-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathclean_data_ROCAnalysis.asv
497 lines (393 loc) · 18.7 KB
/
clean_data_ROCAnalysis.asv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
newdatadir = 'C:\Users\daumail\Documents\LGN_data\single_units\inverted_power_channels\good_single_units_data_4bumps_more\new_peak_alignment_anal\su_peaks_03032020\all_units\';
channelfilename = [newdatadir 'clean_origin_sup_50'];
data_file = load(channelfilename);
layer = {'K','M','P','K','K','K','M','P','P','','M','M','','','M','','','P','','M','','M','M','','P','M','','P', ...
'P','','','K','P','M','M','M','P','','P','K','P','P','','P','P','M','','P','M','P','M','P','','P','M','M','P','','M','M','P','M', ...
'','','M','M','M','P','M','M','M','M','P','P'};
layer([1,46,55]) = [];
layer_idx = find(strcmp(layer, 'M'));
log_p_layer = zeros(length(layer),1);
log_p_layer(layer_idx) = logical(layer_idx);
%% compute the power spectrum (spectrogram) using mtspecgramc function
Ses = struct();
bs_data = struct();
channum = 1: length(data_file.clean_origin_data);
mean_S = nan(1174,38, length(channum));
xabs = -100:1301;
%filtered_dMUA = nan(length(xabs), length(channum));
%dim 2 = channel, dim3 = trials
Fs = 1000;
movingwin = [.256 .001]; % length of moving window in seconds (should be to the power of 2) + length of sliding window
params.tapers = [2 3];
params.Fs = Fs;
params.fpass = [1 150];
clear i ;
for i = 1:length(channum)
if ~isempty(data_file.clean_origin_data(i).unit)
data = squeeze(data_file.clean_origin_data(i).unit(401:1900,:,:));
bsl = mean(data(1:200,:));
norm_mean_bs = data(72:end, :) - bsl;
namelist1(1,1:length(sprintf('chan_%d',i))) = sprintf('chan_%d',i);
bs_data(i).namelist1 = norm_mean_bs;
clear S namelist;
[S,t,f] = mtspecgramc(norm_mean_bs(:,:) ,movingwin, params);
namelist2(1,1:length(sprintf('S_%d',i))) = sprintf('S_%d',i);
Ses(i).namelist2 = S;
mean_S(:,:,i) = nanmean(S,3);
tvec = t*1000 -129;
%time_adj = 1:128;
%tvec = cat(2, time_adj , t*1000) ;
%we can also store tvec and f in a struct, but they are all identical
end
end
%plot the mean data only in the 5Hz range
layer = {'K','M','P','K','K','K','M','P','P','','M','M','','','M','','','P','','M','','M','M','','P','M','','P', ...
'P','','','K','P','M','M','M','P','','P','K','P','P','','P','P','M','','P','M','P','M','P','','P','M','M','P','','M','M','P','M', ...
