forked from GustavoMeza/icpc-notebook
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfft.cpp
52 lines (52 loc) · 1.81 KB
/
fft.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
namespace fft{
const int maxn=(1<<21)+5;
int a[maxn],b[maxn],r[maxn],w[maxn],mod,n,ninv;
void init(int _n,int g,int _mod){
n=1<<32-__builtin_clz(_n),mod=_mod,ninv=inv(n,mod);
rep(i,0,n) r[i]=r[i>>1]>>1|(i&1?n>>1:0); // reversal bit permutation
int wn=binpow(g,(mod-1)/n,mod); w[n>>1]=1;
rep(i,(n>>1)+1,n) w[i]=1ll*w[i-1]*wn%mod;
per(i,1,n>>1) w[i]=w[i<<1];
}
void ntt(int *a){
rep(i,0,n) if(i<r[i]) swap(a[i],a[r[i]]);
for(int len=1;len<n;len<<=1) for(int i=0;i<n;i+=len<<1) rep(j,0,len){
int u=a[i|j],v=1ll*w[len|j]*a[i|len|j]%mod;
a[i|j]=u+v<mod?u+v:u+v-mod;
a[i|len|j]=u-v<0?u-v+mod:u-v;
}
}
void conv(){
ntt(a); ntt(b);
rep(i,0,n) a[i]=1ll*a[i]*b[i]%mod;
reverse(a+1,a+n); ntt(a);
rep(i,0,n) a[i]=1ll*a[i]*ninv%mod;
}
}
// Si a[i] sobrepasa el primo se necesita hacer fft con dos o tres primos distintos
namespace convmod{
int a[fft::maxn],b[fft::maxn],ans[fft::maxn][3];
const int m[]={(5<<25)+1,(7<<26)+1,(119<<23)+1},inv[]={104391568,715912618,554580198},g=3; // 3 es raiz primitiva de esos primos
int garner(int *a,int mod){
rep(i,0,3) rep(j,0,i) a[i]=1ll*(a[i]-a[j]+m[i])*inv[i+j-1]%m[i]; // Los coeficientes del número en la mixed-radix de los primos
per(i,0,2) a[i]=(a[i]+1ll*a[i+1]*m[i])%mod; // Evaluación
return a[0];
}
/* Versión con dos módulos regresando long long
const int m[]={(5<<25)+1,(7<<26)+1},inv[]={104391568},g=3;
ll c[fft::maxn];
ll garner(int *a){
a[1]=1ll*(a[1]-a[0]+m[1])*inv[0]%m[1];
return a[0]+1ll*a[1]*m[0];
}*/
void solve(int an, int bn, int mod){
rep(i,0,3) {
fft::init(an+bn-1,g,m[i]);
rep(j,0,fft::n) fft::a[j]=j<an?a[j]%m[i]:0;
rep(j,0,fft::n) fft::b[j]=j<bn?b[j]%m[i]:0;
fft::conv();
rep(j,0,fft::n) ans[j][i]=fft::a[j];
}
rep(i,0,fft::n) a[i]=garner(ans[i],mod);
}
}