forked from worldbank/sdgatlas2018
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsdg14.R
287 lines (258 loc) · 12.5 KB
/
sdg14.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
library(ggplot2)
library(wbgdata)
library(wbgcharts)
library(wbgmaps)
library(wbggeo)
library(dplyr)
library(readr)
library(readxl)
library(tidyr)
library(stringr)
library(rgdal)
library(forcats)
source("styles.R")
fig_sdg14_catches_fishing_sector <- function(years = 1950:2014) {
df <- read.csv("inputs/sdg14/catches_fishing_sector.csv", stringsAsFactors = FALSE)
df <- df %>%
select(date = "year", sector = "fishing_sector", value = "tonnes") %>%
mutate(sector = fct_recode(sector, Other = "Recreational", Other = "Subsistence", Other = "Artisanal")) %>%
group_by(date, sector) %>%
summarise(value = sum(value)) %>%
ungroup()
figure(
data = df,
plot = function(df, style = style_atlas_open()) {
ggplot(df, aes(x = date, y = value, fill = fct_reorder2(sector, date, value))) +
geom_area() +
geom_text(
aes(x = date, y = cumsum(value) - value, label = sector),
data = . %>% filter(date == max(date)),
hjust = 1,
vjust = 0,
family = style$family,
size = style$gg_text_size,
color = style$colors$text.inverse,
nudge_x = -1,
nudge_y = 7 * 1e6
) +
scale_x_continuous(breaks = bracketed_breaks(limits = df$date, at = 10)) +
scale_y_continuous(labels = millions()) +
scale_fill_manual(
values = c(
"Industrial" = style$colors$spot.primary,
"Other" = style$colors$spot.secondary
)
) +
style$theme()
},
aspect_ratio = 1.5,
title = "And 75 percent of fishing is industrial.",
subtitle = wbg_name(indicator = "Global fish catch", denom = "millions of metric tons"),
note = "Note: \"Other\" includes subsistence, recreational and artisanal sectors.",
source = "Source: Pauly and Zeller 2016. http://doi.org/10.1038/ncomms10244"
)
}
fig_sdg14_marine_stock_status <- function() {
df <- read_excel("inputs/sdg14/indicator_14_4_1.xlsx")
df <- df %>%
subset(`Series Code` != "ER_H2O_FWTL",
select = grep("Series Description|Series Code|Country or Area Name|^\\d", names(df))) %>%
gather("date", "value", -c("Series Code", "Country or Area Name", "Series Description")) %>%
rename(indicator = `Series Code`, desc = `Series Description`)
df <- df %>% mutate(date = as.numeric(date))
figure(
data = df[complete.cases(df), ],
plot = function(df, style = style_atlas_open()) {
df <- df %>% mutate(indicator = factor(indicator,rev(c("ER_H2O_FISHNFEXP","ER_H2O_FISHFEXP","ER_H2O_FISHOVEXP"))))
ggplot(df, aes(x = date, y = value, fill = indicator)) +
geom_area() +
annotate("text", label = "Not fully exploited", x = min(df$date)+1, y = 15, hjust = 0, vjust = 0.5,
family = style$family, size = style$gg_text_size, color = style$colors$text.inverse) +
annotate("text", label = "Fully exploited", x = mean(range(df$date)), y = 50, hjust = 0.5, vjust = 0.5,
family = style$family, size = style$gg_text_size, color = style$colors$text) +
annotate("text", label = "Overexploited", x = max(df$date)-1, y = 85, hjust = 1, vjust = 0.5,
family = style$family, size = style$gg_text_size, color = style$colors$text.inverse) +
scale_x_continuous(breaks = bracketed_breaks(limits = df$date)) +
scale_fill_manual(
values = c(
ER_H2O_FISHFEXP = style$colors$spot.primary.light,
ER_H2O_FISHNFEXP = style$colors$spot.secondary,
ER_H2O_FISHOVEXP = style$colors$spot.primary
),
labels = c(
ER_H2O_FISHFEXP = "Fully exploited",
ER_H2O_FISHNFEXP = "Not fully exploited",
ER_H2O_FISHOVEXP = "Overexploited"
)
) +
style$theme()
},
aspect_ratio = 1.5,
title = "Fish stocks are increasingly overfished.",
subtitle = wbg_name(indicator = "State of global fish stocks", denom = "% of total stocks"),
source = "Source: FAO via UNSD Global SDG Indicators Database (14.4.1)."
