forked from worldbank/sdgatlas2018
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsdg16.R
599 lines (534 loc) · 23.6 KB
/
sdg16.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
library(ggplot2)
library(dplyr)
library(tidyr)
library(wbgdata)
library(wbgcharts)
library(wbgmaps)
library(wbggeo)
library(readr)
library(readxl)
library(forcats)
library(countrycode)
library(stringr)
source("styles.R")
fig_sdg16_homicides_dotplot <- function(start_years = 1996:2005, end_years = 2006:2015, num_countries = 5, pop_cutoff = 1) {
indicators <- c("VC.IHR.PSRC.P5", "SP.POP.TOTL")
df_all <- wbgdata(
country = wbgref$countries$iso3c,
indicator = indicators,
years = c(start_years, end_years),
indicator.wide = TRUE,
# Comment the next two lines to use live API data
offline = "only",
offline.file = "inputs/cached_api_data/fig_sdg16_homicides_dotplot.csv"
)
iso3c_bigpop <- df_all %>%
filter(date == head(start_years, n=1) & SP.POP.TOTL > pop_cutoff) %>%
pull(iso3c)
df_pop <- df_all %>% filter(iso3c %in% iso3c_bigpop) %>% select(-SP.POP.TOTL)
df.start <- df_pop %>%
filter(date %in% start_years) %>%
group_by(iso3c) %>%
summarise(avg_start = mean(VC.IHR.PSRC.P5, na.rm = TRUE)) %>%
na.omit()
df.end <- df_pop %>%
filter(date %in% end_years) %>%
group_by(iso3c) %>%
summarise(avg_end = mean(VC.IHR.PSRC.P5, na.rm = TRUE)) %>%
na.omit()
df.change <- df.start %>%
merge(df.end) %>%
mutate(change = avg_end - avg_start) %>%
arrange(change)
df.top.decreases <- df.change %>%
head(num_countries) %>%
mutate(direction = "Largest decreases")
df <-df.top.decreases %>% select(-change) %>% gather(indicator, value, c(avg_start, avg_end))
indicator <- c("VC.IHR.PSRC.P5")
df.world <- wbgdata(
country = "WLD", indicator = indicator,
years = tail(end_years, n=1),
removeNA = FALSE
)
figure(
data = list(countries = df, world = df.world),
plot = function(data, style = style_atlas_open()) {
data$countries <- data$countries %>%
spread(indicator, value) %>%
arrange(avg_end) %>%
gather(indicator, value, c(avg_start, avg_end)) %>%
mutate(indicator = factor(indicator, levels = c("avg_start", "avg_end"), ordered = TRUE))
ggplot(data$countries, aes(x=value, y=iso3c, color = indicator, fill = indicator, shape = indicator)) +
geom_other_dotplot(
aes(x=value, y=fct_reorder2(iso3c, indicator == "avg_end", -value),group = paste0(direction, iso3c)),
arrow = TRUE, size = style$point_size, stroke = style$point_stroke, flip.legend = TRUE
) +
geom_vline(
aes(xintercept = VC.IHR.PSRC.P5),
data = data$world,
color = style$color$reference, linetype = style$linetypes$reference
) +
scale_colour_manual(
values = c(avg_start = style$colors$spot.primary.light, avg_end = style$colors$spot.primary),
labels = c(avg_start = paste("Average", str_range(start_years, shorten=TRUE)), avg_end = paste("Average", str_range(end_years, shorten=TRUE)))
) +
scale_fill_manual(
values = c(avg_start = style$colors$spot.primary.light, avg_end = style$colors$spot.primary),
labels = c(avg_start = paste("Average", str_range(start_years, shorten=TRUE)), avg_end = paste("Average", str_range(end_years, shorten=TRUE)))
) +
scale_shape_manual(
values = c(avg_start = style$shapes$point, avg_end = 99),
labels = c(avg_start = paste("Average", str_range(start_years, shorten=TRUE)), avg_end = paste("Average", str_range(end_years, shorten=TRUE)))
) +
scale_x_continuous(
expand = c(0, 0),
limits = c(0, 62),
sec.axis = dup_axis(breaks = df.world$VC.IHR.PSRC.P5, labels = "World, 2015")
) +
scale_y_discrete(labels = wbgref$countries$labels) +
style$theme() +
style$theme_barchart() +
theme(legend.position = c(0.95, 0.05), legend.justification = c(1, 0), legend.direction = "vertical")
},
title = "Homicide rates have declined dramatically in some countries.",
subtitle = wbg_name(indicators[1], by = "five countries with largest reductions in rate"),
source = "Source: UNODC. WDI (VC.IHR.PSRC.P5; SP.POP.TOTL)."
