forked from shapeev/NumMod-2019
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMath-DE-demo.nb
3004 lines (2958 loc) · 153 KB
/
Math-DE-demo.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 10.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 156334, 2996]
NotebookOptionsPosition[ 154710, 2936]
NotebookOutlinePosition[ 155088, 2952]
CellTagsIndexPosition[ 155045, 2949]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{"Solving", " ", "the", " ", "harmonic", " ", "oscillator"}], " ",
"*)"}], "\[IndentingNewLine]",
RowBox[{"DSolve", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"u", "''"}], "[", "x", "]"}], "\[Equal]",
RowBox[{"-",
RowBox[{"u", "[", "x", "]"}]}]}], ",",
RowBox[{"u", "[", "x", "]"}], ",", "x"}], "]"}]}]], "Input",
CellChangeTimes->{{3.663252137399168*^9, 3.6632522175107503`*^9}, {
3.6632522489345474`*^9, 3.663252257568041*^9}, {3.6632523437439704`*^9,
3.663252347828204*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{
RowBox[{"u", "[", "x", "]"}], "\[Rule]",
RowBox[{
RowBox[{
RowBox[{"C", "[", "1", "]"}], " ",
RowBox[{"Cos", "[", "x", "]"}]}], "+",
RowBox[{
RowBox[{"C", "[", "2", "]"}], " ",
RowBox[{"Sin", "[", "x", "]"}]}]}]}], "}"}], "}"}]], "Output",
CellChangeTimes->{3.663302080814147*^9, 3.7261280623607216`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{"Same", " ", "with", " ", "initial", " ", "values"}], " ", "*)"}],
"\[IndentingNewLine]",
RowBox[{"DSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"u", "''"}], "[", "x", "]"}], "\[Equal]",
RowBox[{"-",
RowBox[{"u", "[", "x", "]"}]}]}], ",",
RowBox[{
RowBox[{"u", "[", "0", "]"}], "\[Equal]", "0"}], ",",
RowBox[{
RowBox[{
RowBox[{"u", "'"}], "[", "0", "]"}], "\[Equal]", "1"}]}], "}"}], ",",
RowBox[{"u", "[", "x", "]"}], ",", "x"}], "]"}]}]], "Input",
CellChangeTimes->{{3.6632522650554695`*^9, 3.6632522985053825`*^9}, {
3.663252349768315*^9, 3.663252352447468*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{
RowBox[{"u", "[", "x", "]"}], "\[Rule]",
RowBox[{"Sin", "[", "x", "]"}]}], "}"}], "}"}]], "Output",
CellChangeTimes->{3.663302131889939*^9, 3.726128063801571*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"DSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"u", "''"}], "[", "x", "]"}], "\[Equal]",
RowBox[{"-",
RowBox[{"Sin", "[",
RowBox[{"u", "[", "x", "]"}], "]"}]}]}], ",",
RowBox[{
RowBox[{"u", "[", "0", "]"}], "\[Equal]", "1"}], ",",
RowBox[{
RowBox[{
RowBox[{"u", "'"}], "[", "0", "]"}], "\[Equal]", "0"}]}], "}"}], ",",
RowBox[{"u", "[", "x", "]"}], ",", "x"}], "]"}]], "Input",
CellChangeTimes->{3.6633021755690193`*^9}],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{
RowBox[{"u", "[", "x", "]"}], "\[Rule]",
RowBox[{"2", " ",
RowBox[{"JacobiAmplitude", "[",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "x"}], " ",
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{"Cos", "[", "1", "]"}]}], ")"}]}]]}], "+",
RowBox[{"2", " ",
RowBox[{"EllipticF", "[",
RowBox[{
FractionBox["1", "2"], ",",
SuperscriptBox[
RowBox[{"Csc", "[",
FractionBox["1", "2"], "]"}], "2"]}], "]"}]}]}], ")"}]}], ",",
SuperscriptBox[
RowBox[{"Csc", "[",
FractionBox["1", "2"], "]"}], "2"]}], "]"}]}]}], "}"}],
"}"}]], "Output",
CellChangeTimes->{3.663302177355261*^9, 3.726128068789155*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"Failing", " ", "to", " ", "solve", " ", "the", " ", "pendulum", " ",
"equation", " ", "with", " ", "damping"}], " ", "*)"}],
"\[IndentingNewLine]",
RowBox[{"DSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"u", "''"}], "[", "x", "]"}], "\[Equal]",
RowBox[{
RowBox[{"-",
RowBox[{"Sin", "[",
RowBox[{"u", "[", "x", "]"}], "]"}]}], "-",
RowBox[{
RowBox[{"1", "/", "10"}], " ",
RowBox[{
RowBox[{"u", "'"}], "[", "x", "]"}]}]}]}], ",",
RowBox[{
RowBox[{"u", "[", "0", "]"}], "\[Equal]", "1"}], ",",
RowBox[{
RowBox[{
RowBox[{"u", "'"}], "[", "0", "]"}], "\[Equal]", "0"}]}], "}"}], ",",
RowBox[{"u", "[", "x", "]"}], ",", "x"}], "]"}]}]], "Input",
CellChangeTimes->{{3.6632523688384056`*^9, 3.6632524112048287`*^9},
3.6632524815828543`*^9, {3.6632525308586726`*^9, 3.6632525742141523`*^9}}],
Cell[BoxData[
RowBox[{
StyleBox[
RowBox[{"Solve", "::", "ifun"}], "MessageName"],
RowBox[{
":", " "}], "\<\"Inverse functions are being used by \
\[NoBreak]\\!\\(\\*RowBox[{\\\"Solve\\\"}]\\)\[NoBreak], so some solutions \
may not be found; use Reduce for complete solution information. \
\\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \
ButtonFrame->None, ButtonData:>\\\"paclet:ref/message/Solve/ifun\\\", \
ButtonNote -> \\\"Solve::ifun\\\"]\\)\"\>"}]], "Message", "MSG",
