-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfourier.py
58 lines (49 loc) · 1.8 KB
/
fourier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# coding=utf-8
# Copyright 2021 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Fourier Transforms used by FNet and updated for fractional Fourier Transform for FrFNet."""
import functools
import jax
from jax import lax
import jax.numpy as jnp
def two_dim_matmul(
x,
matrix_dim_one,
matrix_dim_two,
precision = lax.Precision.DEFAULT):
"""Applies 2D matrix multiplication to 2D input arrays.
Args:
x: Input of shape [MAX_SEQ_LEN, HIDDEN_DIM]
matrix_dim_one: [MAX_SEQ_LEN, MAX_SEQ_LEN] matrix to apply to first
(sequence) dimension of input.
matrix_dim_two: [HIDDEN_DIM, HIDDEN_DIM] matrix to apply to second (hidden)
dimension of input.
precision: XLA precision for matrix multiplication operation.
Returns:
[MAX_SEQ_LEN, HIDDEN_DIM] array resulting from application of two
consecutive matrix multiplications.
"""
return _two_dim_matmul(x, matrix_dim_one, matrix_dim_two, precision)
@functools.partial(jax.jit, static_argnums=3)
def _two_dim_matmul(x, matrix_dim_one,
matrix_dim_two,
precision):
"""Applies 2D matrix multiplication to 2D input arrays."""
return jnp.einsum(
"ij,jk,ni->nk",
x,
matrix_dim_two,
matrix_dim_one,
optimize=True,
precision=precision)