'','','M','M','M','P','M','M','M','M','P','P'};
layer([1,46,55]) = [];
layer_idx = find(strcmp(layer, 'K'));
figure,
normspec = (nanmean(mean_S(:,:,layer_idx),3) - min(nanmean(mean_S(:,:,layer_idx),3)))./(max(nanmean(mean_S(:,:,layer_idx),3)) - min(nanmean(mean_S(:,:,layer_idx),3)));
%time_adj_data = nan(length(tvec),1);
%time_adj_data(129:end,1) = normspec(:,1);
plot(tvec,squeeze(normspec(:,1))')
title({'DE50_NDE0_su', 'Mean K layer power at 4Hz vs time normalized', sprintf('')}, 'Interpreter', 'none')
xlabel('Time from stimulus onset(ms)')
ylabel('Normalized Power at 4Hz(no units)')
filename = strcat('C:\Users\maier\Documents\LGN_data\single_units\inverted_power_channels\good_single_units_data_4bumps_more\power_spectrum_plots\',contrast{2},'normalized_power_freq_time_mean_P_layer_4hz');
%saveas(gcf, strcat(filename, '.png'));
%% perform the Receiver Operating Characteristics analysis
reps = 10000;
all_sigs95 = nan(length(Ses),1);
all_sigs90 = nan(length(Ses),1);
for i = 1:length(Ses)
if ~isempty(Ses(i).namelist2)
part1 = nanmean(squeeze(Ses(i).namelist2(1:575,1,:)), 1);
part2 = nanmean(squeeze(Ses(i).namelist2(576:1150,1,:)), 1);
if nanmean(part1) > nanmean(part2)
cond1 = part1;
cond2 = part2;
else
cond1 = part2;
cond2 = part1;
end
[X,Y,T,AUC] = perfcurve([ones(length(cond1),1); repmat(2,length(cond2),1)],[cond1 cond2],1);
NP = length(cond2);
PR = length(cond1);
catdat = [cond1 cond2];
for r = 1:reps
clear shufNP shufPR
shufPR = catdat(randperm(length(catdat),PR));
shufNP = catdat(randperm(length(catdat),NP));
[~,~,~,...
shufAUC(r)] = perfcurve([ones(PR,1); repmat(2,NP,1)],[shufPR shufNP],1);
end
critT95 = quantile(shufAUC,.95);
critT90 = quantile(shufAUC,.90);
if AUC > critT95
sig95 = 1;
else
sig95 = 0;
end
all_sigs95(i) = sig95;
if AUC > critT90
sig90 = 1;
else
sig90 = 0;
end
all_sigs90(i) = sig90;
end
end
save( strcat(newdatadir,'roc_results95_stimonset_to1150ms.mat'), 'all_sigs95');
sig95_idx = find(all_sigs95);
sig90_idx = find(all_sigs90);
%% Analyze ROC analysis results per layer
newdatadir = 'C:\Users\daumail\Documents\LGN_data\single_units\inverted_power_channels\good_single_units_data_4bumps_more\new_peak_alignment_anal\su_peaks_03032020\all_units\';
channelfilename = [newdatadir 'clean_origin_sup_50'];
data_file = load(channelfilename);
sig95_idx = load( strcat(newdatadir,'roc_results95_stimonset_to1150ms.mat'));
layer = {'K','M','P','K','K','K','M','P','P','','M','M','','','M','','','P','','M','','M','M','','P','M','','P', ...
'P','','','K','P','M','M','M','P','','P','K','P','P','','P','P','M','','P','M','P','M','P','','P','M','M','P','','M','M','P','M', ...
'','','M','M','M','P','M','M','M','M','P','P'};
layer([1,46,55]) = [];
layer_idx = find(strcmp(layer, 'M'));
log_p_layer = zeros(length(layer),1);
log_p_layer(layer_idx) = logical(layer_idx);
Ses = struct();
bs_data = struct();
%channum = 1: length(log_p_layer);
%add +128 ms to adjust the time to -100ms before stim onset
mean_S = nan(1174,38, length(layer_idx));
Fs = 1000;
