-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfrft_test.py.py
158 lines (126 loc) · 4.16 KB
/
frft_test.py.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import copy
from src.mackey_glass_generator import MackeyGenerator
from src.run_synthetics import run_experiemtns
import tensorflow as tf
import pandas as pnd
import numpy as np
from src.narma import narma_generator
from src.electric_load import electric_loader
pd = {} # This is the dictionary for experiments
pd["fraction"] = np.random.uniform(0,1.5) # uniformly initialize fraction order
pd['base_dir'] = 'models\data_name\experiment_no' # save the models in this directory
pd['cell_type'] = 'gru'
pd['num_units'] = 64 # hidden state size
pd['sample_prob'] = 1.0
pd['init_learning_rate'] =0.001 # initial learning rate
pd['decay_rate'] = 0.90
pd['decay_steps'] = 1000
pd['iterations'] = 1 # this is epoch number, set yours
#pd['iterations'] = 2
pd['GPUs'] = [0]
pd['batch_size'] = 10 # Zeroth index of the data shape
pd['window_function'] = 'learned_gaussian' # other options: learned_plank, learned_tukey, learned_gaus_plank
pd['freq_loss'] = None
pd['use_residuals'] = True
pd['linear_reshape'] = False
pd['downsampling'] = 1 # set to 1 to turn this off.
pd['stiefel'] = False
################################################## These are data parameters ############################################################
'''
'''
pd['tmax'] = 512
pd['delta_t'] = 0.1
pd['input_samples'] = 5120 # First index of the data shape, corresponds to sequence length
pd['generator'] = MackeyGenerator(pd['batch_size'],
pd['tmax'], pd['delta_t'],
restore_and_plot=False)
pd['window_size'] = 128 #
pd['pred_samples'] = 2560 # what porsion of the data will be used for prediction
pd['discarded_samples'] =0
#########################################################################################################################################
pd['fft'] = False
pd['overlap'] = int(pd['window_size']*0.5)
pd['step_size'] = pd['window_size'] - pd['overlap']
pd['fft_pred_samples'] = pd['pred_samples'] // pd['step_size'] + 1
pd['fft_compression_rate'] = 1
# don't touch!
pd['conv_fft_bins'] = None
pd['fully_fft_comp'] = None
def adjust_parameters(pd):
if pd['fft']:
if pd['fft_compression_rate']:
pd['num_proj'] = int((pd['window_size']) / pd['fft_compression_rate'])
else:
pd['num_proj'] = int((pd['window_size']))
elif pd['linear_reshape']:
pd['num_proj'] = pd['step_size']/pd['downsampling']
else:
pd['num_proj'] = 1
if pd['fft']:
if pd['window_function'] == 'boxcar':
pd['epsilon'] = 0.0
else:
pd['epsilon'] = 1e-3
else:
pd['epsilon'] = None
return pd
pd = adjust_parameters(pd)
pd2 = copy.copy(pd)
pd2['linear_reshape'] = True
pd2['downsampling'] = 1
pd2 = adjust_parameters(pd2)
pd3 = copy.copy(pd)
pd3['linear_reshape'] = True
pd3['downsampling'] = 8
pd3 = adjust_parameters(pd3)
pd4 = copy.copy(pd)
pd4['linear_reshape'] = True
pd4['downsampling'] = 16
pd4 = adjust_parameters(pd4)
pd5 = copy.copy(pd)
pd5['fft'] = True
pd5['fft_compression_rate'] = 1
pd5 = adjust_parameters(pd5)
pd6 = copy.copy(pd)
pd6['fft'] = True
pd6['fft_compression_rate'] = 8
pd6 = adjust_parameters(pd6)
pd7 = copy.copy(pd)
pd7['fft'] = True
pd7['fft_compression_rate'] = 16
pd7 = adjust_parameters(pd7)
pd8 = copy.copy(pd)
pd8['fft'] = True
pd8['cell_type'] = 'cgRNN'
pd8 = adjust_parameters(pd8)
pd9 = copy.copy(pd)
pd9['fft'] = True
pd9['cell_type'] = 'cgRNN'
pd9['num_units'] = 54
pd9 = adjust_parameters(pd9)
pd10 = copy.copy(pd)
pd10['fft'] = True
pd10['cell_type'] = 'cgRNN'
pd10['num_units'] = 32
pd10 = adjust_parameters(pd10)
pd11 = copy.copy(pd)
pd11['fft'] = True
pd11['cell_type'] = 'cgRNN'
pd11['num_units'] = 32
pd11 = adjust_parameters(pd11)
pd12 = copy.copy(pd)
pd12['fft'] = True
pd12['cell_type'] = 'cgRNN'
pd12['freq_loss'] = 'complex_square'
pd12 = adjust_parameters(pd12)
pd13 = copy.copy(pd)
pd13['fft'] = True
pd13['fft_compression_rate'] = 32
pd13 = adjust_parameters(pd13)
pd14 = copy.copy(pd)
pd14['linear_reshape'] = True
pd14['downsampling'] = 32
pd14 = adjust_parameters(pd14)
lpd_lst = [pd, pd2, pd3, pd4, pd5, pd6, pd7, pd8, pd9, pd10, pd11, pd12, pd13, pd14] #
# lpd_lst = [pd13, pd14]
run_experiemtns(lpd_lst)