)
}
fig_sdg16_battle_deaths <- function(years = 2001:2016, breakout_threshold_recent = 5e3, breakout_threshold_ever = 20e3) {
indicator <- "VC.BTL.DETH"
# Get data for countries
df <- wbgdata(
wbgref$countries$iso3c,
indicator,
years = years,
removeNA = TRUE,
# Comment the next two lines to use live API data
offline = "only",
offline.file = "inputs/cached_api_data/fig_sdg16_battle_deaths.csv"
)
# Get high countries, ever
top_iso3c_ever <- df %>%
group_by(iso3c) %>%
summarise(max = max(VC.BTL.DETH, na.rm = T)) %>%
arrange(-max) %>%
filter(max >= breakout_threshold_ever) %>%
pull(iso3c)
# Get high countries, recently
top_iso3_recent <- df %>%
filter(date > max(years) - 5) %>%
group_by(iso3c) %>%
summarise(max = max(VC.BTL.DETH, na.rm = T)) %>%
arrange(-max) %>%
filter(max >= breakout_threshold_recent) %>%
pull(iso3c)
breakout_iso3c <- union(top_iso3c_ever, top_iso3_recent)
# Aggregate other countries
df <- df %>%
mutate(iso3c = ifelse(iso3c %in% breakout_iso3c, iso3c, "ZZZ")) %>%
group_by(date, iso3c) %>%
summarise(VC.BTL.DETH = sum(VC.BTL.DETH))
figure(
data = df,
plot = function(df, style = style_atlas_open()) {
iso3c_order <- df %>%
group_by(iso3c) %>%
summarise(max = max(VC.BTL.DETH)) %>%
arrange(iso3c == "ZZZ", -max) %>%
pull(iso3c)
df <- df %>%
mutate(iso3c = factor(iso3c, iso3c_order))
ggplot(df, aes(date, VC.BTL.DETH, fill = iso3c)) +
geom_col(position = position_stack(reverse=TRUE)) +
scale_x_continuous(breaks = seq(2001, 2016, 5)) +
scale_y_continuous(labels = thousands(), position = "right") +
scale_fill_manual(
values = c(style$colors$spot.primary, style$colors$spot.primary.light, style$colors$spot.secondary, style$colors$spot.primary.dark, style$colors$spot.secondary.light),
labels = c(wbgref$countries$labels, ZZZ = "Other"),
guide = guide_legend(ncol = 1, reverse = TRUE)) +
style$theme() +
theme(legend.position = c(0,1), legend.justification = c(0,1))
},
aspect_ratio = 2,
title = "But battle-related deaths remain high due to the continuing Syrian conflict.",
subtitle = wbg_name(indicator, denom = "thousands of people"),
source = "Source: Uppsala Conflict Data Program. WDI (VC.BTL.DETH)."