CellChangeTimes->{3.66330220877514*^9, 3.7261280748913717`*^9}],
Cell[BoxData[
RowBox[{"DSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
SuperscriptBox["u", "\[Prime]\[Prime]",
MultilineFunction->None], "[", "x", "]"}], "\[Equal]",
RowBox[{
RowBox[{"-",
RowBox[{"Sin", "[",
RowBox[{"u", "[", "x", "]"}], "]"}]}], "-",
FractionBox[
RowBox[{
SuperscriptBox["u", "\[Prime]",
MultilineFunction->None], "[", "x", "]"}], "10"]}]}], ",",
RowBox[{
RowBox[{"u", "[", "0", "]"}], "\[Equal]", "1"}], ",",
RowBox[{
RowBox[{
SuperscriptBox["u", "\[Prime]",
MultilineFunction->None], "[", "0", "]"}], "\[Equal]", "0"}]}], "}"}],
",",
RowBox[{"u", "[", "x", "]"}], ",", "x"}], "]"}]], "Output",
CellChangeTimes->{3.6633022229503098`*^9, 3.7261280785810633`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{"Same", " ", "numerically"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"pendulum", "[", "x_", "]"}], "=",
RowBox[{
RowBox[{"u", "[", "x", "]"}], "/.",
RowBox[{"First", "@",
RowBox[{"NDSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"u", "''"}], "[", "x", "]"}], "\[Equal]",
RowBox[{
RowBox[{"-",
RowBox[{"Sin", "[",
RowBox[{"u", "[", "x", "]"}], "]"}]}], "-",
RowBox[{
RowBox[{"1", "/", "10"}], " ",
RowBox[{
RowBox[{"u", "'"}], "[", "x", "]"}]}]}]}], ",",
RowBox[{
RowBox[{"u", "[", "0", "]"}], "\[Equal]", "1"}], ",",
RowBox[{
RowBox[{
RowBox[{"u", "'"}], "[", "0", "]"}], "\[Equal]", "0"}]}], "}"}],
",",
RowBox[{"u", "[", "x", "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "10"}], "}"}]}], "]"}]}]}]}]}]], "Input",
CellChangeTimes->{{3.663252423391526*^9, 3.663252467959075*^9}, {
3.663252562530484*^9, 3.6632525777003517`*^9}}],
Cell[BoxData[
RowBox[{
TagBox[
TemplateBox[{RowBox[{
StyleBox[
TagBox["InterpolatingFunction", "SummaryHead"],
"NonInterpretableSummary"],
StyleBox["[", "NonInterpretableSummary"],
DynamicModuleBox[{Typeset`open$$ = False},
PanelBox[
PaneSelectorBox[{False -> GridBox[{{
PaneBox[
ButtonBox[
DynamicBox[
FEPrivate`FrontEndResource[
"FEBitmaps", "SquarePlusIconMedium"]],
ButtonFunction :> (Typeset`open$$ = True), Appearance ->
None, Evaluator -> Automatic, Method -> "Preemptive"],
Alignment -> {Center, Center}, ImageSize ->
Dynamic[{
Automatic, 3.5 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
GraphicsBox[{{{{}, {}, {
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1]],
LineBox[CompressedData["
1:eJwB0QMu/CFib1JlAgAAADwAAAACAAAAStFeOa+/hj6S///////vP1t+433D
3cQ/35uQpwKl7z8/lvq2a77VP4C3psiweO4/UPQI4wkn4D8fCr4gkarsPzg0
cm9ZVOU/pdq67mJF6j/3vGVz/fHqPxwtY5g7COc/r0FwQdgX8D+JXZk+o3rj
P07J8gTc7vI/gTTp7hBM3j9JHOSKnbj1P/lOH93SDtU/GA6ZlmZS+D+vDTkK
swnIP1IkE95ZJPs/iMih6mtMoD9g2VCrVMb9P5LRCVmWvry/5ax+nYYtAEBE
1vJ9acvPv1B/NwP4kwFAtbK4vSm62L8lIdIrbeICQDEjmcNTFuC/MFVPcvdM
BECI7ospBpjjv+nuA5rgsAVAtYWrgD5s5r8MWJqEzfwGQFQWH3R2dui/ZVMT
jc9kCEBy2v44gPzpvygebljVtAlAFZ6ZFHe+6r8he6tB8CALQHNmNdQ91uq/
xz0gDGqGDEBD31DIxjPqv9fPdpnn0w1AgSqvDe/76L8d9K9Eej0PQI+H0PLR
BOe/53NlWYhHEECgcJfAf6Dkv5WgDgED7RBAeAc2Y1jR4b9eFqk3iKARQBlE
jYupqNy/3HO0Tw9IEkAar8B6gn7Vv3Uasfag/RJA2eLQrvh4yr/lc0kO4q8T
QC+4Q0LZfLO/CrVSByVWFEBOH5oP13ynP0o/TY9yChVA03z9GDdWxj8/sbj4
wbIVQAXf55fTa9I/C9a/0sBXFkD9sqvJR/LYP/JDuDvKChdAg0e2Mbwy3z+O
mSGG1bEXQIkK3gRFD+I/RTh8X+tmGED22oQO8ivkP7G+RxoDEBlAU3HLcpiV
5T/0965FyrUZQI0tC7hcbOY/UnoHAJxpGkANkFw1bbbmP2Xk0JtvERtAzW89
+F9n5j+Tl4vGTccbQMlylCXedOU/l/3hYdt5HEDNGDf3X/DjP1BLqd5qIB1A
2T68SSQK4j8k4mHqBNUdQDaHH4ZyBd8/rWCL16B9HkAYGTPhTYzZPw2SUDXs
Ih9AWeOwVuae0z+IDAciQtYfQA0JbVmIesk/XDcX+Mw+IEDb7KpRek24PwKN
oyZ+mSBA6mkze+I0k78TvH0Nh/IgQF9PAa1mXsC//l4Q5ZBFIUC3//09Tb/M
v3emGwSgnyFAGFOd2cqM1L/KYd8TsPMhQPFzBmvoqdm/q8Eba8VOIkDYTySK
+lrev/f6pXoyqCJAA3Ndhf/+4L8eqOh6oPsiQDvOrhZNOeK/0vmjwhNWI0BX
resyCwXjv2G/F/uHqiNA7rELzjlA478yFFD6//8jQEWSFioC/OK/n8rYIA==
"]]}}}, {}}, {
DisplayFunction -> Identity, PlotRangePadding -> {{
Scaled[0.1],
Scaled[0.1]}, {
Scaled[0.1],
Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding ->
All, DisplayFunction -> Identity, AspectRatio -> 1,
Axes -> {False, False}, AxesLabel -> {None, None},
AxesOrigin -> {0, 0}, DisplayFunction :> Identity,
Frame -> {{True, True}, {True, True}},
FrameLabel -> {{None, None}, {None, None}}, FrameStyle ->
Directive[
Opacity[0.5],
Thickness[Tiny],
RGBColor[0.368417, 0.506779, 0.709798]],
FrameTicks -> {{None, None}, {None, None}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], ImageSize ->
Dynamic[{
Automatic, 3.5 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}],
Method -> {
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None},
PlotRange -> {{0., 10.}, {-0.8386525292109596,
