diff --git a/_includes/pompstyle.css b/_includes/pompstyle.css index d757bab9..fcaa4e82 100644 --- a/_includes/pompstyle.css +++ b/_includes/pompstyle.css @@ -10,7 +10,7 @@ body { code { font-family: monospace; - font-size: 1.125em; + font-size: 125%; } h1, h2, h3, h4 { @@ -48,10 +48,12 @@ a:link, a:visited { color: #0000ff; text-decoration: none; } + a:hover, a:active { - color: #cc3333; + color: #cc3333; text-decoration: none; } + a.activated { text-decoration: underline; } @@ -81,20 +83,24 @@ dt { } .emph { - color: #cc3333; + color: #cc3333; font-weight: bold; } .emph1 { - color: #3333ff; + color: #3333ff; font-weight: bold; } -.firstcharacter { - float: left; - color: #3333ff; +.firstcharacter { + float: left; + color: #3333ff; font-size: 2.5em; line-height: 0.8em; vertical-align: top; padding-right: 5px; } + +.sourceCode, .language-r, .language-c, .language-sh { + color: #000066; +} diff --git a/blog.html b/blog.html index 3f1b8a0f..b39055de 100644 --- a/blog.html +++ b/blog.html @@ -1,6 +1,6 @@ --- layout: pomp -id: blog +id: news title: pomp news blog ---