)
}
fig_sdg16_fcas <- function() {
df <- read_xls("inputs/reference_data/CLASS.xls", "Groups")
fcas_iso3c <- df %>%
filter(GroupCode == "FCS") %>%
pull(CountryCode)
df <- data.frame(
iso3c = wbgref$countries$iso3c,
is_fcas = wbgref$countries$iso3c %in% fcas_iso3c
)
figure(
data = df,
plot = function(df, style = style_atlas(), quality = "low") {
df <- df %>% mutate(is_fcas = ifelse(is_fcas, "Fragile or conflict-affected situation", NA))
wbg_choropleth(df, wbgmaps[[quality]], style, variable = "is_fcas", na.in.legend = FALSE)
},
aspect_ratio = 1.5,
title = "The World Bank currently identifies 36 fragile situations globally.",
source = paste("Source: World Bank. http://www.worldbank.org/en/topic/fragilityconflictviolence/brief/harmonized-list-of-fragile-situations")
)
}
fig_sdg16_refugees <- function(cutoff = 50000) {
df <- read_xlsx("inputs/sdg16/17-MYSR-tab_v3.xlsx", sheet = "Tab 1.3", skip = 5, na = "*")
df <- df %>% select(
origin = "Origin",
destination = "Country/territory of asylum/residence",
type = "Type of population",
value = "Population__1" # mid 2017
)
df <- df %>%
filter(type == "Total Refugee and people in refugee-like situations") %>%
select(-type)
# Remap countries to WDI compatible codes, if not exact fit to Other/ZZZ
custom_match <- c(
"Central African Rep." = "CAF",
"various/unknown" = "ZZZ",
"Stateless" = "ZZZ",
"Tibetan" = "ZZZ",
"Serbia and Kosovo: S/RES/1244 (1999)" = "ZZZ",
"Western Sahara" = "ZZZ",
"Palestinian" = "ZZZ",
"Various" = "ZZZ"
)
# Remap origins and destinations to WDI compatible codes
df$dest_iso3c <- countrycode::countrycode(
iconv(df$destination, to="ASCII//TRANSLIT"),
"country.name", "iso3c",
custom_match = custom_match)
df$origin_iso3c <- countrycode::countrycode(
iconv(df$origin, to="ASCII//TRANSLIT"),
"country.name", "iso3c",
custom_match = custom_match
)
df <- df %>% select(-origin, -destination)
# Generate a list of origins & destinations we'll actually break out
origins <- df %>%
group_by(origin_iso3c) %>%
summarise(value = sum(value, na.rm = TRUE)) %>%
filter(value > cutoff) %>%
filter(origin_iso3c %in% wbgref$countries$iso3c) %>% # exclude non WDI countries
pull(origin_iso3c) %>%
unique()
dests <- df %>%
group_by(dest_iso3c) %>%
summarise(value = sum(value, na.rm = TRUE)) %>%
filter(value > cutoff) %>%
filter(dest_iso3c %in% wbgref$countries$iso3c) %>% # exclude non WDI countries
pull(dest_iso3c) %>%
unique
# Everything else gets grouped up into an "other" group
df <- df %>% mutate(
origin_iso3c = ifelse(origin_iso3c %in% origins, origin_iso3c, "ZZZ"),
dest_iso3c = ifelse(dest_iso3c %in% dests, dest_iso3c, "ZZZ")
)
df <- df %>%
group_by(origin_iso3c, dest_iso3c) %>%
summarise(value = sum(value, na.rm = TRUE)) %>%
ungroup
# Generate subtotals by origin and destination, a grand total, and add to main dataset
origin.totals <- df %>%
group_by(origin_iso3c) %>%