0.9999999999999878}}, PlotRangeClipping -> True,
PlotRangePadding -> {{
Scaled[0.1],
Scaled[0.1]}, {
Scaled[0.1],
Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}],
GridBox[{{
RowBox[{
TagBox["\"Domain: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox[
RowBox[{"{",
RowBox[{"{",
RowBox[{"0.`", ",", "10.`"}], "}"}], "}"}],
"SummaryItem"]}]}, {
RowBox[{
TagBox["\"Output: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["\"scalar\"", "SummaryItem"]}]}},
GridBoxAlignment -> {
"Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete ->
False, GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {
"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
BaseStyle -> {
ShowStringCharacters -> False, NumberMarks -> False,
PrintPrecision -> 3, ShowSyntaxStyles -> False}]}},
GridBoxAlignment -> {"Rows" -> {{Top}}}, AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
BaselinePosition -> {1, 1}], True -> GridBox[{{
PaneBox[
ButtonBox[
DynamicBox[
FEPrivate`FrontEndResource[
"FEBitmaps", "SquareMinusIconMedium"]],
ButtonFunction :> (Typeset`open$$ = False), Appearance ->
None, Evaluator -> Automatic, Method -> "Preemptive"],
Alignment -> {Center, Center}, ImageSize ->
Dynamic[{
Automatic, 3.5 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
GraphicsBox[{{{{}, {}, {
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1]],
LineBox[CompressedData["
1:eJwB0QMu/CFib1JlAgAAADwAAAACAAAAStFeOa+/hj6S///////vP1t+433D
3cQ/35uQpwKl7z8/lvq2a77VP4C3psiweO4/UPQI4wkn4D8fCr4gkarsPzg0
cm9ZVOU/pdq67mJF6j/3vGVz/fHqPxwtY5g7COc/r0FwQdgX8D+JXZk+o3rj
P07J8gTc7vI/gTTp7hBM3j9JHOSKnbj1P/lOH93SDtU/GA6ZlmZS+D+vDTkK
swnIP1IkE95ZJPs/iMih6mtMoD9g2VCrVMb9P5LRCVmWvry/5ax+nYYtAEBE
1vJ9acvPv1B/NwP4kwFAtbK4vSm62L8lIdIrbeICQDEjmcNTFuC/MFVPcvdM
BECI7ospBpjjv+nuA5rgsAVAtYWrgD5s5r8MWJqEzfwGQFQWH3R2dui/ZVMT
jc9kCEBy2v44gPzpvygebljVtAlAFZ6ZFHe+6r8he6tB8CALQHNmNdQ91uq/
xz0gDGqGDEBD31DIxjPqv9fPdpnn0w1AgSqvDe/76L8d9K9Eej0PQI+H0PLR
BOe/53NlWYhHEECgcJfAf6Dkv5WgDgED7RBAeAc2Y1jR4b9eFqk3iKARQBlE
jYupqNy/3HO0Tw9IEkAar8B6gn7Vv3Uasfag/RJA2eLQrvh4yr/lc0kO4q8T
QC+4Q0LZfLO/CrVSByVWFEBOH5oP13ynP0o/TY9yChVA03z9GDdWxj8/sbj4
wbIVQAXf55fTa9I/C9a/0sBXFkD9sqvJR/LYP/JDuDvKChdAg0e2Mbwy3z+O
mSGG1bEXQIkK3gRFD+I/RTh8X+tmGED22oQO8ivkP7G+RxoDEBlAU3HLcpiV
5T/0965FyrUZQI0tC7hcbOY/UnoHAJxpGkANkFw1bbbmP2Xk0JtvERtAzW89
+F9n5j+Tl4vGTccbQMlylCXedOU/l/3hYdt5HEDNGDf3X/DjP1BLqd5qIB1A
2T68SSQK4j8k4mHqBNUdQDaHH4ZyBd8/rWCL16B9HkAYGTPhTYzZPw2SUDXs
Ih9AWeOwVuae0z+IDAciQtYfQA0JbVmIesk/XDcX+Mw+IEDb7KpRek24PwKN
oyZ+mSBA6mkze+I0k78TvH0Nh/IgQF9PAa1mXsC//l4Q5ZBFIUC3//09Tb/M
v3emGwSgnyFAGFOd2cqM1L/KYd8TsPMhQPFzBmvoqdm/q8Eba8VOIkDYTySK
+lrev/f6pXoyqCJAA3Ndhf/+4L8eqOh6oPsiQDvOrhZNOeK/0vmjwhNWI0BX
resyCwXjv2G/F/uHqiNA7rELzjlA478yFFD6//8jQEWSFioC/OK/n8rYIA==
"]]}}}, {}}, {
DisplayFunction -> Identity, PlotRangePadding -> {{
Scaled[0.1],
Scaled[0.1]}, {
Scaled[0.1],
Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding ->
All, DisplayFunction -> Identity, AspectRatio -> 1,
Axes -> {False, False}, AxesLabel -> {None, None},
AxesOrigin -> {0, 0}, DisplayFunction :> Identity,
Frame -> {{True, True}, {True, True}},
FrameLabel -> {{None, None}, {None, None}}, FrameStyle ->
Directive[
Opacity[0.5],
Thickness[Tiny],
RGBColor[0.368417, 0.506779, 0.709798]],
FrameTicks -> {{None, None}, {None, None}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], ImageSize ->
Dynamic[{
Automatic, 3.5 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}],
Method -> {
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None},
PlotRange -> {{0., 10.}, {-0.8386525292109596,
0.9999999999999878}}, PlotRangeClipping -> True,
PlotRangePadding -> {{
Scaled[0.1],
Scaled[0.1]}, {
Scaled[0.1],
Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}],
GridBox[{{
RowBox[{
TagBox["\"Domain: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox[
RowBox[{"{",
RowBox[{"{",
RowBox[{"0.`", ",", "10.`"}], "}"}], "}"}],
"SummaryItem"]}]}, {
RowBox[{
TagBox["\"Output: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["\"scalar\"", "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Order: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["3", "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Method: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["\"Hermite\"", "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Periodic: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["False", "SummaryItem"]}]}},
GridBoxAlignment -> {
"Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete ->
False, GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {
"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
