forked from zylon-ai/private-gpt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathingest.py
62 lines (48 loc) · 2.3 KB
/
ingest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import os
import glob
from typing import List
from dotenv import load_dotenv
from langchain.document_loaders import TextLoader, PDFMinerLoader, CSVLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.embeddings import LlamaCppEmbeddings
from langchain.docstore.document import Document
from constants import CHROMA_SETTINGS
load_dotenv()
def load_single_document(file_path: str) -> Document:
# Loads a single document from a file path
if file_path.endswith(".txt"):
loader = TextLoader(file_path, encoding="utf8")
elif file_path.endswith(".pdf"):
loader = PDFMinerLoader(file_path)
elif file_path.endswith(".csv"):
loader = CSVLoader(file_path)
return loader.load()[0]
def load_documents(source_dir: str) -> List[Document]:
# Loads all documents from source documents directory
txt_files = glob.glob(os.path.join(source_dir, "**/*.txt"), recursive=True)
pdf_files = glob.glob(os.path.join(source_dir, "**/*.pdf"), recursive=True)
csv_files = glob.glob(os.path.join(source_dir, "**/*.csv"), recursive=True)
all_files = txt_files + pdf_files + csv_files
return [load_single_document(file_path) for file_path in all_files]
def main():
# Load environment variables
persist_directory = os.environ.get('PERSIST_DIRECTORY')
source_directory = os.environ.get('SOURCE_DIRECTORY', 'source_documents')
llama_embeddings_model = os.environ.get('LLAMA_EMBEDDINGS_MODEL')
model_n_ctx = os.environ.get('MODEL_N_CTX')
# Load documents and split in chunks
print(f"Loading documents from {source_directory}")
documents = load_documents(source_directory)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
texts = text_splitter.split_documents(documents)
print(f"Loaded {len(documents)} documents from {source_directory}")
print(f"Split into {len(texts)} chunks of text (max. 500 tokens each)")
# Create embeddings
llama = LlamaCppEmbeddings(model_path=llama_embeddings_model, n_ctx=model_n_ctx)
# Create and store locally vectorstore
db = Chroma.from_documents(texts, llama, persist_directory=persist_directory, client_settings=CHROMA_SETTINGS)
db.persist()
db = None
if __name__ == "__main__":
main()