)
}
fig_sdg14_dead_zones <- function() {
df <- read_xlsx("inputs/sdg14/Hypoxic-Eutrophic Updated Oct 2017.xlsx")
# The column names in the spreadsheet have some weird non printing spaces...
colnames(df) <- iconv(colnames(df), to = "ascii", sub = "")
# Cast the coordinates
df <- df %>% mutate(Long = as.numeric(Long), Lat = as.numeric(Lat))
# Can't map the unmappable
df <- df %>% filter(!is.na(Long) & !is.na(Lat))
coords_wintri <- as.data.frame(rgdal::project(as.matrix(df[,c("Long", "Lat")]), "+proj=wintri +over"))
df <- df %>%
select(-Long, -Lat) %>%
cbind(coords_wintri)
maps <- wbgmaps$low
figure(
data = df,
plot = function(df, style = style_atlas(), aspect_ratio = 2) {
p <- ggplot(data = df) +
geom_polygon(data = maps$countries, aes(long, lat, group = group), fill = "grey80") +
geom_polygon(data = maps$disputed, aes(long, lat, group = group, map_id = id), fill = "grey80") +
geom_polygon(data = maps$lakes, aes(long, lat, group = group), fill = "white") +
geom_path(data = maps$boundaries, aes(long, lat, group = group), color = "white", size = 0.2, lineend = maps$boundaries$lineend, linetype = maps$boundaries$linetype) +
geom_hex(
aes(
x = Long, y = Lat,
size = ,
fill = wbggeo::supercut(..count.., c(
"0–4" = "[0, 4]",
"5–9" = "[5, 9]",
"10–29" = "[10, 29]",
"30 and over" = "[30, Inf)"
))),
color = "white",
size = 0.1,
bins = c(60, 60)
) +
scale_x_continuous(expand = c(0, 0), limits = standard_crop_wintri()$xlim) +
scale_y_continuous(expand = c(0, 0), limits = standard_crop_wintri()$ylim) +
scale_fill_manual(palette = style$colors$continuous.primary.dark) +
coord_equal() +
style$theme() +
style$theme_map(aspect_ratio)
},
aspect_ratio = 3,
title = "Activity on land can also damage seas. Hundreds of marine dead zones exist, with oxygen concentrations too low to support most life.",
subtitle = wbg_name(indicator = "Marine dead zones", year = 2017, denom = "count by hexagonal area"),
source = "Source: Diaz and Rosenberg 2008. http://doi.org/10.1126/science.1156401. Current data at http://www.vims.edu/research/topics/dead_zones"
)
}
fig_sdg14_marine_protected_areas_by_country <- function(
year = 2016,
countries = c("NCL", "PLW", "USA", "AUS", "MNP", "NZL", "FRA", "GBR", "ECU", "CHL")
) {
# Unfortunately we don't have total protected area in WDI, but we want to use
# this as a threshold to remove very small countries. It's not really easy to
# replicate the methodology used by PP.net as some areas overlap and we don't
# want to go full geospatial here. So this list has been hand-validated against
# the website.
# https://protectedplanet.net/c/calculating-protected-area-coverage#Method used to calculate protected area coverage
indicator <- "ER.MRN.PTMR.ZS"
df <- wbgdata(
countries,
indicator,
years = year,
indicator.wide = FALSE,
# Comment the next two lines to use live API data
offline = "only",
offline.file = "inputs/cached_api_data/fig_sdg14_marine_protected_areas_by_country.csv"
)
df <- df %>%
arrange(-value) %>%
mutate(iso3c <- fct_relevel(iso3c, iso3c))
figure(
data = df,
plot = function(df, style = style_atlas_open()) {
ggplot(df, aes(x=reorder(iso3c, -value), y=value)) +
geom_col(fill = style$colors$spot.primary) +
scale_x_discrete(labels = setNames(str_wrap(wbgref$countries$labels, width = 10), names(wbgref$countries$labels))) +
scale_y_continuous(expand = c(0, 0), limits = c(0, 100)) +
style$theme()
},
#title = "Countries varies greatly in how much ocean they protect.",
subtitle = wbg_name(indicator, by = "top 10", denom = "% of territorial waters"),
note = paste0("Note: Excludes countries with less than 50,000 sq. km of protected area."),
source = "Source: UNEP-World Conservation Monitoring Centre Database on Protected Areas. WDI (ER.MRN.PTMR.ZS) and https://protectedplanet.net"
)
}
fig_sdg14_global_sea_surface_temperature <- function(years = 1900:2017, show.uncertainty = FALSE) {
df <- read_csv("inputs/sdg14/sea-surface-temp_fig-1.csv", skip = 6)
df <- df %>%
