-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun_pretraining.py
365 lines (305 loc) · 12.4 KB
/
run_pretraining.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
# coding=utf-8
# Copyright 2021 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Run masked LM/next-sentence prediction pre-training."""
""" Updated for Fractional Fourier Transform """
import functools
import os
from typing import Any, Dict, Mapping, Tuple
from absl import logging
from flax import jax_utils
from flax import optim
from flax.metrics import tensorboard
from flax.training import checkpoints
from flax.training import common_utils
import jax
from jax import random
import jax.numpy as jnp
import ml_collections
import numpy as np
import input_pipeline
import models
import train_utils
import sentencepiece as spm
# Type Stubs
PRNGKey = Any
def _init_params(model, key,
config):
"""Initializes model state.
Args:
model: Model to initialize.
key: Random number generator key.
config: Model specifications; used to configure model input shapes.
Returns:
Initial model parameters.
"""
init_batch = {
"input_ids":
jnp.ones((1, config.max_seq_length), jnp.int32),
"input_mask":
jnp.ones((1, config.max_seq_length), jnp.int32),
"type_ids":
jnp.ones((1, config.max_seq_length), jnp.int32),
"masked_lm_positions":
jnp.ones((1, config.max_predictions_per_seq), jnp.int32),
"masked_lm_labels":
jnp.ones((1, config.max_predictions_per_seq), jnp.int32),
"masked_lm_weights":
jnp.ones((1, config.max_predictions_per_seq), jnp.int32),
"next_sentence_labels":
jnp.ones((1, 1), jnp.int32)
}
key, dropout_key = random.split(key)
jit_init = jax.jit(model.init)
initial_variables = jit_init({
"params": key,
"dropout": dropout_key
}, **init_batch)
return initial_variables["params"]
def _create_adam_optimizer(learning_rate,
params):
"""Creates Adam optimizer.
Args:
learning_rate: Initial learning rate.
params: Model state (parameters).
Returns:
Adam optimizer.
"""
optimizer_def = optim.Adam(
learning_rate=learning_rate,
beta1=0.9,
beta2=0.999,
eps=1e-6,
weight_decay=0.01)
optimizer = optimizer_def.create(params)
return optimizer
def _compute_loss_and_metrics(
params, batch, rng,
model,
pad_id):
"""Computes cross-entropy loss and metrics for MLM and NSP tasks.
Args:
params: Model state (parameters).
batch: Current batch of examples.
rng: Random number generator key.
model: The model itself. Flax separates model state and architecture.
pad_id: Token ID representing padding. A mask is used to distinguish padding
from actual inputs.
Returns:
Model loss and raw metrics (predictions and example labels).
"""
inputs = {
"input_ids": batch["input_ids"],
"input_mask": (batch["input_ids"] != pad_id).astype(np.int32),
"type_ids": batch["type_ids"],
"masked_lm_positions": batch["masked_lm_positions"],
"masked_lm_labels": batch["masked_lm_ids"],
"masked_lm_weights": batch["masked_lm_weights"],
"next_sentence_labels": batch["next_sentence_labels"]
}
metrics = model.apply({"params": params}, rngs={"dropout": rng}, **inputs)
return metrics["loss"], metrics
def _compute_eval_stats(params, batch,
model,
pad_id):
"""Computes pre-training task predictions and stats.
Args:
params: Model state (parameters).
batch: Current batch of examples.
model: The model itself. Flax separates model state and architecture.
pad_id: Token ID representing padding. A mask is used to distinguish padding
from actual inputs.
Returns:
Model predictions and metrics.
"""
inputs = {
"input_ids": batch["input_ids"],
"input_mask": (batch["input_ids"] != pad_id).astype(np.int32),
"type_ids": batch["type_ids"],
"masked_lm_positions": batch["masked_lm_positions"],
"masked_lm_labels": batch["masked_lm_ids"],
"masked_lm_weights": batch["masked_lm_weights"],
"next_sentence_labels": batch["next_sentence_labels"],
"deterministic": True
}
return model.apply({"params": params}, **inputs)
def _compute_loss_and_accuracy_metrics(
stats):
"""Computes loss and accuracy metrics.
