-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathbatcher_discriminator.py
276 lines (206 loc) · 10.9 KB
/
batcher_discriminator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
# Modifications Copyright 2017 Abigail See
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""This file contains code to process data into batches"""
import queue
from random import shuffle
import codecs
import json
import glob
import numpy as np
import tensorflow as tf
import data
from nltk.tokenize import sent_tokenize
FLAGS = tf.app.flags.FLAGS
class Example(object):
"""Class representing a train/val/test example for text summarization."""
def __init__(self, review, label, vocab, hps):
start_decoding = vocab.word2id(data.START_DECODING)
stop_decoding = vocab.word2id(data.STOP_DECODING)
review_sentenc_orig = []
self.hps = hps
self.label = label
#abstract_sentences = [x.strip() for x in abstract_sentences]
article_sens = sent_tokenize(review)
article_words = []
for i in range(len(article_sens)):
if i >= hps.max_enc_sen_num:
article_words = article_words[:hps.max_enc_sen_num]
review_sentenc_orig = review_sentenc_orig[:hps.max_enc_sen_num]
break
article_sen = article_sens[i]
article_sen_words = article_sen.split()
if len(article_sen_words) > hps.max_enc_seq_len:
article_sen_words = article_sen_words[:hps.max_enc_seq_len]
article_words.append(article_sen_words)
review_sentenc_orig.append(article_sens[i])
# Process the abstract
#abstract = ' '.join(abstract_sentences) # string
# abstract_words = abstract.split() # list of strings
abs_ids = [[vocab.word2id(w) for w in sen] for sen in
article_words] # list of word ids; OOVs are represented by the id for UNK token
# Get the decoder input sequence and target sequence
self.dec_input, self.target = self.get_dec_inp_targ_seqs(abs_ids, hps.max_enc_sen_num, hps.max_enc_seq_len,
start_decoding,
stop_decoding) # max_sen_num,max_len, start_doc_id, end_doc_id,start_id, stop_id
self.dec_len = len(self.dec_input)
self.dec_sen_len = [len(sentence) for sentence in self.target]
self.original_reivew = review_sentenc_orig
def get_dec_inp_targ_seqs(self, sequence, max_sen_num, max_len, start_id, stop_id):
"""Given the reference summary as a sequence of tokens, return the input sequence for the decoder, and the target sequence which we will use to calculate loss. The sequence will be truncated if it is longer than max_len. The input sequence must start with the start_id and the target sequence must end with the stop_id (but not if it's been truncated).
Args:
sequence: List of ids (integers)
max_len: integer
start_id: integer
stop_id: integer
Returns:
inp: sequence length <=max_len starting with start_id
target: sequence same length as input, ending with stop_id only if there was no truncation
"""
inps = sequence[:]
targets = sequence[:]
if len(inps) > max_sen_num:
inps = inps[:max_sen_num]
targets = targets[:max_sen_num]
for i in range(len(inps)):
inps[i] = [start_id] + inps[i][:]
if len(inps[i]) > max_len:
inps[i] = inps[i][:max_len]
for i in range(len(targets)):
if len(targets[i]) >= max_len:
targets[i] = targets[i][:max_len - 1] # no end_token
targets[i].append(stop_id) # end token
else:
targets[i] = targets[i] + [stop_id]
return inps, targets
def pad_decoder_inp_targ(self, max_sen_len, max_sen_num, pad_doc_id):
"""Pad decoder input and target sequences with pad_id up to max_len."""
while len(self.dec_sen_len) < max_sen_num:
self.dec_sen_len.append(1)
self.original_reivew.append("paded")
for i in range(len(self.dec_input)):
while len(self.dec_input[i]) < max_sen_len:
self.dec_input[i].append(pad_doc_id)
while len(self.dec_input) < max_sen_num:
self.dec_input.append([pad_doc_id for i in range(max_sen_len)])
for i in range(len(self.target)):
while len(self.target[i]) < max_sen_len:
self.target[i].append(pad_doc_id)
while len(self.target) < max_sen_num:
self.target.append([pad_doc_id for i in range(max_sen_len)])
# print (self.target)
class Batch(object):
"""Class representing a minibatch of train/val/test examples for text summarization."""
def __init__(self, example_list, hps, vocab):
"""Turns the example_list into a Batch object.