rename(date = Year,
actual_f = "Annual anomaly",
lower_f = "Lower 95% confidence interval",
upper_f = "Upper 95% confidence interval") %>%
filter(date %in% years)
# Convert delta-farenheit to delta-celsius
df <- df %>% mutate(
actual_c = 5/9 * actual_f,
lower_c = 5/9 * lower_f,
upper_c = 5/9 * upper_f
)
figure(
data = df,
plot = function(df, style = style_atlas_open()) {
p <- ggplot(df, aes(date, actual_c)) +
geom_hline(yintercept = 0, color = style$colors$baseline, size = style$theme()$line$size) +
geom_line(color = style$colors$spot.primary, size = style$linesize) +
scale_x_continuous(breaks = bracketed_breaks(limits = df$date), limits = range(years)+c(-3,3), expand = c(0, 0)) +
scale_y_continuous(breaks = c(-0.5,0,0.5), labels = ones(always.signed = TRUE)) +
annotate(
"text", x = min(years)-3, y = 0.1, label = "1971–2000 average",
family = style$family, color = style$colors$text, size = style$gg_text_size,
hjust = 0, vjust = 0) +
style$theme()
if (show.uncertainty) {
p <- p + geom_ribbon(aes(ymin = lower_c, ymax = upper_c), fill = style$colors$neutral)
}
p
},
aspect_ratio = 3,
#title = "Global sea surface temperature rose through the 20th century, and continues to rise.",
subtitle = wbg_name(indicator = "Average global sea surface temperature anomaly", by = "relative to 1971–2000 average", denom = "degrees Celsius"),
source = "Source: U.S. Environmental Protection Agency. https://www.epa.gov/climate-indicators/climate-change-indicators-sea-surface-temperature"
)
}
fig_sdg14_barrier_reef_temperature <- function(years = 1900:2017) {
df <- read_table("inputs/sdg14/bom_gbr_temp_anomaly_latest.txt",
col_names = c("ymym", "anomaly_c"))
# Extract year from the weird year-month-year-month date column
df <- df %>% mutate(date = as.integer(substr(ymym, 1, 4)))
df <- df %>% filter(date %in% years)
figure(
data = df,
plot = function(df, style = style_atlas_open()) {
p <- ggplot(df, aes(date, anomaly_c)) +
geom_hline(yintercept = 0, color = style$colors$baseline, size = style$theme()$line$size) +
geom_line(color = style$colors$spot.primary, size = style$linesize) +
scale_x_continuous(breaks = bracketed_breaks(limits = df$date), limits = range(years)+c(-3,3), expand = c(0, 0)) +
scale_y_continuous(labels = ones(always.signed = TRUE)) +
annotate(
"text", x = 1907, y = 0.1, label = "1961–90 average",
family = style$family, color = style$colors$text, size = style$gg_text_size,
hjust = 0, vjust = 0) +
style$theme()
p
},
aspect_ratio = 3,
title = "Warmer seas lead to coral bleaching or death, an outcome already observed in parts of Australia's Great Barrier Reef.",
subtitle = wbg_name(indicator = "Average sea surface temperature anomaly, Great Barrier Reef", by = "relative to 1961–90 average", denom = "degrees Celsius"),
source = "Source: Australian Bureau of Meteorology. http://www.bom.gov.au/web01/ncc/www/cli_chg/timeseries/sst/0112/GBR/latest.txt"
)
}
# make_all(path = "docs/sdg14/pdf", styler = style_atlas_cmyk, saver = figure_save_final_pdf)
make_all <- function(path = "docs/sdg14", styler = style_atlas, saver = figure_save_draft_png) {
# page 1
saver(fig_sdg14_catches_fishing_sector(), styler, file.path(path, "fig_sdg14_catches_fishing_sector.png"), width = 2.67, height = 2)
saver(fig_sdg14_marine_stock_status(), styler, file.path(path, "fig_sdg14_marine_stock_status.png"), width = 2.67, height = 2)
# page 2
saver(fig_sdg14_dead_zones(), styler, file.path(path, "fig_sdg14_dead_zones.png"), width = 5.5, height = 3.1)
saver(fig_sdg14_marine_protected_areas_by_country(), styler, file.path(path, "fig_sdg14_marine_protected_areas_by_country.png"), width = 5.5, height = 1.9)
# page 2
saver(fig_sdg14_global_sea_surface_temperature(), styler, file.path(path, "fig_sdg14_global_sea_surface_temperature.png"), width = 5.5, height = 1.5)
saver(fig_sdg14_barrier_reef_temperature(), styler, file.path(path, "fig_sdg14_barrier_reef_temperature.png"), width = 5.5, height = 2.6)
}