forked from r03ert0/My-Random-Notebooks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgv_gael.py
90 lines (71 loc) · 2.78 KB
/
gv_gael.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import numpy as np
import pylab as pl
from scipy import stats
from sklearn import covariance
from sklearn.utils import check_random_state
import spd_manifold
######################################################################################
# Helper functions
def plot_cor(mat, vmax=None, title=None):
"Plot correlation matrix"
if vmax is None:
vmax = np.max(np.abs(diff))
pl.matshow(mat, vmin=-vmax, vmax=vmax, cmap=pl.cm.RdBu_r)
pl.xticks(range(len(columns)), columns)
pl.yticks(range(len(columns)), columns)
if title:
pl.title(title)
def correlation(X):
"Compute correlation matrix"
X = X - X.mean(axis=0)
X /= X.std(axis=0)
cov, _ = covariance.ledoit_wolf(X) # To have robust correlations, use MCD, Minimum cov determinant, instead
return cov
def compute_diff(X, status):
"Compute the difference between population 1 and 2"
X_1 = X[status == 1]
X_2 = X[status == 2]
cov_1 = correlation(X_1)
cov_2 = correlation(X_2)
# projection takes as a 1st argument the covariances to project and as a 2nd
# argument the covariances forming the reference population
res_1, res_2 = spd_manifold.projection([cov_1, cov_2], [cov_1, cov_2])
diff = res_1 - res_2
return diff
def center_permutation(center, status, random_state):
out = status.copy()
for c in np.unique(center):
mask = center == c
out[mask] = random_state.permutation(status[mask])
return out
def permute_diff(X, center, status, random_state=0, n_perm=100):
random_state = check_random_state(random_state)
test_stat = []
for i in range(n_perm):
status0 = center_permutation(center, status, random_state)
diff = compute_diff(X, status0)
# 1. max T stats (multiple comparisons correction)
#diff = np.tril(diff, k=-1)
#test_stat.append(np.abs(diff).max())
# 2. stats from null distribution
test_stat.append(np.abs(diff))
return test_stat
######################################################################################
# Data loading and massaging
columns = ['th', 'ca', 'pu', 'pa', 'hip', 'amy', 'acc', 'icv']
data = np.recfromtxt('abide.txt', names=True)
center = data['center']
status = data['status']
X = np.c_[[data[c] for c in columns]].T
X_ASD = X[status == 1]
X_control = X[status == 2]
# Extract correlation matrices
plot_cor(correlation(X_ASD), title="ASD", vmax=1)
plot_cor(correlation(X_control), title="Control", vmax=1)
diff = compute_diff(X, status)
plot_cor(diff, title="ASD - Control")
test_stat=permute_diff(X, center, status, random_state=0, n_perm=1000)
threshold=stats.scoreatpercentile(test_stat,90) #to display p-values, use percentile at score
diff[np.abs(diff)<threshold]=0
plot_cor(diff,title="Thresholded difference")
pl.show()