-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathword2gm_loader.py
417 lines (369 loc) · 17.6 KB
/
word2gm_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
Copyright (c) 2017, Ben Athiwaratkun and Andrew Gordon Wilson
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import tensorflow as tf
import numpy as np
from matplotlib import pyplot as plt
import os
word2vec = tf.load_op_library(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'word2vec_ops.so'))
import os, re
import operator
import sys
import pandas as pd
from ggplot import * # TODO - make this compatible
# Retrict to CPU only
os.environ["CUDA_VISIBLE_DEVICES"]=""
class Word2GM(object):
def __init__(self, save_path, ckpt_file=None, verbose=True):
# create a new session and a new graph every time this object is constructed
# if a ckpt file is not provided, use the latest ckpt file.
self.ckpt_file = ckpt_file
self.logdir = save_path
with tf.Graph().as_default() as g:
with tf.Session(graph=g) as session:
self.save_path = save_path
self.session = session
self.load_model(verbose)
self.load_vocab()
def load_vocab(self):
id2word = [''.join([i for i in
re.match(r'(.+)\s([\d]+)\s', line).group(1)])
for line in open(os.path.join(self.save_path, 'vocab.txt'), 'r')
]
assert len(id2word) == self.vocab_size, \
'Expecting vocab size to match ckpt:{} vocab.txt{}'.format(self.vocab_size, len(id2word))
self.id2word = id2word
word2id = {}
for _i in range(self.vocab_size):
word2id[id2word[_i]] = _i
self.word2id = word2id
def load_model(self, verbose=True):
latest_ckpt_file = tf.train.latest_checkpoint(self.save_path) if self.ckpt_file is None else self.ckpt_file
if verbose and self.ckpt_file is None:
print('Using the latest checkpoint file', latest_ckpt_file)
elif verbose:
print('Using the provided checkpoint file: ', self.ckpt_file)
meta_graph_path = latest_ckpt_file + '.meta'
new_saver = tf.train.import_meta_graph(meta_graph_path)
new_saver.restore(self.session, latest_ckpt_file)
[mus, logsigs] = self.session.run(['mu:0', 'sigma:0'])
self.num_mixtures = 1 if len(mus.shape) == 2 else mus.shape[1]
self.vocab_size = mus.shape[0]
if verbose: print('Number of mixtures = ', self.num_mixtures)
# handles support for > 2 (softmax case) later!
if self.num_mixtures >= 2:
#: if num_mixtures = 1 but mus.shape is 3 dim, then it's a new code
# this is handled by the softmax case (even though it's 1 dimensional)
[mixture_score] = self.session.run(['mixture:0'])
self.word_dim = mus.shape[2]
## store vars
self.mus = np.copy(mus)
self.logsigs = np.copy(logsigs)
if len(mixture_score.shape) == 1:
# word2mixgauss code
assert self.num_mixtures == 2
# This is for word2mixgauss code: do sigmoid and expand to 2 dim
self.mixture = np.ones((self.vocab_size, self.num_mixtures))
self.mixture[:,0] = 1.0/(1.0 + np.exp(-mixture_score))
self.mixture[:,1] = 1.0 - self.mixture[:,0]
else:
# This is for word2multigauss code: do a softmax
assert len(mixture_score.shape) == 2 and mixture_score.shape[1] == self.num_mixtures
# calculate softmax
diff_exp = np.exp(mixture_score - np.max(mixture_score, axis=1, keepdims=True))
self.mixture = diff_exp/np.sum(diff_exp, axis=1, keepdims=True)
else:
# In this case, num_mixures = 1: it can be either the old model and the new model
assert self.num_mixtures == 1, 'Expecting 1 mixture'
#assert len(mus.shape) == 2, 'Expecting mus to be a 2-d array'
#assert len(logsigs.shape) == 2, 'Expectging logsigs to be a 2-d array'
if len(mus.shape) == 2 and len(logsigs.shape) == 2:
# for word2gauss code
#print('Here!')