movingwin = [.256 .001]; % length of moving window in seconds (should be to the power of 2) + length of sliding window
params.tapers = [2 3];
params.Fs = Fs;
params.fpass = [1 150];
xabs = -100:1301;
xpow = 0:1173;
idx = [1 3 2 4];
channum = 1: length(data_file.clean_origin_data);
clear i
clear chan
for chan =1:4:length(channum)-4
figure();
for i = 1:4
if log_p_layer(chan+i-1) ~= 0 && ~isnan(sig95_idx.all_sigs95(chan+i-1))
data = data_file.clean_origin_data(chan+i-1).unit(401:1900,:);
bsl = mean(data(1:200,:));
norm_mean_bs = data(72:end, :) - bsl;
clear S namelist;
[S,t,f] = mtspecgramc(norm_mean_bs(:,:) ,movingwin, params);
mean_S(:,:,chan+i-1) = nanmean(S,3);
%tvec = t*1000 + (xabs(1));
normchan = (mean_S(:,:,chan+i-1) - min(mean_S(:,:,chan+i-1)))./(max(mean_S(:,:,chan+i-1)) - min(mean_S(:,:,chan+i-1)));
xpow = 0:1173;
sp = subplot(length(1:2), 2, idx(i) );
plot(xpow,normchan(:,1))
hold on
plot([0 0], ylim,'k')
hold on
plot([1150 1150], ylim,'k')
xlim([-100 1174])
if i == length(2)/2
ylh = ylabel({'\fontsize{9}Contacts','\fontsize{9}Normalized Power at 4Hz (no units)'});
end
ylabelh = text(mean(xpow)/2, max(normchan(:,1))+0.05, strcat(num2str(chan+i-1),' | ROC sign ', num2str(sig95_idx.all_sigs95(chan+i-1))),'HorizontalAlignment','left','FontName', 'Arial', 'Interpreter','none','FontSize', 10);
set(gca, 'linewidth',2)
set(gca,'box','off')
end
end
sgtitle({'DE50_NDE0_su', 'Mean M layer SUA power at 4Hz vs time normalized', sprintf('')}, 'Interpreter', 'none')
xlabel('Time from stimulus onset(ms)')
% ylabel('Normalized Power at 4Hz(no units)')
filename = strcat('C:\Users\daumail\Documents\LGN_data\single_units\inverted_power_channels\good_single_units_data_4bumps_more\new_peak_alignment_anal\su_peaks_03032020\power_plots\',strcat('DE50_NDE0_', sprintf('mean_sua_power_4hz_M_layer_%d_stimonset_to1150ms', chan)));
saveas(gcf, strcat(filename, '.png'));
end
%% Proportions of significant units per layer
newdatadir = 'C:\Users\daumail\Documents\LGN_data\single_units\inverted_power_channels\good_single_units_data_4bumps_more\new_peak_alignment_anal\su_peaks_03032020\all_units\';
channelfilename = [newdatadir 'clean_origin_sup_50'];
data_file = load(channelfilename);
sig95_idx = load( strcat(newdatadir,'roc_results95_stimonset_to1150ms.mat'));
layer = {'K','M','P','K','K','K','M','P','P','','M','M','','','M','','','P','','M','','M','M','','P','M','','P', ...
'P','','','K','P','M','M','M','P','','P','K','P','P','','P','P','M','','P','M','P','M','P','','P','M','M','P','','M','M','P','M', ...
'','','M','M','M','P','M','M','M','M','P','P'};
layer([1,46,55]) = [];
layer_idx = find(strcmp(layer, 'M'));
log_p_layer = zeros(length(layer),1);
log_p_layer(layer_idx) = logical(layer_idx);
xabs = -100:1301;
%dim 2 = channel, dim3 = trials
Fs = 1000;
movingwin = [.256 .001]; % length of moving window in seconds (should be to the power of 2) + length of sliding window
params.tapers = [2 3];
params.Fs = Fs;
params.fpass = [1 150];
cntdecrease = 0;
cntincrease = 0;
clear i ;
for i = 1:length(layer_idx)