News blog

diff --git a/install.md b/install.md index cf45f8a1..7e5aa8c7 100644 --- a/install.md +++ b/install.md @@ -6,43 +6,45 @@ layout: pomp # Installation instructions -## From CRAN: +### From CRAN: Source and binaries for the [CRAN version are available on CRAN](http://cran.r-project.org/package=pomp){:target="_blank"}. Install **pomp** from CRAN just like any other **R** package: -``` +```r install.packages("pomp") ``` -## From Github: +### From Github: The Github version is usually several weeks ahead of the version on CRAN. You can install it from the Github repository by executing the following in an **R** session: -``` +```r install.packages("pomp",repos="https://kingaa.github.io/") ``` On Windows and MacOS systems, this will cause a precompiled version of the latest release of **pomp** to be installed, if one is available, and will install from source if a binary is not available. +### Download and install locally + You can also [download the latest release](https://github.com/kingaa/pomp/releases/) and install it locally as you would any **R** package. --------------------------- -## Testing your installation +### Testing your installation To make use of **pomp**'s facilities for accelerated computation using compiled C code, and to compile the package from source, you will want the ability to compile C code and dynamically link it into an **R** session. To test this, run the following in an **R** session: -``` +```r source("https://kingaa.github.io/scripts/helloC.R",echo=TRUE) ``` This script attempts to compile a simple C program. Upon success, you'll see a "Hello!" message. -If this fails, consult the instructions below, according to your operating system. +If this fails, consult the instructions below, according to your operating system. -------------------------- -## Important note for Windows users +### Important note for Windows users To use **pomp**'s compilation facility, you need to have the **Rtools** suite installed. This can be [downloaded from CRAN](http://cran.r-project.org/bin/windows/Rtools){:target="_blank"}. @@ -51,14 +53,14 @@ This can be [downloaded from CRAN](http://cran.r-project.org/bin/windows/Rtools) A video tutorial on installing **Rtools** is [available here](https://youtu.be/lmIhiT_QsPE){:target="_blank"}. To test your **Rtools** installation, run the following in an **R** session: -``` +```r source("https://kingaa.github.io/scripts/hello.R",echo=TRUE) ``` On success, you will see two "Hello!" messages. ------------------------ -## Important note for Mac OS users +### Important note for Mac OS users To use **pomp**'s compilation facility, you need to have the Xcode app installed. Xcode is free and can be installed according to [these instructions](https://mac.r-project.org/tools/){:target="_blank"}. @@ -66,21 +68,21 @@ To use **pomp**'s compilation facility, you need to have the Xcode In addition, some users report problems installing **pomp** from source due to lack of an appropriate **gfortran** installation, which is not included by default in all versions of **Xcode**. If you have this problem, see [these instructions](https://mac.r-project.org/tools/){:target="_blank"}. To test your Xcode and Fortran installations, run the following in an **R** session: -``` +```r source("https://kingaa.github.io/scripts/hello.R",echo=TRUE) ``` On success, you will see two "Hello!" messages. ------------------------ -## Important note for Linux users +### Important note for Linux users To install **pomp** from source, you will need the `gfortran` compiler on your machine and will therefore may need to install it. To do so on a Debian-based system (e.g., Ubuntu), for example, run: -``` +```sh sudo apt install gfortran ``` On an RPM-based system, run: -``` +```sh sudo yum install gcc-gfortran ``` diff --git a/vignettes/C_API.Rmd b/vignettes/C_API.Rmd index 7f855865..8a242322 100644 --- a/vignettes/C_API.Rmd +++ b/vignettes/C_API.Rmd @@ -3,27 +3,13 @@ title: 'pomp C API' output: html_document: theme: null - highlight: kate + highlight: haddock toc: yes toc_depth: 3 params: prefix: "c_api" --- -```{css echo=FALSE} -a:link, a:visited { - color: #0000ff; - text-decoration: none; -} -a:hover, a:active { - color: #cc3333; - text-decoration: none; -} -code { - font-size: 110%; -} -``` - ```{r knitr-opts,include=FALSE,purl=FALSE,cache=FALSE} source("setup.R", local = knitr::knit_global()) ``` @@ -189,16 +175,16 @@ void to_log_barycentric(double *xt, const double *x, int n); void from_log_barycentric(double *xt, const double *x, int n); ``` -The log-barycentric transformation takes a vector $X_i\in\mathbb{R}^n_+$, $i=1,\dots,n$, to a vector $Y_i\in\mathbb{R}^n$, where +The log-barycentric transformation takes a vector $X\in\mathbb{R}^n_+$ to a vector $Y\in\mathbb{R}^n$, where $$Y_i = \log\frac{X_i}{\sum_j\!X_j}.$$ -The log-barycentric transformation takes every simplex defined by $\sum_i\!X_i = c$, $c$ constant, to $n$-dimensional Euclidean space $\mathbb{R}^n$. +For every $c>0$, this transformation maps the simplex $\{X\in\mathbb{R}^n_+\;\vert\;\sum_i\!X_i = c\}$ bijectively onto $\mathbb{R}^n$. The pseudo-inverse transformation takes $\mathbb{R}^n$ to the unit simplex $S=\{X\in\mathbb{R}^n_+\;\vert\;\sum_i\!X_i=1\}$. Specifically, $$X_i = \frac{e^{Y_i}}{\sum_j\!e^{Y_j}}.