-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathunivariate_fused_lasso.py
197 lines (150 loc) · 6.25 KB
/
univariate_fused_lasso.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from util.sprint import sfill, sfloat
NUM_OBS = 100
NUM_CPTS = 3
TRUE_CPTS = np.array([20, 30, 75])
# from the changepoints, we can compute segments
TRUE_SEGMENT_LENGTHS = np.diff([0] + TRUE_CPTS.tolist() + [NUM_OBS])
TRUE_SEGMENT_LABELS = [j for j in range(NUM_CPTS + 1)
for _ in range(TRUE_SEGMENT_LENGTHS[j])]
TRUE_SIGMA = np.array([2, 5, 1, 3])
TRUE_INTERCEPT = 1
TRUE_SLOPE = 5
TRUE_DELTAS = np.array([-9, 3, 1])
TRUE_PARAMS = np.array([TRUE_INTERCEPT, TRUE_SLOPE] + TRUE_DELTAS.tolist())
# seasonality represented by Fourier sinusoidal wave
TRUE_SEASONAL_PERIOD = 7
TRUE_SEASONAL_ORDER = 1
TRUE_SEASONAL_BETA = np.array([2, 2])
INIT_BETA_PARAMS = {'mean': 0.0, 'stddev': 1.0}
SMOOTHING_PARAM = 1.0
LEARNING_RATE = 0.001
MAX_ITER = 10000
TOL_PARAM, TOL_LOSS, TOL_GRAD = 1e-8, 1e-8, 1e-8
RANDOM_SEED = 0
MAX_CHARS = 15
def hinge(z):
return np.max([0, z])
# generate time grid
t_grid = range(1, NUM_OBS + 1)
def evaluate_spline(t):
"""Evaluates spline with known knots at time t"""
return TRUE_INTERCEPT + TRUE_SLOPE * t + \
np.sum([delta * hinge(t - cpt)
for delta, cpt in zip(TRUE_DELTAS, TRUE_CPTS)])
# generate mean trend using spline formulation
np.random.seed(0)
mu_grid = [evaluate_spline(t) for t in t_grid]
def create_design_matrix(t_grid):
"""Creates design matrix for spline with known notes over grid of time"""
columns = [np.repeat(1, NUM_OBS), t_grid]
columns.extend([[hinge(t - cpt) for t in t_grid] for cpt in TRUE_CPTS])
return np.stack(columns, axis=1)
# generate mean trend using design matrix formulation (equivalent to above)
np.random.seed(0)
mu_grid = np.matmul(create_design_matrix(t_grid), TRUE_PARAMS).reshape(-1, 1)
def fourier_expansion(t_grid, period, order):
"""Creates design matrix of Fourier terms evaluated at each t"""
fourier_term_matrix = [
trig_fun((2.0 * np.pi * (k + 1) * np.array(t_grid) / period))
for k in range(order)
for trig_fun in (np.sin, np.cos)
]
return np.stack(fourier_term_matrix, axis=1)
# generate weekly seasonal trend using design matrix formulation
s_grid = np.matmul(fourier_expansion(t_grid,
period=TRUE_SEASONAL_PERIOD,
order=TRUE_SEASONAL_ORDER),
TRUE_SEASONAL_BETA).reshape(-1, 1)
# generate noise
e_grid = np.array([np.random.normal(loc=0.0,
scale=TRUE_SIGMA[TRUE_SEGMENT_LABELS[t]])
for t in range(NUM_OBS)]).reshape(-1, 1)
# compute observations
y_obs = mu_grid + s_grid.sum(axis=1).reshape(-1, 1) + e_grid
# center and scale the data
CENTER = y_obs.mean()
SCALE = y_obs.std()
y_obs = (y_obs - CENTER) / SCALE
# tensor for data
y = tf.placeholder(dtype=tf.float32, shape=[None, 1])
x = tf.placeholder(dtype=tf.float32, shape=[None, NUM_OBS])
# tensors representing parameters
beta = tf.Variable(initial_value=tf.random_normal(shape=[NUM_OBS, 1],
seed=RANDOM_SEED,
**INIT_BETA_PARAMS),
dtype=tf.float32)
# differnece matrix is constant
D = np.zeros(shape=[NUM_OBS - 2, NUM_OBS])
for index_row in range(NUM_OBS - 2):
D[index_row, index_row] = 1.0
D[index_row, index_row + 1] = -2.0
D[index_row, index_row + 2] = 1.0
D = tf.constant(value=D, dtype=tf.float32)
# smoothing param
smoothing_param = tf.constant(SMOOTHING_PARAM, dtype=tf.float32)
# loss function
squared_error = tf.reduce_sum(tf.square(y - beta))
# squared_error = tf.reduce_sum(tf.square(y - tf.matmul(x, beta)))
regularizer = smoothing_param * tf.norm(tf.matmul(D, beta), ord=1)
fused_lasso_loss = squared_error + regularizer
# optimizer
optimizer = tf.train.AdamOptimizer(learning_rate=LEARNING_RATE)
train_op = optimizer.minimize(loss=fused_lasso_loss)
# gradient
grad_beta = tf.gradients(fused_lasso_loss, beta)
with tf.Session() as sess:
sess.run(fetches=tf.global_variables_initializer())
i = 1
obs_beta = sess.run(fetches=[beta])
obs_loss = sess.run(fetches=[fused_lasso_loss], feed_dict={y: y_obs})
obs_grad_beta = sess.run(fetches=[grad_beta], feed_dict={y: y_obs})
print(' {} | {} | {} | {}'
.format(sfill('iter', len(str(MAX_ITER)), '>'),
sfill('|beta|', MAX_CHARS, '^'),
sfill('loss', MAX_CHARS, '^'),
sfill('grad', MAX_CHARS, '^')))
while True:
# gradient step
sess.run(fetches=train_op, feed_dict={y: y_obs})
# update parameters
new_beta = sess.run(fetches=beta)
diff_norm = np.linalg.norm(np.subtract(new_beta, obs_beta))
# update loss
new_loss = sess.run(fetches=fused_lasso_loss, feed_dict={y: y_obs})
loss_diff = np.abs(new_loss - obs_loss[-1])
# update gradient
new_grad_beta = sess.run(fetches=grad_beta, feed_dict={y: y_obs})
grad_norm = np.linalg.norm(new_grad_beta)
obs_beta.append(new_beta)
obs_loss.append(new_loss)
obs_grad_beta.append(new_grad_beta)
if (i - 1) % 100 == 0:
print(' {} | {} | {} | {}'
.format(sfill(i, len(str(MAX_ITER))),
sfloat(np.linalg.norm(new_beta), MAX_CHARS),
sfloat(new_loss, MAX_CHARS),
sfloat(grad_norm, MAX_CHARS)))
if diff_norm < TOL_PARAM:
print('Parameter convergence in {} iterations!'.format(i))
break
if loss_diff < TOL_LOSS:
print('Loss function convergence in {} iterations!'.format(i))
break
if grad_norm < TOL_GRAD:
print('Gradient convergence in {} iterations!'.format(i))
break
if i >= MAX_ITER:
print('Max number of iterations reached without convergence.')
break
i += 1
# visualize results
# plt.plot(t_grid, mu_grid, color='blue', label='trend')
plt.plot(t_grid, mu_grid + s_grid, color='green', label='trend + seasonal')
plt.scatter(x=t_grid, y=SCALE * y_obs + CENTER, s=7, color='black', marker='o',
label='obs')
plt.plot(t_grid, SCALE * obs_beta[-1] + CENTER, color='red', label='est')
plt.legend(loc='upper right')
plt.show()