if ~isempty(data_file.clean_origin_data(layer_idx(i)).unit)
data = squeeze(data_file.clean_origin_data(layer_idx(i)).unit(401:1900,:,:));
bsl = mean(data(1:199,:));
norm_mean_bs = nan(length(xabs),length(data(1,:)));
norm_mean_bs = data(72:end, :) - bsl;
clear S namelist;
[S,t,f] = mtspecgramc(norm_mean_bs ,movingwin, params);
part1 = nanmean(nanmean(squeeze(S(1:575,:)), 1),2);
part2 = nanmean(nanmean(squeeze(S(576:1150,:)), 1),2);
if part1 > part2 && sig95_idx.all_sigs95(layer_idx(i)) ==1
cntdecrease = cntdecrease +1;
end
if part1 < part2 && sig95_idx.all_sigs95(layer_idx(i)) ==1
cntincrease = cntincrease +1;
end
end
end
percentdecrease = cntdecrease*100./length(layer_idx);
percentincrease = cntincrease*100./length(layer_idx);
%% Plot mean with error bars before stimulation and during stimulation in the same analysis
%% different way to normalize the data(normalize mean SUA before computing the grand cell class mean
%% plotting with spiking activity significant changes
%{
pvaluesdir = 'C:\Users\maier\Documents\LGN_data\single_units\inverted_power_channels\good_single_units_data_4bumps_more\individual_channels_peakadj2\lmer_results\';
pvalfilename = [pvaluesdir 'lmer_results.csv'];
pvalues = dlmread(pvalfilename, ',', 1,1);
channeldir = 'C:\Users\maier\Documents\LGN_data\single_units\inverted_power_channels\good_single_units_data_4bumps_more\individual_channels_peakadj2\';
peakvals = load([channeldir 'all_data_peaks']);
layer_idx = find(strcmp(layer, 'P'));
log_p_layer = zeros(length(layer),1);
log_p_layer(layer_idx) = logical(layer_idx);
Ses = struct();
bs_data = struct();
channum = 1: length(log_p_layer);
mean_S_stim = nan(1646+128,38, length(channum));
%compute the power spectrum
%dim 2 = channel, dim3 = trials
Fs = 1000;
movingwin = [.256 .001]; % length of moving window in seconds (should be to the power of 2) + length of sliding window
params.tapers = [2 3];
params.Fs = Fs;
params.fpass = [1 150];
clear i ;
for i = 1:length(channum)
data = squeeze(data_file.good_data(i).channel_data.hypo{1,2}.cont_su(1:1901,:,:));
bsl = mean(data(400:599,:));
%stim and bl data
norm_mean_bs = nan(length(data(:,1)),1,length(data(1,:)));
norm_mean_bs(:,1,:) = data(1:end,:,:) - bsl;
clear S namelist;
[S,t,f] = mtspecgramc(norm_mean_bs(:,1,:) ,movingwin, params);
mean_S_stim(129:end,:,i) = nanmean(S,3);
%we can also store tvec and f in a struct, but they are all identical
end
time_adj = -99:28;
x_stim = cat(2, time_adj-500 , t*1000 -600) ;
%here we compute the individual normalized units necessary for the variance
%for both the baseline data and the stimulus data
norm_chan = nan(length(mean_S_stim(:,1,1)), length(layer_idx));
clear i;
for i = 1:length(layer_idx)
min_chan =min(squeeze(mean_S_stim(:,1,layer_idx(i))),[],1);
max_chan = max(squeeze(mean_S_stim(:,1,layer_idx(i))),[],1);
norm_chan(:,i) = (squeeze(mean_S_stim(:,1,layer_idx(i)))-min_chan)./(max_chan - min_chan);
end
normspec = nanmean(norm_chan,2);
figure,
plot(x_stim,normspec', 'LineWidth',1, 'Color',[229/255, 49/255, 90/255])