$$ Note that if $T:\mathbb{R}^n_+\to\mathbb{R}^n$ is the log-barycentric transformation so defined, $U$ is the pseudo-inverse, and $Id$ denotes the identity map, then $T\circ U=Id:\mathbb{R}^n\to\mathbb{R}^n$ but $U\circ T\ne Id$. -However, if $T$ is restricted to the unit simplex, then $U\circ T=Id:S\to S$. +However, if $T$ is restricted to the unit simplex S, then $U\circ{T\vert_{S}}=Id:S\to S$. Input: diff --git a/vignettes/C_API.html b/vignettes/C_API.html index 0e8a43c1..6caa4127 100644 --- a/vignettes/C_API.html +++ b/vignettes/C_API.html @@ -89,46 +89,38 @@ -khtml-user-select: none; -moz-user-select: none; -ms-user-select: none; user-select: none; padding: 0 4px; width: 4em; - background-color: #ffffff; - color: #a0a0a0; + color: #aaaaaa; } -pre.numberSource { margin-left: 3em; border-left: 1px solid #a0a0a0; padding-left: 4px; } +pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; } div.sourceCode - { color: #1f1c1b; background-color: #ffffff; } + { } @media screen { pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; } } -code span { color: #1f1c1b; } /* Normal */ -code span.al { color: #bf0303; background-color: #f7e6e6; font-weight: bold; } /* Alert */ -code span.an { color: #ca60ca; } /* Annotation */ -code span.at { color: #0057ae; } /* Attribute */ -code span.bn { color: #b08000; } /* BaseN */ -code span.bu { color: #644a9b; font-weight: bold; } /* BuiltIn */ -code span.cf { color: #1f1c1b; font-weight: bold; } /* ControlFlow */ -code span.ch { color: #924c9d; } /* Char */ -code span.cn { color: #aa5500; } /* Constant */ -code span.co { color: #898887; } /* Comment */ -code span.cv { color: #0095ff; } /* CommentVar */ -code span.do { color: #607880; } /* Documentation */ -code span.dt { color: #0057ae; } /* DataType */ -code span.dv { color: #b08000; } /* DecVal */ -code span.er { color: #bf0303; text-decoration: underline; } /* Error */ -code span.ex { color: #0095ff; font-weight: bold; } /* Extension */ -code span.fl { color: #b08000; } /* Float */ -code span.fu { color: #644a9b; } /* Function */ -code span.im { color: #ff5500; } /* Import */ -code span.in { color: #b08000; } /* Information */ -code span.kw { color: #1f1c1b; font-weight: bold; } /* Keyword */ -code span.op { color: #1f1c1b; } /* Operator */ -code span.ot { color: #006e28; } /* Other */ -code span.pp { color: #006e28; } /* Preprocessor */ -code span.re { color: #0057ae; background-color: #e0e9f8; } /* RegionMarker */ -code span.sc { color: #3daee9; } /* SpecialChar */ -code span.ss { color: #ff5500; } /* SpecialString */ -code span.st { color: #bf0303; } /* String */ -code span.va { color: #0057ae; } /* Variable */ -code span.vs { color: #bf0303; } /* VerbatimString */ -code span.wa { color: #bf0303; } /* Warning */ +code span.al { color: #ff0000; } /* Alert */ +code span.an { color: #008000; } /* Annotation */ +code span.at { } /* Attribute */ +code span.bu { } /* BuiltIn */ +code span.cf { color: #0000ff; } /* ControlFlow */ +code span.ch { color: #008080; } /* Char */ +code span.cn { } /* Constant */ +code span.co { color: #008000; } /* Comment */ +code span.cv { color: #008000; } /* CommentVar */ +code span.do { color: #008000; } /* Documentation */ +code span.er { color: #ff0000; font-weight: bold; } /* Error */ +code span.ex { } /* Extension */ +code span.im { } /* Import */ +code span.in { color: #008000; } /* Information */ +code span.kw { color: #0000ff; } /* Keyword */ +code span.op { } /* Operator */ +code span.ot { color: #ff4000; } /* Other */ +code span.pp { color: #ff4000; } /* Preprocessor */ +code span.sc { color: #008080; } /* SpecialChar */ +code span.ss { color: #008080; } /* SpecialString */ +code span.st { color: #008080; } /* String */ +code span.va { } /* Variable */ +code span.vs { color: #008080; } /* VerbatimString */ +code span.wa { color: #008000; font-weight: bold; } /* Warning */ - - + - - - +code span.al { color: #ff0000; } /* Alert */ +code span.an { color: #008000; } /* Annotation */ +code span.at { } /* Attribute */ +code span.bu { } /* BuiltIn */ +code span.cf { color: #0000ff; } /* ControlFlow */ +code span.ch { color: #008080; } /* Char */ +code span.cn { } /* Constant */ +code span.co { color: #008000; } /* Comment */ +code span.cv { color: #008000; } /* CommentVar */ +code span.do { color: #008000; } /* Documentation */ +code span.er { color: #ff0000; font-weight: bold; } /* Error */ +code span.ex { } /* Extension */ +code span.im { } /* Import */ +code span.in { color: #008000; } /* Information */ +code span.kw { color: #0000ff; } /* Keyword */ +code span.op { } /* Operator */ +code span.ot { color: #ff4000; } /* Other */ +code span.pp { color: #ff4000; } /* Preprocessor */ +code span.sc { color: #008080; } /* SpecialChar */ +code span.ss { color: #008080; } /* SpecialString */ +code span.st { color: #008080; } /* String */ +code span.va { } /* Variable */ +code span.vs { color: #008080; } /* VerbatimString */ +code span.wa { color: #008000; font-weight: bold; } /* Warning */ + + @@ -166,7 +249,7 @@

