-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun_classifier.py
525 lines (426 loc) · 16.4 KB
/
run_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
# coding=utf-8
# Copyright 2021 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Run sequence-level classification (and regression) fine-tuning."""
""" Updated for Fractional Fourier Transform """
import functools
import math
import os
from typing import Any, Callable, Dict, Mapping, Tuple
from absl import logging
from flax import jax_utils
from flax import optim
from flax.metrics import tensorboard
from flax.training import checkpoints
from flax.training import common_utils
import jax
from jax import random
import jax.numpy as jnp
import ml_collections
import numpy as np
from scipy import stats as scipy_stats
import tensorflow_datasets as tfds
import input_pipeline
import models
import train_utils
import sentencepiece as spm
# Type Stubs
PRNGKey = Any
def _restore_pretrained_model(
optimizer, params,
config):
"""Restores model state from pre-trained model with fresh output layer.
We use a fresh output layer because the classification tasks differ from the
MLM and NSP pre-training tasks.
Args:
optimizer: Empty optimizer object to rebuild via deserialized state-dict.
params: Initialized model state (parameters).
config: Model configuration.
Returns:
Restore model optimizer.
"""
# target=None returns the state data instead of updating the optimizer.
ckpt_contents = checkpoints.restore_checkpoint(
config.init_checkpoint_dir, target=None)
# "classification" is the name of the output layer.
output_init_params = params["classification"]
ckpt_contents["target"]["classification"] = output_init_params
cls_state = ckpt_contents["state"]["param_states"]["classification"]
for param in cls_state.keys():
for grad_key in cls_state[param].keys():
cls_state[param][grad_key] = jnp.zeros_like(output_init_params[param])
return optimizer.restore_state(ckpt_contents)
def _init_params(model, key,
config):
"""Initializes model state.
Args:
model: Model to initialize.
key: Random number generator key.
config: Model specifications; used to configure model input shapes.
Returns:
Initial model parameters.
"""
init_batch = {
"input_ids": jnp.ones((1, config.max_seq_length), jnp.int32),
"input_mask": jnp.ones((1, config.max_seq_length), jnp.int32),
"type_ids": jnp.ones((1, config.max_seq_length), jnp.int32),
"labels": jnp.ones((1, 1), jnp.int32)
}
key, dropout_key = random.split(key)
jit_init = jax.jit(model.init)
initial_variables = jit_init({
"params": key,
"dropout": dropout_key
}, **init_batch)
return initial_variables["params"]
def _create_adam_optimizer(learning_rate,
params):
"""Creates Adam optimizer.
Args:
learning_rate: Initial learning rate.
params: Model state (parameters).
Returns:
Adam optimizer.
"""
optimizer_def = optim.Adam(
learning_rate=learning_rate,
beta1=0.9,
beta2=0.999,
eps=1e-6,
weight_decay=0.01)
optimizer = optimizer_def.create(params)
return optimizer
def _compute_loss_and_metrics(
params,
batch,
rng,
model,
pad_id,
):
"""Computes cross-entropy loss and metrics for classification tasks.
Args:
params: Model state (parameters).
batch: Current batch of examples.
rng: Random number generator key.
model: The model itself. Flax separates model state and architecture.
pad_id: Token ID representing padding. A mask is used to distinguish padding
from actual inputs.
Returns:
Model loss and metrics.
"""
inputs = {
"input_ids": batch["input_ids"],
"input_mask": (batch["input_ids"] != pad_id).astype(np.int32),
"type_ids": batch["type_ids"],
"labels": batch["label"]
}
metrics = model.apply({"params": params}, rngs={"dropout": rng}, **inputs)
return metrics["loss"], metrics
def _compute_classification_stats(params, batch,
model,
pad_id):
"""Computes classification predictions.
Args:
params: Model state (parameters).
batch: Current batch of examples.
model: The model itself. Flax separates model state and architecture.
pad_id: Token ID representing padding. A mask is used to distinguish padding
from actual inputs.