xlim([-600 1250])
ylim([-0.1 1])
%green[167/255 185/255 54/255])
%black = [24/255 23/255 23/255] )
%pink = [229/255, 49/255, 90/255])
hold on
ci_low = normspec(:,1) - 1.96*std(norm_chan,0,2,'omitnan')./sqrt(length(norm_chan(1,:)));
plot(x_stim, ci_low,':', 'LineWidth',1,'Color', [.40 .40 .40])
hold on
ci_high = normspec(:,1) + 1.96*std(norm_chan,0,2,'omitnan')./sqrt(length(norm_chan(1,:)));
plot(x_stim, ci_high,':', 'LineWidth',1,'Color', [.40 .40 .40])
plot([0 0], ylim,'k')
hold on
plot([1150 1150], ylim,'k')
hold on
cnt = 0;
all_mean_data = nan(4, length(layer_idx));
for nunit = 1:length(layer_idx)
mean_data = nanmean(peakvals.data_peaks(layer_idx(nunit)).namelist,2);
all_mean_data(:,nunit) = mean_data;
if all_mean_data(4,nunit) < all_mean_data(1,nunit) && pvalues(layer_idx(nunit),4) < .05
cnt= cnt+1;
sig_su(:,cnt) = norm_chan(:,nunit);
% plot(x_stim,norm_chan(:, nunit)')
%hold on
end
end
mean_sig_su = mean(sig_su,2);
plot(x_stim, mean_sig_su, 'LineWidth',1)
%ylim([-0.8 1.2])
set(gca, 'linewidth',2)
set(gca,'box','off')
xlabel('Time from stimulus onset(ms)')
ylabel('Normalized Power at 4Hz(no units)')
title({'P class cells mean power at 4Hz vs time normalized', sprintf('')}, 'Interpreter', 'none')
legend('Mean', 'Mean-1.96*sem', 'Mean+1.96*sem', 'Mean significant decrease', 'Location', 'bestoutside')
filename = strcat('C:\Users\maier\Documents\LGN_data\single_units\inverted_power_channels\good_single_units_data_4bumps_more\power_spectrum\plots\',contrast{2},'indiv_normalized_power_freq_time_mean_95ci_P_layer_4hz_gathered_pink_sig_suamean');
saveas(gcf, strcat(filename, '.svg'));
saveas(gcf, strcat(filename, '.png'));
%export_fig(gcf, '-jpg', '-transparent');
%}
%% Plot mean with error bars before stimulation and during stimulation in the same analysis
%% different way to normalize the data(normalize mean SUA before computing the grand cell class mean
%% plotting with power significant changes
newdatadir = 'C:\Users\daumail\Documents\LGN_data\single_units\inverted_power_channels\good_single_units_data_4bumps_more\new_peak_alignment_anal\su_peaks_03032020\all_units\';
channelfilename = [newdatadir 'clean_origin_sup_50'];
data_file = load(channelfilename);
channeldir = 'C:\Users\daumail\Documents\LGN_data\single_units\inverted_power_channels\good_single_units_data_4bumps_more\new_peak_alignment_anal\su_peaks_03032020\orig_peak_values\all_units\';
peakvals = load([channeldir 'all_data_peaks']);
gooddatadir = 'C:\Users\daumail\Documents\LGN_data\single_units\inverted_power_channels\good_single_units_data_4bumps_more\new_peak_alignment_anal\su_peaks_03032020\all_units\';
sig95_idx = load( strcat(gooddatadir,'roc_results95_stimonset_to1150ms.mat'));
contrast = {'DE0_NDE50','DE50_NDE0','DE50_NDE50'};
layer = {'K','M','P','K','K','K','M','P','P','','M','M','','','M','','','P','','M','','M','M','','P','M','','P', ...
'P','','','K','P','M','M','M','P','','P','K','P','P','','P','P','M','','P','M','P','M','P','','P','M','M','P','','M','M','P','M', ...
'','','M','M','M','P','M','M','M','M','P','P'};
layer([1,46,55]) = [];
layer_idx = find(strcmp(layer, 'K'));
log_p_layer = zeros(length(layer),1);
log_p_layer(layer_idx) = logical(layer_idx);
Ses = struct();
bs_data = struct();
channum = 1: length(log_p_layer);
mean_S_stim = nan(1646+128,38, length(channum));
%compute the power spectrum
%dim 2 = channel, dim3 = trials
Fs = 1000;
movingwin = [.256 .001]; % length of moving window in seconds (should be to the power of 2) + length of sliding window
params.tapers = [2 3];
params.Fs = Fs;
params.fpass = [1 150];
clear i ;
for i = 1:length(channum)
if ~isempty(data_file.clean_origin_data(i).unit)
data = squeeze(data_file.clean_origin_data(i).unit(1:1901,:,:));
bsl = mean(data(400:599,:));
%stim and bl data
norm_mean_bs = nan(length(data(:,1)),1,length(data(1,:)));
norm_mean_bs(:,1,:) = data(1:end,:,:) - bsl;
clear S namelist;
[S,t,f] = mtspecgramc(norm_mean_bs(:,1,:) ,movingwin, params);
mean_S_stim(129:end,:,i) = nanmean(S,3);
end
%we can also store tvec and f in a struct, but they are all identical
end
time_adj = -599:-472;
x_stim = cat(2, time_adj , t*1000 -600) ;
%here we compute the individual normalized units necessary for the variance
%for both the baseline data and the stimulus data
norm_chan = nan(length(mean_S_stim(:,1,1)), length(layer_idx));
clear i;
for i = 1:length(layer_idx)
min_chan =min(squeeze(mean_S_stim(:,1,layer_idx(i))),[],1);
max_chan = max(squeeze(mean_S_stim(:,1,layer_idx(i))),[],1);
norm_chan(:,i) = (squeeze(mean_S_stim(:,1,layer_idx(i)))-min_chan)./(max_chan - min_chan);
end
normspec = nanmean(norm_chan,2);
figure,
plot(x_stim,normspec', 'LineWidth',1, 'Color',[44/255 123/255 182/255])
xlim([-600 1250])
ylim([-0.1 1.05])
%red [215/255 25/255 28/255]
%orange [253/255 174/255 97/255]
%blue [44/255 123/255 182/255]
hold on
ci_low = normspec(:,1) - 1.96*std(norm_chan,0,2,'omitnan')./sqrt(length(norm_chan(1,:)));
plot(x_stim, ci_low,':', 'LineWidth',1,'Color',[44/255 123/255 182/255])
hold on
ci_high = normspec(:,1) + 1.96*std(norm_chan,0,2,'omitnan')./sqrt(length(norm_chan(1,:)));
plot(x_stim, ci_high,':', 'LineWidth',1,'Color',[44/255 123/255 182/255])
plot([0 0], ylim,'k')
hold on
plot([1150 1150], ylim,'k')
hold on
cnt = 0;
for nunit = 1:length(layer_idx)
part1 = nanmean(norm_chan(601:1175,nunit),1);
part2 = nanmean(norm_chan(1176:1750,nunit), 1);
if part1 > part2 && sig95_idx.all_sigs95(layer_idx(nunit)) ==1
cnt = cnt +1;
sig_su(:,cnt) = norm_chan(:,nunit);
% plot(x_stim,norm_chan(:, nunit)')
%hold on
end
end
mean_sig_su = mean(sig_su,2);
plot(x_stim, mean_sig_su, 'LineWidth',1, 'Color',[141/255 140/255 140/255] )
%ylim([-0.8 1.2])
set(gca, 'linewidth',2)
set(gca,'box','off')
xlabel('Time from stimulus onset(ms)')
ylabel('Normalized Power at 4Hz(no units)')
title({'K class cells mean power at 4Hz vs time normalized', sprintf('')}, 'Interpreter', 'none')
legend('Mean', 'Mean-1.96*sem', 'Mean+1.96*sem', 'Mean significant decrease', 'Location', 'bestoutside')
filename = strcat('C:\Users\daumail\Documents\LGN_data\single_units\inverted_power_channels\good_single_units_data_4bumps_more\new_peak_alignment_anal\su_peaks_03032020\power_plots\',contrast{2},'indiv_normalized_power_freq_time_mean_95ci_K_layer_4hz_gathered_blue_sig_suamean_pow');
saveas(gcf, strcat(filename, '.svg'));
saveas(gcf, strcat(filename, '.png'));
%export_fig(gcf, '-jpg', '-transparent');