1.1 How can I submit

If you find that your question has not been answered, or you believe you have found a bug, then submit a request for help via the Issues page if possible or to Aaron King (kingaa at umich dot edu) if necessary. Include in your request—at a minimum—the code that you ran that produced the error, together with a transcript of the R session that gave the errors. Better still, construct a minimal example that will reproduce the error: this allows for the most efficient solution of problems.

Make sure to include the output of following, so that I can see what version of pomp you are using, what version of R, what kind of machine you have, any customizations you have that might be affecting performance, etc.

-
source("https://kingaa.github.io/scripts/diagnostics.R")
+
source("https://kingaa.github.io/scripts/diagnostics.R")

1.2 What’s the proper way to cite pomp?

@@ -214,166 +297,166 @@

3 Implementing POMP mo

3.1 How can I include a vector of variables in a C snippet?

A C snippet can make use of any feature of the C language. In particular, we can use pointers to give access to arrays. For example, consider the following, which implement a simple chain of random variables.

-
rSim <- Csnippet("
-  double *x = &X1;
-  int i, n = (int) N;
-  for (i = 0; i < n-1; i++) x[i] = x[i+1];
-  x[n-1] = rnorm(0,1);
-")
-
-rInit <- Csnippet("
-  double *x = &X1;
-  int i, n = (int) N;
-  for (i=0; i < n; i++) x[i] = 0.0;
-")
-
-rMeas <- Csnippet("
-  Y1 = rnorm(X2,2);
-")
+
rSim <- Csnippet("
+  double *x = &X1;
+  int i, n = (int) N;
+  for (i = 0; i < n-1; i++) x[i] = x[i+1];
+  x[n-1] = rnorm(0,1);
+")
+
+rInit <- Csnippet("
+  double *x = &X1;
+  int i, n = (int) N;
+  for (i=0; i < n; i++) x[i] = 0.0;
+")
+
+rMeas <- Csnippet("
+  Y1 = rnorm(X2,2);
+")

The following simulates and plots using the above.

-
library(ggplot2)
-library(tidyr)
-
-simulate(
-  times=1:20,t0=0,
-  rprocess=euler(rSim,delta.t=1),
-  rmeasure=rMeas,
-  rinit=rInit,
-  obsnames="Y1",
-  statenames=sprintf("X%d",1:5),
-  paramnames="N",
-  params=c(N=5),
-  format="data.frame"
-) |>
-  pivot_longer(-c(.id,time)) |>
-  ggplot(aes(x=time,y=value,group=name,color=name))+
-  geom_line()+
-  theme_bw()
+
library(ggplot2)
+library(tidyr)
+
+simulate(
+  times=1:20,t0=0,
+  rprocess=euler(rSim,delta.t=1),
+  rmeasure=rMeas,
+  rinit=rInit,
+  obsnames="Y1",
+  statenames=sprintf("X%d",1:5),
+  paramnames="N",
+  params=c(N=5),
+  format="data.frame"
+) |>
+  pivot_longer(-c(.id,time)) |>
+  ggplot(aes(x=time,y=value,group=name,color=name))+
+  geom_line()+
+  theme_bw()

3.2 Can I write a pomp for multivariate data?

Yes, this is no problem. The data you supply to pomp can contain multiple variables. You simply refer to these variables by name in writing the rmeasure and dmeasure C snippets. The following example illustrates this for a multivariate Ornstein-Uhlenbeck process (as in pompExample("ou2")) with a slightly peculiar measurement model.

-
simulate(
-  times=1:100, t0=0,
-  rmeasure=Csnippet("
-        y1 = rnorm(x1+x2,sigma1);
-        y2 = rnorm(x2-x1,sigma2);
-        "),
-  dmeasure=Csnippet("
-        lik = dnorm(y1,x1+x2,sigma1,1)+dnorm(y2,x2-x1,sigma2,1);
-        lik = (give_log) ? lik : exp(lik);
-        "),
-  rprocess=discrete_time(
-    step.fun=Csnippet("
-        double tx1, tx2;
-        tx1 = rnorm(a11*x1 + a12*x2,nu1);
-        tx2 = rnorm(a21*x1 + a22*x2,nu2);
-        x1 = tx1; x2 = tx2;
-      "),
-    delta.t=1),
-  rinit=Csnippet("
-        x1 = 0;
-        x2 = 0;
-        "),
-  obsnames=c("y1","y2"),
-  statenames=c("x1","x2"),
-  paramnames=c("a11","a12","a21","a22","sigma1","sigma2","nu1","nu2"),
-  params=c(a11=0.5,a12=-0.1,a21=0.2,a22=-1,nu1=0.3,nu2=0.1,sigma1=0.1,sigma2=0.3)
-) -> obj
+
simulate(
+  times=1:100, t0=0,
+  rmeasure=Csnippet("
+        y1 = rnorm(x1+x2,sigma1);
+        y2 = rnorm(x2-x1,sigma2);
+        "),
+  dmeasure=Csnippet("
+        lik = dnorm(y1,x1+x2,sigma1,1)+dnorm(y2,x2-x1,sigma2,1);
+        lik = (give_log) ? lik : exp(lik);
+        "),
+  rprocess=discrete_time(
+    step.fun=Csnippet("
+        double tx1, tx2;
+        tx1 = rnorm(a11*x1 + a12*x2,nu1);
+        tx2 = rnorm(a21*x1 + a22*x2,nu2);
+        x1 = tx1; x2 = tx2;
+      "),
+    delta.t=1),
+  rinit=Csnippet("
+        x1 = 0;
+        x2 = 0;
+        "),
+  obsnames=c("y1","y2"),
+  statenames=c("x1","x2"),
+  paramnames=c("a11","a12","a21","a22","sigma1","sigma2","nu1","nu2"),
+  params=c(a11=0.5,a12=-0.1,a21=0.2,a22=-1,nu1=0.3,nu2=0.1,sigma1=0.1,sigma2=0.3)
+) -> obj