summarise(value = sum(value, na.rm = TRUE)) %>%
ungroup() %>%
mutate(dest_iso3c = "ZZY") %>%
select(origin_iso3c, dest_iso3c, value)
dest.totals <- df %>%
group_by(dest_iso3c) %>%
summarise(value = sum(value, na.rm = TRUE)) %>%
ungroup() %>%
mutate(origin_iso3c = "ZZY") %>%
select(origin_iso3c, dest_iso3c, value)
grand.total <- df %>%
summarise(value = sum(value, na.rm = TRUE)) %>%
ungroup() %>%
mutate(origin_iso3c = "ZZY", dest_iso3c = "ZZY") %>%
select(origin_iso3c, dest_iso3c, value)
df <- df %>%
rbind(origin.totals) %>%
rbind(dest.totals) %>%
rbind(grand.total) %>%
left_join(wbgref$countries$regions, by = c("origin_iso3c" = "iso3c"))
# Draw the figure
figure(
data = df,
plot = function(df, style = style_atlas()) {
iso3c_levels_origin <- c("SPACER2", "ZZY", "ZZZ", "SPACER1", wbgref$countries$iso3c[order(wbgref$countries$labels)])
iso3c_levels_dest <- c("ZZZ", "SPACER1", rev(wbgref$countries$iso3c[order(wbgref$countries$labels)]), "SPACER2", "ZZY")
df <- df %>% mutate(
dest_iso3c = factor(dest_iso3c, iso3c_levels_dest),
origin_iso3c = factor(origin_iso3c, iso3c_levels_origin),
is_origin_total = (origin_iso3c == "ZZY"),
is_dest_total = (dest_iso3c == "ZZY")
)
df <- df %>% arrange(value)
# This works around a known bug that scale_*_continous(expand = ) doesn't work if
# the plot panel only has one value - it's ugly but it gets the job done
# https://github.com/tidyverse/ggplot2/issues/2281
df <- rbind(df, tribble(
~origin_iso3c, ~dest_iso3c, ~value, ~region_iso3c, ~is_origin_total, ~is_dest_total,
"SPACER1", "ZZZ", NA, NA, FALSE, FALSE,
"SPACER2", "ZZZ", NA, NA, TRUE, FALSE,
"ZZZ", "SPACER1", NA, NA, FALSE, FALSE,
"ZZZ", "SPACER2", NA, NA, FALSE, TRUE
))
big_origins <- c("SYR")
allpanels <- expand.grid(is_origin_total = c(TRUE, FALSE), is_dest_total = c(TRUE, FALSE))
country_labels <- c(wbgref$countries$labels, ZZZ = "Other countries", SPACER1 = "", SPACER2 = "")
country_labels_origin <- c(country_labels, ZZY = "")
country_labels_destination <- c(country_labels, ZZY = "")
df <- df %>% arrange(-value)
p <- ggplot(df, aes(origin_iso3c, dest_iso3c, size = value, color = origin_iso3c %in% big_origins)) +
geom_point(alpha = 0.85) +
scale_size_area(max_size = 27) +
scale_x_discrete(expand = c(0, 1), position = "top", labels = country_labels_origin) +
scale_y_discrete(expand = c(0, 1), labels = country_labels_destination, position = "right") +
scale_color_manual(values = c(style$colors$spot.secondary, style$colors$spot.primary)) +
xlab("Country of origin") +
ylab("Country of asylum/residence") +
facet_grid(!is_dest_total ~ is_origin_total, scales = "free", space = "free") +
style$theme() +
theme(
axis.title.x = element_text(),
axis.title.y = element_text(angle = 90),
axis.text.x = element_text(angle = -60, hjust = 1),
panel.grid.major.y = element_blank(),
legend.position = "none",
strip.text = element_blank(),
plot.margin = margin(1,3,25,5, unit = "mm")
)