BaseStyle -> {
ShowStringCharacters -> False, NumberMarks -> False,
PrintPrecision -> 3, ShowSyntaxStyles -> False}]}},
GridBoxAlignment -> {"Rows" -> {{Top}}}, AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
BaselinePosition -> {1, 1}]},
Dynamic[Typeset`open$$], ImageSize -> Automatic], BaselinePosition ->
Baseline], DynamicModuleValues :> {}],
StyleBox["]", "NonInterpretableSummary"]}]},
"CopyTag",
DisplayFunction->(#& ),
InterpretationFunction->("InterpolatingFunction[{{0., 10.}}, <>]"& )],
False,
Editable->False,
SelectWithContents->True,
Selectable->False], "[", "x", "]"}]], "Output",
CellChangeTimes->{3.663302271177819*^9, 3.7261280790544033`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"pendulum", "[", "x", "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "10"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.6632524512441187`*^9, 3.6632524580045056`*^9}}],
Cell[BoxData[
GraphicsBox[{{{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwV13c81d8fB3Aj65opXNe+VyqjKCvJeVPUtzJKaKiMyohSlEqDlL0zGpSQ
kURGUnLMiqxSZHMv13WzQ0L6fX7+4PF8XD6fc97v13l/PpSczh88zcXBwXGI
+Pb/nyk3nXi1ToUbOfz7/9ckenx0zMBO0Q3xk30yfxPuNA+7qKh4FVWZdFX1
Ed6i15JO+nEbab3INysh7Lv7iAiPYijKC/im40e43I5x5Z9LNOK02BWrSZiz
+PX0ckcc6ssOP/J9ZRIply+pLC4loK6bZjFuhM1qwf63wgMUEzCkO/53Erk2
3o2d3ZmMNvits3QgHP6t4cO0yxOkLNTRVb08iewm+G7+Nn2Kdv+J7F5L2PXi
c/J8Rxp62Jt00HZpEl2d318065aB0lXuGgcvTqKwa5Pmv5aeIRlGT07Wn0mU
d1s7cEohBy2y8sZe/55EFbwdcpOvniOT/RYNz+YnUWvY1TfjO1+glMKG9Xfm
JtFMXMU42yUfWR8ycBP9NYluh2vWzl4vQM+1TlqVTxPXbwpYPWv6CnXdX3x/
eGoSJR9QfjHTUYgCTwpqO4xPoox7l/5MpxahjpK98Pkncf/vH8ym3YrRVX/b
rnVs4v5H3AYnl0rQs/raihzmJBp0fCk5rlCGqnZ/vjnWN4nY6f+cx1hlyLg+
W+NbD7GeYatXP1+9RW/3plzN7ZpEq9x/7WPvLEcJrV1TG9onkcpF/YARF4zW
ue1KPNk4ichdu1y8yZUofKuZS239JJL1Gxf+db0S5XjNDpM/Ev14b3RsxrQK
WYsLz8VUTSJd48G5qY5q1O527cH7kklkQA9N9jKsQZMhryRTCyeRUeCWnVOp
NWilpNn6Yv4k2l0XGDPpVoti9VYkmdmT6PB/KmoTS3Uoxa2dW/DRJPI7cNbh
p0I90vrtnbb/+iRaCdSV7o+oR3ciA3K/+k4i/9ecX7/+qUd0/cgGU+9JdEfm
/s63bQ0o4N6pw7/cJlHUcK1KaHAjejBBk/CwnUSpV+XHVSZbkNOJmB0dapNo
dfvsQeFNrSg3vclaU2USHTx/dHPwqVbE+pb59rLiJPr+dB3r2pdWJPeKFfp5
7STq4i0/4pT7BT0qyn2csDyBGK0sQ62Tbei75VqD/E8TSNndQjo3oQ2p+4SZ
9FdNoDPcxXPKjW0o5bZC3/LbCcTSufWSvO0bKuF0GuDIm0BjDyUUOdZ8R49a
rKLVYybQ/CkT7pYP7UhzwumppPUEEvjzqN5jUxeq2ymZavd5HOkHd17b69iF
bLM/fe+tHkeuElLqG+K7kPDOfXcOvR1HH7Tiohh/upCEfcrxNTnj6I57iPXR
um5UJfDrVsfdccTR49O7274XmWulRN4wHEd+/ZlXVpsOIPcv8XecHo+huEzT
A/4nBpDzI98ljvgx9NxzaOOk7wDCHyWCY0LHUNeSUnfj8wG0Ito+fdtnDOmT
U3aEiA2iiMStL0r+G0PzVve4/nUPIoWmoNt20z/RhepbEWMXGcg6+Wx2sc5P
tLA6Pq87nIFu3Vv37/3Gn+imY3ZzQwYDOW3WKyiT+4kiOL6I5bQz0HDhnH4I
z0+UbURNOG0whETVfMNvf2Ojgbe1KX2cw2iOnOM/fZ6NrIoE8ltjmGiX6dHQ
oeRRtCnj3pfil6NIsTJWNrF1BK29r/m7sn4UeciGbVKoHEFL4U2yTUOj6F9n
nNbD/BH0yZvPdZjCRh/PeG85EzWCnHb6rUgEs9HhV9J6dvtGUALdSc335E9U
32amnlnNRMuKW+5uExtHnI6qfyBrGA1buMr260+hhYH81R17GSiJEiT31OEX
2gYZm7t6e9C2i2/yuRvnkeE9znXvj35BNR2PrM6vX0S6o2W7Vqm8RloRK0bk
//4i34oBUsN8Cd7NNOjXtOOAyhdfNqvMt+IRjdems2OcoOnjZRzY0IWpNzxP
q/3iBJ+BRIX+iS5s36h81+kPJ9Q/POy8YU03bnW/V9vKwwWVBo++3D7Wjd9m
ee3Mk+eChT3/mdn87MYRSmrGZ6y4YEvzsVcOfL1YSyLV8EcRF9zUaJNO1OzH
fsuhW8uvccPizLDS2NNB3OzjHH8tgBs+zs8vfS8cxIrjhkRjuKG5oNy3sGYQ
1/ZOvi5J4IYcvEVz5/AgFsI2BvkF3NAXJ/y8ej0dPw5QMk5jcgO3/tCaLc/p
uIq3zCLk4CpI1yr9mpTBwGtvxeWbHVkFY+cYUFfEwGd+nxXjcVgF+uOHzIaq
GZjEkv8a4LkKKob6FuYHGPhg/R0bv5BV8MpORP2c7BAeCreyP1exCmKLuM+l
xAxhvtUst0OqPBCskcZs9hzG88H2pk80eSCPIlSz49owZq60KrJ1eeC8QZ3N
k6Bh/GGsrOPWTh6gGDmGGTwZxkGfwk1z7XkgjftzVmvLMOb136zEFc0DYj5S
Eb6bmJh38vKP/F88MLOgGRAzyMTzp38WLf7hgWrSkK75GBMze05Gm3LwQrK7
mMTyPBN/aNhj1i3EC+sE9m3XFBrBQZmUYl4VXpDatr92WmcE856oiD5+mBcs
+o+HtweNYJ4mnt2C73nBZC40V0SehYU8k517a3jBmX5nsH49C68V3uqf38AL
3VEp1j5aLKxs7lBm/YMXxGIv9SbuYuFdTW/Vkn/xQrm3Jk3cnYVvN50X01Dl
A9GsIZ++Vywc5smr8U+TD54cy6oPf8vCccIp/33R44NOHKC8oYaF08wbbl8y
5QO+MpcBjW8sXNWkPPfegQ9a+B/Je86xMEdzZ6dFEh+ofJ03eaM9ivnPec0r
PuYD+9S89EOGo1hMhG/Nrww+yGSW9/XvHMWKFtr7kwr5QDDzUFf1wVGMmqMq
+pv4YONyaubb86P4ZvPOdK9V/FDwMSnvfOYoDjrXhU0E+SEy3TRn4cUojhK5
0LNWnB+euV077lU0ilMsHkuUKfCDpqwtS61yFJc3LwRzbueHvJp5u7Yfo3ip
Oc8j7gI/PHGdMaLzsrH8F8dHu67wA1x+k2YoxMYmbRIN8zf54ZTm/O6g1Wwc
1nFj/bEIfpC6d+DgiAwbkwfM6bQsfuiRKt0zsJmNDemcq9vz+MGVpPGwWJuN
HYZKUEgxPwSv+ql8ZRsbZ7HkUsaq+EGr8RO90YSNdafH7Up6+KFmXdboi0Ns
fPTX0yAXBj+I+b6fWDzMxjfmbEqk2fzw94bAev3jbFz75734zd/8UMXq2OR/
mo2tuaKazMQF4CRbM8LsEht7rdm088duAVDcy634IpaN4yXoF8IsBOBTBUlp
PJ6NS6USUw1tBGCw9Kil3H02XpFZ+ZvqJABb6q9s3feYjSOVm9+43RCANztm
yb05bFygcntE5g7xuY95YNILNv62QVeyOUwAJP6SZIzz2VhW47H3lvsCMPXv
SJtjMRs/1zm3aalQAMSakjw737Nxsx71eF6ZAMgdVvtPuJKNZ7a1h5+sFACn
XXBIs5qNtxkZjdY0CcAw3Fvc+YGN7WFG6vI3AaBfLk3U/sTG/iaZZhu6BaDF
auOptQ1s/MlMJCOCJQD6NuSEp01sPLan+qvRpADYH3n7x6KFjUX3XeacniPW