3.3 How do I deal with missing data?

Missing data are a common complication. pomp can handle NAs in the data, but if it is needed, the measurement model probability density function, dmeasure must be written so as to deal with NAs appropriately. For example, look at the following variant of the SIR model describing the influenza outbreak in a boarding school:

-
library(ggplot2)
-
-read.csv(text="
-B,day
-NA,0
-1,1
-6,2
-26,3
-73,4
-NA,5
-293,6
-258,7
-236,8
-191,9
-124,10
-69,11
-26,12
-11,13
-4,14
-") -> dat
-
-dat |>
-  ggplot(aes(x=day, y=B)) +
-  geom_line() + geom_point()
+
library(ggplot2)
+
+read.csv(text="
+B,day
+NA,0
+1,1
+6,2
+26,3
+73,4
+NA,5
+293,6
+258,7
+236,8
+191,9
+124,10
+69,11
+26,12
+11,13
+4,14
+") -> dat
+
+dat |>
+  ggplot(aes(x=day, y=B)) +
+  geom_line() + geom_point()

Data are missing at days 0 and 5.

We create a pomp object implementing a simple SIR process model and a binomial measurement model, as in the original example. The only difference is in the dmeasure:

-
library(pomp)
-
-sir_step <- Csnippet("
-  double dN_SI = rbinom(S,1-exp(-Beta*I/N*dt));
-  double dN_IR = rbinom(I,1-exp(-gamma*dt));
-  S -= dN_SI;
-  I += dN_SI - dN_IR;
-  R += dN_IR;
-  H += dN_IR;
-")
-
-sir_init <- Csnippet("
-  S = N-1;
-  I = 1;
-  R = 0;
-  H = 0;
-")
-
-rmeas <- Csnippet("B = rbinom(H,rho);")
-
-dmeas <- Csnippet("
-  if (ISNA(B)) {
-    lik = (give_log) ? 0 : 1;
-  } else {
-    lik = dbinom(B,H,rho,give_log);
-  }
-")
-
-dat |>
-  pomp(time="day",t0=0,
-       rprocess=euler(sir_step,delta.t=1/12),
-       rinit=sir_init,
-       rmeasure=rmeas,
-       dmeasure=dmeas,
-       accumvars="H",
-       paramnames=c("Beta","gamma","N", "rho"),
-       statenames=c("S","I","R","H")
-  ) -> sir_na
+
library(pomp)
+
+sir_step <- Csnippet("
+  double dN_SI = rbinom(S,1-exp(-Beta*I/N*dt));
+  double dN_IR = rbinom(I,1-exp(-gamma*dt));
+  S -= dN_SI;
+  I += dN_SI - dN_IR;
+  R += dN_IR;
+  H += dN_IR;
+")
+
+sir_init <- Csnippet("
+  S = N-1;
+  I = 1;
+  R = 0;
+  H = 0;
+")
+
+rmeas <- Csnippet("B = rbinom(H,rho);")
+
+dmeas <- Csnippet("
+  if (ISNA(B)) {
+    lik = (give_log) ? 0 : 1;
+  } else {
+    lik = dbinom(B,H,rho,give_log);
+  }
+")
+
+dat |>
+  pomp(time="day",t0=0,
+       rprocess=euler(sir_step,delta.t=1/12),
+       rinit=sir_init,
+       rmeasure=rmeas,
+       dmeasure=dmeas,
+       accumvars="H",
+       paramnames=c("Beta","gamma","N", "rho"),
+       statenames=c("S","I","R","H")
+  ) -> sir_na

In the above, to check for missing data, we use the ISNA macro, which is part of R’s C API. Note that the dmeasure returns a likelihood of 1 (log likelihood 0) for the missing data. [What’s the probability of seeing something if you don’t look?] When there is an observation, it returns a binomial likelihood as usual.