# Disable all the clipping, needed b/c everything is so crowded.
g <- ggplotGrob(p)
g$layout$clip[g$layout$name=="panel-1-1"] <- "off"
g$layout$clip[g$layout$name=="panel-1-2"] <- "off"
g$layout$clip[g$layout$name=="panel-2-1"] <- "off"
g$layout$clip[g$layout$name=="panel-2-2"] <- "off"
g$theme <- p$theme
g
},
aspect_ratio = 0.5,
title = "People often cross borders to seek refuge from conflict and fragility, but most remain in directly neighboring countries. Only a minority travel farther afield.",
subtitle = wbg_name(indicator = "Refugees", by = "by country of origin and country of asylum/residence", year = "mid-2017"),
note = paste0("Note: \"Other countries\" includes countries and territories of origin or asylum/residence with a total refugee population of less than ",ones()(cutoff),". Population is people reported by UNHCR to be refugees or in a refugee-like situation."),
source = "Source: UNHCR Population Statistics, mid-year 2017, version 3 (database). http://popstats.unhcr.org"
)
}
fig_sdg16_birth_reg <- function(years = 2010:2017, num_countries = 40) {
indicators <- c(poorest20 = 'SP.REG.BRTH.Q1.ZS', richest20 = 'SP.REG.BRTH.Q5.ZS')
df <- wbgdata(
wbgref$countries$iso3c,
indicators,
years = years,
indicator.wide = FALSE,
# Comment the next two lines to use live API data
offline = "only",
offline.file = "inputs/cached_api_data/fig_sdg16_birth_reg.csv"
)
df <- df %>%
spread(indicatorID, value) %>%
na.omit() %>%
group_by(iso3c) %>%
slice(which.max(date)) %>%
ungroup() %>%
top_n(num_countries, -SP.REG.BRTH.Q1.ZS) %>%
gather(indicatorID, value, c(SP.REG.BRTH.Q1.ZS, SP.REG.BRTH.Q5.ZS))
figure(
data = df,
plot = function(df, style = style_atlas()) {
iso3c_levels <- df %>%
spread(indicatorID, value) %>%
arrange(-SP.REG.BRTH.Q1.ZS) %>%
pull(iso3c)
ggplot(df, aes(x=value, y=iso3c)) +
geom_other_dotplot(
aes(
y = factor(iso3c, levels = iso3c_levels),
color = factor(indicatorID, levels = c("SP.REG.BRTH.Q1.ZS", "SP.REG.BRTH.Q5.ZS"))
),
size = style$point_size,
shape = style$shapes$point,
stroke = style$point_stroke
) +
geom_text(
aes(label = wbgref$countries$labels[iso3c]),
data = . %>% group_by(iso3c) %>% mutate(value = min(value)),
hjust = 1,
family = style$family,
size = style$gg_text_size,
color = style$colors$text,
nudge_x = -1.5
) +
scale_colour_manual(
values = c("SP.REG.BRTH.Q1.ZS" = style$colors$spot.primary.light,
"SP.REG.BRTH.Q5.ZS" = style$colors$spot.primary),
labels = c("SP.REG.BRTH.Q1.ZS" = "Poorest quintile",
"SP.REG.BRTH.Q5.ZS" = "Richest quintile")
) +
scale_x_continuous(limits = c(-10, 102), expand = c(0, 0)) +
style$theme() +
style$theme_barchart() +
style$theme_legend("top") +
theme(axis.text.y = element_blank())
},
title = "A legal identity ensures basic human rights and allows participation in the formal economy. But registration at birth is often unavailable to the poor.",
subtitle = wbg_name(indicator = "Completeness of birth registration", by = "40 countries with lowest registration in poorest quintile", mrv = df$date, denom = "%"),
source = paste("Source: UNICEF. Health Nutrition and Population Statistics by Wealth Quintile (SP.REG.BRTH.Q1.ZS; SP.REG.BRTH.Q5.ZS).")