Returns:
Model predictions along with example labels.
"""
inputs = {
"input_ids": batch["input_ids"],
"input_mask": (batch["input_ids"] != pad_id).astype(np.int32),
"type_ids": batch["type_ids"],
"deterministic": True
}
y = model.apply({"params": params}, **inputs)
return {
"idx": batch["idx"],
"label": batch["label"],
"prediction": y.argmax(-1)
}
def _compute_regression_stats(params, batch,
model,
pad_id):
"""Computes regression predictions.
Args:
params: Model state (parameters).
batch: Current batch of examples.
model: The model itself. Flax separates model state and architecture.
pad_id: Token ID representing padding. A mask is used to distinguish padding
from actual inputs.
Returns:
Model predictions along with example labels.
"""
inputs = {
"input_ids": batch["input_ids"],
"input_mask": (batch["input_ids"] != pad_id).astype(np.int32),
"type_ids": batch["type_ids"],
"deterministic": True
}
y = model.apply({"params": params}, **inputs)
return {
"idx": batch["idx"],
"label": batch["label"],
"prediction": y[Ellipsis, 0],
}
def _create_eval_metrics_fn(
dataset_name, is_regression_task
):
"""Creates a function that computes task-relevant metrics.
Args:
dataset_name: TFDS name of dataset.
is_regression_task: If true, includes Spearman's rank correlation
coefficient computation in metric function; otherwise, defaults to
accuracy computation.
Returns:
Relevant metric function.
"""
def get_accuracy(guess, gold):
return (guess == gold).mean()
def get_mcc(guess, gold):
tp = ((guess == 1) & (gold == 1)).sum()
tn = ((guess == 0) & (gold == 0)).sum()
fp = ((guess == 1) & (gold == 0)).sum()
fn = ((guess == 0) & (gold == 1)).sum()
mcc_denom = np.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn))
mcc = (tp * tn - fp * fn) / (mcc_denom + 1e-6)
return mcc
def get_f1(guess, gold):
tp = ((guess == 1) & (gold == 1)).sum()
fp = ((guess == 1) & (gold == 0)).sum()
fn = ((guess == 0) & (gold == 1)).sum()
f1 = (2 * tp) / (2 * tp + fp + fn + 1e-6)
return f1
def get_f1_accuracy_mean(guess, gold):
return (get_f1(guess, gold) + get_accuracy(guess, gold)) / 2.0
def get_spearmanr(x, y):
return scipy_stats.spearmanr(x, y).correlation
eval_metrics = {}
if is_regression_task:
eval_metrics["spearmanr"] = get_spearmanr
else:
eval_metrics["accuracy"] = get_accuracy
if dataset_name == "glue/cola":
eval_metrics["mcc"] = get_mcc
elif dataset_name in ("glue/mrpc", "glue/qqp"):
eval_metrics["f1_accuracy_mean"] = get_f1_accuracy_mean
def metrics_fn(stats):
res = {}
for name, fn in eval_metrics.items():
res[name] = fn(stats["prediction"], stats["label"])
return res
return metrics_fn
def _evaluate(p_eval_step, model,
eval_batch,
n_devices):
"""Computes evaluation metrics.
Args:
p_eval_step: Parallelized evaluation step computation.
model: Model architecture.
eval_batch: Batch of evaluation examples.
n_devices: Number of local devices.
Returns:
Raw model predictions and metrics.
"""
batch_size = eval_batch["idx"].shape[0]
remainder = batch_size % n_devices
if remainder:
pad_amount = n_devices - remainder
def pad(x):
assert x.shape[0] == batch_size
return np.concatenate([x] + [x[:1]] * pad_amount, axis=0)
eval_batch = jax.tree_map(pad, eval_batch)
eval_batch = common_utils.shard(eval_batch)
metrics = p_eval_step(model, eval_batch)
metrics = jax.tree_map(np.array, metrics)
metrics = jax.tree_map(lambda x: x.reshape((-1,) + x.shape[2:]), metrics)
if remainder:
metrics = jax.tree_map(lambda x: x[:-pad_amount], metrics)
return metrics
def train_and_evaluate(config, workdir,
vocab_filepath):
"""Runs a training and evaluation loop.
