi5yckPSBpU6vKAwAAAABJHFyymEtrmuABbSwRbYjMbJukqyV9p862G8xsh5ntOHz48BkvGwAAAIDOEU2nmYiPSVWFTFqTBA9oYy1/R5lZj6R/lvR6dz8+f7u73+Tu2919+9DQ0JkvIAAAAICOEZRDZVLJavHAdJpody0NHswsqyh0+LC7f6qVZQEAAACAUtmVSbf8+9k5Ctk0YzygrbVyVguT9H5JD7j7X7aqHAAAAABQUQ6T2OKB4AHtrZVR3jMkvULSs8zsrvjn+S0sDwAAAIAOl8TBJaPgga4WaF8tm07T3b8uKVnvaAAAAAAdrVQOlU3a4JLZlGbKocqhK52w1hhAI5L1jgIAAACAFkrih/tCNi1Jmg7oboH2RPAAAAAAALFocMlkBQ/FOHiYnCF4QHsieAAAAACAWBCGyiZuVouoPFMB4zygPSXrHQUAAAAALRSUk9vVgpkt0K4IHgAAAAAgFoSubMK6WuQzBA9oby2b1eJUjE0H+vpDR2QWT4dhksmqy2a1zytHzdseb6scp5p9q+dacN6F54kvX/dc869TXb9YmeftK1NDZZ5/7jn7zt4AAAAAAA0KyqEyCZvVopgjeEB7a6vgYfeRcb38/d9pdTHaylJhiUwLQo3aAKNywMJQZzbgUG0Yssi5quVYIizRvOVU5XqV5VR0bCq+SCrev7pfTWhUWZeKr127PP+1zNm3Zp+U1e4XX6/yPBUVOFV7vZrzVs+Rmn1tqcVeV/WYxa9X2b/6mlOLXM9m/03nvOZFrjf7GmrusZlS8bXSZtXrplKz+6bjfSrnT6Xix8q+tdtTlf1nX0N139S8fSvXTRnBGQAAaJkgdGWS1tUiE4/xUGKMB7Sntgoezhvq1gd/4+lyd7kkd8nliv+rLrtH+0fron1Vs8193rb4WFW2zztXZd/Z/ZY417zjVOdcqi1/zfPaMtc7bv7rU+W6i5RZC869cF/Vlr9mW+3+1essUqbq3r54mSvXWXiuxf+Nwup+Pmc59NryusJw9rgwlMoKq/uE815fWPNYucez5412rl2uvqbquSrHRwWec52aexjOK3O9bVja/BAjnVoYUqTicCS9SIiRStmCfWvDjVTNvtVQJTV33wWhSk1Ak66uqxwblaXyPGVWLXft+tl9a55XXuOcdTZnXeV1Vs45u6/q7Dt7/fnHpVPznlfOEa/LplOJ69sKAMCZEiRwVgvGeEC7a6vgoTuX0VPPXd3qYgArYmGgMje8qYYZkjycu642BJlzjrB+oFIbcs0JRepcL4zPH4Zzrxe6q+weLYeq7ufx+jnHV7fPHlvdHrrK868Vl6Uc+tx955Rl7r6he7z/wnNVyl67byPnKoeuUnluGco1r2f+uarlDaP9ymFNucLKfYmOL8fr28FgT15ff9OPV//IAQCgkwRhqEziZrWoBA+0eEB7aqvgATibVLtKKFmJOpprNqTwmpBCC9bN2R6HGnO21wQs9dbPOa5mXbkmKJldN1uuu/Yd07/f95hGJma0ob/Y6tsFAMAZl8SuFsU4eJikxQPaFMEDAJxBqZQpJVNSGxN85s5H9e/3PabJGf6wAQB0pqDsiRtcspCtjPHA72e0p2S9owAALTX7hw1NOQEAnalUDpM3nSZjPKDNETwAAKqqf9gE/GEDAOhM5dATN8hypavFdMAXA2hPBA8AgKrKHzZTdLUAAHQgd4/GeEjY4JLZdDTDFl0h0a6S9Y4CALRUgRYPAIAOFsQzUGUT1uLBzFTIpulqgbZF8AAAqGKMBwBAJwvKUfCQTtgYD1L05QBfDKBdETwAAKqq03XRlBMA0IGCMAreswmb1UKKfkfzxQDaVUvfUWb2ATM7ZGb3trIcAIAIXS0AAJ2s0uIhk8AWD/lsSpN0tUCbanWUd7Ok57a4DACAWCFTma6Lb1QAAJ2nFLd4SNrgklL0O3qa4AFtqqXvKHf/mqQnWlkGAMCsQq4yxgN/2AAAOk85Hlwyk7DBJaVoHCa+GEC7Sl6UN4+Z3WBmO8xsx+HDh1tdHAA4q+XSKZkRPAAAOlO1q0UCg4dijlkt0L4SHzy4+03uvt3dtw8NDbW6OABwVjMzFTL8YQMA6Eylcjy4ZEK7WjDGA9pV8t5RAICWir5RoSknAKDzVLpapBPY4qGQ5YsBtC+CBwDAHIUMo2YDADpTKe5qkU3orBZ8MYB21erpND8q6VuSLjazYTP71VaWBwDANyoAgM4VVGa1SCXv+9liNq1pprtGm8q08uLu/rJWXh8AsFAUPPCNCgCg8wSVrhYJbPFQyKY1OUPwgPaUvCgPANBS0XRd/GEDAOg8lVktsgls8VDIpjQV8MUA2lPy3lEAgJaiqwUAoFMF8awWmSS2eMikVQ69OvMG0E4IHgAAcxSzaU3RhxQA0IEqXS0yCZzVophLSxIDQKMtETwAAOagDykAoFNVB5dMJ+9jUj4bBQ+0SkQ7St47CgDQUkzXBQDoVJXpNJPY4qGQiT66TfM7Gm2I4AEAMAfTdQEAOlW50tUiiWM80OIBbYzgAQAwB10tAACdqjJwYyaBs1oUs4zxgPaVvHcUAKClmK4LANCpqtNpJrrFA7+j0X4aCh4s8nIz+/14eauZPbW5RQMAtEIxy3RdAIDOVOlqkU7iGA/Z6KMbXS3Qjhpt8fA3kp4u6WXx8glJ72lKiQAALVWgKScAoEOV4lktsgmc1YIxHtDOGn1H/bC7v0bSlCS5+4ikXNNKBQBoGabrAgB0qiDJs1rwxQDaWKPBQ8nM0pJcksxsSBJtcAHgLMR0XQCAThVUZrVI4OCSla4W/H5GO2r0HfUuSZ+WtNbM3i7p65Le0bRSAQBappjjGxUAQGcKKrNaJHlwSaa8RhvKNLKTu3/YzG6XdJ0kk/TT7v5AU0sGAGiJQoauFgCAzlRt8ZDk4IHfz2hDjc5qcb6k3e7+Hkn3SvoJMxtoZsEAAK3BdF0AgE5VmdEpkV0t4q6QkzP8fkb7afQd9c+SymZ2gaS/l3SupI80rVQAgJYp5uI/bPhGBQDQYcqhyyyZ02lm0ill00ZXC7SlRoOH0N0DSS+W9Nfu/luSNjSvWACAVsnT1QIA0KFKZVc2ga0dKgqZNL+f0ZaWM6vFyyS9UtLn4nXZ0724mT3XzL5vZrvM7HdO93wAgNNHH1IAQKcKymEix3eoyGfTdIVEW2o0ePgVSU+X9HZ3321m50r60OlcOJ6e8z2SnifpMkkvM7PLTuecAIDTV5nVguABANBpgtAT2c2iophL8fsZbanRWS3ul/S6muXdkv7kNK/9VEm73P0RSTKzj0m6XtL9p3leAMBpqAxexTcqAIBOE4Shsmm6WgArrdFZLS40s1vM7H4ze6Tyc5rX3iRpf83ycLxu/rVvMLMdZrbj8OHDp3lJAMDJ0NUCANCpgrIrk+AWD4UswQPaU6Nx3j9Ieq+kQNKPS/pHSf90mteu9472BSvcb3L37e6+fWho6DQvCQA4mUrwwKwWAIBOE4TJDh6KjPGANtVo8FB0969IMnff6+5vk/Ss07z2sKQtNcubJR04zXMCAE5TOmXKpVP8YQMA6DjR4JLJ7WqRz6b4YgBtqaExHiRNmVlK0kNm9lpJj0pae5rX/p6kC+OBKh+V9FJJv3ia5wQArIB8lsGrAACdpxR6ome1KGTTOnxiutXFAJat0Tjv9ZK6FA0weY2kV0h61elc2N0DSa+V9EVJD0j6hLvfdzrnBACsjCJ9SAEAHajcBmM8TAe0SET7aXRWi+/FT8cUTa25Itz93yT920qdDwCwMhi8CgDQiYIwVCaV3K4WRVokok01FDyY2UWS/n9J59Qe4+6nO84DACCBClnGeAAAdJ5S2ZVNeFcLxnhAO2p0jIdPSvpbSX8niZoOAGe5In/YAAA6UDl0pRPe1WJ8OtDN39itC9b26oK1PVrXl5dZcssMSI0HD4G7v7epJQEAJEaerhYAgA5USvisFtvPWaWPfXef3vav91fX9eYzOn9tjy5Y26MLq4+92rSqmOgQBZ1lyeDBzFbHT//VzF4j6VOSqsOouvsTTSwbAKBFCtm0RidLrS4GAABnVBC6CtnkBg/PuXy9dl62TofHprXr8THtOjymXYfG9NDjY7rtB4d1y+3D1X3zmZTOG5oNIy5Y26Pzh3p0zpouFbLpFr4KdKKTtXi4XZJLqkRlb5i3/bwVLxEAoOWK2ZQOHafFAwCgswShK53gwSUlycy0tregtb0F/cgFg3O2jU6UtOvwiWoYsevwmG7fO6LP7jxQc7y0oa+gbYPd0c+aLm1b061zB7u1ZTWhBJpjyeDB3c+VJDMrSvqfkp6pKIj4L0VjPgAAzkIMXgUA6ERBOVS2jbsn9Hdldc05q3XNOavnrJ+YCfTwoXE9cmRMe45MaM/Rce0+Mq4v3HNQIxOzLRzNpI39RZ072K1z1nTp3MFubVsTBRRbVheVzxBK4NQ0OsbDByUdl/SuePll8bqfb0ahAACtVcgwxgMAoPMEZVcmwbNanKquXEZP3tyvJ2/uX7Dt2MSM9hyd0J4jURix9+i4dh+d0OfuPrig2+W6vry2rOrS5lVFbVkdP67q0uZVXdowUFA2weNjoLUaDR4udvcra5b/w8x2NqNAAIDWK+bSTKcJAOg4QRgqk/CuFittoCunq7pyumrLwIJtI+Mz2nN0XHuOjmvf0UkNj0xo/8iEduwd0b/efVDl0Kv7pkza0F/U5lVFbV7VpS2r48dVRW0cKGpdX0G5TGfdW8xqNHi408ye5u7fliQz+2FJ32hesQAArZTPpuhqAQDoOEF4drZ4OFWrunNa1Z3T1VtXLdgWlEMdHJ3S/pEJDY9MaviJ6HH/yIS++fARPXbnlHw2l5CZNNiT14b+QvxT1Ib+gtb3F7RxoKj1fQXCibNYo8HDD0t6pZnti5e3SnrAzO6R5O5+RVNKBwBoiUImrZkgVBi6Um3c1xUAgOUIyt5xLR5OVSad0pbVXdqyuqvu9umgrIPHomDi4LEpHRid1GOjUzowOqXdR8b1zV1HdWI6mHNMJZzYGAcSG/qLWtuX19regtbFj2t78xroysqMv0/aSaPBw3ObWgoAQKIUc9HgUdNBWH0OAMDZLupqwQfalZDPpKszZyzmxFRJj41O6eDolA6OTurAsak4nJjUI4fH9Y1dRzU2L5yQpFw6paHevIZ681rbm9e6viiQqIQUQ/Hz1V05ZRh3IhEaCh7cfW+zCwIASI5C3MxxslQmeAAAdIyzdXDJpOotZNVbyOrCdb2L7jMxE+jQ8WkdOjGtQyem9Pjx6PFwvG7P0XF9d88TOjZRWnCsmTRQzGpNT15runMa7MlrTU9Oq7tzWtOT12D8uLo7p8GenPqLtKRolkZbPAAAOkhlDm9mtgAAdJJSOWRmhoTpymW0bTCzZMsJKeracfhEHFAcn9LhE9M6MjajJ8ZndHQ8ev7gY8d1dHymbkghSZmUVUOJNd25akixqiunVV1Z9cePq7qikGJVd07duTRhRQMIHgAAC1RaORA8AAA6SRC60nS1aEv5TFqb46k9T6ZUDjUyMaOjY/HP+PS8xxkdHZvW/v0TemJsZsFYFLWyadNAV04DxSiQGOjKaqCr8jwXP8+qv5hTXzGjvkJWfcWsevOZjhpHi+ABALBAPhMFD8xsAQDoJMxq0Rmy6VQ8UGWhof1L5VDHJkoanZzRyERJI3GriWPx8rGJGY2MR8v7npjQzuFo/Uyw+NTkZlJPfjaI6Ctk1FfMqr+Yjdct3FZdX8yqJ9dewQXBAwBggUI2amY6VVr8FyYAAGeboBwqy6wWmCdbM5hlo9xdU6WoZcXIxIxGJ0o6PhXo+FRJxyfj55OleDlav/+JCd0fr1+qlYUUBxe5jLrzGfUUosfefEbd+bR68ln15NPV9T3xz+w+0TGVdV3ZdNNDDIIHAMACxXiMh2laPAAAOkQYukIXLR6wIsxMxVxaxVxRGweKyz6+HLrG4qBidF5AcXyyVA0nxqcDjU0HGpsua3w60OET0/FytC0IvYGySt25ShCRVk8hCi66chl159Iqxo9dubS68nPXFXPpKLw4yWDkLQkezOznJL1N0qWSnuruO1pRDgBAfZXBJelqAQDoFJUPaEyniSRIp0z9XVn1d2W15RTP4e6aDsJqCHFiqjaomA0nxqbLGquz7YnxSU3MBJqYKWtiOtBEqSw/eY5RV6taPNwr6cWS3tei6wMAljA7qwVdLQAAnSEIo995GWa1wFnCzFTIplXIpjXY03g3kcVUuo+MzwSamC5rohRofLqsyZmyxmcCPfdPFz+2JcGDuz8giWlHACChikynCQDoMKUyLR6Apcx2H0lLPcs7NvFxnpndYGY7zGzH4cOHW10cAOgIlcEl6WoBAOgUZbpaAE3TtBYPZvZlSevrbHqzu/9Lo+dx95sk3SRJ27dvP8UeJQCA5cjT4gEA0GGCMl0tgGZpWvDg7s9u1rkBAM1VndViifmnAQA4m5TiFg9ZZrUAVhxxHgBggWzalDJpcoYWDwCAzlCOx3hIp/iIBKy0lryrzOxnzGxY0tMlfd7MvtiKcgAA6quMgkxXCwBApyjFs1rQ4gFYea2a1eLTkj7dimsDABpTyKY1FRA8AAA6Q1Cd1YIWD8BK410FAKirmE1rcoYxHgAAnSGIWzykmdUCWHEEDwCAuvLZFC0eAAAdo9Liga4WwMojeAAA1FXIpDXNGA8AgA5RafHAdJrAyuNdBQCoq5hLa5LgAQDQIWbHeKDFA7DSCB4AAHUVsilNlRjjAQDQGYKQ4AFoFoIHAEBdhQzTaQIAOkepTFcLoFl4VwEA6irQ1QIA0EHKtHgAmobgAQBQVzS4JF0tAACdoVQZ44FZLYAVR/AAAKgrGuOBFg8AgM5QmdUiS1cLYMXxrgIA1FXM0tUCANA5Kl0t0nS1AFYcwQMAoK5CNhpc0t1bXRQAAJqu0tUim+IjErDSMq0uAAAgmQrZlEKX/uEbe5TNpJRJmdIpq3lMzS6nF1lf75g5+y48JsU3TQCAFgiqs1rwewhYaQQPAIC6zh3skST94efuP6PXNdOigcSigUV6iVCkuj2ltEnpVErZdLQuEz/PplPKpFPKpix6jMORbCalbCoV7TtvezYdhTGz+6eUy0SPmTrbK8tm/EELAElUYlYLoGkIHgAAdb3gig269uKfVCkIFYSucugKwjB+jJfLi6wPXeUwVFB2hV5v/3j7nP0r2+usj8+/4Brl+ueaLJXnlKH22KAc7RuErlI52l6K150JmTgIydYEFFHwEYcd6Zr18/bJZ6IQI5dJKZeJ1uUyKeXS8c/8dfP2y6ZN+UxKuXRa2YwpV3Pe2v0ISAB0onK1xQNdLYCVRvAAAFhUTz4j5VtdijPDvRJMuErhbCBRCSeCMFSpHG2fKYfVAKN2+0w5DjbmnSMIXaUgVKkm+KgNPUrx8XP2j689E4Qanw40U3bNBGWVyq6ZYHbbdPy4ksyiUd3z6ZSymdpQw5TLpJWrCT9y6ZQK2bTymZTymbQK2ZTy8fLs+tl11X0yaeWzKRXix7n7p5VNE34AOLMqATRdLYCVR/AAAIAkM4u7REhFpVtdnGWphCaVMGImCDUTP68EFTPlsmYCr1k/d7/adaXybKBRmnee6Zp1U6VQxycDTQdlTZVCTQdlTQehpkuhpoKyTmdc0pSpGk7MDyWqwUW8vpBNq5hLqZhNq5jLRI/ZlLpyGRVy6Xg5rWKu/iMhBwCJwSWBZiJ4AACgzc2GJil15Vpdmoi7q1T2BaHEVGk2nFgYWMSPc/abd1z8fLJU1rHJGU2VQk3OlKvrJkvLDzzSKVNXNt1QSFH72J3PqLv6mFF3Pn5esz5Lk22gbZTDqPUY02kCK68lwYOZ/Zmkn5I0I+lhSb/i7sdaURYAALDyzEy5TNQlo7dw5q7r7poOojBiolSuhhITM3EwMVPWZCnQ5EyoyVJl2+zy5EwQBxihJmcCHTpRio6ZmQ02pkqNd23JpVPqzqfVlcuoJ59RVz4dPc4JLGoCjJrwoq+QUW8hq95CdGx3LsOsL0ATVVs80NUCWHGtavFwq6Qb3T0wsz+VdKOkN7WoLAAA4CxhZtXuF6uadI0wHsB0fCbQxHRZY9OBJmbKGp8OND4TRI/TleW56yv7HTo+PbvvTLmhcTrMonFX+mrCiN6acGL2Mf7Jz13fV8yqN094ASwmCEOlGVwXaIqWBA/u/qWaxW9LekkrygEAALBcqZRVWyWod2XOWSqHUYgRhxFj04FOTAU6MVWa9zh3/eGxaT1yZLy6rvKN7aJlN6mvmNVAMav+rpz6K8+LWQ10RY/91eXcnPWFbHuNfQIsVxA63SyAJknCGA//XdLHF9toZjdIukGStm7deqbKBAAAcMZk0yn1d6XU35U95XNUupksDCqi58enSjo2UdLoZEnHJqPH0YkZ7T06Hj2fLC05PkY+k6qGEAPFnPq7slrdldOq7pzWdOe0us5PVy7Nt8doG0HZlSV4AJqiacGDmX1Z0vo6m97s7v8S7/NmSYGkDy92Hne/SdJNkrR9+/YzM8k6AABAm6ntZjLUu/x5cMPQdWI60Gg1nJiJHuPlKKiYXb//iQnt3H9MIxMzi7a0yGdSdQOJNd21gUVeQ73RTzdBBVooKIfKMCAs0BRNCx7c/dlLbTezV0l6oaTr3E9nwi0AAACcrlTKqt0slsM9CixGxmd0dHxGT4zN6ImJGT0xPjO7Lv7Ze3RCI+MzOjEd1D1XMQ5NhnrzGuqZDSTmLw/25JXL8AERKysIXRlaPABN0apZLZ6raDDJa919ohVlAAAAwOkzM/UVsuorZHXOmu6GjpkOyhoZL+mJ8RkdHZ/WkbFpHT4R/RyKHx8+PKZv7z6qYxOluucY6MrOCSPW9ua1vr+oDf0FresraEN/QWt783yDjYYFZVeGGS2ApmjVGA/vlpSXdGvcnO7b7v7qFpUFAAAAZ1A+k9b6/rTW9598rtXpoKyjYzPVYOJwTUhRWb5z3zE9fnxK0/NmB0mZNNSb1/q+gtb3F7Shv1gNJaLlKKRg4ExIUikMlUkRVAHN0KpZLS5oxXUBAADQXvKZtDYOFLVxoLjkfu6u0cmSDo5O6bHRKT12fCp+PqmDo1PafWRc33z4qE5MLezmsbo7p82rito0UKx57NKmVdFyb+HUB/1E+yiHtHgAmiUJs1oAAAAAp8XMNNCV00BXTpdu6Ft0v/HpQI8dj8KJSjBxYHRKwyOT+sHjJ/TVBw8taDnRV8jMCSIqwcTmVUVtWd217HExkExBmTEegGYheAAAAEDH6M5ndP5Qj84f6qm73d11dHxGwyOTenRkUsMjE3r02KSGRya17+iEvrnriMZnynOOWdUVjW+xbU2XtsaPleXV3Tlm6mgTpXKoLGOCAE1B8AAAAADEzEyDPdHMGVdtGViwvdKlYzgOJfY9MaG9R6OfHXtH9NmdBxTWzNfWk8/onDVd2ramW1vXdNWEEt1a15cnlEiQcuhK0+IBaAqCBwAAAKBBtV06nrSpf8H26aBcbR2x5+i49saP9x88ri/e95iCmlSiK5eOW1906/yhHl2wtkfnr+3ROWu6lM8w4OWZVgqdWVCAJiF4AAAAAFZIPpNetCtHUA51cHRKe46Oa8+RcT18eFwPHx7T9/aM6DN3Hajul06Ztq7uqgYS56+NznfBUI/6uxhPolmCcqgsLR6ApiB4AAAAAM6ATDqlLau7tGV1l370wqE528anA+0+EgURuw6N6eHDY3r40Li+9oMjminPDnY52JPX+UPdunh9ry5e36tL1vfqonW9zLyxAgK6WgBNQ/AAAAAAtFh3PqMnbepf0H0jKIcaHpmMgog4lHjo0Jg+dcejGpuenRp000BxThhx8fpenTfYo1yGrgONCsqhunJ8PAKagXcWAAAAkFCZdErbBru1bbBb1126rrre3atTgD742Al9P/752g8OV8eRyKZN5w32zAkkLtnQp439BQa1rCMIXZk09wVoBoIHAAAAoM2YWbXbRm0gMROEeuTImL7/2GwgcXs820bFQFdWl2/s0+Ub+6uP5w52d3w3g6DsynT4PQCaheABAAAAOEvkMildsr5Pl6zv0/U1649PlfTQ4yf0wMETuu/Acd13YFQ3f3OPZoJo/IhiNq1LN/TqSZtmw4gL1/V01OwaQRgqk6JrCtAMBA8AAADAWa6vkNU156zWNeesrq4rlUPtOjSm+w4c172Pjur+A8f1qTse1T9+a6+kqKvGhWt7dfnGvnj8iT5dtqFfxdzZGUYEZbpaAM1C8AAAAAB0oGw6pUs39OnSDX16yTWbJUlh6Nr7xITuOzCqex+NWkZ85cFD+uTtw5KiqT4vWterKzf368otA7pic78uWterbLr9WwqUwpCuFkCTEDwAAAAAkCSlUqZzB7t17mC3XnjFRknRQJaPHZ/SPcOjunt4VDuHj+kL9z6mj31vvyQpn0npSZv6dcXmfl25eUBXbhnQtjVdbTeAZbnsypwFAQqQRAQPAAAAABZlZtrQX9SG/qKec/l6SVEYsffohHYOH9PO/aO6e/iYPvrdffqHb+yRJPUVMrpic9Qi4sotA7py84DW9xda+CpOrhS6snS1AJqC4AEAAADAsphZdZrP66/aJEkKyqEeOjSmnfuPaedwFEa872uPqBxP77m2N68rNg/o6q0DuiruptFbyLbyZcwRlMOOn9kDaBaCBwAAAACnLVMzZsRLnxqtmyqVdd+B47p7+Jh27j+mu4dH9eUHHpckmUkXre2tBhFXb12lC9b2tOzDfxA6s1oATULwAAAAAKApCtm0rjlnla45Z1V13ehESXcNH9Od+0Z01/6540X05DO6ckt/FERsWaWrtg5osCd/RsoalOlqATRLS4IHM/sjSddLCiUdkvTL7n6gFWUBAAAAcOb0d2V17UVDuvaiIUnReBG7j4zrzn3HdNf+Y7pz/4j+9rbZLhpbV3fFLSKiVhGXbehTLrPyLROCMGRwSaBJWtXi4c/c/fckycxeJ+n3Jb26RWUBAAAA0CJmpvOGenTeUI9+Np7Wc3KmrHseHdVd+0d0575j+u7uJ/TZndH3lLlMSpdv7NPVW1bFYcSANg0UT3sWjairBS0egGZoSfDg7sdrFrsleSvKAQAAACB5irm0nnruaj313NXVdQdHJ3XXvmO6c3/UTeMj392rD3xjtyRpsCdfDSGu3rJKV2zuV3e+8Y865dDlLsZ4AJqkZWM8mNnbJb1S0qikH19ivxsk3SBJW7duPTOFAwAAAJAoG/qL2vDkop735A2SpFI51PcfO6E7941Uu2ncen80cGXKpIvW9erqrXGriC0DOn+oR6lFWjSUyqEkKcMYD0BTmHtzGhuY2Zclra+z6c3u/i81+90oqeDubz3ZObdv3+47duxYwVICAAAAOFuMjM/EA1dGQcRd+0Z0fCqQJPUWMvGglQO6auuArtqySqu7c5Kk8elAl7/1i7rxeZfoN649v5UvAWhbZna7u2+vt61pLR7c/dkN7voRSZ+XdNLgAQAAAAAWs6o7px+/eK1+/OK1kqQwdD1yZDwatDJuGfHu/9ileNxKbVsTDVx58fo+SWJwSaBJWjWrxYXu/lC8+CJJD7aiHAAAAADOXqmU6YK1PbpgbY9eEg9cOTET6J7h0epYEd98+Kg+c1c0cGVPPt3K4gJnraZ1tVjyomb/LOliRdNp7pX0and/tIHjTkj6fpOLh7PDoKQjrS4E2gb1BY2irmA5qC9oFHUFy0F9QaPOdF05x92H6m1oSfBwqsxsx2J9RoBa1BUsB/UFjaKuYDmoL2gUdQXLQX1Bo5JUV+jEBAAAAAAAmobgAQAAAAAANE27BQ83tboAaBvUFSwH9QWNoq5gOagvaBR1BctBfUGjElNX2mqMBwAAAAAA0F7arcUDAAAAAABoI20RPJjZc83s+2a2y8x+p9XlQbKY2RYz+w8ze8DM7jOz34zXrzazW83sofhxVavLimQws7SZ3Wlmn4uXqSuoy8wGzOwWM3sw/n/M06kvqMfMfiv+HXSvmX3UzArUFVSY2QfM7JCZ3VuzbtH6YWY3xn/3ft/MfrI1pUarLFJf/iz+XXS3mX3azAZqtlFfOlS9ulKz7Y1m5mY2WLOuZXUl8cGDmaUlvUfS8yRdJullZnZZa0uFhAkkvcHdL5X0NEmvievI70j6irtfKOkr8TIgSb8p6YGaZeoKFvPXkv7d3S+RdKWiekN9wRxmtknS6yRtd/cnSUpLeqmoK5h1s6TnzltXt37Ef8O8VNLl8TF/E/89jM5xsxbWl1slPcndr