//1X7M9WNra17Dthw00Co63NJ2fa2PjagbhIPhIJzh1rS7T/zsaPrc3Ky8RI
kBuov+p1OxsP272UlpcnwYq6yV3dTjbOPPy32l6ZBDZ2uUZ7u9jY9ch+j0eq
JHjCWHSw7GbjjUcfSXRpkqBoPXvMtIeN2UfZFWQ9Elw5pc/Q6GXjF8e2udrt
IMGrmue7+PrY2NM+ZHXiThK02giJfyU8dVzl1BorEpR+Yv7aPsDGhScuCR+0
JRHzbw2pm7D3ydrXMfYk+DGTEH12kI21HdY4tDiRQMnd7u444XkHJwERNxLs
Y5mOOdDZ+I3jq8L950kgFW1TV0f4qhOHffglErjY+K+WZbCxgbMlT4MfCYR4
PnxxJrzs/Pgl/20SJOir86UQrjg1brc7hAQKRyoKPxK+ddqQMyiKBNTkyO8M
wnAm/HltPAkQ5yuvacJcLl3W3I9IIGpleneKcK3Lxr/GT0kwJ+G5dpDwXdcr
mf5ZJBhJt1KoIWzm9tES55EAhOSzEgnzu0v++VtEgihFgbxjhBvcT6cZviXB
yfP7togTDj9bvM+vkgTOJsr6b4n97Pfgniv7QIITz39ga8IingcfLzSSIO9e
UUMfUY8Wz6e79dpIIF7Dc/QY4ZhzU1OXOkkw07bufD1Rz4Pn0cPifmL/el6C
Gwmv8Yra+WuYBPpauzWv9RP59uod0xojgUyXeH850Z/EC+qJXjMk6KcYS08T
/SR7N7DGV0jwmvxQZxPR7y5v6Th1HkGA4vcUPSIPj3xct58VFATxNJ1YLSIv
8pd5o1hSgjA1a62/1MHGA5dt9NbLC0JkrJJHA5G3p74ZA6eVBYFvPFYvnMij
8lWTrQxNQWB1sR4NfmVj1es3f/T+JwhiGvH1g41E3q83BchaCYICy3t0x2c2
zrshq3bMVhDukbJfhtezseattzd+OAlC6E1rzeU6Yr7cnqe2+QnC0cuDu7Qq
2Hjhtmnj6tuCUBp/poZSzsZlgfGXrEIEYctrh/m5MmJ+3d3yqSleEPIKCwIC
StjYOOSc56c8QeAvGTkznsvGlMJ+u6hiQfhpKmigQcyH2W4rk0PvBKHlFMvS
PpM4L5u3Sg18EoQDE5MWIalsLNTxu/I3QxCUczpHpYj5M8zhlvueLQj4ly71
awyRN9WuhMBpQdh69WSxXyQbX7hZ7i76TxDW6G2dSQ5i4/Z1AWvXU4Qg7VqE
KvkKG+dbzqyMKQoBT2RhsLkPG4dcdR4tXC8Es1Uldhe92Hh7k2mFkY4Q/Lby
OR7mysapPiRXWyshuLt06fisHRufrbn37m6QEESkfdEt2srGu8ZXZe6LFIJv
SYr2g5uIfkldjlkdLwR7hDzU/21kE+9Hh0+nPBUC1jrpXgFFop7icqIl5UIw
4uDHPibIxhyOmU5DM0IwJVWgMd83ihNW3gjsPCkMLukidYrXRrHQ+rpzCaeF
QbNhWrvKexTfsfzSNnJWGNLOSg1ae47ii6mjKRFXhKGFq+6vpcMotjChbGmP
FYbCLftK001HMW+Q31G3WmFQl+ApKRcexVeEjXKjN4oA7e61a1/vsfCkzl4x
+mYRWHPJ7lp1OAufOWF7SVtXBJr7/NCzQBY+lH8OdZqIgHeFq/pObxbWOvCk
jWovAgJ5nRKDB1iYHc+xXBIlAh6Xz53KEWLhY7I1+3t+iYDZtndboq+MYLbn
9EzJogh0P2M1rj43gq9ghQfRnKKQsnL68V3nEZzodH3YRFQUcubPcRtbjOCv
2To3c1RFYcIgOpmPNoL36mTnX3YUhcdvC0521TOxgUWk+OoWUbixeOJVgxAT
C1WqjVFtxEDZ98HhB25DmP7gwKdbh8XgqjpblHVsCJd6+2b0HBODhDyvm6oW
Q9hpfY19opMY4J7wjLAtxOdRR5sEvMSgW6pHpGyRgZ2Oh76cChODr5e8dreH
MPCbRaZXRaUYFClsOGudTMenddLmjqivhpHd3u9vpA1g35tXDirOrYYPdWlt
RTKd+C77XltzsziMveOZutvUjPerimYLPVwD7olyD3c8KsWRebqV+x3XQs7Z
DHQhPRc1WKcv+2yTAOEHn1kHbjSgyqbzEerckqBrMLjMn/8daa8FwSReSXjV
tEzK+fIdZR8VC+MkSQKTIytUd/Y7ih4pCG4XkwTafnl/6W3t6ATnzG1/eUnQ
WbOWvVzVjpa1fa5+2yYJip58r1VaO9C25CtnrntJQl+Dif3F3k5U6B4Ajb2S
4IGsIiNLe5G2k8MnlUFJOLfGb/nEt170+giyChiShCTwayAGGCrb8/ek7k9J
2FsfZLJPtQ9Vqly9lbogCSnnfjIePepDTXSvCp81UpBpxdJhXu1HrKMOhnL/
SUH7d443R+OI//sOolrf/VIQP8jpt/fJABr7T37/V0spmB49s6LxYgBN6vcc
C7aVAp/C1WqtdQNoXvKw37SzFGjz8Z/0XxhA3G2Wb+tuSsFTqc/uYccGkfw+
pH+uWArCXFL6yGQ6mqg6+zeqVAr23q1dKaDSEda/X53/Vgqq3hXV79CgIweV
6f3TlVLwivXWXMeEjtI40x19mqSgf395zKOzdLT+DW/4NaYUfBRfq2FcTkea
65p7g8hkWOO+OrbtEANxJC+mZcmQ4RZ1fd3CcQb6Ir7e9ZM8GfwEzyqKuzDQ
RQ7/GYF1ZLgwMb5D6SoDlXRr8UVqkUHA/k5BQTIDGcQlaN7bSwaDbjfX2EEG
2vnPPvDJdTJYfJTcttNpCKWGUUa5/cnwZGbeKdx9CC1L/LBwDSRD1rNC5bqL
Q+i1ujVFK4wMRuk5jsKBQ2jD0f9eVSeRwe7LOseptCEkVKLTP1xIhkTLodi/
/UPIFX7t2vuaDPPX6ZnHR4ZQ3eeC5y/LyLDqcZlC/sQQuklXu+xbSaxnykBL
5e8QmhKlCgs0k8EyOSLwlPQw+uYusl19lAyXSexABcthpDn/OTVmjAzf9lPD
4m2GUWRAKO/cJBmsTILqF48NI7P7q76+nyeD7VUX9kPXYfSmbtHVcpU0vHuQ
5bMxYBglK44kXlSQhrmQhPob+cNoITdjuZ0qDdaNzKM8JcPIRs/JabuKNByJ
aue++XYYiVj0aqzSkAbVLW4JJnXDyN+vrTbBQBp4HbcGk7uG0al2PPPGRhrm
q7WN5zmYSGywIYFxWBquq6pVAw8Tvfv5XV/Envh7OXXNmwJMJM45dtPZSRqa
y0xavqxmIqxGFhQ5Lw0cAqyVbiUmctelvdS/KA05PRub3q9jIknjTQecL0lD
PlkoIG4jE3nY7kp64ycN3BrXEtdqMRElwIvmHCINGrkjTn6IiT6E+32IDJeG
Y+dH98yaMNGFxCC3N1HSsFb4o4iDGRN9yk3OF06QhqjmfD0xcya63P5p+5un
0nDvUOfE1yNM9EVN6ZDwO2kIrPsRMejFRNd11X/rVUgDI1xYN8SbiTYY6z10
qpKGxwY+b5QuM9FNW/OB0o/SYHhFeI+GHxOpB1z1cPomDX0lFlGZd5joR/gd
0cgOafiYVLfMCGKiwMTowtIuaXiyw3/n2lAm6sp9tiA0KA1urOoj5pFMFNL+
5U7puDRc2jb1XCmBibQHe9bTp6ShR+xzz1wiE/X/HGkQmpUGWk/cSPl9JtLl
XBFzWpSGh5TXIbRkJhoUFCiO+CsNkkXBCjUpTBQhudaulIMCokFbYmyeMBFD
TTVFiI8CvLtMOazTmChKVwf0SBS4FGXDUZHORAbGwHAUpgA0R3fLPGOiGFvb
jaVrKPC8UGpdQRYTGTo6Ng5KUqC5AMUzs5lo5KzHeSEKBWyszQZEnzORUcDt
EkdFCjhkssS2v2Ci34bJjtdpFIgc/8Sln8dEBQslwkkqFBD48Mp2w0ui38Ut
Za82UiC4b7OwUD4T0bxGTzeqU4Dy8LsKg3CPGrf4yGYKEMcgI6+AiRJHZCs4
t1JA7N/fu2dfMRH/SStJvW0UyL+1+WpVIRNVU9yrDxhSQHx+LvxIERP5tQee
80AUuFVbzzNMWDsuhRJsQgGTnadHnIuZaMK89MNTUwqkhoZotRPOEvhysXwP
BRQ9/gxtL2Eihzq2fMc+Cny7FsiVUPL/vK36PG1BgWf/focNEm4zlPcVOkiB
e8sat5ReE/Ve0KOtt6EAjyrXwCHCZsUHWowPE+uds33pR/jf+bN+9sco8P7G
2p8JhN+o3V3ve4IC1gkbktIJXxx53BbrSKynPKgog7Ba+ptbL05RwJi6wfgB
4aETX9U+ulCAnSpoHED4MWWsY9Cd2P97nWJ7wnbtPHeWPSlgnlnwSI2wWJyC
ptQFClzYHLEwTqy3wXxbj5YPBbjaej+nEw4UsA7Z70sB15eVkuaEDes8tF2u
UaDd36ZrlKjHvH/QQMANCsTmVEtdI5xvmBqR7E+B7SrarX+JeroulOmXBlKA
HNu96hJhpeK2oS9BFDisMPW6n+hH1/nxmLFQCjg9eTmyg3C8Gt8OvkgKSPke