Args:
config: Model and training configuration.
workdir: Working directory for checkpoints and Tensorboard summaries. If
this contains a checkpoint, training will be resumed from the latest
checkpoint.
vocab_filepath: Absolute path to SentencePiece vocab model.
Raises:
ValueError: If training or eval batch sizes won't fit number of processes
and devices, or config is underspecified.
"""
n_processes = jax.process_count() # Number of processes
n_devices = jax.local_device_count() # Number of local devices per process
if config.train_batch_size % (n_processes * n_devices) > 0:
raise ValueError(
"Training batch size must be divisible by the total number of devices, "
"but training batch size = %d, while total number of devices = %d "
"(%d processes, each with %d devices)" %
(config.train_batch_size, n_processes * n_devices, n_processes,
n_devices))
if config.eval_batch_size % (n_processes * n_devices) > 0:
raise ValueError(
"Eval batch size must be divisible by the total number of devices, "
"but eval batch size = %d, while total number of devices = %d "
"(%d processes, each with %d devices)" %
(config.eval_batch_size, n_processes * n_devices, n_processes,
n_devices))
per_process_train_batch_size = config.train_batch_size // n_processes
per_process_eval_batch_size = config.eval_batch_size // n_processes
if jax.process_index() == 0:
train_summary_writer = tensorboard.SummaryWriter(
os.path.join(workdir, "train"))
eval_summary_writer = tensorboard.SummaryWriter(
os.path.join(workdir, "eval"))
else:
train_summary_writer = None
eval_summary_writer = None
rng = random.PRNGKey(config.seed)
rng, init_rng = random.split(rng)
ds_info = tfds.builder(config.dataset_name).info
num_train_examples = ds_info.splits[tfds.Split.TRAIN].num_examples
num_train_steps = int(num_train_examples * config.num_train_epochs //
config.train_batch_size)
num_warmup_steps = int(config.warmup_proportion * num_train_steps)
# Round up evaluation frequency to power of 10.
eval_frequency = int(
math.ceil(config.eval_proportion * num_train_steps / 10)) * 10
is_regression_task = config.dataset_name == "glue/stsb"
num_classes = (1 if is_regression_task else
ds_info.features["label"].num_classes)
tokenizer = spm.SentencePieceProcessor()
tokenizer.Load(vocab_filepath)
with config.unlocked():
config.vocab_size = tokenizer.GetPieceSize()
frozen_config = ml_collections.FrozenConfigDict(config)
model = models.SequenceClassificationModel(
config=frozen_config, n_classes=num_classes)
params = _init_params(model, init_rng, config)
optimizer = _create_adam_optimizer(config.learning_rate, params)
# In case current job restarts, ensure that we continue from where we left
# off.
optimizer = checkpoints.restore_checkpoint(workdir, optimizer)
start_step = int(optimizer.state.step)
# Otherwise, try to restore optimizer and model state from config checkpoint.
if (start_step == 0 and "init_checkpoint_dir" in config and
config.init_checkpoint_dir):
optimizer = _restore_pretrained_model(optimizer, params, config)