self.word_dim = mus.shape[1]
self.mus = np.copy(np.expand_dims(mus, axis=1))
self.logsigs = np.copy(np.expand_dims(logsigs, axis=1))
elif len(mus.shape) == 3 and len(logsigs.shape) == 3:
self.word_dim = mus.shape[2]
self.mus = np.copy(mus)
self.logsigs = np.copy(logsigs)
else:
assert False, 'Unexpected error'
self.mixture = np.ones((self.vocab_size, self.num_mixtures))
# normalized mus
norm_mu = np.linalg.norm(self.mus, axis=2, keepdims = True)
self.mus_n_multi = self.mus/norm_mu
self.mus_n = np.reshape(self.mus_n_multi,
(self.vocab_size*self.num_mixtures, self.word_dim),
order='C')
# This might be incorrect for spherical case
# need to be logsig *
self.detA = np.sum(self.logsigs, axis=2)
self.detA = np.reshape(self.detA, (self.vocab_size*self.num_mixtures,), order = 'C')
## end of load_model
#####
def find_nearest_neighbors(self, idx, cl):
# idx is the word id
# cl is the cluster
dist = np.dot(self.mus_n, self.mus_n[idx*self.num_mixtures + cl])
sorted_idxs = dist.argsort()[::-1]
return sorted_idxs
def idxs2words(self, idxs):
# convert a list of strings to a list of words
words = ["{}:{}".format(self.id2word[idx//self.num_mixtures], idx%self.num_mixtures) for idx in idxs]
return words
def sort_low_var(self, idxs):
# given a list of indices (linear), sort elements with lowest variance first
list_pair = [(idx, self.detA[idx]) for idx in idxs]
list_pair.sort(key=operator.itemgetter(1))
# return simply the indices as well as the list of idx-variance pairs
return [p[0] for p in list_pair], list_pair
def show_nearest_neighbors(self, idx_or_word, cl=0, num_nns=20, plot=True, verbose=False):
assert isinstance(idx_or_word, int) or idx_or_word in self.word2id, 'Provide index or word in vocabulary'
idx = idx_or_word
if idx_or_word in self.word2id:
idx = self.word2id[idx_or_word]
dist = np.dot(self.mus_n, self.mus_n[idx*self.num_mixtures + cl])
highsim_idxs = dist.argsort()[::-1]
# select top num_nns (linear) indices with the highest cosine similarity
highsim_idxs = highsim_idxs[:num_nns]
dist_val = dist[highsim_idxs]
words = self.idxs2words(highsim_idxs)
var_val = np.array([self.detA[_idx] for _idx in highsim_idxs])
# plot all the words
if plot:
df = pd.DataFrame()
df['text'] = words
df['sim'] = dist_val
df['logvar'] = var_val
mix = self.mixture[idx, cl]
plot = (ggplot(aes(x='sim', y='logvar', label='text'), data=df)
+ geom_point(size=5)
+ geom_text(size=10)
+ ggtitle("Neighbors of [{}:{}] with mixture probability {:.4g}".format(self.id2word[idx], cl, mix))
)
print (plot)
print ('Top 10 highest similarity')
print (words[:10])
if verbose: print (dist_val[:10])
print ('Top 10 lowest variance of top {} highest similarity'.format(num_nns))
low_var_idxs, var_val = self.sort_low_var(highsim_idxs)
print (self.idxs2words(low_var_idxs))
if verbose: print (var_val)
def words_to_idxs(self, word_list, discard_unk=False, verbose=False):
assert isinstance(word_list, list), 'Expected a list'
if discard_unk:
return self.words_to_idxs_discard_unk(word_list)
else:
return [self.get_idx(_w, verbose) for _w in word_list]
def words_to_idxs_discard_unk(self, word_list):
idxs = [self.word2id[word] for word in word_list if word in self.word2id]
if len(idxs) == 0:
return [0] # return the index of unknown
return idxs