5D0A0k3StQX1K0rMrMtkn5C0r6adS2tK4kPHiQ9VdIud3/E3WckfUzS9S0uExLE3Q+6+x3x8xOKPhhsUlRPPhjv9kFJP92SAiJRzGyzpBdI+vua1dQVLGBmfZL+m6T3S5K7z7j7MVFfUF9GUtHMMpK6JB0QdQUxd/+apCfmrV6sflwv6WPuPu3uuyXtUvT3MDpEvfri7l9y9yBe/LakzfFz6ksHW+T/LZL0V5J+W1LtgI4trSvtEDxskrS/Znk4XgcsYGbbJF0t6TuS1rn7QSkKJyStbWHRkBzvVPQ/4rBmHXUF9Zwn6bCkf4i75vy9mXWL+oJ53P1RSX+u6Julg5JG3f1Loq5gaYvVD/72xcn8d0lfiJ9TXzCHmb1I0qPuvnPeppbWlXYIHqzOOqbiwAJm1iPpnyW93t2Pt7o8SB4ze6GkQ+5+e6vLgraQkfQUSe9196sljYum8qgj7pt/vaRzJW2U1G1mL29tqdDG+NsXizKzNyvqZvzhyqo6u1FfOpSZdUl6s6Tfr7e5zrozVlfaIXgYlrSlZnmzouaLQJWZZRWFDh9290/Fqx83sw3x9g2SDrWqfEiMZ0h6kZntUdRt61lm9iFRV1DfsKRhd/9OvHyLoiCC+oL5ni1pt7sfdveSpE9J+hFRV7C0xeoHf/uiLjN7laQXSvold698YKS+oNb5ikLwnfHfu5sl3WFm69XiutIOwcP3JF1oZueaWU7RgBifbXGZkCBmZor6YD/g7n9Zs+mzkl4VP3+VpH8502VDsrj7je6+2d23Kfp/yVfd/eWirqAOd39M0n4zuzhedZ2k+0V9wUL7JD3NzLri30nXKRpviLqCpSxWPz4r6aVmljezcyVdKOm7LSgfEsTMnivpTZJe5O4TNZuoL6hy93vcfa27b4v/3h2W9JT4b5qW1pXMmbrQqXL3wMxeK+mLikaJ/oC739fiYiFZniHpFZLuMbO74nW/K+lPJH3CzH5V0R+FP9ea4qENUFewmP8l6cNx8P2IpF9RFNpTX1Dl7t8xs1sk3aGoCfSdkm6S1CPqCiSZ2Ucl/ZikQTMblvRWLfK7x93vM7NPKAo6A0mvcfdySwqOllikvtwoKS/p1ijf1Lfd/dXUl85Wr664+/vr7dvqumKzrXQAAAAAAABWVjt0tQAAAAAAAG2K4AEAAAAAADQNwQMAAAAAAGgaggcAAAAAANA0BA8AAAAAAKBpCB4AAEAimdkeM7vHzLYv45jzzewuMxtrZtkAAEDjmE4TAAAsyaJJ483dwzN83T2Strv7kVM4dszde1a+VAAAYLlo8QAAABYws21m9oCZ/Y2kOyRtMbP3mtkOM7vPzP6gZt89ZvYHZnZH3ELhknj9kJndGq9/n5ntNbPBeNvLzey7ceuE95lZuoEy7TGzd5jZt+JyPMXMvmhmD5vZq5t1LwAAwOkheAAAAIu5WNI/uvvV7r5X0pvdfbukKyRda2ZX1Ox7xN2fIum9kt4Yr3urpK/G6z8taaskmdmlkn5B0jPc/SpJZUm/1GCZ9rv70yX9l6SbJb1E0tMk/eEpv0oAANBUmVYXAAAAJNZed/92zfLPm9kNiv5+2CDpMkl3x9s+FT/eLunF8fNnSvoZSXL3fzezkXj9dZKukfS9qBeHipIONVimz8aP90jqcfcTkk6Y2ZSZDbj7sWW8PgAAcAYQPAAAgMWMV56Y2bmKWjL8kLuPmNnNkgo1+07Hj2XN/n1hi5zXJH3Q3W88hTJVrhPWPK8s83cNAAAJRFcLAADQiD5FQcSoma2T9LwGjvm6pJ+XJDN7jqRV8fqvSHqJma2Nt602s3NWvsgAACAJ+GYAAACclLvvNLM7Jd0n6RFJ32jgsD+Q9FEz+wVJt0k6KOmEux8xs7dI+pKZpSSVJL1G0t7mlB4AALQS02kCAICmMLO8pLK7B2b2dEnvjQeTbPT4PWI6TQAA2h5dLQAAQLNsVTSA5E5J75L068s8/rCkr5jZ9kYPMLPzzewuSY8v81oAAKBJaPEAAAAAAACahhYPAAAAAACgaQgeAAAAAABA0xA8AAAAAACApiF4AAAAAAAATUPwAAAAAAAAmobgAQAAAAAANM3/A8z+z3RyOoklAAAAAElFTkSuQmCC", - "text/plain": [ - "
    " - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig,ax = plt.subplots(figsize=(18,3))\n", - "ax.set_title('amplitude-range plot showing our two reflectors')\n", - "ax.plot(range, np.angle(S))\n", - "ax.set_xlabel('range [m]')\n", - "ax.set_ylabel('phase')\n", - "ax.set_xlim(0, R2*1.2);\n", - "ax.set_ylim(-np.pi, np.pi);" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "id": "66f6fefc-f363-4937-a869-36d0c145048a", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0.06530727388987519\n", - "-0.013693240278268263\n" - ] - } - ], - "source": [ - "f_c = 300e6 # [Hz]\n", - "lam = c/np.sqrt(ep) / f_c\n", - "Rfine1 = lam * phase[peaks[0][0]]/(4*np.pi)\n", - "Rfine2 = lam * phase[peaks[0][1]]/(4*np.pi)\n", - "print(Rfine1)\n", - "print(Rfine2)" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "id": "3460a8ea-77e1-48f2-bca6-fdfa713d7e05", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABCsAAADgCAYAAAAqq+w1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAxWUlEQVR4nO3deZwdV3ng/d/Tt3dtlizJiywh440YQsA0BAIJTCCELRiYkDgbJENw4IUhJPBJcGASSEImkzcEhklCMISxCathAvhlNyQxA4EY2djYBgyyLduyZS22bO29Pu8fVd1dfft260rq7nu79ft+3J9bdc6pqueWjqx7nz7nVGQmkiRJkiRJ7aKj1QFIkiRJkiRVmayQJEmSJEltxWSFJEmSJElqKyYrJEmSJElSWzFZIUmSJEmS2orJCkmSJEmS1FZMVkiSlqSIyIg4t9z+h4j4b3N47isi4s/n6nyLRURsi4hnzfM1nhER2+f5Gn8UEe+fz2ucbCLizyNiT0TcHxGby79/na2OS5K0eJmskCQteZn5qsz8M1iYL8Mnu3a/x5n5F5n5262O41i1632NiI3AG4ALM/P0OTzvvCfHJEnty2SFJEkt5G+f1Ug79YsmYnkE8EBm7lqIeJrRTvdPknR8TFZIkhZMRLwpIm6PiP0R8b2IeHGl7jcj4hsR8c6IeCgi7oiInyrL74mIXRHx8kr7K8rpHdeU57s2Ih4xw3WvKIepLwO+AJwZEQfKnzPrp3XU/wY7Ih4fETeU1/k40Ft3/hdExI1l3P8eEY+d5R68NSI+GREfioh9wG9GxJMi4pvl8Tsi4m8jortyTEbEqyLiRxGxNyL+LiKirKtFxDvKIfh3RsRrq0PwI2JVRPxjed57y/tQO0psHy/f6w0R8RMztO2JiHdFxH3lz7vKsob3uMHxzyv7wP4yrjfW1b+h/DPfERG/VSlfFREfjIjdEXFXRLwlIjrKursi4gnl9q+X9+HCcv+3I+LTlff5oXJ7fMrCyyPi7vI+vrlyvb6IuLK879+PiD+IWUY3lH322xHxcPn6U5W6KSMFZojjFRFxN/Avdeedqe8ejoi1ZZu3RMRIRKws9/88It51tPvW4D006qMN+1H5fq6pxHVFg/PN2gcj4pXlvR3//8JFEfFPwCbg/yvP+wdl2xdGxK1R/F35t4j4sbr7+4cR8V3gYER0lvv3lue+LSKeOdOfnSSpvZiskCQtpNuBnwZWAW8DPhQRZ1TqfxL4LnAq8BHgY8ATgXOBXwf+NiKWV9r/GvBnwFrgRuDDs108Mw8CzwXuy8zl5c99sx0TRdLg08A/AWuATwD/uVJ/EfAB4HfKuN8LXB0RPbOc9mLgk8ApZcyjwO+V7+MpwDOB/6fumBdQ3IufAH4J+Pmy/JXle3occBHworrjrgRGKO7h44FnA7NNgbi4fI9rKP4MPh0RXQ3avRl4cnndnwCeBLzlGO7xPwK/k5krgMcw9cv56RR9ZAPwCuDvImJ1Wfe/yrpHAk8HXgaMJzOuBZ5Rbv8McEfZZnz/2lne99OACyju/R9XvgT/CbC5vN7PUfTDhiJiDfA54N0UfeFvgM9FxKmzXLfe04EfY/LPF5i173677j3eBTy1sj/+nme7b43U99GG/Sgzv1IX1282ONeMfTAiXgq8tYxnJfBCilEavwHcDfxCed6/iojzgY8CrwfWAZ+nSGZ0V671K8Dzy7jPAV4LPLHsZz8PbJvlPUuS2ojJCknSgsnMT2TmfZk5lpkfB35E8SV33J2Z+b8zcxT4OLAR+NPMHMzMLwNDFF94xn0uM7+WmYMUX56fEsX8+bn0ZKALeFdmDmfmJym+II57JfDezPyPzBzNzCuBwfK4mXwzMz9d3ofDmXl9Zn4rM0cycxtFwuPpdcf8ZWY+lJl3A/9KkSSAInHxPzNze2buBf5y/ICIOI3ii+TrM/NgOUz/ncAls8R2fWZ+MjOHKb5s987wXn6N4s9mV2bupkg+/cYs5603DFwYESszc29m3lBX96fl/f48cAC4oPxt/C8Dl2Xm/vJevaNy3WuZvG8/Dfz3yv7TmT1Z8bbyz+Im4CaKBAwU9/cvyhi3UyQiZvJ84EeZ+U/ln+VHgR8Av3CUe1H11vLP6nCT7a8Fnh7FSJrHlvE9PSJ6KZJb/7eJ+9bIRB+lSCIcaz8CmuqDvw38VWZ+OwtbM/OuGU73yxR/568p++dfA33AT1XavDsz7ynv3yjQQ9HPujJzW2befrSYJUntwWSFJGnBRMTLYnK6xEMUv1FfW2mys7J9GCAz68uqIyvuGd/IzAPAg8C0KQcn6Ezg3szMSln1y9QjgDeMv6fyfW2kGBb/a5Uh+19oFDdARJwfEZ+N4kkK+4C/YOp9Abi/sn2IyftwZt35qtuPoEi07KjE9l5g/Szvt3pPx4DtNL6nZzL1Ptw1Q7uZ/GfgecBdUUzheUql7oHMHKnsj7/ftUB3g+tuKLevBX46Ik4HahQJr6dGxGaKUQU3zhLP8dzfevX3pD6+Zsx2/kbGR5NcBNxMMSXj6RQJpq2ZuYej37ejxXE8/ajZYzdSjLhqxpT7W/bPe5j6Pqr9dyvFKIy3Arsi4mPRYEqSJKk9mayQJC2IKNaTeB/FsOxTM/MU4BYgTuC0E6Moyukha4BZp3UA2aDsINBf2a8+0WAHsCEiqnFuqmzfA7w9M0+p/PRn5kcz88OVIfvPnSWG91D8Bv68zFwJ/BHN35cdwFmV/erIknsoRnmsrcS2MjMfPcv5qve0ozx3o3t6H8UX0XGbKu0a3eMpyt+kX0zxpfXTwFVHOwbYQzHqov6695bn3EqRaHgd8LXM3E+RhLgU+Hr55fZYzXZ/69XfkynxMXs/GzfbvWtU9+8U01deDFybmd8rr/l8JkeSzHrfmrjW8fSjZo+9h2K6xtFigLr7W/6d3Fj3PqYck5kfycynlccl8D+aiFmS1AZMVkiSFsoyii8LuwGiWDTxMSd4zudFxNPKOet/BvxHZh7tN9M7gVMjYlWl7MbyXGvK38q/vlL3TYr59q8rF+x7CVOnrrwPeFVE/GQUlkXE8yNixTG8jxXAPuBARDwKePUxHHsV8LsRsSEiTgH+cLwiM3cAXwbeERErI6IjIs6JiPopJlVPiIiXlNMKXk/xRfNbDdp9FHhLRKyLYoHHPwY+VNY1uscTIqK7HHWyqhzOv49iyP6syulBVwFvj4gVZQLs9yvXheIL+muZ/KL+b3X7x+oq4LKIWB0RG8pzzeTzwPkR8atlX/ll4ELgs2X9jcAlEdEVEQPALx5jLNPua2YeAq4HXsPke/x3ijVUri3bNHPfZnSc/ajZY98PvDEinlD+/Tk3JhfK3Umxxsa4q4DnR8Qzy3VU3kDRP/+90bUj4oKI+Nly/ZgjFCOzjtrPJEntwWSFJGlBlL/xfQfFl/+dwI8D3zjB036EYgHEB4EnUKyjcLQ4fkDxRfuOclj6mRSLZ95EsfjelymmD4y3HwJeAvwmsJdi3vw/V+q3UKxb8bdl/day7bF4I/CrwH6K5MfHZ28+xfvKmL8LfIfiC/MIk1/KXkYxBeB7ZXyfBM6YfpoJn6F4j3sp1jR4SZlQqPfnwJbyujcDN5RlM93jer8BbCunvbyKWRaurPNfKUYo3AF8naIPfKBSfy1F8udrM+wfqz+lmApzJ/AVivs32KhhZj5AsRDqG4AHgD8AXlBOxQD4bxSjCPZSrPHxkWMJZJb7ei3FVIvrKvv17/lo9+1ojrUfNXVsZn4CeHsZz36KUTZryuP+O0VC7KGIeGNm3kbRT/4XxWiRX6BYgHNohuv2UKzhsodihM16ilFLkqRFIKZOwZUkaXGI4hGJ2zPzLa2OpZ1ExHOBf8jMho9xPcqxbwXOzcxmEwcnnYh4NXBJZh51VIEkSTp+jqyQJGkRi4i+iHheOe1gA8VIk0+1Oq6lIiLOiIinltMXLqAYNeH9lSRpnpmskCRpcQuKKQV7KaaBfJ9i/QjNjW6Kp1fsB/6FYprM37c0IkmSTgJOA5EkSZIkSW3FkRWSJEmSJKmtmKyQJEmSJEltpbPVAcy3tWvX5ubNm1sdhiRJkiRJqrj++uv3ZOa6RnVLPlmxefNmtmzZ0uowJEmSJElSRUTcNVOd00AkSZIkSVJbMVkhSZIkSZLaiskKSZIkSZLUVkxWSJIkSZKktrLkkxU79x3hCzfv4PbdBxgZHWt1OJIkSZIk6SiW/NNAdu0f5NUfvgGA7s4Ozlm3nAtOW875p6/ggtNWcP5pK9hwSh8dHdHiSCVJkiRJEpwEyYpHn7mKK1/7NG7buZ8f7tzPbffv57o7H+TTN9430aa/u8Z5p60okhhlAuOC01ewfkUPESYxJEmSJElaSEs+WdER8ONnreLHz1o1pXzfkWF+tHM/t91/gB+WiYx/+cEurtqyfaLNqr6uYvTF6ZUkxmkrWL2se6HfhiRJkiRJJ40ln6yYycreLp7wiDU84RFrppTvOTDID3fu50c7DxSjMe7fz2duvI/9R0Ym2qxb0cP55SiMIpmxgvPWL2dFb9dCvw1JkiRJkpackzZZMZO1y3tYu7yHnzpn7URZZrJz3+BE8uK2nfv50c79fOy6ezg8PDrRbsMpfUUSo7Iexrnrl9PbVWvFW5EkSZIkaVEyWdGEiOD0Vb2cvqqXp5+/bqJ8bCzZvvfwxHoY42tifGPrAwyVTx6JgI2r+zln3TLOXb+cc9Yt59z1xc8p/U4nkSRJkiSpnsmKE9DREWw6tZ9Np/bzcxeeNlE+PDrGXQ8c5Ic7D3Db/fu5ffcBtu46wDduf4ChkcnHp566rJtz6hIY56xbxpmrfDqJJEmSJOnkZbJiHnTVOjh3/QrOXb+C5/34GRPlo2PJvXsPs3X3fm7fdZCtuw5w++4DfOGWHTx0aHiiXV9XjUeWIzHOXbd8IqHxiFP7nVIiSZIkSVryTFYsoFplJMbPPmqyPDN54OAQt+86wNZyFMbtuw+yZdtePlN5xGoEnLmqj81r+9l86jLOXruseF23jI2r++nu7GjBu5IkSZIkaW61NFkRER8AXgDsyszHlGVvBV4J7C6b/VFmfr6suwx4BTAKvC4zv7TgQc+DiJhY2PMnH3nqlLpDQyPcsfsgt+8+wLY9h7hzzwHufOAQn/3uDh4+PDkaoyPgrNX9bF67jEeuXcbmU4vts9cuY8MpfXTWTGRIkiRJkhaHVo+suAL4W+CDdeXvzMy/rhZExIXAJcCjgTOBr0TE+Zk5yhLW393JYzas4jEbVk2r23twiDsfOMiduw+y7YGD3LmneL3hrr0cGJx81GpXLdi4pp+zT13GI05dxqY1fWw6tZ+Nq/vZuMapJZIkSZKk9tLSZEVmfi0iNjfZ/GLgY5k5CNwZEVuBJwHfnK/42t3qZd2sXtbNRZtWTynPTHYfGGTbnkNs23OQOx84WLzuOcg373iAQ0NT8zvrV/SwcU0/m9b0T76uLhIap63odbFPSZIkSdKCavXIipm8NiJeBmwB3pCZe4ENwLcqbbaXZaoTEaxf0cv6Fb086ew1U+rG18e4+8FD3FP+3F3+XHfng3zmxnsZy8n23bUOzlrdx8Y1/Zy1uo8zT+ljwynl6+o+TlvR4xQTSZIkSdKcasdkxXuAPwOyfH0H8F+ARr/ezwZlRMSlwKUAmzZtmp8oF6nq+hj1IzIAhkbGuO+hw0UyY++hiaTG3Q8e4rvbH2Jv5aklUKyVcfrK3onkxZnjiYxTeicSGyt6uxbq7UmSJEmSloC2S1Zk5s7x7Yh4H/DZcnc7sLHS9CzgPhrIzMuBywEGBgYaJjTUWHdnB5vXLmPz2mUN6w8NjXDfQ0e476HD3PvQ4Smv37n7IT5/8w6GR6fe8hW9nROjMc48pZczVvWxfkUPp6/q5bSVxc/K3k4inG4iSZIkSWrDZEVEnJGZO8rdFwO3lNtXAx+JiL+hWGDzPOC6FoR4Uuvv7uTc9cs5d/3yhvWjY8meA4OTiYy94wmNIsFx/V17pzzFZFxvVwenr+xl/cpeTl/Zy2kreyYSGaev6uW0Fb2sX9njYqCSJEmSdBJo9aNLPwo8A1gbEduBPwGeERGPo5jisQ34HYDMvDUirgK+B4wAr1nqTwJZjGodMZFkaDTNBODw0Ci79h9h575B7t93hF37jnD/w0fYuX+QnQ8f4abtD3H/w0cYHBmbduwp/V0TSY21y7tZt6KHdeW0lrXLe1i3ooe1y7tZ3d/twqCSJEmStEhF5tKeJTEwMJBbtmxpdRg6RpnJvsMj3L/vCDv3HZlMauwrkhw79x1hz/5B9hwYYmh0elKj1hGsWdZdJjHqkhoruicSG6cu62F1f5eLhEqSJEnSAouI6zNzoFFd200DkaBYCHRVfxer+ru44PQVM7bLTPYdGWHPgUF27x9kz4HBiSTGxP6BQe7YfZDdBwYZajBaA2BVXxdrlnWzZlkxKmPNsi7WLOthzbKucn/yZ/Wyblb0uMaGJEmSJM0XkxVa1CKCVX1drOrr4px1jdfRGFdNbIwnNPYcGOTBg0PsPTQ08bp97yFuvrfYr18sdFxXLSaSGKv7u1m9rItVfd2s6uvilP4inlPKuFaN7/d3s6y7ZpJDkiRJko7CZIVOGseS2IAiuXFwaJQHDwzx4KEh9h4sEhgPHpy+f9v9+3n48AgPH545wQHQ2TEZw3gSY2pio3tif2VfF8t7OlnR28nK3i6W93ZScx0OSZIkSScBkxXSDCKC5T2dLO/pZNOp/U0dk5kcHh7loUPDPHx4eOL14cND5Wu1bJgHDw5xx+6DPHx4mH1HhjnaEjLLumus6O1iRW+RxFhebq/s7SzKy+TGeJvlZaKjWtbl+hySJEmS2pzJCmkORQT93Z30d3dy5il9x3Ts2Fiy/8gID5WJjX2HR9h/ZJj9R0bYP1jZnngd4eFDQ2x/8NBE/ZHhxmtyVPV2dbCitxi10d9dY1l3J8t6avT3dLK8u5P+nvGyonyiflpZcXxPZ4dTWyRJkiTNKZMVUpvo6JhcVPR4DY2McWBwakJjWpKjrD84OMqhoREODI7wwMEh7nrwEIcGRzk4NMLBwRHGmnxQUGdHFEmPnjKZUW73V5Ic/d01+rpq9HXX6O2qTez3lmV9ZVn9vokQSZIk6eRkskJaQro7O1jTWSz8eSIyk8GRMQ4OjnCwksA4ODTKocEiwXFoaLR8LduUZeNt73vocLk9ypHhIjHSbAKkqq+SwJh47arR212jr6uD/u7OIsnRVaOvu6N87aS3q4OeztrEa09nB71dxWtPVwe9nTV66tq4JogkSZLUHkxWSJomIugtRz6cevS1SJuSmQyPFmt6HB4abfw6PMqRoSKxcXh4rNgvEx2Hh8Y4MjzZ/uHDw+x8ePK4w0PHnxAZ19kRkwmNMrnR3dlBT1eN3vJ1StJjynatTIJMtuvu7KC7Vr422O6qdUy06yrrOjvC0SSSJEk66ZmskLQgIoLuzqC7s4NVfcc/1WU21YTIkeFRBofHGBwZ5Uj5OjhSJDwGRyrlw+PljdpUtoeLBMng8ChDDdqMnEiWpCKCIqlRTWyMJzMaJT5qU5MdPZ0ddNWirKuVdTGZPCnbjp+vsxblfkyUV7c7azGRWOmsBV0dHXQ4AkWSJEnzzGSFpCVjIRIiMxkZHWNodDLpcWR4jOHRMYbKhMbQyOT+UP3rUeqGRqef69DQCA8drh6fZd0ow6PJ0OgYo3OUQKlX64hpyY3nPPp03nbxY+blepIkSTr5mKyQpDnQWeugs9ZB/4ktFzKnRsdy1uTIyFgyXCZChkeT4ZExRsbGGKrbHqm2abD9ja0PcO0Pd7f67UqSJGkJMVkhSUtUrSOKRUmpzet1Lvvn7/LV7++a12tIkiTp5NLRyotHxAciYldE3FIpWxMR10TEj8rX1ZW6yyJia0TcFhE/35qoJUlVvV01Dg+PtjoMSZIkLSEtTVYAVwDPqSt7E/DVzDwP+Gq5T0RcCFwCPLo85u8jYn5/XShJOqq+rhpHTFZIkiRpDrU0WZGZXwMerCu+GLiy3L4SeFGl/GOZOZiZdwJbgSctRJySpJn1ddUm1rCQJEmS5kKrR1Y0clpm7gAoX9eX5RuAeyrttpdl00TEpRGxJSK27N7tom+SNJ/6uotBbo6ukCRJ0lxpx2TFTKJBWcPn8mXm5Zk5kJkD69atm+ewJOnkNp6sODxkskKSJElzox2TFTsj4gyA8nV8ifntwMZKu7OA+xY4NklSnb6uMlnhyApJkiTNkXZMVlwNvLzcfjnwmUr5JRHRExFnA+cB17UgPklShckKSZIkzbXOVl48Ij4KPANYGxHbgT8B/hK4KiJeAdwNvBQgM2+NiKuA7wEjwGsy00/GktRivU4DkSRJ0hxrabIiM39lhqpnztD+7cDb5y8iSdKxcmSFJEmS5lo7TgORJC0i/Y6skCRJ0hwzWSFJOiGOrJAkSdJcM1khSTohvV2OrJAkSdLcMlkhSTohfeU0kCOOrJAkSdIcMVkhSTohTgORJEnSXDNZIUk6IePJikNOA5EkSdIcMVkhSTohHR1BT2eHIyskSZI0Z0xWSJJOWF93jSOOrJAkSdIcMVkhSTphfV01R1ZIkiRpzpiskCSdsL7ummtWSJIkac6YrJAknbC+rpqPLpUkSdKc6Wx1ADOJiG3AfmAUGMnMgYhYA3wc2AxsA34pM/e2KkZJUsFpIJIkSZpL7T6y4j9l5uMyc6DcfxPw1cw8D/hquS9JarG+7hqHnQYiSZKkOdJUsiIizo+Ir0bELeX+YyPiLfMbWkMXA1eW21cCL2pBDJKkOr1dNQ4Pj7U6DEmSJC0RzY6seB9wGTAMkJnfBS6Zr6BKCXw5Iq6PiEvLstMyc0cZww5g/TzHIElqQn93jcNDI60OQ5IkSUtEs2tW9GfmdRFRLZvvT6VPzcz7ImI9cE1E/KDZA8vkxqUAmzZtmq/4JEkl16yQJEnSXGp2ZMWeiDiHYrQDEfGLwI55iwrIzPvK113Ap4AnATsj4owyhjOAXTMce3lmDmTmwLp16+YzTEkS5TQQ16yQJEnSHGk2WfEa4L3AoyLiXuD1wKvnK6iIWBYRK8a3gWcDtwBXAy8vm70c+Mx8xSBJal5fd40jrlkhSZKkOdLUNJDMvAN4Vpk46MjM/fMbFqcBnyqnnXQCH8nML0bEt4GrIuIVwN3AS+c5DklSE/q6agyNjjEyOkZnrd0fNCVJkqR2N2uyIiJ+f4ZyADLzb+YhpvHkyE80KH8AeOZ8XFOSdPz6u2sAHB4eZYXJCkmSJJ2go42sWFG+XgA8kWIaBsAvAF+br6AkSYtLb1clWdHb1eJoJEmStNjNmqzIzLcBRMSXgYvGp39ExFuBT8x7dJKkRaGvTFYcGXLdCkmSJJ24ZsfqbgKGKvtDwOY5j0aStCj1VaaBSJIkSSeqqQU2gX8CrouIT1E8vvTFwAfnLSpJ0qIyPrLi0NBIiyORJEnSUtDs00DeHhFfAH66LPqtzPzO/IUlSVpMHFkhSZKkudRUsiIiNgF7gE9VyzLz7vkKTJK0eEysWWGyQpIkSXOg2Wkgn6OY/gHQB5wN3AY8ej6CkiQtLhMjK1xgU5IkSXOg2WkgP17dj4iLgN+Zl4gkSYtOX5fTQCRJkjR3mn0ayBSZeQPwxDmORZK0SE2OrHCBTUmSJJ24Ztes+P3KbgdwEbB7XiKSJC06jqyQJEnSXGp2zYoVle0RijUs/s/chyNJWox6u1yzQpIkSXOn2WTF9zLzE9WCiHgp8IkZ2kuSTiK1jqC7s8ORFZIkSZoTza5ZcVmTZfMuIp4TEbdFxNaIeFMrYpAkTdfXVfPRpZIkSZoTs46siIjnAs8DNkTEuytVKymmgyyoiKgBfwf8HLAd+HZEXJ2Z31voWCRJU/V31zjkApuSJEmaA0ebBnIfsAV4IXB9pXw/8HvzFdQsngRszcw7ACLiY8DFgMkKSWqxvq4ah4dds0KSJEknbtZkRWbeBNwUER/OzHb4ddkG4J7K/nbgJ1sUiySporerxuEhp4FIkiTpxB1tGshVmflLwHciIuvrM/Ox8xbZDCE1KJsWV0RcClwKsGnTpvmOSZIE9HW7ZoUkSZLmxtGmgfxu+fqC+Q6kSduBjZX9syimqkyRmZcDlwMMDAxMS2ZIkuZeMQ3EZIUkSZJO3NGmgewoX+9amHCO6tvAeRFxNnAvcAnwq60NSZIExciKBw4OtToMSZIkLQFHmwayn6nTLKLcDyAzc+U8xjZNZo5ExGuBLwE14AOZeetCxiBJasxHl0qSJGmuHG1kxYqFCqRZmfl54POtjkOSNFWfC2xKkiRpjhxtzYoJEXER8DSKkRVfz8zvzFtUkqRFp6/bNSskSZI0NzqaaRQRfwxcCZwKrAWuiIi3zGdgkqTFpa/bkRWSJEmaG82OrPgV4PGZeQQgIv4SuAH48/kKTJK0uPR11RgaHWNkdIzOWlO5cEmSJKmhZj9NbgN6K/s9wO1zHo0kadHq66oBcGRkrMWRSJIkabFrdmTFIHBrRFxDsWbFzwFfj4h3A2Tm6+YpPknSItHbXSQrDg+Nsryn6SWRJEmSpGma/TT5qfJn3L/NfSiSpMVsYmSFi2xKkiTpBDWVrMjMK+c7EEnS4tZfjqw45CKbkiRJOkHNPg3kBRHxnYh4MCL2RcT+iNg338FJkhaP8ZEVPr5UkiRJJ6rZaSDvAl4C3JyZOX/hSJIWq96uyTUrJEmSpBPR7NNA7gFuMVEhSZpJX7drVkiSJGluNDuy4g+Az0fEtRRPBgEgM/9mXqKSJC06TgORJEnSXGk2WfF24ADQC3TPXziSpMXKBTYlSZI0V5pNVqzJzGfPaySliHgr8Epgd1n0R5n5+bLuMuAVwCjwusz80kLEJEk6ul5HVkiSJGmONJus+EpEPDszvzyv0Ux6Z2b+dbUgIi4ELgEeDZxZxnR+ZvqpWJLawMSaFY6skCRJ0glqdoHN1wBfjIjDLXx06cXAxzJzMDPvBLYCT1rgGCRJM+jtLP5JcWSFJEmSTlRTIysyc0VErAHOo1i3Yr69NiJeBmwB3pCZe4ENwLcqbbaXZdNExKXApQCbNm2a51AlSQCdtQ66ax0mKyRJknTCmhpZERG/DVwLfBF4a/n6x8d70Yj4SkTc0uDnYuA9wDnA44AdwDvGD2twqoaPUs3MyzNzIDMH1q1bd7xhSpKOUV93jcNOA5EkSdIJanbNit8Fngh8KzP/U0Q8Cnjb8V40M5/VTLuIeB/w2XJ3O7CxUn0WcN/xxiBJmnt9XSYrJEmSdOKaXbPiSGYeAYiInsz8AXDBfAQUEWdUdl8M3FJuXw1cEhE9EXE2xZSU6+YjBknS8enrrjkNRJIkSSes2ZEV2yPiFODTwDURsZf5G9XwVxHxOIopHtuA3wHIzFsj4irge8AI8BqfBCJJ7aW3y2SFJEmSTlyzC2y+uNx8a0T8K7CKYt2KOZeZvzFL3duBt8/HdSVJJ67fNSskSZI0B5odWTEhM6+dj0AkSYtfX1eNux88xIe+dRedHUFnraN8DTo7Jre7ah3UOoKusrzYrpSNH1d3jq6ODjo6Gq23LEmSpKXkmJMVkiTNZPPafr6+dQ9v+fQtR298nCKgq0xwTEl8NEqO1MqEx/h2JQkyftx4EqRWK85R6+ig1sHU1yja1TqCWpSv9T9NtOmsO+f0+unnrNUmzzdeH2HCRpIkLW2R2fDpn0vGwMBAbtmypdVhSNJJITPZe2iYkdExRsaSkdFkZKzYHh4dY3QsGR5NRsa3x3J628oxI6OTx1XbDI8mo+XryNjU8062qzvfaHG90Ymyon1xrsnzjpXXGs2ifHSs/f6d7AimJjTKRE1HNEh4TGkTdERMHF9sF3UdHWV5VLbr21SPrbSPSuIlyrLxpEqxzWSbKNt0zNAmKueZaD9+/gZtqtdqcP6OYGr8ZZuOKM41Xt8RAcGU/ZjYZmLfRJEkSXMnIq7PzIFGdY6skCTNmYhgzbLuVocxpzKTsWQicTEyNsbYGEWSpJLQGE+oTCQ7xn/KNiOjyVjO1mZs1jbVsmNvM5nwGUsYK9sXbcYYHCnLc7y8bJNFm4ntsbo2OXmeyfaTxy7F34dUExjVZEcwmdDoqCR26hMiMyVAJver7Wc5vqN4hfrzVdp3jB8/9XoT56baZrYYp8ZE5fgoEzxRiaXM+0xsTyvvKO5Xw/MwnjQq2kTMdJ7x+wMwea+K889ynqJ5pXyW8zS6bt05o/48TLarP09E9b3WnaPunk05T11cJs0knSxMVkiSNIviN/nFb+oLtZbGs5hUEz1jZeKjcTKkLvHR6JjxNmVipPF5i3ZT2kxsT7YZHYOkqM9K27EyuzIew1iZcKnWZ6Vu4viJ7aO3mThnTj1nTmvf4PjKfRoerVyX6W0mz9foevV1s8U4PaalmIRajMYTHNUkBkwmaiYSG0WKZlr78TYwNWEyUT9xzmpd4/NRvX412VJ3PmaJefL4urq6841XTMZzjPcgpl9vpvM1dQ9i6vXq30PjezD1fNV7UH896tpM3Z/6HqqOfky1bUyp4yjHNnP+6gWafx/TY2r6erO0qT9n42Pq2jQ4P3XHH09MzHS9Rsc0+X6ONyZmbVN3/xseP30/mLIzyzmm99lGTFZIkqR5MT3Ro6UiK0mMZGoSY3x7Svl4oqN6LFmWF9uZTZyHycRQUiRnxo/N+vNQllW2J8859ZixKe0m62Y9T7UtUxM/1bqxKddrFMvU84zVvZejnWe8rLg7k2XlfxN/XpPXmnrMRH312IltJu77+D0p96adbzyAnHa+qdegPuacfj6mxZCVusmy+uMbnm9sIuJZz8dM9yCnX2/6PZi4AzPcg6nno+6Yo92Dyb1KHJVjmaGOoxxb/34aXY+6+mONSToRJiskSZJ0TMYTUdN+dSZJDUxP9tSVT2k73mbqMTPVN3PeiXNUkztNJoQaXnPaMccQ0wzv51himnqOmY6ZJaaj3OOjxde4rlpe126GYyAZ+B8zX9tkhSRJkiRp3tRPr6jULHgsWjw6Wh2AJEmSJElSlckKSZIkSZLUVkxWSJIkSZKkttKSZEVEvDQibo2IsYgYqKu7LCK2RsRtEfHzlfInRMTNZd27wwdMS5IkSZK0JLVqZMUtwEuAr1ULI+JC4BLg0cBzgL+PiPEH2r8HuBQ4r/x5zoJFK0mSJEmSFkxLkhWZ+f3MvK1B1cXAxzJzMDPvBLYCT4qIM4CVmfnNLJ6D8kHgRQsXsSRJkiRJWijttmbFBuCeyv72smxDuV1fLkmSJEmSlpjO+TpxRHwFOL1B1Zsz8zMzHdagLGcpn+nal1JMGWHTpk1HiVSSJEmSJLWTeUtWZOazjuOw7cDGyv5ZwH1l+VkNyme69uXA5QADAwMzJjUkSZIkSVL7abdpIFcDl0RET0ScTbGQ5nWZuQPYHxFPLp8C8jJgptEZkiRJkiRpEWvVo0tfHBHbgacAn4uILwFk5q3AVcD3gC8Cr8nM0fKwVwPvp1h083bgCwseuCRJkiRJmndRPFxj6RoYGMgtW7a0OgxJkiRJklQREddn5kCjunabBiJJkiRJkk5yJiskSZIkSVJbMVkhSZIkSZLaiskKSZIkSZLUVkxWSJIkSZKktmKyQpIkSZIktRWTFZIkSZIkqa2YrJAkSZIkSW3FZIUkSZIkSWorJiskSZIkSVJbMVkhSZIkSZLaiskKSZIkSZLUVlqSrIiIl0bErRExFhEDlfLNEXE4Im4sf/6hUveEiLg5IrZGxLsjIloRuyRJkiRJml+tGllxC/AS4GsN6m7PzMeVP6+qlL8HuBQ4r/x5zvyHKUmSJEmSFlpLkhWZ+f3MvK3Z9hFxBrAyM7+ZmQl8EHjRfMUnSZIkSZJapx3XrDg7Ir4TEddGxE+XZRuA7ZU228sySZIkSZK0xHTO14kj4ivA6Q2q3pyZn5nhsB3Apsx8ICKeAHw6Ih4NNFqfIme59qUUU0bYtGnTsQUuSZIkSZJaat6SFZn5rOM4ZhAYLLevj4jbgfMpRlKcVWl6FnDfLOe5HLgcYGBgYMakhiRJkiRJaj9tNQ0kItZFRK3cfiTFQpp3ZOYOYH9EPLl8CsjLgJlGZ0iSJEmSpEWsVY8ufXFEbAeeAnwuIr5UVv0M8N2IuAn4JPCqzHywrHs18H5gK3A78IUFDluSJEmSJC2AKB6usXQNDAzkli1bWh2GJEmSJEmqiIjrM3OgUV1bTQORJEmSJEkyWSFJkiRJktqKyQpJkiRJktRWTFZIkiRJkqS2YrJCkiRJkiS1FZMVkiRJkiSprZiskCRJkiRJbcVkhSRJkiRJaismKyRJkiRJUlsxWSFJkiRJktqKyQpJkiRJktRWTFZIkiRJkqS2YrJCkiRJkiS1FZMVkiRJkiSprURmtjqGeRUR+4HbWh2HFoW1wJ5WB6FFw/6iZtlXdCzsL2qWfUXHwv6iZi10X3lEZq5rVNG5gEG0ym2ZOdDqINT+ImKLfUXNsr+oWfYVHQv7i5plX9GxsL+oWe3UV5wGIkmSJEmS2orJCkmSJEmS1FZOhmTF5a0OQIuGfUXHwv6iZtlXdCzsL2qWfUXHwv6iZrVNX1nyC2xKkiRJkqTF5WQYWSFJkiRJkhaRJZusiIjnRMRtEbE1It7U6njUXiJiY0T8a0R8PyJujYjfLcvXRMQ1EfGj8nV1q2NVe4iIWkR8JyI+W+7bV9RQRJwSEZ+MiB+U/495iv1FjUTE75X/Bt0SER+NiF77isZFxAciYldE3FIpm7F/RMRl5efe2yLi51sTtVphhr7y/5b/Dn03Ij4VEadU6uwrJ7FG/aVS98aIyIhYWylrWX9ZksmKiKgBfwc8F7gQ+JWIuLC1UanNjABvyMwfA54MvKbsI28CvpqZ5wFfLfclgN8Fvl/Zt69oJv8T+GJmPgr4CYp+Y3/RFBGxAXgdMJCZjwFqwCXYVzTpCuA5dWUN+0f5GeYS4NHlMX9ffh7WyeEKpveVa4DHZOZjgR8Cl4F9RUDj/kJEbAR+Dri7UtbS/rIkkxXAk4CtmXlHZg4BHwMubnFMaiOZuSMzbyi391N8mdhA0U+uLJtdCbyoJQGqrUTEWcDzgfdXiu0rmiYiVgI/A/wjQGYOZeZD2F/UWCfQFxGdQD9wH/YVlTLza8CDdcUz9Y+LgY9l5mBm3glspfg8rJNAo76SmV/OzJFy91vAWeW2feUkN8P/WwDeCfwBUF3UsqX9ZakmKzYA91T2t5dl0jQRsRl4PPAfwGmZuQOKhAawvoWhqX28i+J/3mOVMvuKGnkksBv43+W0ofdHxDLsL6qTmfcCf03xG6wdwMOZ+WXsK5rdTP3Dz76azX8BvlBu21c0TUS8ELg3M2+qq2ppf1mqyYpoUOZjTzRNRCwH/g/w+szc1+p41H4i4gXArsy8vtWxaFHoBC4C3pOZjwcO4jB+NVCuNXAxcDZwJrAsIn69tVFpEfOzrxqKiDdTTH/+8HhRg2b2lZNYRPQDbwb+uFF1g7IF6y9LNVmxHdhY2T+LYmilNCEiuigSFR/OzH8ui3dGxBll/RnArlbFp7bxVOCFEbGNYkrZz0bEh7CvqLHtwPbM/I9y/5MUyQv7i+o9C7gzM3dn5jDwz8BPYV/R7GbqH3721TQR8XLgBcCvZeb4F0z7iuqdQ5E4v6n8vHsWcENEnE6L+8tSTVZ8GzgvIs6OiG6KRUGubnFMaiMRERRzyr+fmX9TqboaeHm5/XLgMwsdm9pLZl6WmWdl5maK/5f8S2b+OvYVNZCZ9wP3RMQFZdEzge9hf9F0dwNPjoj+8t+kZ1Ksn2Rf0Wxm6h9XA5dERE9EnA2cB1zXgvjUJiLiOcAfAi/MzEOVKvuKpsjMmzNzfWZuLj/vbgcuKj/TtLS/dC7UhRZSZo5ExGuBL1Gsrv2BzLy1xWGpvTwV+A3g5oi4sSz7I+Avgasi4hUUHyRf2prwtAjYVzST/wp8uEyW3wH8FsUvB+wvmpCZ/xERnwRuoBii/R3gcmA59hUBEfFR4BnA2ojYDvwJM/zbk5m3RsRVFMnREeA1mTnaksC14GboK5cBPcA1RT6Ub2Xmq+wratRfMvMfG7VtdX+JyRFBkiRJkiRJrbdUp4FIkiRJkqRFymSFJEmSJElqKyYrJEmSJElSWzFZIUmSJEmS2orJCkmSJEmS1FZMVkiSpCUjIrZFxM0RMXAMx5wTETdGxIH5jE2SJDXPR5dKkqQ5FxFB8TljbIGvuw0YyMw9x3HsgcxcPvdRSZKkY+XICkmSNCciYnNEfD8i/h64AdgYEe+JiC0RcWtEvK3SdltEvC0ibihHQjyqLF8XEdeU5e+NiLsiYm1Z9+sRcV05CuK9EVFrIqZtEfEXEfHNMo6LIuJLEXF7RLxqvu6FJEk6MSYrJEnSXLoA+GBmPj4z7wLenJkDwGOBp0fEYytt92TmRcB7gDeWZX8C/EtZ/ilgE0BE/Bjwy8BTM/NxwCjwa03GdE9mPgX4v8AVwC8CTwb+9LjfpSRJmledrQ5AkiQtKXdl5rcq+78UEZdSfOY4A7gQ+G5Z98/l6/XAS8rtpwEvBsjML0bE3rL8mcATgG8XM0zoA3Y1GdPV5evNwPLM3A/sj4gjEXFKZj50DO9PkiQtAJMVkiRpLh0c34iIsylGTDwxM/dGxBVAb6XtYPk6yuRnkpjhvAFcmZmXHUdM49cZq2yP7/tZSJKkNuQ0EEmSNF9WUiQvHo6I04DnNnHM14FfAoiIZwOry/KvAr8YEevLujUR8Yi5D1mSJLUDf5sgSZLmRWbeFBHfAW4F7gC+0cRhbwM+GhG/DFwL7AD2Z+aeiHgL8OWI6ACGgdcAd81P9JIkqZV8dKkkSWobEdEDjGbmSEQ8BXhPuaBms8dvw0eXSpK06DkNRJIktZNNFIto3gS8G3jlMR6/G/hqRAw0e0BEnBMRNwI7j/FakiRpnjiyQpIkSZIktRVHVkiSJEmSpLZiskKSJEmSJLUVkxWSJEmSJKmtmKyQJEmSJEltxWSFJEmSJElqKyYrJEmSJElSW/n/Aeze8BAvLRGPAAAAAElFTkSuQmCC", - "text/plain": [ - "
    " - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "\n", - "# this does not recreate the phase analysis here: https://www.gaussianwaves.com/2015/11/interpreting-fft-results-obtaining-magnitude-and-phase-information/\n", - "\n", - "\n", - "#X2=X;%store the FFT results in another array\n", - "#%detect noise (very small numbers (eps)) and ignore them\n", - "#threshold = max(abs(X))/10000; %tolerance threshold\n", - "#X2(abs(X)