Our simulations now fill in simulated values for the missing data,

-
sir_na |>
-  simulate(
-    params=c(Beta=3,gamma=2,rho=0.9,N=2600),
-    nsim=10,
-    format="data.frame",
-    include.data=TRUE
-  ) |>
-  ggplot(aes(x=day,y=B,group=.id,color=.id=="data"))+
-  geom_line()+
-  guides(color="none")+
-  theme_bw()
+
sir_na |>
+  simulate(
+    params=c(Beta=3,gamma=2,rho=0.9,N=2600),
+    nsim=10,
+    format="data.frame",
+    include.data=TRUE
+  ) |>
+  ggplot(aes(x=day,y=B,group=.id,color=.id=="data"))+
+  geom_line()+
+  guides(color="none")+
+  theme_bw()

and the particle filter handles the missing data correctly:

-
sir_na |>
-  pfilter(Np=1000,params=c(Beta=3,gamma=2,rho=0.9,N=2600)) |>
-  as.data.frame() |>
-  pivot_longer(-day) |>
-  ggplot(aes(x=day,y=value,color=name))+
-  guides(color="none")+
-  geom_line()+
-  facet_wrap(~name,ncol=1,scales='free_y')+
-  theme_bw()
+
sir_na |>
+  pfilter(Np=1000,params=c(Beta=3,gamma=2,rho=0.9,N=2600)) |>
+  as.data.frame() |>
+  pivot_longer(-day) |>
+  ggplot(aes(x=day,y=value,color=name))+
+  guides(color="none")+
+  geom_line()+
+  facet_wrap(~name,ncol=1,scales='free_y')+
+  theme_bw()

In the above particle filter computation, notice that the effective sample size (ESS) is full, as it should be, when the missing data contribute no information.

@@ -382,103 +465,103 @@

3.4 I have t0 much l

As described in the documentation (?pomp), pomp allows you to define “accumulator variables” that collect events occurring between observations. The example above illustrates this.

In that example, we took t0 equal to the first observation time. Sometimes we want to take t0 to be much earlier. For example, if we wish to posit that the initial state of the unobserved Markov process is distributed at t0 according to its stationary distribution, one way to achieve this is to put t0 so early that simulations will equilibrate before the first observation is made.

This is straightforward, but the presence of accumulator variables leads to a small twist. Let’s look at the boarding-school flu example to illustrate.

-
library(pomp)
-
-sir_step <- Csnippet("
-  double dN_SI = rbinom(S,1-exp(-Beta*I/N*dt));
-  double dN_IR = rbinom(I,1-exp(-gamma*dt));
-  S -= dN_SI;
-  I += dN_SI - dN_IR;
-  R += dN_IR;
-  H += dN_IR;
-  ")
-
-sir_init <- Csnippet("
-  S = N-1;
-  I = 1;
-  R = 0;
-  H = 0;
-")
-
-rmeas <- Csnippet("B = rbinom(H,rho);")
-
-dmeas <- Csnippet("if (ISNA(B)) {
-                  lik = (give_log) ? 0 : 1;
-} else {
-                  lik = dbinom(B,H,rho,give_log);
-}")
-
-read.csv(text="
-day,B
-1,3
-2,8
-3,28
-4,76
-5,222
-6,293
-7,257
-8,237
-9,192
-10,126
-11,70
-12,28
-13,12
-14,5
-") -> dat
-
-dat |>
-  pomp(time="day",t0=-8,
-       rprocess=euler(sir_step,delta.t=1/12),
-       rinit=sir_init,
-       rmeasure=rmeas,
-       dmeasure=dmeas,
-       accumvars="H",
-       paramnames=c("Beta","gamma","N", "rho"),
-       statenames=c("S","I","R","H")
-  ) -> bsflu
+
library(pomp)
+
+sir_step <- Csnippet("
+  double dN_SI = rbinom(S,1-exp(-Beta*I/N*dt));
+  double dN_IR = rbinom(I,1-exp(-gamma*dt));
+  S -= dN_SI;
+  I += dN_SI - dN_IR;
+  R += dN_IR;
+  H += dN_IR;
+  ")
+
+sir_init <- Csnippet("
+  S = N-1;
+  I = 1;
+  R = 0;
+  H = 0;
+")
+
+rmeas <- Csnippet("B = rbinom(H,rho);")
+
+dmeas <- Csnippet("if (ISNA(B)) {
+                  lik = (give_log) ? 0 : 1;
+} else {
+                  lik = dbinom(B,H,rho,give_log);
+}")
+
+read.csv(text="
+day,B
+1,3
+2,8
+3,28
+4,76
+5,222
+6,293
+7,257
+8,237
+9,192
+10,126
+11,70
+12,28
+13,12
+14,5
+") -> dat
+
+dat |>
+  pomp(time="day",t0=-8,
+       rprocess=euler(sir_step,delta.t=1/12),
+       rinit=sir_init,
+       rmeasure=rmeas,
+       dmeasure=dmeas,
+       accumvars="H",
+       paramnames=c("Beta","gamma","N", "rho"),
+       statenames=c("S","I","R","H")
+  ) -> bsflu

Note that, as above, we’ve allowed for the possibility of NAs in the data.

Now let’s look at the data and some simulations from the model.

