-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfsdp-dt-load-save.py
326 lines (267 loc) · 9.7 KB
/
fsdp-dt-load-save.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import os
import shutil
import functools
from torch.distributed._shard.api import _shard_tensor
from torch.distributed._shard.checkpoint.metadata import BytesStorageMetadata, TensorStorageMetadata
from torch.distributed._shard.sharded_tensor.api import ShardedTensor
from torch.distributed._shard.sharded_tensor.metadata import TensorProperties
from torch.distributed._shard.sharding_spec.chunk_sharding_spec import ChunkShardingSpec
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType
import torch
import torch.distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from spmd import distribute_tensor, DeviceMesh, DTensor as DT, Shard, Replicate
import torch.distributed._shard.checkpoint as dist_cp
import torch.distributed.distributed_c10d as distributed_c10d
import torch.nn.functional as F
from distcp_playground.utils import (
traverse_state_dict,
print_visitor,
print_sharded_tensor,
)
from distcp_playground.dist_2d import (
NestedDedupRenamingTensorSaver,
load_2d_optimizer_state_dict,
get_data_parallel_process_group,
UberLoadPlanner,
UberSavePlanner
)
import spmd.tensor.parallel.fsdp
from distcp_playground.run import dist_run
# Tensor-Parallel degree
TP_DEGREE = 2
CHECKPOINT_DIR = f"/scratch/{os.environ['LOGNAME']}/checkpoint"
LR = 3e-5
OPS_NOT_SHARD = [
"net3.weight",
"net3.bias",
]
SHARD_PARAMS = [
"net1.weight",
"net1.bias",
"net2.weight",
]
def p0(line):
if dist.get_rank() == 0:
print(line)
class SimpleModel(torch.nn.Module):
def __init__(self):
super(SimpleModel, self).__init__()
self.net1 = torch.nn.Linear(5, 8)
self.relu = torch.nn.ReLU()
self.net2 = torch.nn.Linear(8, 4)
self.net3 = torch.nn.Linear(4, 12)
def forward(self, x):
x = F.relu(self.net1(x))
x = F.relu(self.net2(x))
x = F.relu(self.net3(x))
return x
def _aggregate_local_tensor(module: torch.nn.Module) -> torch.nn.Module:
def hook_func(_module, _input, output):
if isinstance(output, DT):
replica_placement = [Replicate()]
return output.redistribute(
output.device_mesh, replica_placement
).to_local()
module.register_forward_hook(hook_func)
return module
def _replicate_input_tensor(
module: torch.nn.Module, device_mesh, replica_placement
) -> torch.nn.Module:
def hook_func(_, input):
if not isinstance(input[0], DT):
return DT(input[0], device_mesh, replica_placement)
module.register_forward_pre_hook(hook_func)
return module
def _gradient_hook(param, grad):
param._local_tensor.grad = grad._local_tensor
def shard_module(m, pg):
start_idx = distributed_c10d.get_global_rank(pg, 0)
device_mesh = DeviceMesh(
"cuda", list(range(start_idx, start_idx + pg.size())), dim_groups=[pg]
)
col_wise_sharding = [Shard(0)]
row_wise_sharding = [Shard(1)]
replicate = [Replicate()]
m.net1.weight = torch.nn.Parameter(
distribute_tensor(m.net1.weight, device_mesh, col_wise_sharding),
)
m.net2.weight = torch.nn.Parameter(
distribute_tensor(m.net2.weight, device_mesh, row_wise_sharding)
)
m.net1.bias = torch.nn.Parameter(
distribute_tensor(m.net1.bias, device_mesh, col_wise_sharding)
)
m.net2.bias = torch.nn.Parameter(
distribute_tensor(m.net2.bias, device_mesh, replicate)
)
m = _replicate_input_tensor(m, device_mesh, replicate)
m.net2 = _aggregate_local_tensor(m.net2)
m.net1.weight.register_hook(
functools.partial(_gradient_hook, m.net1.weight)
)
m.net2.weight.register_hook(
functools.partial(_gradient_hook, m.net2.weight)
)
m.net1.bias.register_hook(
functools.partial(_gradient_hook, m.net1.bias)
)
m.net2.bias.register_hook(
functools.partial(_gradient_hook, m.net2.bias)
)
def _shard_wrap_module(module, module_shard, fsdp_wrap, tp_pg, fsdp_pg):
if module_shard:
# Fetch the module sharding planner.
shard_module(module, tp_pg)
if fsdp_wrap and module_shard:
return FSDP(module, process_group=fsdp_pg)
if fsdp_wrap:
return FSDP(module, process_group=distributed_c10d._get_default_group())
return module
TP_PG = None
DP_PG = None
def init_model():
rank = dist.get_rank()
torch.cuda.set_device(rank)
world_size = dist.get_world_size()
model_parallel_size = TP_DEGREE
model = SimpleModel().cuda(rank)
tp_ids = []
fsdp_ids = []
for i in range(world_size):
idx = i // model_parallel_size
if len(tp_ids) <= idx:
tp_ids.append([])
tp_ids[idx].append(i)
idx = i % model_parallel_size
if len(fsdp_ids) <= idx:
fsdp_ids.append([])
fsdp_ids[idx].append(i)
tp_pgs = [dist.new_group(ids) for ids in tp_ids]
data_parallel_pgs = [dist.new_group(ids) for ids in fsdp_ids]
tp_pg = tp_pgs[rank // model_parallel_size]
fsdp_pg = data_parallel_pgs[rank % model_parallel_size]
global TP_PG
global DP_PG
TP_PG = tp_pg
DP_PG = fsdp_pg
# Create Input
model = _shard_wrap_module(
model, True, True, tp_pg, fsdp_pg
)
return model
def save_dt_model():
torch.manual_seed(103)
model = init_model()
with FSDP.summon_full_params(model):
p0(f"before-save: net1.bias {model.net1.bias}")
p0(f"before-save: net2.bias {model.net2.bias}")
with FSDP.state_dict_type(model, StateDictType.SHARDED_STATE_DICT):
checkpoint = model.state_dict()
state_dict = {
"model": checkpoint,
"other": "save-time-string"
}
dist_cp.save_state_dict(
state_dict=state_dict,
storage_writer=dist_cp.FileSystemWriter(CHECKPOINT_DIR),
planner=UberSavePlanner()
)
def load_dt_model():
dist.barrier()
p0("-------------")
dist.barrier()
torch.manual_seed(101)
model = init_model()
with FSDP.state_dict_type(model, StateDictType.SHARDED_STATE_DICT):
checkpoint = model.state_dict()
state_dict = {
"model": checkpoint,
"other": ""
}
dist_cp.load_state_dict(
state_dict=state_dict,
storage_reader=dist_cp.FileSystemReader(CHECKPOINT_DIR),
planner=UberLoadPlanner()
)
model.load_state_dict(state_dict["model"])
with FSDP.summon_full_params(model):
p0(f"after-load: net1.bias {model.net1.bias}")
p0(f"after-load: net2.bias {model.net2.bias}")
def save_dt_optim():
torch.manual_seed(107)
model_tp = init_model()
optim_input = list(model_tp.parameters())
optim = torch.optim.Adam(optim_input, lr=0.0001)
# with FSDP.summon_full_params(model_tp):
model_tp(torch.rand(4,5).cuda()).sum().backward()
optim.step()
optim_state = FSDP.sharded_optim_state_dict(model_tp, optim, optim_input)
net1_bias = optim_state["state"]["net1.bias"]["exp_avg"]
net2_bias = optim_state["state"]["net2.bias"]["exp_avg"]
net1_bias = net1_bias.local_tensor().local_tensor()
net2_bias = net2_bias.local_tensor().local_tensor()
for i in range(dist.get_world_size()):
if i == dist.get_rank():
print(f"[[{dist.get_rank()}]] before-save optim-state: net1:{net1_bias} net2:{net2_bias}")
dist.barrier()
state_dict = {
"optimizer_state": optim_state
}
md = dist_cp.save_state_dict(
state_dict=state_dict,
storage_writer=dist_cp.FileSystemWriter(CHECKPOINT_DIR),
planner=NestedDedupRenamingTensorSaver()
)
def dump_checkpoint():
dist.barrier()
if dist.get_rank() == 0:
metadata = dist_cp.FileSystemReader(CHECKPOINT_DIR).read_metadata()
load_keys = [ "optimizer_state.state.net1.bias.exp_avg", "optimizer_state.state.net2.bias.exp_avg" ]
state_dict = {}
for key in load_keys:
md = metadata.state_dict_metadata[key]
state_dict[key] = torch.zeros(md.size)
dist_cp.load_state_dict(
state_dict=state_dict,
storage_reader=dist_cp.FileSystemReader(CHECKPOINT_DIR),
no_dist=True
)
for key, value in state_dict.items():
print(f"{key} :: {value}")
dist.barrier()
def load_dt_optim():
torch.manual_seed(103)
model_tp = init_model()
optim_input = list(model_tp.parameters())
optim = torch.optim.Adam(optim_input, lr=0.0001)
the_pg = get_data_parallel_process_group(model_tp)
assert the_pg == DP_PG
with FSDP.state_dict_type(model_tp, StateDictType.SHARDED_STATE_DICT):
model_state_dict = model_tp.state_dict()
optim_state = load_2d_optimizer_state_dict(
model_state_dict,
optimizer_key="optimizer_state",
storage_reader=dist_cp.FileSystemReader(CHECKPOINT_DIR),
dp_pg=DP_PG
)
net1_bias = optim_state["optimizer_state"]["state"]["net1.bias"]["exp_avg"]
net2_bias = optim_state["optimizer_state"]["state"]["net2.bias"]["exp_avg"]
net1_bias = net1_bias.local_tensor()
net2_bias = net2_bias.local_tensor()
for i in range(dist.get_world_size()):
if i == dist.get_rank():
print(f"[[{dist.get_rank()}]] after-load optim-state: net1:{net1_bias} net2:{net2_bias}")
dist.barrier()
flattened_osd = FSDP.flatten_sharded_optim_state_dict(
optim_state["optimizer_state"], model_tp, optim_input
)
optim.load_state_dict(flattened_osd)
def work():
save_dt_model()
load_dt_model()
save_dt_optim()
load_dt_optim()
if __name__ == "__main__":
shutil.rmtree(CHECKPOINT_DIR, ignore_errors=True)
dist_run(work, world_size=4)