uR9N9M98RHFUKYYCSmn6Dd+I/vKmGyQY3qOATsGDm8KEK08cMrZLJPJU0/J6
G5GHLe3BDyKSKZBwkPbGg8jTWOxT06wnFJjv47rjTeTtmfm76ao0oh6R2zs9
c5mIXDfx3+9sCtAuXF23I4eJ/hbZLDqWUKD4Wc45swwmen3+fOb1NxRYSMx7
OUqcBy+10INJ7yhQukXhjv9TJqKnlT9vrKLA0v3KuZDHxPyIpR3Ta6aAyz13
Kg9x/gLMd/Ad/EKBNRNUQ1PifBoI2BV5fCPyQapbuBLPRHn+YYJpXRRAHROO
72KYKO789DuhEQp8/Ke6/kUIE3WgZP6zbCI/PfGXjhLzQVZst039OLH+5X9m
i4FEHguSJ+7OUsA3k3ld5BYTlU/vVvrHKQMRX5euh/owEWf1jOdxHhlgyoJa
7QUib3Epb9/xy4CM2ZkLU+eIebbll/UVURl43nmkVc6NiZjej4OmZWXAyjJ+
faM9ka9d/7VZKsrAq/OujHvE/PNaO6vwkiYDp+ZHzM1tmWip+L8yd1UZeNPV
b5BgSeRpfvYnQ08GbqdRG64aE/u9su9A+0EZ8OqrvX2fykS39synaNvKQOXt
ranX5ZmolvyUHXdEBrqksp4cpDCRZdl8oKWDDISE+x/8Rsz/U4tPX3/ylIE1
noPsTcTzI+r6gsy7EBn4GR0juYt4vrTtT3eVjpABzoqPq/Z8H0ZkOYsS32gZ
SNThEzNqHUbp79MttBNl4D9z90iOD8TzbsUiIC+dqE8XR3x/wTCi+z9jPqmQ
gc7tlWcF7gyjy60pXrVVMnCmIqE84eYwIikmLrJqZeDK6VBNyavDaAsOEtny
WQbistVjfnkOo8C/Lrq1HTLwy8A6XtFuGClfUw1iTRH1Ib2cMVs/jM5456/T
oskSL4nk/QMVQ2ixOivfRkUWUoMCTy+UDqEo8dRt1zbKwh7vDYo8r4j3h1cx
5jWbZYE87Ba2TLwv8E1duGRjKAt+6hJ5zkFDKNtDu+6qjSwwt14Vk9o3hH6e
LjtVHSwLScNvc7c0MpBQg0m0args1IVo12vXMJD6psayuChZSBwkGai+ZSCP
+T4R5wRZOF4dvnkyi4HGglaVcafLwrXfXxXotwlnWQqbVsjC8O0L/Rd0GWhi
dLjk46wsBD0+0OwaT0dTnuJ8TY5ywGVkK2GhMYhOHhg9t3RKDgSOeoatpw6i
Zu3K9o2uciDepRv9W3IQvVjyzAw6Jwc+0sbOfhyDyDW03hT85ODqecq8eNsA
Gsjwv1MUT/x+oM5g8OUB1NI9wfnwoxzMXfRLvuTZj17+93n5jIY8PBdX3tSy
vQcxXTV1uefkwWSzQt05q++Iktt1L7hJASZPVawVVG1AgQ4X05r2KUJMIt/Z
LIVi9HtZOnJfmSKI3d5gq/Y5D294l/SgQVkJChjRv9fNfcQ6znWWq0OVIF9n
/kS8WBuWzWAa1IYpQXC2VvAjjTbMNcyn4huhBBFtwklxe9tw85m9yz3RSvBN
wJZmdacNn3Fvyc5OVIKLVeajvL/b8P0LnZyQoQRzXNV61p3f8OKt8aJzWAks
Ol9Es2PacWWyBLlxTglEc2ZNXT51YouUXiWn30qgsp5RCf2duDvlmdrCghI8
YhUk8c934vnHOkh5WQlezTA2OtO6sMZTmzPXuagwn3HsocmNLvzwWUKxuigV
Uld8MlI1urHPS4kDkRuoUN+e0Rfu34O58nuP0lSpsCfxIb9MQg+Ozn92qkyN
CvE/Qzcn5fTg5wU6V4Y3UaF8eXaf7dcePFho82SHDhUKHXZlTVB7sUVpwvi4
MRUuZX2zuVXZizdUSoRZHKOCt3Nvdd9YHzaUPn2/x54KwoUyfKkrffjAxeJM
9xNUeOGyhmUu1o+vKVvXBDlSgT/Z2+H81n7cGBKzXOFChWcrIZafrvTjCwcE
z2/2oYJOB6fP53/9+C2d45BYJBWizrrQL9wawM3brZweR1Fh+oiEhETwAGbE
P/FSj6GCpfcU9WXUABbabRS55x6xXtLpmqqUAXwy1++D/wMqeAzI4nPvBvAq
n3n96WdUGNzoNNszO4DNecbkvlZQQY1kojp/chBnswKXAyqJ+/P/iPpxZhBz
Ncp0a1VT4UHz86SXnoP4Tdy++7F1VBiSSQzV8RvEVMVc8QONVKjyN3nwMmEQ
zxu487V2UsHEfl3n3k+D2Eqei3mrmwqBYmFyZ5oHcS7nw9rNvVSICVD74fNt
EDt8qg+IHqCCQUrdM4+BQdxgs3HZYoQKo6Jhx+p+D+LHXqypplkqTNW2SUgr
0/GCtX/LjXkqHMnvTXLfSMfWeuSXGgtU6Cs+4Z6/iY75V3afjVyigp3sxQXx
bXR8MTxreD8XDZZqD/sbm9Px7swzXZ9FaeDAcSvBwJuO00JX3vitpoGiAEOn
0peOlz0Sk9TW0IDlJiWw7TodF279cChckga92k+NV92lY9mqdS175WjAXVHf
ypFIx1PdQzX1qjSQRaqbYkvoeOYmrcpenQYm/S0CpDI6nlVyqpjUoAGg9Xm+
5cT6XfrfSGjRQEjo9G6tGjrmmO3Mc9Sjgb9iZaFcKx1zJZFzZ/VpICzuWWzY
RserDOyygw1oYBt31Neqndif/7e0vB006KzdbGTbQ8diQi1Jf3bS4Mr9h++7
RuhYnHhbjzClQcT8n9dP2HS89uD+OIXdNOjuy/A4Mk7H5Pv1EaZ7abDnRBsp
d4aOFZVrA2KtaBBa9IDn4zIdaxqWnd14nAb/3TuTOijCwFv6f7uWn6CBoVm8
xowYA2vf1j1j6UCDGel7F36LM7D+pyKHS8400FP3lhuQZGA49NKmyo0GfUNC
XKryDGzye+zgobM0kI5hmwwoMPCuh2pWIx40aB0VMQhXYuA9A9l7hb2I+rUd
2oeVGdjKIx0duUyDjfHblp+oMvBBUbrhmC8NwtVCppfUGPhQoaLBras04v2R
5/F+DQY+vJCi/ew6DTbxXpBr3MzARx/1aOnfpIGbd+/UoiYD2xvJbP58iwYV
Ib7X5bcwsMOd+xunb9OgKOLi+53aDOy0vkPlzh0aJDP8vU11GPhUg4SyVBAN
tAqkGNt1GdhV7J78jlBif9xXp3j1Gdi96ItMaxgNhuQVorsJe9iKSTtHENfr
WDWasY2BzydHrgmNpsH92LutEtsZuJFTeXJvLA12BNUqthJWdXnbIHSPBlVB
I67XDRk4uNEqszmeBlIPy3MoOxh4SGskICaRBsbZlKHnhI2Tbhw/eJ8G+b6D
ZA0jBn68vGbb2oc0yH3+Z89TwkuOz9e2P6JBZfmhS3yIqMdHmEpKIfLMMf74
JOES9Y7PR54QeXtU9yGHsHicZ5bMUxoY3WWPDxP2+s0d2JtGg/13vSTWAgM3
2T888SSDBms2XTLSJqxarWngmEkDuR55dzPCIes/StCyaUAqSn6wl/BwxPHp
oRwa/Hqo0gyETWZ+NWbm0qBrx1/+jYSf2IVlu+bRgJ/HfR834eVyxTuq+TTw
k8SJLcT9j1JLT44V0GDvQbuxSMKlwebbXxbSQMwq0dyI8NpxhqRXMQ0s7Fnv
Boj9Xjx4bUbrNZH/S9X6lwi3lIo1/yol6uWSVrdE1EtdLiunpIwGcaaip3wI
h97ecdf3HQ3Yc/cl+ol6M0faHLa9p0HhVEf3dsK7zN0NlypoULLL800Y0Z+n
hRzk95XEfHjIlffZgIFXpJJ+3aymwZTu3ncrRH/tb2i0QC0NXvxbGaIRltxz
NKj2Iw0M+j7E7tJjYO+8Kcegehq8XLpGBiI/reLBO/Z8pgHXsb4qDSJf4b1F
s5+baSDhduhOP5FHlsne1shWGuinmj9N12Jgs+yBXMuvNHDVrGEdIfLL4S3s
3PadOM8+Vv+Sibwf/5FulNBBA+f78V83qjPw2x0GFLtOop5LeT+yifNyid/l
S1cPDT7XSwfdWM/A7JRKRGfQ4M/H8owARQbezW0nkzFMXN/1iHkqcT4zXMfn
T4/Q4PAUZfsrWQY+uZXycpRNrLfjx2QOmYG/ffKWnZ6mQaDCm1W/RRlYaxNp
ofAXDY7uKZXNFmbgqHupbT5zNJg+Zh21T5CB/zvRFLawQIP5agh142XgzBrn
M28XacAMlSQPcTPwqo2LxteXaXCAHCd4gJOBHaNi5IxWaBBbG3amYIWOK36p
/Pn3jwbR5gNqXMQ8+h+9pmab
"]]}}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None},
PlotRange->{{0, 10}, {-0.8403250885967636, 0.9999999999999822}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{3.66330227649463*^9, 3.7261280793296075`*^9}]
}, Open ]],
Cell[BoxData[
RowBox[{"(*", " ",
RowBox[{"Boundary", "-",
RowBox[{"value", " ",
RowBox[{"problems", ":", " ",