# We access model state only from optimizer via optimizer.target.
del params
optimizer = jax_utils.replicate(optimizer)
if is_regression_task:
compute_stats = functools.partial(
_compute_regression_stats, model=model, pad_id=tokenizer.pad_id())
else:
compute_stats = functools.partial(
_compute_classification_stats, model=model, pad_id=tokenizer.pad_id())
learning_rate_fn = train_utils.create_learning_rate_scheduler(
factors="constant * linear_warmup * linear_decay",
base_learning_rate=config.learning_rate,
warmup_steps=num_warmup_steps,
decay_steps=num_train_steps - num_warmup_steps,
)
glue_inputs = functools.partial(
input_pipeline.glue_inputs,
dataset_name=config.dataset_name,
max_seq_length=config.max_seq_length,
tokenizer=tokenizer)
train_ds = glue_inputs(
split=tfds.Split.TRAIN,
batch_size=per_process_train_batch_size,
training=True)
train_iter = iter(train_ds)
if config.dataset_name == "glue/mnli":
# MNLI contains two validation and test datasets.
split_suffixes = ["_matched", "_mismatched"]
else:
split_suffixes = [""]
# We init the first set of dropout PRNG keys, but update it afterwards inside
# the main pmap'd training update for performance.
rngs = random.split(rng, n_devices)
loss_and_metrics_fn = functools.partial(
_compute_loss_and_metrics, model=model, pad_id=tokenizer.pad_id())
p_train_step = jax.pmap(
functools.partial(
train_utils.train_step,
loss_and_metrics_fn=loss_and_metrics_fn,
learning_rate_fn=learning_rate_fn),
axis_name="batch")
p_eval_step = jax.pmap(
functools.partial(train_utils.eval_step, metric_fn=compute_stats),
axis_name="batch")
eval_metrics_fn = _create_eval_metrics_fn(config.dataset_name,
is_regression_task)
train_metrics = []
logging.info("Starting training loop.")
logging.info("====================")
for step in range(start_step, num_train_steps):
with jax.profiler.StepTraceContext("train", step_num=step):
train_batch = next(train_iter)
train_batch = common_utils.shard(train_batch)
optimizer, train_step_metrics, rngs = p_train_step(
optimizer, train_batch, rng=rngs)
train_metrics.append(train_step_metrics)
if ((step > 0 and config.save_checkpoints_steps and
step % config.save_checkpoints_steps == 0) or
step == num_train_steps - 1) and jax.process_index() == 0:
# Save un-replicated optimizer and model state.
checkpoints.save_checkpoint(
workdir, jax_utils.unreplicate(optimizer), step, keep=1)
# Periodic metric handling.
if step % eval_frequency != 0 and step < num_train_steps - 1:
continue
logging.info("Gathering training metrics at step: %d", step)
train_metrics = common_utils.get_metrics(train_metrics)
train_summary = {
"loss":
jnp.sum(train_metrics["loss"]) /
jnp.sum(train_metrics["num_labels"]),
"learning_rate":
learning_rate_fn(step)
}
if not is_regression_task:
train_summary["accuracy"] = jnp.sum(
train_metrics["correct_predictions"]) / jnp.sum(
train_metrics["num_labels"])
if jax.process_index() == 0:
assert train_summary_writer
for key, val in train_summary.items():
train_summary_writer.scalar(key, val, step)
train_summary_writer.flush()
# Reset metric accumulation for next evaluation cycle.
train_metrics = []
logging.info("Gathering validation metrics at step: %d", step)
for split_suffix in split_suffixes:
eval_ds = glue_inputs(
split=tfds.Split.VALIDATION + split_suffix,
batch_size=per_process_eval_batch_size,
training=False)
all_stats = []
for _, eval_batch in zip(range(config.max_num_eval_steps), eval_ds):
all_stats.append(
_evaluate(p_eval_step, optimizer.target, eval_batch, n_devices))
flat_stats = {}
for k in all_stats[0]: # All batches of output stats are the same size
flat_stats[k] = np.concatenate([stat[k] for stat in all_stats], axis=0)
eval_summary = eval_metrics_fn(flat_stats)
if jax.process_index() == 0:
assert eval_summary_writer
for key, val in eval_summary.items():
eval_summary_writer.scalar(f"{key}{split_suffix}", val, step)
eval_summary_writer.flush()