-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodified-learning-association-example.py
194 lines (149 loc) · 4.57 KB
/
modified-learning-association-example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import matplotlib.pyplot as plt
import numpy as np
import nengo
from nengo.dists import Uniform
from nengo.utils.matplotlib import rasterplot
from nengo.processes import PresentInput
num_items = 6
num_periods = 2
d_key = 2
d_value = 3
rng = np.random.RandomState(seed=7)
keysA = nengo.dists.UniformHypersphere(surface=True).sample(2, d_key, rng=rng)
keys = nengo.dists.UniformHypersphere(surface=True).sample(num_items, d_key, rng=rng)
values = nengo.dists.UniformHypersphere(surface=False).sample(
num_items, d_value, rng=rng
)
keys[0][0] = keysA[0][0]
keys[0][1] = keysA[0][1]
keys[1][0] = keysA[0][0]
keys[1][1] = keysA[0][1]
keys[2][0] = keysA[0][0]
keys[2][1] = keysA[0][1]
keys[3][0] = keysA[1][0]
keys[3][1] = keysA[1][1]
keys[4][0] = keysA[1][0]
keys[4][1] = keysA[1][1]
keys[5][0] = keysA[1][0]
keys[5][1] = keysA[1][1]
print(keys)
print(np.shape(values))
values[0][0] = 1.0
values[0][1] = 0.0
values[0][2] = 0.0
#print(values)
values[1][0] = 0.0
values[1][1] = 1.0
values[1][2] = 0.0
#print(values)
values[2][0] = 0.0
values[2][1] = 0.0
values[2][2] = 1.0
#print(values)
values[3][0] = 0.0
values[3][1] = 1.0
values[3][2] = 0.0
#print(values)
values[4][0] = 1.0
values[4][1] = 0.0
values[4][2] = 0.0
values[5][0] = 0.0
values[5][1] = 0.0
values[5][2] = 1.0
#print(values)
intercept = (np.dot(keysA, keysA.T) - np.eye(num_periods)).flatten().max()
print(f"Intercept: {intercept}")
intercept = 0.0
def cycle_array(x, period, dt=0.001):
"""Cycles through the elements"""
i_every = int(round(period / dt))
if i_every != period / dt:
raise ValueError(f"dt ({dt}) does not divide period ({period})")
def f(t):
i = int(round((t - dt) / dt)) # t starts at dt
return x[int(i / i_every) % len(x)]
return f
# Model constants
n_neurons = 200
dt = 0.001
period = 0.3
T = period * num_items * 2
# Model network
model = nengo.Network()
with model:
# Create the inputs/outputs
stim_keys = nengo.Node(output=cycle_array(keys, period, dt))
stim_values = nengo.Node(output=cycle_array(values, period, dt))
learning = nengo.Node(output=lambda t: -int(t >= T / 2))
recall = nengo.Node(size_in=d_value)
# Create the memory
memory = nengo.Ensemble(n_neurons, d_key, intercepts=[intercept] * n_neurons)
# Learn the encoders/keys
voja = nengo.Voja(learning_rate=5e-2, post_synapse=None)
conn_in = nengo.Connection(stim_keys, memory, synapse=None, learning_rule_type=voja)
nengo.Connection(learning, conn_in.learning_rule, synapse=None)
# Learn the decoders/values, initialized to a null function
conn_out = nengo.Connection(
memory,
recall,
learning_rule_type=nengo.PES(1e-3),
function=lambda x: np.zeros(d_value),
)
# Create the error population
error = nengo.Ensemble(n_neurons, d_value)
nengo.Connection(
learning, error.neurons, transform=[[10.0]] * n_neurons, synapse=None
)
# Calculate the error and use it to drive the PES rule
nengo.Connection(stim_values, error, transform=-1, synapse=None)
nengo.Connection(recall, error, synapse=None)
nengo.Connection(error, conn_out.learning_rule)
# Setup probes
p_keys = nengo.Probe(stim_keys, synapse=None)
p_values = nengo.Probe(stim_values, synapse=None)
p_learning = nengo.Probe(learning, synapse=None)
p_error = nengo.Probe(error, synapse=0.005)
p_recall = nengo.Probe(recall, synapse=None)
p_encoders = nengo.Probe(conn_in.learning_rule, "scaled_encoders")
with nengo.Simulator(model, dt=dt) as sim:
sim.run(T)
t = sim.trange()
plt.figure()
plt.title("Keys")
plt.plot(t, sim.data[p_keys])
plt.ylim(-1, 1)
plt.show()
plt.figure()
plt.title("Values")
plt.plot(t, sim.data[p_values])
plt.ylim(-1, 1)
plt.show()
plt.figure()
plt.title("Learning")
plt.plot(t, sim.data[p_learning])
plt.ylim(-1.2, 0.2)
plt.show()
train = t <= T / 2
test = ~train
plt.figure()
plt.title("Value Error During Training")
plt.plot(t[train], sim.data[p_error][train])
plt.show()
plt.figure()
plt.title("Value Error During Recall")
plt.plot(t[test], sim.data[p_recall][test])# - sim.data[p_values][test])
plt.show()
scale = (sim.data[memory].gain / memory.radius)[:, np.newaxis]
def plot_2d(text, xy):
plt.figure()
plt.title(text)
plt.scatter(xy[:, 0], xy[:, 1], label="Encoders")
plt.scatter(keys[:, 0], keys[:, 1], c="red", s=150, alpha=0.6, label="Keys")
plt.xlim(-1.5, 1.5)
plt.ylim(-1.5, 2)
plt.legend()
plt.gca().set_aspect("equal")
plot_2d("Before", sim.data[p_encoders][0].copy() / scale)
plt.show()
plot_2d("After", sim.data[p_encoders][-1].copy() / scale)
plt.show()