RowBox[{"nonlinear", " ", "diffusion"}]}]}]}], " ", "*)"}]], "Input",
CellChangeTimes->{{3.6632526209198236`*^9, 3.6632526344816*^9}, {
3.663252827985667*^9, 3.6632528301497912`*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"diffusion", "[", "x_", "]"}], "=",
RowBox[{
RowBox[{"u", "[", "x", "]"}], "/.",
RowBox[{"NDSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"D", "[",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"u", "[", "x", "]"}], "^",
RowBox[{"-", "2"}]}], ")"}], " ",
RowBox[{
RowBox[{"u", "'"}], "[", "x", "]"}]}], ",", "x"}], "]"}],
"\[Equal]", "0"}], ",",
RowBox[{
RowBox[{"u", "[", "0", "]"}], "\[Equal]", "1"}], ",",
RowBox[{
RowBox[{"u", "[", "1", "]"}], "\[Equal]", "2"}]}], "}"}], ",",
RowBox[{"u", "[", "x", "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "1"}], "}"}]}], "]"}]}]}]], "Input",
CellChangeTimes->{{3.6632528374462085`*^9, 3.6632528974846425`*^9}, {
3.6632529304825296`*^9, 3.663252979840353*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{
TagBox[
TemplateBox[{RowBox[{
StyleBox[
TagBox["InterpolatingFunction", "SummaryHead"],
"NonInterpretableSummary"],
StyleBox["[", "NonInterpretableSummary"],
DynamicModuleBox[{Typeset`open$$ = False},
PanelBox[
PaneSelectorBox[{False -> GridBox[{{
PaneBox[
ButtonBox[
DynamicBox[
FEPrivate`FrontEndResource[
"FEBitmaps", "SquarePlusIconMedium"]],
ButtonFunction :> (Typeset`open$$ = True), Appearance ->
None, Evaluator -> Automatic, Method -> "Preemptive"],
Alignment -> {Center, Center}, ImageSize ->
Dynamic[{
Automatic, 3.5 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
GraphicsBox[{{{{}, {}, {
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1]],
LineBox[CompressedData["
1:eJwdx304FAYAx/FTE3u4eDZTemrGXMUkXZY8w88wx3lpve2U2/LQ5a2HNjMs
cc6impcrU928zaVdPJPdHOsq4fHQyzW5JBzKXZyX0L3hDne3tj++z+f5OsSk
HGCsIRAI3m/7T64k9BcV+YAvf/OoCYGgQJaItSuBz0ZVFnt9nYMCuzMeaB0Z
NYi/cov+IEiBsDme2GqwDk3701OJiQro6FGFFGs+BpJSiZ5Fbz92P/14cTPk
+SKWmUCB0Iqm+PY2ITp38nPkgwpQ036q0VHvwYM2EVBmooT5mRbz7OgOuBg3
mFJclLAZHHvxYVonzglK/577Uokf8vxDb7Z0YZcbhJWnlcilSA6Piu8j2cw5
xLNWiRSpfuWU7CHMzGOtWx8rIRBF7lXbPwbv0Mq+8zoluD3T733g2QNRpDTu
YycV1NZDHZd8epHb2FXleVCFfNLa4PCjYohPCAuOsVRIDgquHIh9imYKt2FP
owq5VnU+Q3l9mJcwXMVjKkyPOzXUs5+BNvKKQ7RWIyvmbpy6qR8VxUWHqIFq
EER2p+bFz+FWqCA2ZKgxhEsU4cgApu5MRpfUqzFK35q4oh+EotvB9KFUjT35
/VFESwkas643pdpqwPyVWi62GQaf98RvW6gGC18Nk4geI6Btc39WclaDNvuC
nI1+o6i2P7MmsFUDATvCqTzmBa66sCSryxqUzw7b9ua8xLebktsMexdw0sX/
5EzgGLzXfs51/H4B1eTa77b3j0FYRNt8r3kB+vbS6J4oKbwuJN1I1CygL/BE
2j8vpZB2ZjN8dy+iraJ7p3mKDG6fdf2+LnMR/T8KxPUaGWhx3PS/7izCZIe7
3fmzr9B5TcRqNV0CjeEV/MRyHHFzlHlO2BK2lpKqki+OI6+mOaCtdAkWZdWc
EIcJHEnqV43IlrBpCy+rkDeB8BC5+KqbFr6Z3qYWXnLI7dlHe1laDD8SCGT3
5TBKKQc7BrTgcm+HOoZPonR2PGyDsw45ERHnKkcnwaP3yerzdMhnpvzBPD6F
i+SeHSUSHdbdSF26OzWFIFJLwDvkZVRcM53yyJiGdl+qe3HpMugkUruNYRp/
fhSV5qJcBvn0Ux/3khncnrD9uezICpjdMbLaLa9RxHKneXauQHeFmZzLfY2B
d7mPrm9fRYGP628c8iy+4HM4y5xV+CUwhHbCWQxe7thoZqbH+gTXjH7qHAo0
lrbTTD0Of/P865mhOVz2r4wvWNWje4j4SdyxeXz6vlUAO9WAcOe+SnvFPMzN
yiKHtQYYDCQt0t/AgnpTlJ1pREu+fNFofINb/2vEv0A69SI=
"]]}}}, {}}, {
DisplayFunction -> Identity, PlotRangePadding -> {{
Scaled[0.1],
Scaled[0.1]}, {
Scaled[0.1],
Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding ->
All, DisplayFunction -> Identity, AspectRatio -> 1,
Axes -> {False, False}, AxesLabel -> {None, None},
AxesOrigin -> {0, 0.9}, DisplayFunction :> Identity,
Frame -> {{True, True}, {True, True}},
FrameLabel -> {{None, None}, {None, None}}, FrameStyle ->
Directive[
Opacity[0.5],
Thickness[Tiny],
RGBColor[0.368417, 0.506779, 0.709798]],
FrameTicks -> {{None, None}, {None, None}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], ImageSize ->
Dynamic[{
Automatic, 3.5 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}],
Method -> {
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None},
PlotRange -> {{0., 1.}, {1.0000000069428945`,
1.9999999661016954`}}, PlotRangeClipping -> True,
PlotRangePadding -> {{
Scaled[0.1],
Scaled[0.1]}, {
Scaled[0.1],
Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}],
GridBox[{{
RowBox[{
TagBox["\"Domain: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox[
RowBox[{"{",
RowBox[{"{",
RowBox[{"0.`", ",", "1.`"}], "}"}], "}"}],
"SummaryItem"]}]}, {
RowBox[{
TagBox["\"Output: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["\"scalar\"", "SummaryItem"]}]}},
GridBoxAlignment -> {
"Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete ->
False, GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {
"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
BaseStyle -> {
ShowStringCharacters -> False, NumberMarks -> False,
