-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatavis.py
60 lines (46 loc) · 1.58 KB
/
datavis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
#!/usr/bin/env python
import os.path as osp
import random
import cv2
import matplotlib.pyplot as plt
import pandas as pd
from src.mask_utils import rle2mask
class DataVisualizer(object):
"""This is data visualizer"""
def __init__(self):
self.root = './dataset/'
self.df_path = osp.join(self.root, 'train.csv')
self.train_path = osp.join(self.root, 'train_images/')
self.df = pd.read_csv(self.df_path)
self.columns = 1
self.rows = 4
def datasize(self):
print('NUM DATA: {}'.format(self.df.shape[0]))
def display(self):
fig = plt.figure(figsize=(20, 20))
df = self.df[self.df['EncodedPixels'].notnull()]
df = df.pivot(index='ImageId',
columns='ClassId',
values='EncodedPixels')
for i in range(1, self.columns * self.rows + 1):
idx = random.randint(0, len(self.df) - 1)
fig.add_subplot(self.rows, self.columns, i)
image_id, mask = rle2mask(idx, df)
img_path = osp.join(self.train_path, image_id)
img = cv2.imread(img_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
for ch in range(mask.shape[-1]):
if mask[:, :, ch].any():
idx = ch
mask = mask[:, :, idx]
img[mask == 1, 0] = 255
plt.imshow(img)
plt.axis('off')
plt.show()
plt.close()
def main():
visualizer = DataVisualizer()
visualizer.datasize()
visualizer.display()
if __name__ == '__main__':
main()