-
Notifications
You must be signed in to change notification settings - Fork 74
/
Copy pathutils.py
170 lines (139 loc) · 5.72 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# coding: utf-8
import tensorflow as tf
import tensorflow.contrib.slim as slim
'''https://stackoverflow.com/questions/37604289/tkinter-tclerror-no-display-name-and-no-display-environment-variable
Matplotlib chooses Xwindows backend by default. You need to set matplotlib do not use Xwindows backend.
- `matplotlib.use('Agg')`
- Or add to .config/matplotlib/matplotlibrc line backend : Agg.
- Or when connect to server use ssh -X ... command to use Xwindows.
'''
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import scipy.misc
import numpy as np
def get_best_gpu():
'''Dependency: pynvml (for gpu memory informations)
return type is integer (gpu_id)
'''
try:
from pynvml import nvmlInit, nvmlDeviceGetCount, nvmlDeviceGetHandleByIndex, nvmlDeviceGetName, nvmlDeviceGetMemoryInfo
except Exception as e:
print('[!] {} => Use default GPU settings ...\n'.format(e))
return ''
print('\n===== Check GPU memory =====')
# byte to megabyte
def to_mb(x):
return int(x/1024./1024.)
best_idx = -1
best_free = 0.
nvmlInit()
n_gpu = nvmlDeviceGetCount()
for i in range(n_gpu):
handle = nvmlDeviceGetHandleByIndex(i)
name = nvmlDeviceGetName(handle)
mem = nvmlDeviceGetMemoryInfo(handle)
total = to_mb(mem.total)
free = to_mb(mem.free)
used = to_mb(mem.used)
free_ratio = mem.free / float(mem.total)
print("{} - {}/{} MB (free: {} MB - {:.2%})".format(name, used, total, free, free_ratio))
if free > best_free:
best_free = free
best_idx = i
print('\nSelected GPU is gpu:{}'.format(best_idx))
print('============================\n')
return best_idx
# Iterate the whole dataset and count the numbers
# CelebA contains about 200k examples with 128 tfrecord files and it takes about 1.5s to iterate
def num_examples_from_tfrecords(tfrecords_list):
num_examples = 0
for path in tfrecords_list:
num_examples += sum(1 for _ in tf.python_io.tf_record_iterator(path))
return num_examples
def expected_shape(tensor, expected):
"""batch size N shouldn't be set.
you can use shape of tensor instead of tensor itself.
Usage:
# batch size N is skipped.
expected_shape(tensor, [28, 28, 1])
expected_shape(tensor.shape, [28, 28, 1])
"""
if isinstance(tensor, tf.Tensor):
shape = tensor.shape[1:]
else:
shape = tensor[1:]
shape = map(lambda x: x.value, shape)
err_msg = 'wrong shape {} (expected shape is {})'.format(shape, expected)
assert shape == expected, err_msg
# if not shape == expected:
# warnings.warn('wrong shape {} (expected shape is {})'.format(shape, expected))
def plot(samples, shape=(4,4), figratio=0.75):
"""only for square-size samples
wh = sqrt(samples.size)
figratio: small-size = 0.75 (default) / big-size = 1.0
"""
if len(samples) != shape[0]*shape[1]:
print("Error: # of samples = {} but shape is {}".format(len(samples), shape))
return
h_figsize = shape[0] * figratio
w_figsize = shape[1] * figratio
fig = plt.figure(figsize=(w_figsize, h_figsize))
gs = gridspec.GridSpec(shape[0], shape[1])
gs.update(wspace=0.05, hspace=0.05)
for i, sample in enumerate(samples):
ax = plt.subplot(gs[i])
plt.axis('off')
ax.set_xticklabels([])
ax.set_yticklabels([])
ax.set_aspect('equal')
plt.imshow(sample) # checks cmap ...
return fig
def show_all_variables():
model_vars = tf.trainable_variables()
slim.model_analyzer.analyze_vars(model_vars, print_info=True)
def merge(images, size):
"""merge images - burrowed from @carpedm20.
checklist before/after imsave:
* are images post-processed? for example - denormalization
* is np.squeeze required? maybe for grayscale...
"""
h, w = images.shape[1], images.shape[2]
if (images.shape[3] in (3,4)):
c = images.shape[3]
img = np.zeros((h * size[0], w * size[1], c))
for idx, image in enumerate(images):
i = idx % size[1]
j = idx // size[1]
img[j * h:j * h + h, i * w:i * w + w, :] = image
return img
elif images.shape[3]==1:
img = np.zeros((h * size[0], w * size[1]))
for idx, image in enumerate(images):
i = idx % size[1]
j = idx // size[1]
img[j * h:j * h + h, i * w:i * w + w] = image[:,:,0]
return img
else:
raise ValueError('in merge(images,size) images parameter must have dimensions: HxW or HxWx3 or HxWx4')
'''Sugar for gradients histograms
# D_train_op = tf.train.AdamOptimizer(learning_rate=self.D_lr, beta1=self.beta1, beta2=self.beta2).\
# minimize(D_loss, var_list=D_vars)
D_opt = tf.train.AdamOptimizer(learning_rate=self.D_lr, beta1=self.beta1, beta2=self.beta2)
D_grads = tf.gradients(D_loss, D_vars)
D_grads_and_vars = list(zip(D_grads, D_vars))
D_train_op = D_opt.apply_gradients(grads_and_vars=D_grads_and_vars)
# G_train_op = tf.train.AdamOptimizer(learning_rate=self.G_lr, beta1=self.beta1, beta2=self.beta2).\
# minimize(G_loss, var_list=G_vars, global_step=global_step)
G_opt = tf.train.AdamOptimizer(learning_rate=self.G_lr, beta1=self.beta1, beta2=self.beta2)
G_grads = tf.gradients(G_loss, G_vars)
G_grads_and_vars = list(zip(G_grads, G_vars))
G_train_op = G_opt.apply_gradients(grads_and_vars=G_grads_and_vars, global_step=global_step)
for var in tf.trainable_variables():
tf.summary.histogram(var.op.name, var)
for grad, var in D_grads_and_vars:
tf.summary.histogram('D/' + var.name + '/gradient', grad)
for grad, var in G_grads_and_vars:
tf.summary.histogram('G/' + var.name + '/gradient', grad)
'''