-
library(ggplot2)
-
-bsflu |>
-  as.data.frame() |>
-  ggplot(aes(x=day,y=B))+
-  geom_point()+geom_line()+
-  theme_bw()
+
library(ggplot2)
+
+bsflu |>
+  as.data.frame() |>
+  ggplot(aes(x=day,y=B))+
+  geom_point()+geom_line()+
+  theme_bw()

-
bsflu |>
-  simulate(params=c(Beta=1.5,gamma=1,rho=0.9,N=2600),
-           nsim=10,format="d",include.data=TRUE) |>
-  ggplot(aes(x=day,y=B,group=.id,color=.id=="data"))+
-  geom_line()+
-  guides(color="none")+
-  theme_bw()
+
bsflu |>
+  simulate(params=c(Beta=1.5,gamma=1,rho=0.9,N=2600),
+           nsim=10,format="d",include.data=TRUE) |>
+  ggplot(aes(x=day,y=B,group=.id,color=.id=="data"))+
+  geom_line()+
+  guides(color="none")+
+  theme_bw()

The data plot looks fine, but what’s going on with the simulations? It’s easy to understand: we are assuming that there is one infectious host at t = t0 = -8 days. In most of the simulations, this leads to a number of new infections, which the H variable accumulates from t=-8 to t=1, the time of our first observation. But our first observation is not the number of new cases to have occurred in the last 9 days, but the number that occurred (and were reported) in the last 1 day.

We can fix this by introducing a fictitious “observation” at t=0, with missing data, i.e., by assuming we observed nothing at t=0:

-
library(dplyr)
-
-dat |>
-  bind_rows(c(day=0,B=NA)) |>
-  arrange(day) |>
-  pomp(time="day",t0=-8,
-       rprocess=euler(sir_step,delta.t=1/12),
-       rinit=sir_init,
-       rmeasure=rmeas,
-       dmeasure=dmeas,
-       accumvars="H",
-       paramnames=c("Beta","gamma","N", "rho"),
-       statenames=c("S","I","R","H")
-  ) -> bsflu
-
-bsflu |>
-  simulate(params=c(Beta=1.5,gamma=1,rho=0.9,N=2600),
-    nsim=10,format="d",include.data=TRUE) |>
-  filter(day>0) |>
-  ggplot(aes(x=day,y=B,group=.id,color=.id=="data"))+
-  geom_line()+
-  guides(color="none")+
-  theme_bw()
+
library(dplyr)
+
+dat |>
+  bind_rows(c(day=0,B=NA)) |>
+  arrange(day) |>
+  pomp(time="day",t0=-8,
+       rprocess=euler(sir_step,delta.t=1/12),
+       rinit=sir_init,
+       rmeasure=rmeas,
+       dmeasure=dmeas,
+       accumvars="H",
+       paramnames=c("Beta","gamma","N", "rho"),
+       statenames=c("S","I","R","H")
+  ) -> bsflu
+
+bsflu |>
+  simulate(params=c(Beta=1.5,gamma=1,rho=0.9,N=2600),
+    nsim=10,format="d",include.data=TRUE) |>
+  filter(day>0) |>
+  ggplot(aes(x=day,y=B,group=.id,color=.id=="data"))+
+  geom_line()+
+  guides(color="none")+
+  theme_bw()

@@ -499,10 +582,10 @@

3.6 What is the Eule

To make the Euler multinomial approximation, we approximate the total exit rates as constant over a small interval \([t,t+{\Delta}t)\). Let the random variable \({\Delta}n_k\), \(k=1,\dots,K\), be the number that exit by path \(k\) in this time interval and \({\Delta}n_0\) be the number that remain. Under this assumption, the vector of numbers of exits, \(({\Delta}n_{0},{\Delta}n_{1},\dots,{\Delta}n_{K})\) is multinomially distributed with size \(N_t\) and probabilities \((p_k)_{k=0}^K\), where \[p_0 = \exp\left(-\sum\!\mu_i\,{\Delta}t\right),\] and \[p_k = \frac{\mu_k}{\sum\!\mu_i}\,\left(1-p_0\right),\qquad k=1,\dots,K.\] By way of shorthand, we say that \({\Delta}n=({\Delta}n_k)_{k=1}^K\) is Euler-multinomially distributed with size \(N_t\), rates \(\mu=(\mu_k)_{k=1}^K\), and time-step \({\Delta}t\) and we write \[{\Delta}n \sim \mathrm{Eulermultinom}\left(N_t,\mu,{\Delta}t\right).\]