Args:
example_list: List of Example objects
hps: hyperparameters
vocab: Vocabulary object
"""
self.pad_id = vocab.word2id(data.PAD_TOKEN) # id of the PAD token used to pad sequences
self.init_decoder_seq(example_list, hps) # initialize the input to the encoder
def init_decoder_seq(self, example_list, hps):
for ex in example_list:
ex.pad_decoder_inp_targ(hps.max_enc_seq_len, hps.max_enc_sen_num, self.pad_id)
# Initialize the numpy arrays.
# Note: our decoder inputs and targets must be the same length for each batch (second dimension = max_dec_steps) because we do not use a dynamic_rnn for decoding. However I believe this is possible, or will soon be possible, with Tensorflow 1.0, in which case it may be best to upgrade to that.
self.dec_batch = np.zeros((hps.batch_size, hps.max_enc_sen_num, hps.max_enc_seq_len), dtype=np.int32)
self.target_batch = np.zeros((hps.batch_size, hps.max_enc_sen_num, hps.max_enc_seq_len), dtype=np.int32)
self.dec_padding_mask = np.zeros((hps.batch_size * hps.max_enc_sen_num, hps.max_enc_seq_len),
dtype=np.float32)
self.labels = np.zeros((hps.batch_size, hps.max_enc_sen_num, hps.max_enc_seq_len), dtype=np.int32)
self.dec_sen_lens = np.zeros((hps.batch_size, hps.max_enc_sen_num), dtype=np.int32)
self.dec_lens = np.zeros((hps.batch_size), dtype=np.int32)
self.review_sentenc_orig = []
for i, ex in enumerate(example_list):
#self.new_review_text = []
self.labels[i]=np.array([[ex.label for k in range(hps.max_enc_seq_len) ] for j in range(hps.max_enc_sen_num)])
self.review_sentenc_orig.append([sen for sen in ex.original_reivew])
self.dec_lens[i] = ex.dec_len
self.dec_batch[i, :, :] = np.array(ex.dec_input)
self.target_batch[i] = np.array(ex.target)
for j in range(len(ex.dec_sen_len)):
self.dec_sen_lens[i][j] = ex.dec_sen_len[j]
self.target_batch = np.reshape(self.target_batch,
[hps.batch_size * hps.max_enc_sen_num, hps.max_enc_seq_len])
for j in range(len(self.target_batch)):
for k in range(len(self.target_batch[j])):
if int(self.target_batch[j][k]) != self.pad_id:
self.dec_padding_mask[j][k] = 1
self.dec_batch = np.reshape(self.dec_batch, [hps.batch_size * hps.max_enc_sen_num, hps.max_enc_seq_len])
self.dec_sen_lens = np.reshape(self.dec_sen_lens, [hps.batch_size * hps.max_enc_sen_num])
self.labels = np.reshape(self.labels, [hps.batch_size * hps.max_enc_sen_num, hps.max_enc_seq_len])
class DisBatcher(object):
def __init__(self, hps, vocab, train_path_positvie, train_path_negetive, test_path_positive, test_path_negetive):
self._vocab = vocab
self._hps = hps
self._train_path_positive =train_path_positvie
self._train_path_negetive = train_path_negetive
self._test_path_positive = test_path_positive
self._test_path_negetive = test_path_negetive
self.train_queue = self.fill_example_queue(self._train_path_positive)
self.train_queue += self.fill_example_queue(self._train_path_negetive)
self.test_queue = self.fill_example_queue(self._test_path_positive)
self.test_queue += self.fill_example_queue(self._test_path_negetive)
#shuffle(self.all_data)
#self.train_queue = self.all_data[:int(0.9*len(self.all_data))]
#self.test_queue = self.all_data[int(0.9*len(self.all_data)):]
self.train_batch = self.create_batches(mode="train", shuffleis=True)
self.test_batch = self.create_batches(mode="test", shuffleis=False)
def create_batches(self, mode="train", shuffleis=True):
all_batch = []
if mode == "train":
num_batches = int(len(self.train_queue) / self._hps.batch_size)
if shuffleis:
shuffle(self.train_queue)
elif mode == 'test':
num_batches = int(len(self.test_queue) / self._hps.batch_size)
for i in range(0, num_batches):
batch = []
if mode == 'train':
batch += (self.train_queue[i*self._hps.batch_size:i*self._hps.batch_size + self._hps.batch_size])
elif mode == 'test':
batch += (self.test_queue[i*self._hps.batch_size:i*self._hps.batch_size + self._hps.batch_size])
all_batch.append(Batch(batch, self._hps, self._vocab))
return all_batch
def get_batches(self, mode="train"):
if mode == "train":
shuffle(self.train_batch)
return self.train_batch
elif mode == 'test':
return self.test_batch
def fill_example_queue(self, data_path):
new_queue =[]
filelist = glob.glob(data_path) # get the list of datafiles
assert filelist, ('Error: Empty filelist at %s' % data_path) # check filelist isn't empty
filelist = sorted(filelist)
for f in filelist:
reader = codecs.open(f, 'r', 'utf-8')
while True:
string_ = reader.readline()
if not string_: break
dict_example = json.loads(string_)
review = dict_example["example"]
if review.strip() =="":
continue
label = dict_example["label"]
if int(label) == 1:
label = -0.0001
elif int(label) == 0:
label = 1
example = Example(review, label, self._vocab, self._hps)
new_queue.append(example)
return new_queue