PrintPrecision -> 3, ShowSyntaxStyles -> False}]}},
GridBoxAlignment -> {"Rows" -> {{Top}}}, AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
BaselinePosition -> {1, 1}], True -> GridBox[{{
PaneBox[
ButtonBox[
DynamicBox[
FEPrivate`FrontEndResource[
"FEBitmaps", "SquareMinusIconMedium"]],
ButtonFunction :> (Typeset`open$$ = False), Appearance ->
None, Evaluator -> Automatic, Method -> "Preemptive"],
Alignment -> {Center, Center}, ImageSize ->
Dynamic[{
Automatic, 3.5 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
GraphicsBox[{{{{}, {}, {
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1]],
LineBox[CompressedData["
1:eJwdx304FAYAx/FTE3u4eDZTemrGXMUkXZY8w88wx3lpve2U2/LQ5a2HNjMs
cc6impcrU928zaVdPJPdHOsq4fHQyzW5JBzKXZyX0L3hDne3tj++z+f5OsSk
HGCsIRAI3m/7T64k9BcV+YAvf/OoCYGgQJaItSuBz0ZVFnt9nYMCuzMeaB0Z
NYi/cov+IEiBsDme2GqwDk3701OJiQro6FGFFGs+BpJSiZ5Fbz92P/14cTPk
+SKWmUCB0Iqm+PY2ITp38nPkgwpQ036q0VHvwYM2EVBmooT5mRbz7OgOuBg3
mFJclLAZHHvxYVonzglK/577Uokf8vxDb7Z0YZcbhJWnlcilSA6Piu8j2cw5
xLNWiRSpfuWU7CHMzGOtWx8rIRBF7lXbPwbv0Mq+8zoluD3T733g2QNRpDTu
YycV1NZDHZd8epHb2FXleVCFfNLa4PCjYohPCAuOsVRIDgquHIh9imYKt2FP
owq5VnU+Q3l9mJcwXMVjKkyPOzXUs5+BNvKKQ7RWIyvmbpy6qR8VxUWHqIFq
EER2p+bFz+FWqCA2ZKgxhEsU4cgApu5MRpfUqzFK35q4oh+EotvB9KFUjT35
/VFESwkas643pdpqwPyVWi62GQaf98RvW6gGC18Nk4geI6Btc39WclaDNvuC
nI1+o6i2P7MmsFUDATvCqTzmBa66sCSryxqUzw7b9ua8xLebktsMexdw0sX/
5EzgGLzXfs51/H4B1eTa77b3j0FYRNt8r3kB+vbS6J4oKbwuJN1I1CygL/BE
2j8vpZB2ZjN8dy+iraJ7p3mKDG6fdf2+LnMR/T8KxPUaGWhx3PS/7izCZIe7
3fmzr9B5TcRqNV0CjeEV/MRyHHFzlHlO2BK2lpKqki+OI6+mOaCtdAkWZdWc
EIcJHEnqV43IlrBpCy+rkDeB8BC5+KqbFr6Z3qYWXnLI7dlHe1laDD8SCGT3
5TBKKQc7BrTgcm+HOoZPonR2PGyDsw45ERHnKkcnwaP3yerzdMhnpvzBPD6F
i+SeHSUSHdbdSF26OzWFIFJLwDvkZVRcM53yyJiGdl+qe3HpMugkUruNYRp/
fhSV5qJcBvn0Ux/3khncnrD9uezICpjdMbLaLa9RxHKneXauQHeFmZzLfY2B
d7mPrm9fRYGP628c8iy+4HM4y5xV+CUwhHbCWQxe7thoZqbH+gTXjH7qHAo0
lrbTTD0Of/P865mhOVz2r4wvWNWje4j4SdyxeXz6vlUAO9WAcOe+SnvFPMzN
yiKHtQYYDCQt0t/AgnpTlJ1pREu+fNFofINb/2vEv0A69SI=
"]]}}}, {}}, {
DisplayFunction -> Identity, PlotRangePadding -> {{
Scaled[0.1],
Scaled[0.1]}, {
Scaled[0.1],
Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding ->
All, DisplayFunction -> Identity, AspectRatio -> 1,
Axes -> {False, False}, AxesLabel -> {None, None},
AxesOrigin -> {0, 0.9}, DisplayFunction :> Identity,
Frame -> {{True, True}, {True, True}},
FrameLabel -> {{None, None}, {None, None}}, FrameStyle ->
Directive[
Opacity[0.5],
Thickness[Tiny],
RGBColor[0.368417, 0.506779, 0.709798]],
FrameTicks -> {{None, None}, {None, None}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], ImageSize ->
Dynamic[{
Automatic, 3.5 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}],
Method -> {
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None},
PlotRange -> {{0., 1.}, {1.0000000069428945`,
1.9999999661016954`}}, PlotRangeClipping -> True,
PlotRangePadding -> {{
Scaled[0.1],
Scaled[0.1]}, {
Scaled[0.1],
Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}],
GridBox[{{
RowBox[{
TagBox["\"Domain: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox[
RowBox[{"{",
RowBox[{"{",
RowBox[{"0.`", ",", "1.`"}], "}"}], "}"}],
"SummaryItem"]}]}, {
RowBox[{
TagBox["\"Output: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["\"scalar\"", "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Order: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["3", "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Method: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["\"Hermite\"", "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Periodic: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["False", "SummaryItem"]}]}},
GridBoxAlignment -> {
"Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete ->
False, GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {
"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
BaseStyle -> {
ShowStringCharacters -> False, NumberMarks -> False,
PrintPrecision -> 3, ShowSyntaxStyles -> False}]}},
GridBoxAlignment -> {"Rows" -> {{Top}}}, AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
BaselinePosition -> {1, 1}]},
Dynamic[Typeset`open$$], ImageSize -> Automatic], BaselinePosition ->
Baseline], DynamicModuleValues :> {}],
StyleBox["]", "NonInterpretableSummary"]}]},
"CopyTag",
DisplayFunction->(#& ),
InterpretationFunction->("InterpolatingFunction[{{0., 1.}}, <>]"& )],
False,
Editable->False,
SelectWithContents->True,
Selectable->False], "[", "x", "]"}], "}"}]], "Output",
CellChangeTimes->{3.6633023214939327`*^9, 3.72612808205083*^9}]
}, Open ]],
Cell[CellGroupData[{