-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlmer_results_anal.m
328 lines (256 loc) · 12.2 KB
/
lmer_results_anal.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
%this script was written after get_clean_peaks_and_data.m in order to
%analyze the lmer results and plot the clean data.
%Written by Loic Daumail edited on 1/17/2022
%loading the clean data
newdatadir = 'C:\Users\daumail\OneDrive - Vanderbilt\Documents\LGN_data_042021\single_units\inverted_power_channels\good_single_units_data_4bumps_more\new_peak_alignment_anal\su_peaks_03032020_corrected\all_units\';
channelfilename = [newdatadir 'clean_SUA_sup_50'];
data_file = load(channelfilename);
%exclude 160517, (first unit, left empty, it is a K neuron)
%Reject 180806 p1 uclust17, M cell, as doesn't seem well triggered (46)
%Reject 181207 (B) uclust22, M cell, as doesn't seem well triggered (55)
layer = {'K','M','P','K','K','K','M','P','P','','M','M','','','M','','','P','','M','','M','M','','P','M','','P', ...
'P','','','K','P','M','M','M','P','','P','K','P','P','','P','P','M','','P','M','P','M','P','','P','M','M','P','','M','M','P','M', ...
'','','M','M','M','P','M','M','M','M','P','P'};
layer([1,46,55]) = [];
f = {'DE0_NDE50','DE50_NDE0','DE50_NDE50'};
pvaluesdir = 'C:\Users\daumail\OneDrive - Vanderbilt\Documents\LGN_data_042021\single_units\inverted_power_channels\good_single_units_data_4bumps_more\new_peak_alignment_anal\lmer_results_peaks\';
pvalfilename = [pvaluesdir 'lmer_results_orig_03032020_corrected.csv'];
pvalues = dlmread(pvalfilename, ',', 1,1);
%% Rough plots of peaks with pvalues (not very representative, as mean unit activity)
channum = 1: length(data_file.clean_high_SUA);
%for n = 1:3
for chan = 1:12:length(channum)
h = figure;
xabs = -199:1300;
idx = [1 3 5 7 9 11 2 4 6 8 10 12];
nyq = 500;
all_mean_data = nan(length(xabs), length(1:12));
clear i ;
for i = 1:12
mean_data = mean(data_file.clean_high_SUA(chan+i-1).namelist(1:1500,:),2);
lpc = 4.5; %low pass cutoff
lWn = lpc/nyq;
[bwb,bwa] = butter(4,lWn,'low');
if ~all(isnan(mean_data))
lpsu = filtfilt(bwb,bwa, mean_data);
sp = subplot(length(1:6), 2, idx(i));
plot(xabs, lpsu)
hold on
plot([0 0], ylim,'k')
hold on
plot([1150 1150], ylim,'k')
if i == length(6)/2
ylh = ylabel({'\fontsize{9}Contacts','\fontsize{9}Spike Rate (spikes/s)'});
end
if i < 6 || (i >= 7)&&(i < 12)
set(sp, 'XTick', [])
end
ylabelh = text(max(xabs), mean(lpsu,1), strcat(num2str(chan+i-1),' | ', layer(chan+i-1)),'HorizontalAlignment','left','FontName', 'Arial','FontSize', 10);
for npeak = 1:4
for len = 231:480 %from 200 + 30 (lgn response onset)
if lpsu(len) < lpsu(len+1)
locs = findpeaks(lpsu(len:1450));
break
end
end
if length(locs.loc) >= 4
%adjust location to the first data point of lpsu (+len), then adjust
%to xabs (-200)
xlocation = locs.loc(npeak)+len-200;
end
text(xlocation, mean(lpsu,1), strcat(num2str(sprintf('%.2f', pvalues(chan+i-1,npeak)))),'HorizontalAlignment','center','FontName', 'Arial','FontSize', 7);
end
end
end
set(gca, 'linewidth',2)
set(gca,'box','off')
sgtitle({f{2}, 'all good responses, p<0.05, associated to adaptation pvalues'}, 'Interpreter', 'none')
xlabel('Time from -50ms from stimulus onset (ms)')
set(gcf,'Units','inches')
set(gcf,'position',[1 1 8.5 11])
%filename = strcat('C:\Users\maier\Documents\LGN_data\single_units\inverted_power_channels\good_single_units_data_4bumps_more\new_peak_alignment_anal\plots\',strcat(f{2}, sprintf('x_%d_better_raw_data_peakspvalues_2dec', chan+i-1)));
%saveas(gcf, strcat(filename, '.png'));
end
%%
%% compute proportion of significant adaptation per peak and proportion of neurons adapting for a certain amount of
%peak from peak 2 to 4
channeldir = 'C:\Users\daumail\OneDrive - Vanderbilt\Documents\LGN_data_042021\single_units\inverted_power_channels\good_single_units_data_4bumps_more\new_peak_alignment_anal\su_peaks_03032020_corrected\orig_peak_values\all_units\';
pvaluesdir = 'C:\Users\daumail\OneDrive - Vanderbilt\Documents\LGN_data_042021\single_units\inverted_power_channels\good_single_units_data_4bumps_more\new_peak_alignment_anal\lmer_results_peaks\';
pvalfilename = [pvaluesdir 'lmer_results_orig_03032020_corrected_dunnett.csv'];
pvalues = dlmread(pvalfilename, ',', 1,1);
peakvals = load([channeldir 'all_raw_data_peaks']);
cnt =0;
for i =1:length(peakvals.peak_vals)
if ~isempty(peakvals.peak_vals(i).peak)
cnt = cnt+1;
end
end
%exclude 160517, (first unit, left empty, it is a K neuron)
%Reject 180806 p1 uclust17, M cell, as doesn't seem well triggered (46)
%Reject 181207 (B) uclust22, M cell, as doesn't seem well triggered (55)
layer = {'K','M','P','K','K','K','M','P','P','','M','M','','','M','','','P','','M','','M','M','','P','M','','P', ...
