This repository has been archived by the owner on Jan 12, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_pptx.py
executable file
·473 lines (392 loc) · 14.6 KB
/
run_pptx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
#!/usr/bin/env python
# Copyright (c) 2021 Kemal Kurniawan
from itertools import chain
from pathlib import Path
import os
import pickle
from gensim.models.keyedvectors import KeyedVectors
from rnnr import Event, Runner
from rnnr.attachments import EpochTimer, MeanReducer, ProgressBar, SumReducer
from sacred import Experiment
from sacred.observers import MongoObserver
from sacred.utils import apply_backspaces_and_linefeeds
from text2array import ShuffleIterator
import text2array
import torch
from aatrn import compute_aatrn_loss, compute_ambiguous_arcs_mask
from callbacks import (
batch2tensors,
compute_l2_loss,
compute_total_arc_type_scores,
evaluate_batch,
get_n_items,
log_grads,
log_stats,
predict_batch,
save_state_dict,
set_train_mode,
update_params,
)
from ingredients.corpus import ing as corpus_ing, read_samples
from serialization import dump, load
from utils import extend_word_embedding, print_accs, report_log_ntrees_stats
ex = Experiment("xduft-pptx-testrun", ingredients=[corpus_ing])
ex.captured_out_filter = apply_backspaces_and_linefeeds
# Setup mongodb observer
mongo_url = os.getenv("SACRED_MONGO_URL")
db_name = os.getenv("SACRED_DB_NAME")
if None not in (mongo_url, db_name):
ex.observers.append(MongoObserver.create(url=mongo_url, db_name=db_name))
@ex.config
def default():
# directory to save finetuning artifacts
artifacts_dir = "ft_artifacts"
# whether to overwrite existing artifacts directory
overwrite = False
# discard train/dev/test samples with length greater than these numbers
max_length = {}
# load source models from these directories and parameters {key: (load_from, load_params)}
load_src = {}
# whether to treat keys in load_src as lang codes
src_key_as_lang = False
# the main source to start finetuning from
main_src = ""
# device to run on [cpu, cuda]
device = "cuda" if torch.cuda.is_available() else "cpu"
# path to word embedding in word2vec format
word_emb_path = "wiki.en.vec"
# whether to freeze word and tag embedding
freeze = False
# cumulative prob threshold
thresh = 0.95
# whether to operate in the space of projective trees
projective = False
# whether to consider multi-root trees (otherwise only single-root trees)
multiroot = False
# batch size
batch_size = 16
# learning rate
lr = 1e-5
# coefficient of L2 regularization against initial parameters
l2_coef = 1.0
# max number of epochs
max_epoch = 5
# whether to save the final samples as an artifact
save_samples = False
# load samples from this file (*.pkl)
load_samples_from = ""
@ex.named_config
def ahmadetal():
max_length = {"train": 100}
batch_size = 80
corpus = {"normalize_digits": True}
@ex.named_config
def heetal_eval_setup():
max_length = {"dev": 150, "test": 150}
@ex.named_config
def nearby():
max_length = {"train": 30}
lr = 2.1e-5
l2_coef = 0.079
@ex.named_config
def distant():
max_length = {"train": 30}
lr = 5.9e-5
l2_coef = 1.2e-4
@ex.named_config
def repr_nearby():
max_length = {"train": 30}
lr = 1.7e-5
l2_coef = 4e-4
@ex.named_config
def repr_distant():
max_length = {"train": 30}
lr = 9.7e-5
l2_coef = 0.084
@ex.named_config
def prag_nearby():
max_length = {"train": 30}
lr = 4.4e-5
l2_coef = 2.7e-4
@ex.named_config
def prag_distant():
max_length = {"train": 30}
lr = 8.5e-5
l2_coef = 2.8e-5
@ex.named_config
def prag_proj_nearby():
projective = True
max_length = {"train": 20}
lr = 9.4e-5
l2_coef = 2.4e-4
@ex.named_config
def prag_proj_distant():
projective = True
max_length = {"train": 20}
lr = 9.4e-5
l2_coef = 2.4e-4
@ex.named_config
def testrun():
seed = 12345
max_epoch = 2
corpus = dict(portion=0.05)
class BucketIterator(text2array.BucketIterator):
def __iter__(self):
for ss in self._buckets:
if self._shuf and len(ss) > 1:
ss = ShuffleIterator(ss, key=lambda s: len(s["words"]), rng=self._rng)
yield from text2array.BatchIterator(ss, self._bsz)
@ex.capture
def run_eval(
model,
vocab,
samples,
compute_loss=True,
device="cpu",
projective=False,
multiroot=True,
batch_size=32,
):
runner = Runner()
runner.on(
Event.BATCH,
[
batch2tensors(device, vocab),
set_train_mode(model, training=False),
compute_total_arc_type_scores(model, vocab),
predict_batch(projective, multiroot),
evaluate_batch(),
get_n_items(),
],
)
@runner.on(Event.BATCH)
def maybe_compute_loss(state):
if not compute_loss:
return
pptx_loss = compute_aatrn_loss(
state["total_arc_type_scores"],
state["batch"]["pptx_mask"].bool(),
projective=projective,
multiroot=multiroot,
)
state["pptx_loss"] = pptx_loss.item()
state["size"] = state["batch"]["words"].size(0)
n_tokens = sum(len(s["words"]) for s in samples)
ProgressBar(leave=False, total=n_tokens, unit="tok").attach_on(runner)
SumReducer("counts").attach_on(runner)
if compute_loss:
MeanReducer("mean_pptx_loss", value="pptx_loss").attach_on(runner)
with torch.no_grad():
runner.run(BucketIterator(samples, lambda s: len(s["words"]), batch_size))
return runner.state
@ex.automain
def finetune(
corpus,
_log,
_run,
_rnd,
max_length=None,
artifacts_dir="ft_artifacts",
load_samples_from=None,
overwrite=False,
load_src=None,
src_key_as_lang=False,
main_src=None,
device="cpu",
word_emb_path="wiki.id.vec",
freeze=False,
thresh=0.95,
projective=False,
multiroot=True,
batch_size=32,
save_samples=False,
lr=1e-5,
l2_coef=1.0,
max_epoch=5,
):
"""Finetune a trained model with PPTX."""
if max_length is None:
max_length = {}
if load_src is None:
load_src = {"src": ("artifacts", "model.pth")}
main_src = "src"
elif main_src not in load_src:
raise ValueError(f"{main_src} not found in load_src")
artifacts_dir = Path(artifacts_dir)
_log.info("Creating artifacts directory %s", artifacts_dir)
artifacts_dir.mkdir(exist_ok=overwrite)
if load_samples_from:
_log.info("Loading samples from %s", load_samples_from)
with open(load_samples_from, "rb") as f:
samples = pickle.load(f)
else:
samples = {
wh: list(read_samples(which=wh, max_length=max_length.get(wh)))
for wh in ["train", "dev", "test"]
}
for wh in samples:
n_toks = sum(len(s["words"]) for s in samples[wh])
_log.info("Read %d %s samples and %d tokens", len(samples[wh]), wh, n_toks)
kv = KeyedVectors.load_word2vec_format(word_emb_path)
if load_samples_from:
_log.info("Skipping non-main src because samples are processed and loaded")
srcs = []
else:
srcs = [src for src in load_src if src != main_src]
if src_key_as_lang and corpus["lang"] in srcs:
_log.info("Removing %s from src parsers because it's the tgt", corpus["lang"])
srcs.remove(corpus["lang"])
srcs.append(main_src)
for src_i, src in enumerate(srcs):
_log.info("Processing src %s [%d/%d]", src, src_i + 1, len(srcs))
load_from, load_params = load_src[src]
path = Path(load_from) / "vocab.yml"
_log.info("Loading %s vocabulary from %s", src, path)
vocab = load(path.read_text(encoding="utf8"))
for name in vocab:
_log.info("Found %d %s", len(vocab[name]), name)
_log.info("Extending %s vocabulary with target words", src)
vocab.extend(chain(*samples.values()), ["words"])
_log.info("Found %d words now", len(vocab["words"]))
samples_ = {wh: list(vocab.stoi(samples[wh])) for wh in samples}
path = Path(load_from) / "model.yml"
_log.info("Loading %s model from metadata %s", src, path)
model = load(path.read_text(encoding="utf8"))
path = Path(load_from) / load_params
_log.info("Loading %s model parameters from %s", src, path)
model.load_state_dict(torch.load(path, "cpu"))
_log.info("Creating %s extended word embedding layer", src)
assert model.word_emb.embedding_dim == kv.vector_size
with torch.no_grad():
model.word_emb = torch.nn.Embedding.from_pretrained(
extend_word_embedding(model.word_emb.weight, vocab["words"], kv)
)
model.to(device)
for wh in ["train", "dev"]:
if load_samples_from:
assert all("pptx_mask" in s for s in samples[wh])
continue
for i, s in enumerate(samples_[wh]):
s["_id"] = i
runner = Runner()
runner.state.update({"pptx_masks": [], "_ids": []})
runner.on(
Event.BATCH,
[
batch2tensors(device, vocab),
set_train_mode(model, training=False),
compute_total_arc_type_scores(model, vocab),
],
)
@runner.on(Event.BATCH)
def compute_pptx_ambiguous_arcs_mask(state):
assert state["batch"]["mask"].all()
scores = state["total_arc_type_scores"]
pptx_mask = compute_ambiguous_arcs_mask(scores, thresh, projective, multiroot)
state["pptx_masks"].extend(pptx_mask)
state["_ids"].extend(state["batch"]["_id"].tolist())
state["n_items"] = state["batch"]["words"].numel()
n_toks = sum(len(s["words"]) for s in samples_[wh])
ProgressBar(total=n_toks, unit="tok").attach_on(runner)
_log.info("Computing PPTX ambiguous arcs mask for %s set with source %s", wh, src)
with torch.no_grad():
runner.run(BucketIterator(samples_[wh], lambda s: len(s["words"]), batch_size))
assert len(runner.state["pptx_masks"]) == len(samples_[wh])
assert len(runner.state["_ids"]) == len(samples_[wh])
for i, pptx_mask in zip(runner.state["_ids"], runner.state["pptx_masks"]):
samples_[wh][i]["pptx_mask"] = pptx_mask.tolist()
_log.info("Computing (log) number of trees stats on %s set", wh)
report_log_ntrees_stats(
samples_[wh], "pptx_mask", batch_size, projective, multiroot
)
_log.info("Combining the ambiguous arcs mask")
assert len(samples_[wh]) == len(samples[wh])
for i in range(len(samples_[wh])):
pptx_mask = torch.tensor(samples_[wh][i]["pptx_mask"])
assert pptx_mask.dim() == 3
if "pptx_mask" in samples[wh][i]:
old_mask = torch.tensor(samples[wh][i]["pptx_mask"])
else:
old_mask = torch.zeros(1, 1, 1).bool()
samples[wh][i]["pptx_mask"] = (old_mask | pptx_mask).tolist()
assert src == main_src
_log.info("Main source is %s", src)
path = artifacts_dir / "vocab.yml"
_log.info("Saving vocabulary to %s", path)
path.write_text(dump(vocab), encoding="utf8")
path = artifacts_dir / "model.yml"
_log.info("Saving model metadata to %s", path)
path.write_text(dump(model), encoding="utf8")
if save_samples:
path = artifacts_dir / "samples.pkl"
_log.info("Saving samples to %s", path)
with open(path, "wb") as f:
pickle.dump(samples, f)
samples = {wh: list(vocab.stoi(samples[wh])) for wh in samples}
for wh in ["train", "dev"]:
_log.info("Computing (log) number of trees stats on %s set", wh)
report_log_ntrees_stats(samples[wh], "pptx_mask", batch_size, projective, multiroot)
model.word_emb.requires_grad_(not freeze)
model.tag_emb.requires_grad_(not freeze)
_log.info("Creating optimizer")
opt = torch.optim.Adam(model.parameters(), lr=lr)
finetuner = Runner()
origin_params = {name: p.clone().detach() for name, p in model.named_parameters()}
finetuner.on(
Event.BATCH,
[
batch2tensors(device, vocab),
set_train_mode(model),
compute_l2_loss(model, origin_params),
compute_total_arc_type_scores(model, vocab),
],
)
@finetuner.on(Event.BATCH)
def compute_loss(state):
mask = state["batch"]["mask"]
pptx_mask = state["batch"]["pptx_mask"].bool()
scores = state["total_arc_type_scores"]
pptx_loss = compute_aatrn_loss(scores, pptx_mask, mask, projective, multiroot)
pptx_loss /= mask.size(0)
loss = pptx_loss + l2_coef * state["l2_loss"]
state["loss"] = loss
state["stats"] = {
"pptx_loss": pptx_loss.item(),
"l2_loss": state["l2_loss"].item(),
}
state["extra_stats"] = {"loss": loss.item()}
state["n_items"] = mask.long().sum().item()
finetuner.on(Event.BATCH, [update_params(opt), log_grads(_run, model), log_stats(_run)])
@finetuner.on(Event.EPOCH_FINISHED)
def eval_on_dev(state):
_log.info("Evaluating on dev")
eval_state = run_eval(model, vocab, samples["dev"])
accs = eval_state["counts"].accs
print_accs(accs, run=_run, step=state["n_iters"])
pptx_loss = eval_state["mean_pptx_loss"]
_log.info("dev_pptx_loss: %.4f", pptx_loss)
_run.log_scalar("dev_pptx_loss", pptx_loss, step=state["n_iters"])
state["dev_accs"] = accs
@finetuner.on(Event.EPOCH_FINISHED)
def maybe_eval_on_test(state):
if state["epoch"] != max_epoch:
return
_log.info("Evaluating on test")
eval_state = run_eval(model, vocab, samples["test"], compute_loss=False)
print_accs(eval_state["counts"].accs, on="test", run=_run, step=state["n_iters"])
finetuner.on(Event.EPOCH_FINISHED, save_state_dict("model", model, under=artifacts_dir))
EpochTimer().attach_on(finetuner)
n_tokens = sum(len(s["words"]) for s in samples["train"])
ProgressBar(stats="stats", total=n_tokens, unit="tok").attach_on(finetuner)
bucket_key = lambda s: (len(s["words"]) - 1) // 10
trn_iter = ShuffleIterator(
BucketIterator(samples["train"], bucket_key, batch_size, shuffle_bucket=True, rng=_rnd),
rng=_rnd,
)
_log.info("Starting finetuning")
try:
finetuner.run(trn_iter, max_epoch)
except KeyboardInterrupt:
_log.info("Interrupt detected, training will abort")
else:
return finetuner.state["dev_accs"]["las_nopunct"]