def get_idx(self, word, verbose=False):
if word in self.word2id:
return self.word2id[word]
else:
if verbose: print ('Unknown word [{}]'.format(word))
return 0
####
def dot(self, idx1, cl1, idx2, cl2):
_res = np.dot(self.mus_n_multi[idx1, cl1], self.mus_n_multi[idx2, cl2])
return _res
def maxdot(self, idx1, idx2, verbose=False):
metric_grid = np.zeros((self.num_mixtures, self.num_mixtures))
for cl1 in range(self.num_mixtures):
for cl2 in range(self.num_mixtures):
metric_grid[cl1, cl2] = self.dot(idx1, cl1, idx2, cl2)
if verbose: print (metric_grid)
return np.max(metric_grid)
def avedot(self, idx1, idx2, verbose=False):
metric_grid = np.zeros((self.num_mixtures, self.num_mixtures))
for cl1 in range(self.num_mixtures):
for cl2 in range(self.num_mixtures):
metric_grid[cl1, cl2] = self.dot(idx1, cl1, idx2, cl2)
if verbose: print (metric_grid)
return np.mean(metric_grid)
def negkl(self, w1, cl1, w2, cl2):
## This is for KL and min KL
# This is -2*KL(w1 || w2)
D = len(self.mus_n_multi[0,0])
# note: ignore -D because it's a constant
m1 = self.mus[w1, cl1]
m2 = self.mus[w2, cl2]
epsilon = 1e-4
logsig1 = self.logsigs[w1, cl1]
logsig2 = self.logsigs[w2, cl2]
sig1 = np.exp(logsig1)
sig2 = np.exp(logsig2)
s2_inv = 1./(epsilon + sig2)
sph = (len(logsig1) == 1)
#print 'D = {} Spherical = {}'.format(D, sph)
diff = m1 - m2
exp_term = np.sum(diff*s2_inv*diff)
if sph:
tr_term = D*sig1*s2_inv
else:
tr_term = np.sum(sig1*s2_inv)
if sph:
log_rel_det = D*logsig1 - D*logsig2
else:
log_rel_det = np.sum(logsig1 - logsig2)
res = tr_term + exp_term - log_rel_det
return -res
def max_negkl(self, idx1, idx2, verbose = False):
metric_grid = np.zeros((self.num_mixtures, self.num_mixtures))
for cl1 in range(self.num_mixtures):
for cl2 in range(self.num_mixtures):
metric_grid[cl1, cl2] = self.negkl(idx1, cl1, idx2, cl2)
if verbose: print (metric_grid)
return np.max(metric_grid)
#### compute the norm of the difference
def norm(self, idx1, cl1, idx2, cl2):
_res = np.linalg.norm(self.mus[idx1, cl1] - self.mus[idx2, cl2])
return _res
# it actually should be the negative of minimum norm
def maxnorm(self, idx1, idx2, verbose=False):
# returns the negative max norm
metric_grid = np.zeros((self.num_mixtures, self.num_mixtures))
for cl1 in range(self.num_mixtures):
for cl2 in range(self.num_mixtures):
metric_grid[cl1, cl2] = self.norm(idx1, cl1, idx2, cl2)
if verbose: print (metric_grid)
return -np.min(metric_grid)
def disdot(self, w1, w2):
num_mix = self.num_mixtures
mu1 = self.mus[w1]
mu2 = self.mus[w2]
sigma1 = np.exp(self.logsigs[w1])
sigma2 = np.exp(self.logsigs[w2])
mix1 = self.mixture[w1]
mix2 = self.mixture[w2]
def partial_energy(cl1, cl2):
# cl1, cl2 are 'cluster' indices
_a = sigma1[cl1] + sigma2[cl2]
_res = -0.5*np.sum(np.log(_a))
ss_inv = 1./_a
diff = mu1[cl1] - mu2[cl2]
_res += -0.5*np.sum(
diff*ss_inv*diff
)
return _res
partial_energies = np.zeros((num_mix, num_mix))
for _i in range(num_mix):
for _j in range(num_mix):
partial_energies[_i,_j] = partial_energy(_i, _j)
# for numerical stability
max_partial_energy = np.max(partial_energies)
#print 'max partial (log) energy', max_partial_energy
energy = 0
for _i in range(num_mix):
for _j in range(num_mix):
energy += \
mix1[_i]*mix2[_j]*np.exp(partial_energies[_i,_j] - max_partial_energy)
