-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
57 lines (49 loc) · 1.96 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from config import Configuration
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def hidden_init(layer):
fan_in = layer.weight.data.size()[0]
lim = 1. / np.sqrt(fan_in)
return (-lim, lim)
class Actor(nn.Module):
def __init__(self, state_size, action_size):
super(Actor, self).__init__()
self.state_size = state_size
self.action_size = action_size
self.layer_1 = nn.Linear(state_size, 128)
self.bn1 = nn.BatchNorm1d(128)
self.layer_2 = nn.Linear(128, 128)
self.layer_3 = nn.Linear(128, action_size)
self.reset_parameters()
return
def reset_parameters(self):
self.layer_1.weight.data.uniform_(*hidden_init(self.layer_1))
self.layer_2.weight.data.uniform_(*hidden_init(self.layer_2))
self.layer_3.weight.data.uniform_(-3e-3, 3e-3)
def forward(self, states):
x = F.relu(self.bn1(self.layer_1(states)))
x = F.relu(self.layer_2(x))
return torch.tanh(self.layer_3(x))
class Critic(nn.Module):
def __init__(self, state_size, action_size):
super(Critic, self).__init__()
self.state_size = state_size
self.action_size = action_size
self.state_fc = nn.Linear(state_size, 128)
self.bn1 = nn.BatchNorm1d(128)
self.value_fc1 = nn.Linear(128 +action_size, 128)
self.output_fc = nn.Linear(128,1)
self.reset_parameters()
return
def reset_parameters(self):
self.state_fc.weight.data.uniform_(*hidden_init(self.state_fc))
self.value_fc1.weight.data.uniform_(*hidden_init(self.value_fc1))
self.output_fc.weight.data.uniform_(-3e-3, 3e-3)
def forward(self, states, action):
xs = F.leaky_relu(self.bn1(self.state_fc(states)))
x = torch.cat((xs, action), dim=1)
x = F.leaky_relu(self.value_fc1(x))
return self.output_fc(x)