-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathwordcloud.R
107 lines (97 loc) · 2.1 KB
/
wordcloud.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
library(tidyverse)
library(wordcloud2)
library(tm)
library(SnowballC)
library(stringr)
library(pdftools)
list.files(
path=c("intro","stochsim","pfilter","mif","measles",
"od","contacts","polio","ebola"),
pattern=r"{.*\.pdf}",
full.names=TRUE,
recursive=TRUE
) -> files
files |>
lapply(pdf_text) |>
unlist() -> text
text |>
Boost_tokenizer() |>
# str_replace_all("[[:punct:]]", " ") |>
VectorSource() |>
Corpus() -> docs
## inspect(docs)
toSpace <- content_transformer(
function (x, pattern) gsub(pattern, " ", x)
)
docs |>
tm_map(toSpace, "/") |>
tm_map(toSpace, "@") |>
tm_map(toSpace, "\\|") |>
## tm_map(content_transformer(tolower)) |>
tm_map(removeNumbers) |>
tm_map(removeWords, stopwords("english")) |>
tm_map(removePunctuation) |>
tm_map(stripWhitespace) |>
TermDocumentMatrix() |>
as.matrix() |>
rowSums() |>
sort(decreasing=TRUE) -> v
library(tidyverse)
blacklist <-
c(
"the", "can", "using", "cases",
"use", "this", "one", "−",
"values", "set", "value",
"rho", "beta", "eta", "mu",
"run", "may",
"mean", "var", "loglik",
"ionides", "based",
"∗", "csv","np","nmif",
"i","ii","iii","iv","v",
"also", "lesson", "king",
"small", "much", "version",
"will", "xn−", "used",
"called", "fxn", "via", "what",
"following",
"how", "first", "n−",
"fyn", "two", "measir", "for",
"library", "librarypomp", "non", "see",
"setrue","full",
"doi"
)
tibble(
word=names(v),
freq=v
) |>
mutate(
word=case_when(
word=="parameters"~"parameter",
word=="filter"~"filtering",
word=="model"~"models",
word=="monte"~"monte carlo",
word=="carlo"~"",
word=="rates"~"rate",
TRUE~word
)
) |>
filter(word!="") |>
group_by(word) |>
summarize(freq=sum(freq)) |>
ungroup() |>
arrange(-freq) |>
filter(
! word %in% blacklist
) -> dat
dat |>
mutate(
freq=freq/max(freq),
freq=freq^0.8
) |>
wordcloud2(
minRotation = 0,
maxRotation = 0,
minSize = 1,
rotateRatio = 1,
color = "random-light",
backgroundColor = "grey"
)