Args:
stats: Raw model predictions and example labels; see models.PreTrainingModel
for keys.
Returns:
Model loss and accuracy metrics.
"""
metrics = {
"masked_lm_loss":
jnp.sum(stats["masked_lm_loss"]) /
jnp.sum(stats["masked_lm_normalization"]),
"next_sentence_loss":
jnp.sum(stats["next_sentence_loss"]) /
jnp.sum(stats["num_next_sentence_labels"]),
"masked_lm_accuracy":
jnp.sum(stats["masked_lm_correct"]) /
jnp.sum(stats["masked_lm_total"]),
"next_sentence_accuracy":
jnp.sum(stats["next_sentence_correct"]) /
jnp.sum(stats["num_next_sentence_labels"]),
}
metrics["loss"] = metrics["masked_lm_loss"] + metrics["next_sentence_loss"]
return metrics
def train_and_evaluate(config, workdir,
vocab_filepath):
"""Runs a training and evaluation loop.
Args:
config: Model and training configuration.
workdir: Working directory for checkpoints and Tensorboard summaries. If
this contains a checkpoint, training will be resumed from the latest
checkpoint.
vocab_filepath: Absolute path to SentencePiece vocab model.
Raises:
ValueError: If training or eval batch sizes won't fit number of processes
and devices, or config is underspecified.
"""
n_processes = jax.process_count() # Number of processes
n_devices = jax.local_device_count() # Number of local devices per process
if config.train_batch_size % (n_processes * n_devices) > 0:
raise ValueError(
"Training batch size must be divisible by the total number of devices, "
"but training batch size = %d, while total number of devices = %d "
"(%d processes, each with %d devices)" %
(config.train_batch_size, n_processes * n_devices, n_processes,
n_devices))
if config.eval_batch_size % (n_processes * n_devices) > 0:
raise ValueError(
"Eval batch size must be divisible by the total number of devices, "
"but eval batch size = %d, while total number of devices = %d "
"(%d processes, each with %d devices)" %
(config.eval_batch_size, n_processes * n_devices, n_processes,
n_devices))
per_process_train_batch_size = config.train_batch_size // n_processes
per_process_eval_batch_size = config.eval_batch_size // n_processes
if jax.process_index() == 0:
train_summary_writer = tensorboard.SummaryWriter(
os.path.join(workdir, "train"))
eval_summary_writer = tensorboard.SummaryWriter(
os.path.join(workdir, "eval"))
else:
train_summary_writer = None
eval_summary_writer = None
rng = random.PRNGKey(config.seed)
rng, init_rng = random.split(rng)
tokenizer = spm.SentencePieceProcessor()
tokenizer.Load(vocab_filepath)
tokenizer.SetEncodeExtraOptions("")
# Note: [CLS] and [SEP] will be added by the data pipeline, not the tokenizer.
with config.unlocked():
config.vocab_size = tokenizer.GetPieceSize()
frozen_config = ml_collections.FrozenConfigDict(config)
model = models.PreTrainingModel(config=frozen_config, random_seed=config.seed)
params = _init_params(model, init_rng, frozen_config)
optimizer = _create_adam_optimizer(config.learning_rate, params)
# We access model state only from optimizer via optimizer.target.
del params
# In case current job restarts, ensure that we continue from where we left
# off.
optimizer = checkpoints.restore_checkpoint(workdir, optimizer)
start_step = int(optimizer.state.step)