)
}
fig_sdg16_bribery_region <- function(year = 2016) {
indicators <- c(
bribery = "IC.FRM.BRIB.ZS",
informal_payment = "IC.FRM.CORR.ZS",
gift = "IC.TAX.GIFT.ZS"
)
df <- wbgdata(
c(wbgref$regions$iso3c, "WLD"),
indicators,
years = year,
indicator.wide = FALSE,
# Comment the next two lines to use live API data
offline = "only",
offline.file = "inputs/cached_api_data/fig_sdg16_bribery_region.csv"
)
df <- df %>%
na.omit() %>%
mutate(iso3c = fct_reorder2(iso3c, indicatorID == "IC.FRM.BRIB.ZS", -value))
figure(
data = df,
plot = function(df, style = style_atlas_open()) {
labels = c(
IC.FRM.BRIB.ZS = "Firms experiencing at least one bribe payment request (a)",
IC.FRM.CORR.ZS = "Firms expected to give gifts to public officials",
IC.TAX.GIFT.ZS = "Firms expected to give gifts in meetings with tax officials"
)
facet_labeller <- as_labeller(setNames(str_wrap_lines(labels, 3, force=TRUE), names(labels)))
ggplot(df, aes(x = iso3c, y = value, fill = (iso3c == "WLD"))) +
geom_col() +
scale_x_discrete(labels = wbgref$all_geo$labels) +
scale_y_continuous(expand = c(0, 0)) +
scale_fill_manual(values = c(`FALSE` = style$colors$spot.primary, `TRUE` = style$colors$spot.secondary)) +
facet_wrap(~ indicatorID, ncol = 3, labeller = facet_labeller) +
coord_flip() +
style$theme() +
style$theme_barchart() +
theme(panel.spacing = unit(2, "lines"), strip.text.x = element_text(hjust = 0.5))
},
aspect_ratio = 2,
title = "Corrupt public officials may make it harder for citizens and businesses to access government services.",
subtitle = wbg_name(indicator = "Bribery and gifts (informal payments)", year = year, denom = "% of firms experiencing"),
note = "Note: Excludes data for most high-income countries. a. During six transactions dealing with utilities access, permits, licenses, and taxes.",
source = "Source: World Bank Enterprise Surveys. WDI (IC.FRM.BRIB.ZS; IC.FRM.CORR.ZS; IC.TAX.GIFT.ZS)."
)
}
fig_sdg16_regulatorygov_vs_gni <- function(income_years = 2015:2016) {
indicator <- "NY.GNP.PCAP.CD"
df <- wbgdata(
wbgref$countries$iso3c,
indicator,
years = income_years,
removeNA = TRUE,
# Comment the next two lines to use live API data
offline = "only",
offline.file = "inputs/cached_api_data/fig_sdg16_regulatorygov_vs_gni.csv"
)
df <- df %>%
group_by(iso3c) %>%
filter(date == max(date)) %>%
ungroup()
df <- df %>% left_join(wbgref$countries$incomegroups)
df_score <- read_xlsx(
path = "inputs/sdg16/Scores-Global-Indicators-of-Regulatory-Governance-2016.xlsx",
col_names = TRUE,
)
df_score <- df_score %>%
filter(Economy != "European Union") %>%
mutate(iso3c = countrycode(Economy, "country.name", "iso3c", custom_match = c(Kosovo = "XKX"))) %>%
select(iso3c = "iso3c", reg_score = "Consolidated regulatory governance score")
df <- df %>% full_join(df_score, by = "iso3c",)
df <- df %>% filter(complete.cases(.)) # Explicitly remove to silence ggplot warnings
figure(
data = df,
plot = function(df, style = style_atlas_open()) {
income_range = range(df$NY.GNP.PCAP.CD, na.rm = TRUE)
income_group_breaks = c(LIC = income_range[1], LMC = 1005, UMC = 3955, HIC = 12235, income_range[2])
labels <- data.frame(x = sqrt(income_group_breaks * lead(income_group_breaks)), label = names(income_group_breaks), stringsAsFactors = FALSE)
labels <- labels[complete.cases(labels),]
ggplot(df) +
geom_point(
aes(x = NY.GNP.PCAP.CD, y = reg_score, color = income_iso3c, fill = income_iso3c),
size = style$point_size, stroke = style$point_stroke, shape = style$shapes$point
) +
geom_text(
data = labels,
aes(x = x, label = str_wrap_lines(wbgref$incomes$labels, force=TRUE)[label]),
y = -0.5, #min(df$reg_score, na.rm = TRUE) + 0.6,
hjust = 0.5,
vjust = 1,
family = style$family,
size = style$gg_text_size,
color = style$colors$text
) +
scale_color_manual(values = style$colors$incomes) +
scale_fill_manual(values = style$colors$incomes) +
scale_shape_manual(values = style$shapes$incomes) +
scale_x_continuous(limits = c(150, NA), trans = "log2", breaks = income_group_breaks[2:4], labels = ones(0)) +
scale_y_continuous(limits = c(-1, NA), breaks = seq(0,6,2)) +
labs(x = wbg_name(indicator, by = "log scale", mrv = income_years)) +
style$theme() +
style$theme_scatter()
},
aspect_ratio = 1.3,
title = "Public consultation in rulemaking protects the rule of law and provides a buffer against corruption.",
subtitle = wbg_name(indicator = "Consolidated regulatory governance score", by = "by country", year = 2016),
source = paste("Source: World Bank Global Indicators of Regulatory Governance. World Development Indicators (NY.GNP.PCAP.CD).")
)
}
fig_sdg16_public_spending <- function() {
df <- read_xlsx("inputs/sdg16/PEFA SDG List 2018.xlsx")
# Code countries
df$iso3c <- countrycode(df$Country, "country.name", "iso3c", custom_match = c("Kosovo" = "XKX"))
# Decode scores
df$bins = fct_recode(df$Scores,
"0–5" = "A",
"5–10" = "B",
"10–15" = "C",
"15 and over" = "D",
"NULL" = "NR"
)
# Extract dates
df$date <- as.numeric(format(df$`Date on the cover of the report`, "%Y"))
# Join with all countries
df <- df %>% right_join(wbgref$countries$regions)
figure(
data = df,
plot = function(df, style = style_atlas_open(), quality = "low") {
g <- wbg_choropleth(df, wbgmaps[[quality]], style, variable = "bins")
g$theme <- style$theme()
g
},
title = "Accountability also means setting, and sticking to, budgets for public expenditure.",
subtitle = wbg_name(indicator = "Variation from the original approved budget expenditure", denom="% above/below", mrv = df$date),
source = "Source: Public Expenditure and Financial Accountability (database). https://pefa.org"
)
}
# make_all(path = "docs/sdg16/pdf", styler = style_atlas_cmyk, saver = figure_save_final_pdf)
make_all <- function(path = "docs/sdg16", styler = style_atlas, saver = figure_save_draft_png) {
# page 1
saver(fig_sdg16_homicides_dotplot(), styler, file.path(path, "fig_sdg16_homicides_dotplot.png"), width = 2.67, height = 2.75)
saver(fig_sdg16_battle_deaths(), styler, file.path(path, "fig_sdg16_battle_deaths.png"), width = 2.67, height = 2.75)
saver(fig_sdg16_fcas(), styler, file.path(path, "fig_sdg16_fcas.png"), width = 5.5, height = 4.25)
# page 2
saver(fig_sdg16_refugees(), styler, file.path(path, "fig_sdg16_refugees.png"), width = 5.5, height = 8.5)
# page 3
saver(fig_sdg16_birth_reg(), styler, file.path(path, "fig_sdg16_birth_reg.png"), width = 5.5, height = 6)
saver(fig_sdg16_bribery_region(), styler, file.path(path, "fig_sdg16_bribery_region.png"), width = 5.5, height = 2.5)
# page 4
saver(fig_sdg16_regulatorygov_vs_gni(), styler, file.path(path, "fig_sdg16_regulatorygov_vs_gni.png"), width = 5.5, height = 4.4)
saver(fig_sdg16_public_spending(), styler, file.path(path, "fig_sdg16_public_spending.png"), width = 5.5, height = 4.2)
}