When constructing a POMP for a compartmental model using the Euler multinomial approximation, to write the rprocess basic component, one uses the euler plugin. One chooses the time step using the delta.t argument. In writing the step.fun C snippet, one needs exactly one call to reulermultinom for each compartment of the model. Using the notation above, one has to pack the \(K\) rates \(\mu_1,\dots,\mu_K\) into contiguous memory locations and retrieve the results in (a different set of) contiguous memory locations. For example, if rate is a pointer to \(K\) contiguous memory locations holding the rates and dn is a pointer to \(K\) contiguous memory locations ready to hold the results, then

-
reulermultinom(K,N,rate,dt,dn);
+
reulermultinom(K,N,rate,dt,dn);

will result in a random sample from the Euler multinomial distribution (with timestep dt) being stored in dn[0], …, dn[K-1]. In the foregoing, we’ve assumed that the quantities \(N_t\) and \(K\) are stored in the memory locations denoted N and K, respectively. Note that the rules for step.fun C snippets guarantee that the operative time step (\({\Delta}t\)) is stored in dt and that this will not exceed the user-specified delta.t. See ?rprocess_spec and ?Csnippet for more information.

When the step function is provided as an R function, the corresponding call is

-
dn <- reulermultinom(n=1,size=N,rate=mu,dt=delta.t)
+
dn <- reulermultinom(n=1,size=N,rate=mu,dt=delta.t)

where mu is a vector containing the rates.

The manual page contains more information on the Euler-multinomial distribution.

@@ -511,37 +594,37 @@

3.7 Can I link a C l

Yes, this is straightforward. One can make use of the globals and shlib.args arguments to do so.

Any valid C code passed to globals is included at the top level of the C file containing C snippets. For example, any variables or functions defined there will be visible to every C snippet in that file. If one wishes to call functions defined in a precompiled C library, one can include the library’s header file via the usual #include statement, passed via the globals argument.

Any text passed to the shlib.args argument is included in the command-line call to R CMD SHLIB. To link to a precompiled library, then, one can do something like

-
  shlib.args = "<library>"
+
  shlib.args = "<library>"

where <library> is the path of the library.

Consider the following simple example. The function truncated_normal_a_pdf is defined in the library libtn.so, located in directory libs. It has a header file, located in include/tn.h.

-
simulate(
-  t0 = 0,
-  times = 0:100,
-  obsnames = "y",
-  rprocess=discrete_time(
-    step.fun=Csnippet("
-      double e = rnorm(0,sigma);
-      N = exp(log(r)+log(N)-N+e);"),
-    delta.t=1
-  ),
-  rmeasure = Csnippet("
-      y = rnorm(N,4);
-      y = (y > 0) ? y : 0;"
-  ),
-  dmeasure = Csnippet("
-      lik = truncated_normal_a_pdf(y,N,4,0);
-      if (give_log) lik = log(lik);"
-  ),
-  statenames = "N",
-  paramnames = c("r", "sigma"),
-  params = c(N_0 = 7, r = 45, sigma = 0.3),
-  globals = r"{#include "include/tn.h"}",
-  shlib.args = "libs/libtn.so"
-) -> rick
-
-rick |>
-  pfilter(Np=1000) |>
-  logLik()
+
simulate(
+  t0 = 0,
+  times = 0:100,
+  obsnames = "y",
+  rprocess=discrete_time(
+    step.fun=Csnippet("
+      double e = rnorm(0,sigma);
+      N = exp(log(r)+log(N)-N+e);"),
+    delta.t=1
+  ),
+  rmeasure = Csnippet("
+      y = rnorm(N,4);
+      y = (y > 0) ? y : 0;"
+  ),
+  dmeasure = Csnippet("
+      lik = truncated_normal_a_pdf(y,N,4,0);
+      if (give_log) lik = log(lik);"
+  ),
+  statenames = "N",
+  paramnames = c("r", "sigma"),
+  params = c(N_0 = 7, r = 45, sigma = 0.3),
+  globals = r"{#include "include/tn.h"}",
+  shlib.args = "libs/libtn.so"
+) -> rick
+
+rick |>
+  pfilter(Np=1000) |>
+  logLik()

In Discussion #156 there is another simple example.

@@ -550,7 +633,7 @@

4 Error messages and w

4.1 I see an error about dmeasure returning illegal values. What does it mean?

A common error message is

-
Error : in ‘pfilter’: ‘dmeasure’ returns illegal value
+
Error : in ‘pfilter’: ‘dmeasure’ returns illegal value

This error arises because your dmeasure function is giving a negative, infinite, NA, or otherwise illegal value of the likelihood. Common causes are: