-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy paththree-layers.py
166 lines (150 loc) · 6.72 KB
/
three-layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import matplotlib.pyplot as plt
import numpy as np
import nengo
from nengo.dists import Uniform
from nengo.utils.matplotlib import rasterplot
from nengo.processes import PresentInput
def phase_automata(driving_symbol='0',number_of_symbols=3,id_of_starting_symbol=0,timesteps=9,
probability_of_transition=False):
code = np.zeros((number_of_symbols, timesteps), dtype=float)
code = code - 1
state = id_of_starting_symbol
i = 0
while i < timesteps:
u = True
j = 0
while j < number_of_symbols:
if state == j and u:
mu, sigma = 1, 0.5 # mean and standard deviation
if probability_of_transition:
s = np.random.normal(mu, sigma)
else:
s = 1
if s >= 0.8:
if driving_symbol == '0':
state = (j+1) % number_of_symbols
elif driving_symbol == '1':
state = ((j-1) % number_of_symbols)
else:
state = id_of_starting_symbol
print ("ILLEGAL DRIVING SYMBOL")
#print('passing to state ', state, 'driving symbol ', driving_symbol)
code[j][i] = 1
u = False
else:
state = j
#print('staying in state', state)
j += 1
i += 1
ending_state = state
return code, ending_state
model = nengo.Network(label='Three Layers', seed=91195)
with model:
with model:
neurons = nengo.Ensemble(
4, # Number of neurons
dimensions=3, # each neuron is connected to all (3) input channels.
# Set intercept to 0.5
intercepts=Uniform(-0.00001, 0.00001), # Set the intercepts at 0.00001 (threshold for Soma voltage)
neuron_type=nengo.LIF(min_voltage=0, tau_ref=0.0000000005, tau_rc=0.00000001), # Specify type of neuron
# Set tau_ref= or tau_rc = here to
# change those
# parms
# for the
# neurons.
max_rates=Uniform(500e+6, 500e+6), # Set the maximum firing rate of the neuron 500Mhz
# Set the neuron's firing rate to increase for 2 combinations of 3 channel input.
encoders=[[-1, -1, 1], [-1, 1, -1], [1, -1, -1], [-1, -1, -1]],
)
neuronsL2 = nengo.Ensemble(
6, # Number of neurons
dimensions=3,
# Set intercept to 0.5
intercepts=Uniform(-0.00001, 0.00001), # Set the intercepts at 0.00001 (threshold for Soma voltage)
neuron_type=nengo.LIF(min_voltage=0, tau_ref=0.0000000005, tau_rc=0.00000001), # Specify type of neuron
# Set tau_ref= or tau_rc = here to
# change those
# parms
# for the
# neurons.
max_rates=Uniform(500e+6, 500e+6), # Set the maximum firing rate of the neuron 500Mhz
# Set the neuron's firing rate to increase for 2 combinations of 3 channel input.
encoders=[[1, -1, -1], [-1, 1, -1], [-1, -1, 1], [ -1, -1, -1], [1, 1, 1], [1, 1, -1]],
)
neuronsL3 = nengo.Ensemble(
2, # Number of neurons
dimensions=3,
# Set intercept to 0.5
intercepts=Uniform(-0.00001, 0.00001), # Set the intercepts at 0.00001 (threshold for Soma voltage)
neuron_type=nengo.LIF(min_voltage=0, tau_ref=0.0000000005, tau_rc=0.00000001), # Specify type of neuron
# Set tau_ref= or tau_rc = here to
# change those
# parms
# for the
# neurons.
max_rates=Uniform(500e+6, 500e+6), # Set the maximum firing rate of the neuron 500Mhz
# Set the neuron's firing rate to increase for 2 combinations of 3 channel input.
#encoders=[[1, -1, -1], [-1, -1, 1]],
#encoders=[[1, -1, -1], [-1, 1, -1]],
#encoders=[[1, -1, 1], [-1, 1, 1]],
#encoders=[[1, -1, -1], [1, -1, -1]],
#encoders=[[1, 1, 1], [-1, -1, -1]],
encoders=[[-1, -1, 1], [1, -1, -1]],
)
driving_symbol = "0"
noise = True
threeChannels, end_channel = phase_automata(driving_symbol=driving_symbol, probability_of_transition=noise,timesteps=90)
print(threeChannels)
tC = threeChannels.transpose((1, 0))
print(tC)
with model:
input_signal = nengo.Node(PresentInput(tC, presentation_time=1e-7))
with model:
nengo.Connection(input_signal, neurons, synapse=None)
nengo.Connection(neurons, neuronsL2, synapse=None)
nengo.Connection(neuronsL2,neuronsL3,synapse=None)
with model:
input_probe = nengo.Probe(input_signal) # The original input
spikesL3 = nengo.Probe(neuronsL3.neurons) # Raw spikes from each neuron
# Subthreshold soma voltages of the neurons
#voltage = nengo.Probe(neurons.neurons, 'voltage')
voltageL3 = nengo.Probe(neuronsL3.neurons, 'voltage')
# Spikes filtered by a 10ms post-synaptic filter
filteredL3 = nengo.Probe(neuronsL3, synapse=1e-7)
with nengo.Simulator(model, dt=1e-8) as sim: # Create a simulator
sim.run(10000e-9) # Run it for 10k nanosecond
t = sim.trange()
plot_range = 100 # index
# Plot the decoded output of the ensemble
plt.figure()
plt.plot(t, sim.data[input_probe])
plt.xlim(0, t[plot_range])
plt.xlabel("Time (s)")
plt.title("Input probe for " + str(plot_range) + " timesteps " +"Driving Symbol:"+driving_symbol+" Noise "
""+str(noise))
plt.savefig("fig/three_layers_input_probe"+driving_symbol+".png")
plt.clf()
plt.figure()
plt.title("Neurons filtered probe for " + str(plot_range) + " timesteps Driving Symbol:"+driving_symbol+" Noise "
""+str(noise))
plt.plot(t, sim.data[filteredL3])
plt.xlabel("Time (s)")
plt.xlim(0, t[plot_range])
plt.savefig("fig/three_layers_filtered"+driving_symbol+".png")
# Plot the spiking output of the ensemble
plt.figure(figsize=(10, 4))
plt.title("Neuron Spikes Driving Symbol "+driving_symbol+" Noise "+str(noise))
plt.subplot(1, 2, 1)
plt.xlabel("Time (s)")
rasterplot(t[0:plot_range], sim.data[spikesL3][0:plot_range], colors=['y', 'm'])
plt.yticks((1,2), ("0" ,"1" ))
plt.ylim(2.5, 0.5)
# Plot the soma voltages of the neurons
plt.subplot(1, 2, 2)
plt.title("Neuron Soma Voltage Driving Symbol "+driving_symbol+" Noise "+str(noise))
plt.plot(t, sim.data[voltageL3][:, 1]+4, 'm')
plt.plot(t, sim.data[voltageL3][:, 0]+5, 'y')
plt.xlabel("Time (s)")
plt.yticks(())
plt.subplots_adjust(wspace=0.05)
plt.savefig("fig/three_layers"+driving_symbol+".png")