log_energy = max_partial_energy + np.log(energy)
return log_energy
# this is to determine the best cluster based on context
def find_best_cluster(self, w, context, verbose=False, criterion='max'):
assert criterion in ['max', 'mean', 'mean_of_max']
scores = np.zeros((self.num_mixtures))
for i in range(self.num_mixtures):
all_scores = np.zeros((len(context), self.num_mixtures))
for j, context_word in enumerate(context):
for context_cl in range(self.num_mixtures):
all_scores[j, context_cl] = self.dot(w, i, context_word, context_cl)
if criterion == 'max':
scores[i] = np.max(all_scores)
elif criterion == 'mean':
scores[i] = np.mean(all_scores)
elif criterion == 'mean_of_max':
max_scores = np.max(all_scores, axis=1)
if verbose:
print ('max scores', max_scores)
assert len(max_scores) == len(context)
scores[i] = np.mean(max_scores)
if verbose:
print ('Mixture ', i)
print ('all scores = {} with aggregate score = {}'.format(all_scores, scores[i]))
cl_max = np.argmax(scores)
return cl_max
def wordsim_context(self, w1, c1, w2, c2, metric='dot_context', criterion='max', verbose=False):
assert metric in ['dot_context', 'maxdot', 'avedot']
# w1 is a word
# c1 is a list of words
w1 = self.get_idx(w1)
w2 = self.get_idx(w2)
if w1 == w2:
return 1.0
if metric == 'dot_context':
if verbose: print ('Using dot context')
c1 = self.words_to_idxs(c1, discard_unk=True)
c2 = self.words_to_idxs(c2, discard_unk=True)
cl1 = self.find_best_cluster(w1, c1, criterion=criterion, verbose=verbose)
cl2 = self.find_best_cluster(w2, c2, criterion=criterion, verbose=verbose)
score = self.dot(w1, cl1, w2, cl2)
return score
elif metric == 'maxdot':
if verbose: print ('Using maxdot')
score = self.maxdot(w1, w2, verbose=verbose)
return score
elif metric == 'avedot':
if verbose: print ('Using avedot')
score = self.avedot(w1, w2, verbose=verbose)
def visualize_embeddings(self, port=6006, call_tensorboard=False):
from tensorflow.contrib.tensorboard.plugins import projector
from subprocess import call
mus = self.mus
vocabs = self.id2word
mus = np.resize(mus, (mus.shape[0]*mus.shape[1], mus.shape[2]))
labels = []
for word in vocabs:
for i in range(self.num_mixtures):
labels.append(word+":{}".format(i))
emb_logdir = self.logdir + '_emb'
if not os.path.exists(emb_logdir):
os.makedirs(emb_logdir)
else:
print ('The directory already exists!')
thefile = open(emb_logdir + '/labels.csv', 'w')
for item in labels:
thefile.write("%s\n" % item)
with tf.Graph().as_default() as g:
with tf.Session(graph=g) as session:
embedding_var = tf.Variable(mus, name='mus')
init = tf.initialize_all_variables()
init.run()
saver = tf.train.Saver()
saver.save(session, os.path.join(emb_logdir, "model.ckpt"), 0)
summary_writer = tf.summary.FileWriter(emb_logdir)
config = projector.ProjectorConfig()
embedding = config.embeddings.add()
embedding.tensor_name = embedding_var.name
embedding.metadata_path = os.path.join(emb_logdir, 'labels.csv')
projector.visualize_embeddings(summary_writer, config)
if call_tensorboard:
call(["tensorboard", "--logdir={}".format(emb_logdir)])
if __name__=='__main__':
sess = tf.Session()
word2mixgauss = Word2GM(save_path='modelfiles/t8-2s-e10-v05-lr05d-mc100-ss5-nwout-adg-win10', session=sess)
word2mixgauss.show_nearest_neighbors('the', 0, 20)