'P','','','K','P','M','M','M','P','','P','K','P','P','','P','P','M','','P','M','P','M','P','','P','M','M','P','','M','M','P','M', ...
'','','M','M','M','P','M','M','M','M','P','P'};
layer([1,46,55]) = [];
layer_idx = find(strcmp(layer, 'K'));
%{
nan_layer_idx = layer_idx(isnan(pvalues(layer_idx,1)));
cnt = 0;
clear empt
for i =1:length(layer_idx)
if isempty(peakvals.peak_vals(layer_idx(i)).peak)
cnt = cnt+1;
empt(cnt) = layer_idx(i);
end
end
%}
f = {'DE0_NDE50','DE50_NDE0','DE50_NDE50'};
all_locs = nan(4,length(layer_idx));
all_pks = nan(4,length(layer_idx));
all_mean_data = nan(4, length(layer_idx));
cntpk2 = 0;
cntpk3 = 0;
cntpk4 = 0;
cntpk2pk3 = 0;
cntpk2pk3pk4 = 0;
cntpk3pk4 =0;
cntincpk2 =0;
cntincpk3 =0;
cntincpk4 =0;
cntnspk2 =0;
cntnspk3 =0;
cntnspk4=0;
for nunit = 1:length(layer_idx)
if ~isempty(peakvals.peak_vals(layer_idx(nunit)).peak)
mean_data = nanmean(peakvals.peak_vals(layer_idx(nunit)).peak,2);
all_mean_data(:,nunit) = mean_data;
if all_mean_data(2,nunit) < all_mean_data(1,nunit) && pvalues(layer_idx(nunit),1) < .05
cntpk2 = cntpk2 +1;
end
if all_mean_data(3,nunit) < all_mean_data(1,nunit) && pvalues(layer_idx(nunit),2) < .05
cntpk3 = cntpk3 +1;
end
if all_mean_data(4,nunit) < all_mean_data(1,nunit) && pvalues(layer_idx(nunit),3) < .05
cntpk4 = cntpk4 +1;
end
if all_mean_data(2,nunit) < all_mean_data(1,nunit) && pvalues(layer_idx(nunit),1) < .05 && ...
all_mean_data(3,nunit) < all_mean_data(1,nunit) && pvalues(layer_idx(nunit),2) < .05
cntpk2pk3 = cntpk2pk3 +1;
end
if all_mean_data(2,nunit) < all_mean_data(1,nunit) && pvalues(layer_idx(nunit),1) < .05 && ...
all_mean_data(3,nunit) < all_mean_data(1,nunit) && pvalues(layer_idx(nunit),2) < .05 ...
&& all_mean_data(4,nunit) < all_mean_data(1,nunit) && pvalues(layer_idx(nunit),3) < .05
cntpk2pk3pk4 = cntpk2pk3pk4 +1;
end
if all_mean_data(3,nunit) < all_mean_data(1,nunit) && pvalues(layer_idx(nunit),2) < .05 ...
