-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRLM.py
executable file
·67 lines (65 loc) · 2.74 KB
/
RLM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# import seaborn as seabornInstance
from sklearn.model_selection import train_test_split # , StratifiedKFold
from sklearn import linear_model
from sklearn import metrics
from sklearn.neural_network import MLPRegressor
yc = 0
r2 = 0
data = pd.read_csv(r'yeni.csv')
Y = data['Y'].values
Y1 = pd.DataFrame(Y)
Y_stat = Y1.describe()
######################################################################
## Generate models 2^k-1
varind = ['X1', 'X2', 'X3']
model=[]
def potencia(c):
if len(c) == 0:
return[[]]
a = potencia(c[:-1])
return a+[s+[c[-1]] for s in a]
def imprime(c):
for e in sorted(c, key=lambda s: (len(s), s)):
model.append(e)
return model
models =imprime(potencia(varind))
del models[0]
######################################################################
regressor = MLPRegressor(hidden_layer_sizes=100, activation='relu',
solver='adam', alpha=0.0001, batch_size='auto', learning_rate='constant',
learning_rate_init=0.001, power_t=0.5, max_iter=200, shuffle=True, random_state=None,
tol=0.0001, verbose=False, warm_start=False, momentum=0.9, nesterovs_momentum=True,
early_stopping=False, validation_fraction=0.1, epsilon=1e-08,
n_iter_no_change=10, max_fun=15000)
######################################################################
for i in range(0, len(models)):
X = data[models[i]].values
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=0)
regressor = regressor.fit(X_train, Y_train)
y_pred = regressor.predict(X_test)
df = pd.DataFrame({'Actual': Y_test, 'Predicted': y_pred})
df1 = df.head(25)
print('Mean Absolute Error:', metrics.mean_absolute_error(Y_test, y_pred))
print('Mean Squared Error:', metrics.mean_squared_error(Y_test, y_pred))
print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(Y_test, y_pred)))
print(regressor.score(X_test, Y_test))
df1.plot(kind='bar', figsize=(10, 8))
plt.grid(which='major', linestyle='-', linewidth='0.5', color='green')
plt.grid(which='minor', linestyle=':', linewidth='0.5', color='black')
plt.show()
if regressor.score(X_test, Y_test) > r2:
bmodel = i
coef = regressor.coefs_
intercept = regressor.intercepts_
yp = []
print(models[bmodel])
for z in range(0, len(Y)):
for a in range(0, len(coef)):
# print (regressor.coef_[a],'*',data[models[i][a]].values[z])
yc += coef[a] * data[models[bmodel][a]].values[z]
yp.append(intercept + yc)
yc = 0
print(yp)