# Otherwise, try to restore optimizer and model state from config checkpoint.
if start_step == 0 and "init_checkpoint_dir" in config and config.init_checkpoint_dir:
optimizer = checkpoints.restore_checkpoint(config.init_checkpoint_dir,
optimizer)
optimizer = jax_utils.replicate(optimizer)
learning_rate_fn = train_utils.create_learning_rate_scheduler(
factors="constant * linear_warmup * linear_decay",
base_learning_rate=config.learning_rate,
warmup_steps=config.num_warmup_steps,
decay_steps=config.num_train_steps - config.num_warmup_steps,
)
c4_masked_lm_inputs = functools.partial(
input_pipeline.c4_masked_lm_inputs,
tokenizer=tokenizer,
max_seq_length=config.max_seq_length,
max_predictions_per_seq=config.max_predictions_per_seq,
masking_rate=config.masking_rate,
mask_token_proportion=config.mask_token_proportion,
random_token_proportion=config.random_token_proportion)
train_ds = c4_masked_lm_inputs(batch_size=per_process_train_batch_size)
train_iter = iter(train_ds)
eval_ds = c4_masked_lm_inputs(batch_size=per_process_eval_batch_size)
# We init the first set of dropout PRNG keys, but update it afterwards inside
# the main pmap'd training update for performance.
rngs = random.split(rng, n_devices)
loss_and_metrics_fn = functools.partial(
_compute_loss_and_metrics, model=model, pad_id=tokenizer.pad_id())
p_train_step = jax.pmap(
functools.partial(
train_utils.train_step,
loss_and_metrics_fn=loss_and_metrics_fn,
learning_rate_fn=learning_rate_fn,
clipped_grad_norm=config.clipped_grad_norm),
axis_name="batch")
metric_fn = functools.partial(
_compute_eval_stats, model=model, pad_id=tokenizer.pad_id())
p_eval_step = jax.pmap(
functools.partial(train_utils.eval_step, metric_fn=metric_fn),
axis_name="batch")
train_metrics = []
logging.info("Starting training loop.")
logging.info("====================")
for step in range(start_step, config.num_train_steps):
with jax.profiler.StepTraceContext("train", step_num=step):
train_batch = next(train_iter)
train_batch = common_utils.shard(train_batch)
optimizer, train_step_metrics, rngs = p_train_step(
optimizer, train_batch, rng=rngs)
train_metrics.append(train_step_metrics)
if (step > 0 and config.save_checkpoints_steps and
step % config.save_checkpoints_steps == 0 and jax.process_index() == 0):
# Save un-replicated optimizer + model state.
checkpoints.save_checkpoint(
workdir, jax_utils.unreplicate(optimizer), step, keep=1)
# Periodic metric handling.
if step % config.eval_frequency != 0 and step > 0:
continue
logging.info("Gathering training metrics at step: %d", step)
train_metrics = common_utils.get_metrics(train_metrics)
train_summary = _compute_loss_and_accuracy_metrics(train_metrics)
# Add training specific metrics.
train_summary["unclipped_grad_l2_norm"] = jnp.sqrt(
jnp.sum(train_metrics["unclipped_grad_l2_sum"]))
train_summary["clipped_grad_l2_norm"] = jnp.sqrt(
jnp.sum(train_metrics["clipped_grad_l2_sum"]))
train_summary["learning_rate"] = learning_rate_fn(step)
if jax.process_index() == 0:
assert train_summary_writer
for key, val in train_summary.items():
train_summary_writer.scalar(key, val, step)
train_summary_writer.flush()
# Reset metric accumulation for next training evaluation cycle.
train_metrics = []
logging.info("Gathering evaluation metrics at step: %d", step)
all_stats = []
for _, eval_batch in zip(range(config.max_num_eval_steps), eval_ds):
eval_batch = common_utils.shard(eval_batch)
all_stats.append(p_eval_step(optimizer.target, eval_batch))
flat_stats = {}
for k in all_stats[0]:
flat_stats[k] = np.concatenate([stats[k] for stats in all_stats], axis=0)
eval_summary = _compute_loss_and_accuracy_metrics(flat_stats)
if jax.process_index() == 0:
assert eval_summary_writer
for key, val in eval_summary.items():
eval_summary_writer.scalar(key, val, step)
eval_summary_writer.flush()