&& all_mean_data(4,nunit) < all_mean_data(1,nunit) && pvalues(layer_idx(nunit),3) < .05
cntpk3pk4 = cntpk3pk4 +1;
end
if all_mean_data(2,nunit) > all_mean_data(1,nunit) && pvalues(layer_idx(nunit),1) < .05
cntincpk2 = cntincpk2 +1;
end
if all_mean_data(3,nunit) > all_mean_data(1,nunit) && pvalues(layer_idx(nunit),2) < .05
cntincpk3 = cntincpk3 +1;
end
if all_mean_data(4,nunit) > all_mean_data(1,nunit) && pvalues(layer_idx(nunit),3) < .05
cntincpk4 = cntincpk4 +1;
end
if pvalues(layer_idx(nunit),1) > .05
cntnspk2 = cntnspk2 +1;
end
if pvalues(layer_idx(nunit),2) > .05
cntnspk3 = cntnspk3 +1;
end
if pvalues(layer_idx(nunit),3) > .05
cntnspk4 = cntnspk4 +1;
end
end
end
all_mean_data = all_mean_data(:, ~all(isnan(all_mean_data)));
percentpk2 = cntpk2*100/length(all_mean_data(1,:));
percentpk3 = cntpk3*100/length(all_mean_data(1,:));
percentpk4 = cntpk4*100/length(all_mean_data(1,:));
percentpk2pk3 = cntpk2pk3*100/length(all_mean_data(1,:));
percentpk2pk3pk4 = cntpk2pk3pk4*100/length(all_mean_data(1,:));
percentpk3pk4 = cntpk3pk4*100/length(all_mean_data(1,:));
percentincpk2 = cntincpk2*100/length(all_mean_data(1,:));
percentincpk3 = cntincpk3*100/length(all_mean_data(1,:));
percentincpk4 = cntincpk4*100/length(all_mean_data(1,:));
percentnspk2 = cntnspk2*100/length(all_mean_data(1,:));
percentnspk3 = cntnspk3*100/length(all_mean_data(1,:));
percentnspk4 = cntnspk4*100/length(all_mean_data(1,:));
ncells =length(all_mean_data(1,:));
%% compute proportion of significant adaptation per trough and proportion of neurons adapting for a certain amount of
%trough from trough 2 to 3
channeldir = 'C:\Users\daumail\Documents\LGN_data\single_units\inverted_power_channels\good_single_units_data_4bumps_more\new_peak_alignment_anal\su_troughs_03032020\orig_trough_values\all_units\';
pvaluesdir = 'C:\Users\daumail\Documents\LGN_data\single_units\inverted_power_channels\good_single_units_data_4bumps_more\new_peak_alignment_anal\lmer_results_troughs\';
pvalfilename = [pvaluesdir 'lmer_results_orig_03032020_troughs.csv'];
pvalues = dlmread(pvalfilename, ',', 1,1);
troughvals = load([channeldir 'all_data_troughs']);
%exclude 160517, (first unit, left empty, it is a K neuron)
%Reject 180806 p1 uclust17, M cell, as doesn't seem well triggered (46)
%Reject 181207 (B) uclust22, M cell, as doesn't seem well triggered (55)
layer = {'K','M','P','K','K','K','M','P','P','','M','M','','','M','','','P','','M','','M','M','','P','M','','P', ...
'P','','','K','P','M','M','M','P','','P','K','P','P','','P','P','M','','P','M','P','M','P','','P','M','M','P','','M','M','P','M', ...
'','','M','M','M','P','M','M','M','M','P','P'};
layer([1,46,55]) = [];
layer_idx = find(strcmp(layer, 'K'));
%{
nan_layer_idx = layer_idx(isnan(pvalues(layer_idx,1)));
cnt = 0;
clear empt
for i =1:length(layer_idx)
if isempty(peakvals.peak_vals(layer_idx(i)).peak)
cnt = cnt+1;
empt(cnt) = layer_idx(i);
end
end
%}
f = {'DE0_NDE50','DE50_NDE0','DE50_NDE50'};
all_locs = nan(3,length(layer_idx));
all_trghs = nan(3,length(layer_idx));
all_mean_data = nan(3, length(layer_idx));
cntt2 = 0;
cntt3 = 0;
cntt2t3 = 0;
cntinct2 =0;
cntinct3 =0;
cntnst2 =0;
cntnst3 =0;
for nunit = 1:length(layer_idx)
if ~isempty(troughvals.trough_vals(layer_idx(nunit)).trough)
mean_data = nanmean(troughvals.trough_vals(layer_idx(nunit)).trough,2);
all_mean_data(:,nunit) = mean_data;
if all_mean_data(2,nunit) < all_mean_data(1,nunit) && pvalues(layer_idx(nunit),2) < .05
cntt2 = cntt2 +1;
end
if all_mean_data(3,nunit) < all_mean_data(1,nunit) && pvalues(layer_idx(nunit),3) < .05
cntt3 = cntt3 +1;
end
if all_mean_data(2,nunit) < all_mean_data(1,nunit) && pvalues(layer_idx(nunit),2) < .05 && ...
all_mean_data(3,nunit) < all_mean_data(1,nunit) && pvalues(layer_idx(nunit),3) < .05
cntt2t3 = cntt2t3 +1;
end
if all_mean_data(2,nunit) > all_mean_data(1,nunit) && pvalues(layer_idx(nunit),2) < .05
cntinct2 = cntinct2 +1;
end
if all_mean_data(3,nunit) > all_mean_data(1,nunit) && pvalues(layer_idx(nunit),3) < .05
cntinct3 = cntinct3 +1;
end
if pvalues(layer_idx(nunit),2) > .05
cntnst2 = cntnst2 +1;
end
if pvalues(layer_idx(nunit),3) > .05
cntnst3 = cntnst3 +1;
end
end
end
all_mean_data = all_mean_data(:, ~all(isnan(all_mean_data)));
percentt2 = cntt2*100/length(all_mean_data(1,:));
percentt3 = cntt3*100/length(all_mean_data(1,:));
percentt2t3 = cntt2t3*100/length(all_mean_data(1,:));
percentinct2 = cntinct2*100/length(all_mean_data(1,:));
percentinct3 = cntinct3*100/length(all_mean_data(1,:));
percentnst2 = cntnst2*100/length(all_mean_data(1,:));
percentnst3 = cntnst3*100/length(all_mean_data(1,:));
ncells =length(all_mean_data(1,:));