-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
67 lines (49 loc) · 2.92 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import numpy as np
import pandas as pd
from models.elo import Model_elo
from models.poisson_model import PoissonRegression
from bet_distribution.bet_distribution import Bet_distribution
from models.feature_extraction.feature_extraction import Data
if 'bet_distribution' not in locals():
bet_distribution = Bet_distribution
if 'model' not in locals():
model = Model_elo
if 'model_params' not in locals():
model_params={}
if 'bet_distribution_params' not in locals():
bet_distribution_params={}
class Model:
def __init__(self, model=model, model_params=model_params, log=True, bet_distribution = bet_distribution, bet_distribution_params={}):
'''
Initialization of the model class with the parameters we want to use for evaluation.
Parameters:
model(class): `class` that represents the model used. It has to include the attribute `model.P_dis` and has to have the method `model.run_iter(inc,opps)` that returns the log. It is read from the `model` local variable.
model_params(dict): A dictionary of params to pass to the `model`. It is read from the `model_params` local variable.
log(bool): Whether to log the process. If set to `false`, then `self.log` is `false`. Else is `self.log = (log_model, log_bet_distribution)`. Where` log_model` is the log that `model.run_iter(...)` returns and `bet_distribution.run_iter(...)` returns.
bet_distribution_params(dict): A dictionary of params to pass to the `bet_distribution`. It is read from the `bet_distribution_params` local variable.
'''
self.data = Data()
self.model = model(self.data, **model_params)
self.bet_distribution = bet_distribution(**bet_distribution_params)
self.log = log
def place_bets(self, opps, summary, inc):
'''
The outermost API method for the evaluation loop. The evaluation loop relies on the avalibility of this method for the model class.
Parameters:
All the parameters are supplied by the evaluation loop.
opps(pandas.DataFrame): dataframe that includes the opportunities for betting.
summary(pandas.DataFrame): includes the `Max_bet`, `Min_bet` and `Bankroll`.
inc(pandas.DataFrame): includes the played matches with the scores for the model.
Returns:
pandas.DataFrame: With the bets that we want to place. Indexed by the teams `ID`.
'''
self.data.update_data(opps=opps,summary=summary, inc=inc)
# all features must be updated before model training
self.data.update_features()
log_model = self.model.run_iter(inc, opps)
self.data.update_data(P_dis=self.model.P_dis)
log_bet_distribution = self.bet_distribution.run_iter(summary, opps, self.model.P_dis)
self.data.update_data(bets=self.bet_distribution.bets)
if self.log is True:
self.log = (log_model, log_bet_distribution)
return self.bet_distribution.bets